summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp607
1 files changed, 607 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp b/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp
new file mode 100644
index 000000000000..d670f28df6ba
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp
@@ -0,0 +1,607 @@
+//===- LiveRangeCalc.cpp - Calculate live ranges --------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the LiveRangeCalc class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LiveRangeCalc.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <tuple>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+// Reserve an address that indicates a value that is known to be "undef".
+static VNInfo UndefVNI(0xbad, SlotIndex());
+
+void LiveRangeCalc::resetLiveOutMap() {
+ unsigned NumBlocks = MF->getNumBlockIDs();
+ Seen.clear();
+ Seen.resize(NumBlocks);
+ EntryInfos.clear();
+ Map.resize(NumBlocks);
+}
+
+void LiveRangeCalc::reset(const MachineFunction *mf,
+ SlotIndexes *SI,
+ MachineDominatorTree *MDT,
+ VNInfo::Allocator *VNIA) {
+ MF = mf;
+ MRI = &MF->getRegInfo();
+ Indexes = SI;
+ DomTree = MDT;
+ Alloc = VNIA;
+ resetLiveOutMap();
+ LiveIn.clear();
+}
+
+static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
+ LiveRange &LR, const MachineOperand &MO) {
+ const MachineInstr &MI = *MO.getParent();
+ SlotIndex DefIdx =
+ Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
+
+ // Create the def in LR. This may find an existing def.
+ LR.createDeadDef(DefIdx, Alloc);
+}
+
+void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
+ assert(MRI && Indexes && "call reset() first");
+
+ // Step 1: Create minimal live segments for every definition of Reg.
+ // Visit all def operands. If the same instruction has multiple defs of Reg,
+ // createDeadDef() will deduplicate.
+ const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
+ unsigned Reg = LI.reg;
+ for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
+ if (!MO.isDef() && !MO.readsReg())
+ continue;
+
+ unsigned SubReg = MO.getSubReg();
+ if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
+ LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
+ : MRI->getMaxLaneMaskForVReg(Reg);
+ // If this is the first time we see a subregister def, initialize
+ // subranges by creating a copy of the main range.
+ if (!LI.hasSubRanges() && !LI.empty()) {
+ LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
+ LI.createSubRangeFrom(*Alloc, ClassMask, LI);
+ }
+
+ LI.refineSubRanges(*Alloc, SubMask,
+ [&MO, this](LiveInterval::SubRange &SR) {
+ if (MO.isDef())
+ createDeadDef(*Indexes, *Alloc, SR, MO);
+ },
+ *Indexes, TRI);
+ }
+
+ // Create the def in the main liverange. We do not have to do this if
+ // subranges are tracked as we recreate the main range later in this case.
+ if (MO.isDef() && !LI.hasSubRanges())
+ createDeadDef(*Indexes, *Alloc, LI, MO);
+ }
+
+ // We may have created empty live ranges for partially undefined uses, we
+ // can't keep them because we won't find defs in them later.
+ LI.removeEmptySubRanges();
+
+ // Step 2: Extend live segments to all uses, constructing SSA form as
+ // necessary.
+ if (LI.hasSubRanges()) {
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ LiveRangeCalc SubLRC;
+ SubLRC.reset(MF, Indexes, DomTree, Alloc);
+ SubLRC.extendToUses(S, Reg, S.LaneMask, &LI);
+ }
+ LI.clear();
+ constructMainRangeFromSubranges(LI);
+ } else {
+ resetLiveOutMap();
+ extendToUses(LI, Reg, LaneBitmask::getAll());
+ }
+}
+
+void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
+ // First create dead defs at all defs found in subranges.
+ LiveRange &MainRange = LI;
+ assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
+ "Expect empty main liverange");
+
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ for (const VNInfo *VNI : SR.valnos) {
+ if (!VNI->isUnused() && !VNI->isPHIDef())
+ MainRange.createDeadDef(VNI->def, *Alloc);
+ }
+ }
+ resetLiveOutMap();
+ extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI);
+}
+
+void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
+ assert(MRI && Indexes && "call reset() first");
+
+ // Visit all def operands. If the same instruction has multiple defs of Reg,
+ // LR.createDeadDef() will deduplicate.
