diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp | 607 |
1 files changed, 607 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp b/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp new file mode 100644 index 000000000000..d670f28df6ba --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp @@ -0,0 +1,607 @@ +//===- LiveRangeCalc.cpp - Calculate live ranges --------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Implementation of the LiveRangeCalc class. +// +//===----------------------------------------------------------------------===// + +#include "LiveRangeCalc.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/LiveInterval.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <iterator> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "regalloc" + +// Reserve an address that indicates a value that is known to be "undef". +static VNInfo UndefVNI(0xbad, SlotIndex()); + +void LiveRangeCalc::resetLiveOutMap() { + unsigned NumBlocks = MF->getNumBlockIDs(); + Seen.clear(); + Seen.resize(NumBlocks); + EntryInfos.clear(); + Map.resize(NumBlocks); +} + +void LiveRangeCalc::reset(const MachineFunction *mf, + SlotIndexes *SI, + MachineDominatorTree *MDT, + VNInfo::Allocator *VNIA) { + MF = mf; + MRI = &MF->getRegInfo(); + Indexes = SI; + DomTree = MDT; + Alloc = VNIA; + resetLiveOutMap(); + LiveIn.clear(); +} + +static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, + LiveRange &LR, const MachineOperand &MO) { + const MachineInstr &MI = *MO.getParent(); + SlotIndex DefIdx = + Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); + + // Create the def in LR. This may find an existing def. + LR.createDeadDef(DefIdx, Alloc); +} + +void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { + assert(MRI && Indexes && "call reset() first"); + + // Step 1: Create minimal live segments for every definition of Reg. + // Visit all def operands. If the same instruction has multiple defs of Reg, + // createDeadDef() will deduplicate. + const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); + unsigned Reg = LI.reg; + for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { + if (!MO.isDef() && !MO.readsReg()) + continue; + + unsigned SubReg = MO.getSubReg(); + if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { + LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) + : MRI->getMaxLaneMaskForVReg(Reg); + // If this is the first time we see a subregister def, initialize + // subranges by creating a copy of the main range. + if (!LI.hasSubRanges() && !LI.empty()) { + LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); + LI.createSubRangeFrom(*Alloc, ClassMask, LI); + } + + LI.refineSubRanges(*Alloc, SubMask, + [&MO, this](LiveInterval::SubRange &SR) { + if (MO.isDef()) + createDeadDef(*Indexes, *Alloc, SR, MO); + }, + *Indexes, TRI); + } + + // Create the def in the main liverange. We do not have to do this if + // subranges are tracked as we recreate the main range later in this case. + if (MO.isDef() && !LI.hasSubRanges()) + createDeadDef(*Indexes, *Alloc, LI, MO); + } + + // We may have created empty live ranges for partially undefined uses, we + // can't keep them because we won't find defs in them later. + LI.removeEmptySubRanges(); + + // Step 2: Extend live segments to all uses, constructing SSA form as + // necessary. + if (LI.hasSubRanges()) { + for (LiveInterval::SubRange &S : LI.subranges()) { + LiveRangeCalc SubLRC; + SubLRC.reset(MF, Indexes, DomTree, Alloc); + SubLRC.extendToUses(S, Reg, S.LaneMask, &LI); + } + LI.clear(); + constructMainRangeFromSubranges(LI); + } else { + resetLiveOutMap(); + extendToUses(LI, Reg, LaneBitmask::getAll()); + } +} + +void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) { + // First create dead defs at all defs found in subranges. + LiveRange &MainRange = LI; + assert(MainRange.segments.empty() && MainRange.valnos.empty() && + "Expect empty main liverange"); + + for (const LiveInterval::SubRange &SR : LI.subranges()) { + for (const VNInfo *VNI : SR.valnos) { + if (!VNI->isUnused() && !VNI->isPHIDef()) + MainRange.createDeadDef(VNI->def, *Alloc); + } + } + resetLiveOutMap(); + extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI); +} + +void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { + assert(MRI && Indexes && "call reset() first"); + + // Visit all def operands. If the same instruction has multiple defs of Reg, + // LR.createDeadDef() will deduplicate. + for (MachineOperand &MO : MRI->def_operands(Reg)) + createDeadDef(*Indexes, *Alloc, LR, MO); +} + +void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask, + LiveInterval *LI) { + SmallVector<SlotIndex, 4> Undefs; + if (LI != nullptr) + LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); + + // Visit all operands that read Reg. This may include partial defs. + bool IsSubRange = !Mask.all(); + const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); + for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { + // Clear all kill flags. They will be reinserted after register allocation + // by LiveIntervals::addKillFlags(). + if (MO.isUse()) + MO.setIsKill(false); + // MO::readsReg returns "true" for subregister defs. This is for keeping + // liveness of the entire register (i.e. for the main range of the live + // interval). For subranges, definitions of non-overlapping subregisters + // do not count as uses. + if (!MO.readsReg() || (IsSubRange && MO.isDef())) + continue; + + unsigned SubReg = MO.getSubReg(); + if (SubReg != 0) { + LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); + if (MO.isDef()) + SLM = ~SLM; + // Ignore uses not reading the current (sub)range. + if ((SLM & Mask).none()) + continue; + } + + // Determine the actual place of the use. + const MachineInstr *MI = MO.getParent(); + unsigned OpNo = (&MO - &MI->getOperand(0)); + SlotIndex UseIdx; + if (MI->isPHI()) { + assert(!MO.isDef() && "Cannot handle PHI def of partial register."); + // The actual place where a phi operand is used is the end of the pred + // MBB. PHI operands are paired: (Reg, PredMBB). + UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); + } else { + // Check for early-clobber redefs. + bool isEarlyClobber = false; + unsigned DefIdx; + if (MO.isDef()) + isEarlyClobber = MO.isEarlyClobber(); + else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { + // FIXME: This would be a lot easier if tied early-clobber uses also + // had an early-clobber flag. + isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); + } + UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); + } + + // MI is reading Reg. We may have visited MI before if it happens to be + // reading Reg multiple times. That is OK, extend() is idempotent. + extend(LR, UseIdx, Reg, Undefs); + } +} + +void LiveRangeCalc::updateFromLiveIns() { + LiveRangeUpdater Updater; + for (const LiveInBlock &I : LiveIn) { + if (!I.DomNode) + continue; + MachineBasicBlock *MBB = I.DomNode->getBlock(); + assert(I.Value && "No live-in value found"); + SlotIndex Start, End; + std::tie(Start, End) = Indexes->getMBBRange(MBB); + + if (I.Kill.isValid()) + // Value is killed inside this block. + End = I.Kill; + else { + // The value is live-through, update LiveOut as well. + // Defer the Domtree lookup until it is needed. + assert(Seen.test(MBB->getNumber())); + Map[MBB] = LiveOutPair(I.Value, nullptr); + } + Updater.setDest(&I.LR); + Updater.add(Start, End, I.Value); + } + LiveIn.clear(); +} + +void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, + ArrayRef<SlotIndex> Undefs) { + assert(Use.isValid() && "Invalid SlotIndex"); + assert(Indexes && "Missing SlotIndexes"); + assert(DomTree && "Missing dominator tree"); + + MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); + assert(UseMBB && "No MBB at Use"); + + // Is there a def in the same MBB we can extend? + auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use); + if (EP.first != nullptr || EP.second) + return; + + // Find the single reaching def, or determine if Use is jointly dominated by + // multiple values, and we may need to create even more phi-defs to preserve + // VNInfo SSA form. Perform a search for all predecessor blocks where we + // know the dominating VNInfo. + if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs)) + return; + + // When there were multiple different values, we may need new PHIs. + calculateValues(); +} + +// This function is called by a client after using the low-level API to add +// live-out and live-in blocks. The unique value optimization is not +// available, SplitEditor::transferValues handles that case directly anyway. +void LiveRangeCalc::calculateValues() { + assert(Indexes && "Missing SlotIndexes"); + assert(DomTree && "Missing dominator tree"); + updateSSA(); + updateFromLiveIns(); +} + +bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs, + MachineBasicBlock &MBB, BitVector &DefOnEntry, + BitVector &UndefOnEntry) { + unsigned BN = MBB.getNumber(); + if (DefOnEntry[BN]) + return true; + if (UndefOnEntry[BN]) + return false; + + auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool { + for (MachineBasicBlock *S : B.successors()) + DefOnEntry[S->getNumber()] = true; + DefOnEntry[BN] = true; + return true; + }; + + SetVector<unsigned> WorkList; + // Checking if the entry of MBB is reached by some def: add all predecessors + // that are potentially defined-on-exit to the work list. + for (MachineBasicBlock *P : MBB.predecessors()) + WorkList.insert(P->getNumber()); + + for (unsigned i = 0; i != WorkList.size(); ++i) { + // Determine if the exit from the block is reached by some def. + unsigned N = WorkList[i]; + MachineBasicBlock &B = *MF->getBlockNumbered(N); + if (Seen[N]) { + const LiveOutPair &LOB = Map[&B]; + if (LOB.first != nullptr && LOB.first != &UndefVNI) + return MarkDefined(B); + } + SlotIndex Begin, End; + std::tie(Begin, End) = Indexes->getMBBRange(&B); + // Treat End as not belonging to B. + // If LR has a segment S that starts at the next block, i.e. [End, ...), + // std::upper_bound will return the segment following S. Instead, + // S should be treated as the first segment that does not overlap B. + LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), + End.getPrevSlot()); + if (UB != LR.begin()) { + LiveRange::Segment &Seg = *std::prev(UB); + if (Seg.end > Begin) { + // There is a segment that overlaps B. If the range is not explicitly + // undefined between the end of the segment and the end of the block, + // treat the block as defined on exit. If it is, go to the next block + // on the work list. + if (LR.isUndefIn(Undefs, Seg.end, End)) + continue; + return MarkDefined(B); + } + } + + // No segment overlaps with this block. If this block is not defined on + // entry, or it undefines the range, do not process its predecessors. + if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) { + UndefOnEntry[N] = true; + continue; + } + if (DefOnEntry[N]) + return MarkDefined(B); + + // Still don't know: add all predecessors to the work list. + for (MachineBasicBlock *P : B.predecessors()) + WorkList.insert(P->getNumber()); + } + + UndefOnEntry[BN] = true; + return false; +} + +bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, + SlotIndex Use, unsigned PhysReg, + ArrayRef<SlotIndex> Undefs) { + unsigned UseMBBNum = UseMBB.getNumber(); + + // Block numbers where LR should be live-in. + SmallVector<unsigned, 16> WorkList(1, UseMBBNum); + + // Remember if we have seen more than one value. + bool UniqueVNI = true; + VNInfo *TheVNI = nullptr; + + bool FoundUndef = false; + + // Using Seen as a visited set, perform a BFS for all reaching defs. + for (unsigned i = 0; i != WorkList.size(); ++i) { + MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); + +#ifndef NDEBUG + if (MBB->pred_empty()) { + MBB->getParent()->verify(); + errs() << "Use of " << printReg(PhysReg, MRI->getTargetRegisterInfo()) + << " does not have a corresponding definition on every path:\n"; + const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); + if (MI != nullptr) + errs() << Use << " " << *MI; + report_fatal_error("Use not jointly dominated by defs."); + } + + if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && + !MBB->isLiveIn(PhysReg)) { + MBB->getParent()->verify(); + const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); + errs() << "The register " << printReg(PhysReg, TRI) + << " needs to be live in to " << printMBBReference(*MBB) + << ", but is missing from the live-in list.\n"; + report_fatal_error("Invalid global physical register"); + } +#endif + FoundUndef |= MBB->pred_empty(); + + for (MachineBasicBlock *Pred : MBB->predecessors()) { + // Is this a known live-out block? + if (Seen.test(Pred->getNumber())) { + if (VNInfo *VNI = Map[Pred].first) { + if (TheVNI && TheVNI != VNI) + UniqueVNI = false; + TheVNI = VNI; + } + continue; + } + + SlotIndex Start, End; + std::tie(Start, End) = Indexes->getMBBRange(Pred); + + // First time we see Pred. Try to determine the live-out value, but set + // it as null if Pred is live-through with an unknown value. + auto EP = LR.extendInBlock(Undefs, Start, End); + VNInfo *VNI = EP.first; + FoundUndef |= EP.second; + setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI); + if (VNI) { + if (TheVNI && TheVNI != VNI) + UniqueVNI = false; + TheVNI = VNI; + } + if (VNI || EP.second) + continue; + + // No, we need a live-in value for Pred as well + if (Pred != &UseMBB) + WorkList.push_back(Pred->getNumber()); + else + // Loopback to UseMBB, so value is really live through. + Use = SlotIndex(); + } + } + + LiveIn.clear(); + FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI); + if (!Undefs.empty() && FoundUndef) + UniqueVNI = false; + + // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but + // neither require it. Skip the sorting overhead for small updates. + if (WorkList.size() > 4) + array_pod_sort(WorkList.begin(), WorkList.end()); + + // If a unique reaching def was found, blit in the live ranges immediately. + if (UniqueVNI) { + assert(TheVNI != nullptr && TheVNI != &UndefVNI); + LiveRangeUpdater Updater(&LR); + for (unsigned BN : WorkList) { + SlotIndex Start, End; + std::tie(Start, End) = Indexes->getMBBRange(BN); + // Trim the live range in UseMBB. + if (BN == UseMBBNum && Use.isValid()) + End = Use; + else + Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr); + Updater.add(Start, End, TheVNI); + } + return true; + } + + // Prepare the defined/undefined bit vectors. + EntryInfoMap::iterator Entry; + bool DidInsert; + std::tie(Entry, DidInsert) = EntryInfos.insert( + std::make_pair(&LR, std::make_pair(BitVector(), BitVector()))); + if (DidInsert) { + // Initialize newly inserted entries. + unsigned N = MF->getNumBlockIDs(); + Entry->second.first.resize(N); + Entry->second.second.resize(N); + } + BitVector &DefOnEntry = Entry->second.first; + BitVector &UndefOnEntry = Entry->second.second; + + // Multiple values were found, so transfer the work list to the LiveIn array + // where UpdateSSA will use it as a work list. + LiveIn.reserve(WorkList.size()); + for (unsigned BN : WorkList) { + MachineBasicBlock *MBB = MF->getBlockNumbered(BN); + if (!Undefs.empty() && + !