+ for (MachineOperand &MO : MRI->def_operands(Reg))
+ createDeadDef(*Indexes, *Alloc, LR, MO);
+}
+
+void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask,
+ LiveInterval *LI) {
+ SmallVector<SlotIndex, 4> Undefs;
+ if (LI != nullptr)
+ LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);
+
+ // Visit all operands that read Reg. This may include partial defs.
+ bool IsSubRange = !Mask.all();
+ const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
+ for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
+ // Clear all kill flags. They will be reinserted after register allocation
+ // by LiveIntervals::addKillFlags().
+ if (MO.isUse())
+ MO.setIsKill(false);
+ // MO::readsReg returns "true" for subregister defs. This is for keeping
+ // liveness of the entire register (i.e. for the main range of the live
+ // interval). For subranges, definitions of non-overlapping subregisters
+ // do not count as uses.
+ if (!MO.readsReg() || (IsSubRange && MO.isDef()))
+ continue;
+
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0) {
+ LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
+ if (MO.isDef())
+ SLM = ~SLM;
+ // Ignore uses not reading the current (sub)range.
+ if ((SLM & Mask).none())
+ continue;
+ }
+
+ // Determine the actual place of the use.
+ const MachineInstr *MI = MO.getParent();
+ unsigned OpNo = (&MO - &MI->getOperand(0));
+ SlotIndex UseIdx;
+ if (MI->isPHI()) {
+ assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
+ // The actual place where a phi operand is used is the end of the pred
+ // MBB. PHI operands are paired: (Reg, PredMBB).
+ UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
+ } else {
+ // Check for early-clobber redefs.
+ bool isEarlyClobber = false;
+ unsigned DefIdx;
+ if (MO.isDef())
+ isEarlyClobber = MO.isEarlyClobber();
+ else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
+ // FIXME: This would be a lot easier if tied early-clobber uses also
+ // had an early-clobber flag.
+ isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
+ }
+ UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
+ }
+
+ // MI is reading Reg. We may have visited MI before if it happens to be
+ // reading Reg multiple times. That is OK, extend() is idempotent.
+ extend(LR, UseIdx, Reg, Undefs);
+ }
+}
+
+void LiveRangeCalc::updateFromLiveIns() {
+ LiveRangeUpdater Updater;
+ for (const LiveInBlock &I : LiveIn) {
+ if (!I.DomNode)
+ continue;
+ MachineBasicBlock *MBB = I.DomNode->getBlock();
+ assert(I.Value && "No live-in value found");
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(MBB);
+
+ if (I.Kill.isValid())
+ // Value is killed inside this block.
+ End = I.Kill;
+ else {
+ // The value is live-through, update LiveOut as well.
+ // Defer the Domtree lookup until it is needed.
+ assert(Seen.test(MBB->getNumber()));
+ Map[MBB] = LiveOutPair(I.Value, nullptr);
+ }
+ Updater.setDest(&I.LR);
+ Updater.add(Start, End, I.Value);
+ }
+ LiveIn.clear();
+}
+
+void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
+ ArrayRef<SlotIndex> Undefs) {
+ assert(Use.isValid() && "Invalid SlotIndex");
+ assert(Indexes && "Missing SlotIndexes");
+ assert(DomTree && "Missing dominator tree");
+
+ MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
+ assert(UseMBB && "No MBB at Use");
+
+ // Is there a def in the same MBB we can extend?
+ auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use);
+ if (EP.first != nullptr || EP.second)
+ return;
+
+ // Find the single reaching def, or determine if Use is jointly dominated by
+ // multiple values, and we may need to create even more phi-defs to preserve
+ // VNInfo SSA form. Perform a search for all predecessor blocks where we
+ // know the dominating VNInfo.
+ if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs))
+ return;
+
+ // When there were multiple different values, we may need new PHIs.
+ calculateValues();
+}
+
+// This function is called by a client after using the low-level API to add
+// live-out and live-in blocks. The unique value optimization is not
+// available, SplitEditor::transferValues handles that case directly anyway.
+void LiveRangeCalc::calculateValues() {
+ assert(Indexes && "Missing SlotIndexes");
+ assert(DomTree && "Missing dominator tree");
+ updateSSA();
+ updateFromLiveIns();
+}
+
+bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
+ MachineBasicBlock &MBB, BitVector &DefOnEntry,
+ BitVector &UndefOnEntry) {
+ unsigned BN = MBB.getNumber();
+ if (DefOnEntry[BN])
+ return true;
+ if (UndefOnEntry[BN])
+ return false;
+
+ auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool {
+ for (MachineBasicBlock *S : B.successors())
+ DefOnEntry[S->getNumber()] = true;
+ DefOnEntry[BN] = true;
+ return true;
+ };
+
+ SetVector<unsigned> WorkList;
+ // Checking if the entry of MBB is reached by some def: add all predecessors
+ // that are potentially defined-on-exit to the work list.
+ for (MachineBasicBlock *P : MBB.predecessors())
+ WorkList.insert(P->getNumber());
+
+ for (unsigned i = 0; i != WorkList.size(); ++i) {
+ // Determine if the exit from the block is reached by some def.
+ unsigned N = WorkList[i];
+ MachineBasicBlock &B = *MF->getBlockNumbered(N);
+ if (Seen[N]) {
+ const LiveOutPair &LOB = Map[&B];
+ if (LOB.first != nullptr && LOB.first != &UndefVNI)
+ return MarkDefined(B);
+ }
+ SlotIndex Begin, End;
+ std::tie(Begin, End) = Indexes->getMBBRange(&B);
+ // Treat End as not belonging to B.
+ // If LR has a segment S that starts at the next block, i.e. [End, ...),
+ // std::upper_bound will return the segment following S. Instead,
+ // S should be treated as the first segment that does not overlap B.
+ LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(),
+ End.getPrevSlot());
+ if (UB != LR.begin()) {
+ LiveRange::Segment &Seg = *std::prev(UB);
+ if (Seg.end > Begin) {
+ // There is a segment that overlaps B. If the range is not explicitly
+ // undefined between the end of the segment and the end of the block,
+ // treat the block as defined on exit. If it is, go to the next block
+ // on the work list.
+ if (LR.isUndefIn(Undefs, Seg.end, End))
+ continue;
+ return MarkDefined(B);
+ }
+ }
+
+ // No segment overlaps with this block. If this block is not defined on
+ // entry, or it undefines the range, do not process its predecessors.
+ if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
+ UndefOnEntry[N] = true;
+ continue;
+ }
+ if (DefOnEntry[N])
+ return MarkDefined(B);
+
+ // Still don't know: add all predecessors to the work list.
+ for (MachineBasicBlock *P : B.predecessors())
+ WorkList.insert(P->getNumber());
+ }
+
+ UndefOnEntry[BN] = true;
+ return false;
+}
+
+bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
+ SlotIndex Use, unsigned PhysReg,
+ ArrayRef<SlotIndex> Undefs) {
+ unsigned UseMBBNum = UseMBB.getNumber();
+
+ // Block numbers where LR should be live-in.
+ SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
+
+ // Remember if we have seen more than one value.
+ bool UniqueVNI = true;
+ VNInfo *TheVNI = nullptr;
+
+ bool FoundUndef = false;
+
+ // Using Seen as a visited set, perform a BFS for all reaching defs.
+ for (unsigned i = 0; i != WorkList.size(); ++i) {
+ MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
+
+#ifndef NDEBUG
+ if (MBB->pred_empty()) {
+ MBB->getParent()->verify();
+ errs() << "Use of " << printReg(PhysReg, MRI->getTargetRegisterInfo())
+ << " does not have a corresponding definition on every path:\n";
+ const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
+ if (MI != nullptr)
+ errs() << Use << " " << *MI;
+ report_fatal_error("Use not jointly dominated by defs.");
+ }
+
+ if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
+ !MBB->isLiveIn(PhysReg)) {
+ MBB->getParent()->verify();
+ const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
+ errs() << "The register " << printReg(PhysReg, TRI)
+ << " needs to be live in to " << printMBBReference(*MBB)
+ << ", but is missing from the live-in list.\n";
+ report_fatal_error("Invalid global physical register");
+ }
+#endif
+ FoundUndef |= MBB->pred_empty();
+
+ for (MachineBasicBlock *Pred : MBB->predecessors()) {
+ // Is this a known live-out block?