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry)) + continue; + addLiveInBlock(LR, DomTree->getNode(MBB)); + if (MBB == &UseMBB) + LiveIn.back().Kill = Use; + } + + return false; +} + +// This is essentially the same iterative algorithm that SSAUpdater uses, +// except we already have a dominator tree, so we don't have to recompute it. +void LiveRangeCalc::updateSSA() { + assert(Indexes && "Missing SlotIndexes"); + assert(DomTree && "Missing dominator tree"); + + // Interate until convergence. + bool Changed; + do { + Changed = false; + // Propagate live-out values down the dominator tree, inserting phi-defs + // when necessary. + for (LiveInBlock &I : LiveIn) { + MachineDomTreeNode *Node = I.DomNode; + // Skip block if the live-in value has already been determined. + if (!Node) + continue; + MachineBasicBlock *MBB = Node->getBlock(); + MachineDomTreeNode *IDom = Node->getIDom(); + LiveOutPair IDomValue; + + // We need a live-in value to a block with no immediate dominator? + // This is probably an unreachable block that has survived somehow. + bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); + + // IDom dominates all of our predecessors, but it may not be their + // immediate dominator. Check if any of them have live-out values that are + // properly dominated by IDom. If so, we need a phi-def here. + if (!needPHI) { + IDomValue = Map[IDom->getBlock()]; + + // Cache the DomTree node that defined the value. + if (IDomValue.first && IDomValue.first != &UndefVNI && + !IDomValue.second) { + Map[IDom->getBlock()].second = IDomValue.second = + DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); + } + + for (MachineBasicBlock *Pred : MBB->predecessors()) { + LiveOutPair &Value = Map[Pred]; + if (!Value.first || Value.first == IDomValue.first) + continue; + if (Value.first == &UndefVNI) { + needPHI = true; + break; + } + + // Cache the DomTree node that defined the value. + if (!Value.second) + Value.second = + DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); + + // This predecessor is carrying something other than IDomValue. + // It could be because IDomValue hasn't propagated yet, or it could be + // because MBB is in the dominance frontier of that value. + if (DomTree->dominates(IDom, Value.second)) { + needPHI = true; + break; + } + } + } + + // The value may be live-through even if Kill is set, as can happen when + // we are called from extendRange. In that case LiveOutSeen is true, and + // LiveOut indicates a foreign or missing value. + LiveOutPair &LOP = Map[MBB]; + + // Create a phi-def if required. + if (needPHI) { + Changed = true; + assert(Alloc && "Need VNInfo allocator to create PHI-defs"); + SlotIndex Start, End; + std::tie(Start, End) = Indexes->getMBBRange(MBB); + LiveRange &LR = I.LR; + VNInfo *VNI = LR.getNextValue(Start, *Alloc); + I.Value = VNI; + // This block is done, we know the final value. + I.DomNode = nullptr; + + // Add liveness since updateFromLiveIns now skips this node. + if (I.Kill.isValid()) { + if (VNI) + LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); + } else { + if (VNI) + LR.addSegment(LiveInterval::Segment(Start, End, VNI)); + LOP = LiveOutPair(VNI, Node); + } + } else if (IDomValue.first && IDomValue.first != &UndefVNI) { + // No phi-def here. Remember incoming value. + I.Value = IDomValue.first; + + // If the IDomValue is killed in the block, don't propagate through. + if (I.Kill.isValid()) + continue; + + // Propagate IDomValue if it isn't killed: + // MBB is live-out and doesn't define its own value. + if (LOP.first == IDomValue.first) + continue; + Changed = true; + LOP = IDomValue; + } + } + } while (Changed); +} + +bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB, + ArrayRef<SlotIndex> Defs, + const SlotIndexes &Indexes) { + const MachineFunction &MF = *MBB->getParent(); + BitVector DefBlocks(MF.getNumBlockIDs()); + for (SlotIndex I : Defs) + DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber()); + + SetVector<unsigned> PredQueue; + PredQueue.insert(MBB->getNumber()); + for (unsigned i = 0; i != PredQueue.size(); ++i) { + unsigned BN = PredQueue[i]; + if (DefBlocks[BN]) + return true; + const MachineBasicBlock *B = MF.getBlockNumbered(BN); + for (const MachineBasicBlock *P : B->predecessors()) + PredQueue.insert(P->getNumber()); + } + return false; +} |