+ if (Seen.test(Pred->getNumber())) {
+ if (VNInfo *VNI = Map[Pred].first) {
+ if (TheVNI && TheVNI != VNI)
+ UniqueVNI = false;
+ TheVNI = VNI;
+ }
+ continue;
+ }
+
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(Pred);
+
+ // First time we see Pred. Try to determine the live-out value, but set
+ // it as null if Pred is live-through with an unknown value.
+ auto EP = LR.extendInBlock(Undefs, Start, End);
+ VNInfo *VNI = EP.first;
+ FoundUndef |= EP.second;
+ setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI);
+ if (VNI) {
+ if (TheVNI && TheVNI != VNI)
+ UniqueVNI = false;
+ TheVNI = VNI;
+ }
+ if (VNI || EP.second)
+ continue;
+
+ // No, we need a live-in value for Pred as well
+ if (Pred != &UseMBB)
+ WorkList.push_back(Pred->getNumber());
+ else
+ // Loopback to UseMBB, so value is really live through.
+ Use = SlotIndex();
+ }
+ }
+
+ LiveIn.clear();
+ FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI);
+ if (!Undefs.empty() && FoundUndef)
+ UniqueVNI = false;
+
+ // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
+ // neither require it. Skip the sorting overhead for small updates.
+ if (WorkList.size() > 4)
+ array_pod_sort(WorkList.begin(), WorkList.end());
+
+ // If a unique reaching def was found, blit in the live ranges immediately.
+ if (UniqueVNI) {
+ assert(TheVNI != nullptr && TheVNI != &UndefVNI);
+ LiveRangeUpdater Updater(&LR);
+ for (unsigned BN : WorkList) {
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(BN);
+ // Trim the live range in UseMBB.
+ if (BN == UseMBBNum && Use.isValid())
+ End = Use;
+ else
+ Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
+ Updater.add(Start, End, TheVNI);
+ }
+ return true;
+ }
+
+ // Prepare the defined/undefined bit vectors.
+ EntryInfoMap::iterator Entry;
+ bool DidInsert;
+ std::tie(Entry, DidInsert) = EntryInfos.insert(
+ std::make_pair(&LR, std::make_pair(BitVector(), BitVector())));
+ if (DidInsert) {
+ // Initialize newly inserted entries.
+ unsigned N = MF->getNumBlockIDs();
+ Entry->second.first.resize(N);
+ Entry->second.second.resize(N);
+ }
+ BitVector &DefOnEntry = Entry->second.first;
+ BitVector &UndefOnEntry = Entry->second.second;
+
+ // Multiple values were found, so transfer the work list to the LiveIn array
+ // where UpdateSSA will use it as a work list.
+ LiveIn.reserve(WorkList.size());
+ for (unsigned BN : WorkList) {
+ MachineBasicBlock *MBB = MF->getBlockNumbered(BN);
+ if (!Undefs.empty() &&
+ !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry))
+ continue;
+ addLiveInBlock(LR, DomTree->getNode(MBB));
+ if (MBB == &UseMBB)
+ LiveIn.back().Kill = Use;
+ }
+
+ return false;
+}
+
+// This is essentially the same iterative algorithm that SSAUpdater uses,
+// except we already have a dominator tree, so we don't have to recompute it.
+void LiveRangeCalc::updateSSA() {
+ assert(Indexes && "Missing SlotIndexes");
+ assert(DomTree && "Missing dominator tree");
+
+ // Interate until convergence.
+ bool Changed;
+ do {
+ Changed = false;
+ // Propagate live-out values down the dominator tree, inserting phi-defs
+ // when necessary.
+ for (LiveInBlock &I : LiveIn) {
+ MachineDomTreeNode *Node = I.DomNode;
+ // Skip block if the live-in value has already been determined.
+ if (!Node)
+ continue;
+ MachineBasicBlock *MBB = Node->getBlock();
+ MachineDomTreeNode *IDom = Node->getIDom();
+ LiveOutPair IDomValue;
+
+ // We need a live-in value to a block with no immediate dominator?
+ // This is probably an unreachable block that has survived somehow.
+ bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
+
+ // IDom dominates all of our predecessors, but it may not be their
+ // immediate dominator. Check if any of them have live-out values that are
+ // properly dominated by IDom. If so, we need a phi-def here.
+ if (!needPHI) {
+ IDomValue = Map[IDom->getBlock()];
+
+ // Cache the DomTree node that defined the value.
+ if (IDomValue.first && IDomValue.first != &UndefVNI &&
+ !IDomValue.second) {
+ Map[IDom->getBlock()].second = IDomValue.second =
+ DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
+ }
+
+ for (MachineBasicBlock *Pred : MBB->predecessors()) {
+ LiveOutPair &Value = Map[Pred];
+ if (!Value.first || Value.first == IDomValue.first)
+ continue;
+ if (Value.first == &UndefVNI) {
+ needPHI = true;
+ break;
+ }
+
+ // Cache the DomTree node that defined the value.
+ if (!Value.second)
+ Value.second =
+ DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
+
+ // This predecessor is carrying something other than IDomValue.
+ // It could be because IDomValue hasn't propagated yet, or it could be
+ // because MBB is in the dominance frontier of that value.
+ if (DomTree->dominates(IDom, Value.second)) {
+ needPHI = true;
+ break;
+ }
+ }
+ }
+
+ // The value may be live-through even if Kill is set, as can happen when
+ // we are called from extendRange. In that case LiveOutSeen is true, and
+ // LiveOut indicates a foreign or missing value.
+ LiveOutPair &LOP = Map[MBB];
+
+ // Create a phi-def if required.
+ if (needPHI) {
+ Changed = true;
+ assert(Alloc && "Need VNInfo allocator to create PHI-defs");
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(MBB);
+ LiveRange &LR = I.LR;
+ VNInfo *VNI = LR.getNextValue(Start, *Alloc);
+ I.Value = VNI;
+ // This block is done, we know the final value.
+ I.DomNode = nullptr;
+
+ // Add liveness since updateFromLiveIns now skips this node.
+ if (I.Kill.isValid()) {
+ if (VNI)
+ LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
+ } else {
+ if (VNI)
+ LR.addSegment(LiveInterval::Segment(Start, End, VNI));
+ LOP = LiveOutPair(VNI, Node);
+ }
+ } else if (IDomValue.first && IDomValue.first != &UndefVNI) {
+ // No phi-def here. Remember incoming value.
+ I.Value = IDomValue.first;
+
+ // If the IDomValue is killed in the block, don't propagate through.
+ if (I.Kill.isValid())
+ continue;
+
+ // Propagate IDomValue if it isn't killed:
+ // MBB is live-out and doesn't define its own value.
+ if (LOP.first == IDomValue.first)
+ continue;
+ Changed = true;
+ LOP = IDomValue;
+ }
+ }
+ } while (Changed);
+}
+
+bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB,
+ ArrayRef<SlotIndex> Defs,
+ const SlotIndexes &Indexes) {
+ const MachineFunction &MF = *MBB->getParent();
+ BitVector DefBlocks(MF.getNumBlockIDs());
+ for (SlotIndex I : Defs)
+ DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber());
+
+ SetVector<unsigned> PredQueue;
+ PredQueue.insert(MBB->getNumber());
+ for (unsigned i = 0; i != PredQueue.size(); ++i) {
+ unsigned BN = PredQueue[i];
+ if (DefBlocks[BN])
+ return true;
+ const MachineBasicBlock *B = MF.getBlockNumbered(BN);
+ for (const MachineBasicBlock *P : B->predecessors())
+ PredQueue.insert(P->getNumber());
+ }
+ return false;
+}