summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeEdit.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/LiveRangeEdit.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/LiveRangeEdit.cpp476
1 files changed, 476 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeEdit.cpp b/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeEdit.cpp
new file mode 100644
index 000000000000..882e562ba95c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveRangeEdit.cpp
@@ -0,0 +1,476 @@
+//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// The LiveRangeEdit class represents changes done to a virtual register when it
+// is spilled or split.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveRangeEdit.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
+STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
+STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
+
+void LiveRangeEdit::Delegate::anchor() { }
+
+LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg,
+ bool createSubRanges) {
+ unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
+ if (VRM)
+ VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
+
+ LiveInterval &LI = LIS.createEmptyInterval(VReg);
+ if (Parent && !Parent->isSpillable())
+ LI.markNotSpillable();
+ if (createSubRanges) {
+ // Create empty subranges if the OldReg's interval has them. Do not create
+ // the main range here---it will be constructed later after the subranges
+ // have been finalized.
+ LiveInterval &OldLI = LIS.getInterval(OldReg);
+ VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
+ for (LiveInterval::SubRange &S : OldLI.subranges())
+ LI.createSubRange(Alloc, S.LaneMask);
+ }
+ return LI;
+}
+
+unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
+ unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
+ if (VRM) {
+ VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
+ }
+ // FIXME: Getting the interval here actually computes it.
+ // In theory, this may not be what we want, but in practice
+ // the createEmptyIntervalFrom API is used when this is not
+ // the case. Generally speaking we just want to annotate the
+ // LiveInterval when it gets created but we cannot do that at
+ // the moment.
+ if (Parent && !Parent->isSpillable())
+ LIS.getInterval(VReg).markNotSpillable();
+ return VReg;
+}
+
+bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
+ const MachineInstr *DefMI,
+ AliasAnalysis *aa) {
+ assert(DefMI && "Missing instruction");
+ ScannedRemattable = true;
+ if (!TII.isTriviallyReMaterializable(*DefMI, aa))
+ return false;
+ Remattable.insert(VNI);
+ return true;
+}
+
+void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
+ for (VNInfo *VNI : getParent().valnos) {
+ if (VNI->isUnused())
+ continue;
+ unsigned Original = VRM->getOriginal(getReg());
+ LiveInterval &OrigLI = LIS.getInterval(Original);
+ VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
+ if (!OrigVNI)
+ continue;
+ MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
+ if (!DefMI)
+ continue;
+ checkRematerializable(OrigVNI, DefMI, aa);
+ }
+ ScannedRemattable = true;
+}
+
+bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
+ if (!ScannedRemattable)
+ scanRemattable(aa);
+ return !Remattable.empty();
+}
+
+/// allUsesAvailableAt - Return true if all registers used by OrigMI at
+/// OrigIdx are also available with the same value at UseIdx.
+bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
+ SlotIndex OrigIdx,
+ SlotIndex UseIdx) const {
+ OrigIdx = OrigIdx.getRegSlot(true);
+ UseIdx = UseIdx.getRegSlot(true);
+ for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = OrigMI->getOperand(i);
+ if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
+ continue;
+
+ // We can't remat physreg uses, unless it is a constant.
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ if (MRI.isConstantPhysReg(MO.getReg()))
+ continue;
+ return false;
+ }
+
+ LiveInterval &li = LIS.getInterval(MO.getReg());
+ const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
+ if (!OVNI)
+ continue;
+
+ // Don't allow rematerialization immediately after the original def.
+ // It would be incorrect if OrigMI redefines the register.
+ // See PR14098.
+ if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
+ return false;
+
+ if (OVNI != li.getVNInfoAt(UseIdx))
+ return false;
+ }
+ return true;
+}
+
+bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
+ SlotIndex UseIdx, bool cheapAsAMove) {
+ assert(ScannedRemattable && "Call anyRematerializable first");
+
+ // Use scanRemattable info.
+ if (!Remattable.count(OrigVNI))
+ return false;
+
+ // No defining instruction provided.
+ SlotIndex DefIdx;
+ assert(RM.OrigMI && "No defining instruction for remattable value");
+ DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
+
+ // If only cheap remats were requested, bail out early.
+ if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
+ return false;
+
+ // Verify that all used registers are available with the same values.
+ if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
+ return false;
+
+ return true;
+}
+
+SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg,
+ const Remat &RM,
+ const TargetRegisterInfo &tri,
+ bool Late) {
+ assert(RM.OrigMI && "Invalid remat");
+ TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
+ // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
+ // to false anyway in case the isDead flag of RM.OrigMI's dest register
+ // is true.
+ (*--MI).getOperand(0).setIsDead(false);
+ Rematted.insert(RM.ParentVNI);
+ return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
+}
+
+void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
+ if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
+ LIS.removeInterval(Reg);
+}
+
+bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
+ SmallVectorImpl<MachineInstr*> &Dead) {
+ MachineInstr *DefMI = nullptr, *UseMI = nullptr;
+
+ // Check that there is a single def and a single use.
+ for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
+ MachineInstr *MI = MO.getParent();
+ if (MO.isDef()) {
+ if (DefMI && DefMI != MI)
+ return false;
+ if (!MI->canFoldAsLoad())
+ return false;
+ DefMI = MI;
+ } else if (!MO.isUndef()) {
+ if (UseMI && UseMI != MI)
+ return false;
+ // FIXME: Targets don't know how to fold subreg uses.
+ if (MO.getSubReg())
+ return false;
+ UseMI = MI;
+ }
+ }
+ if (!DefMI || !UseMI)
+ return false;
+
+ // Since we're moving the DefMI load, make sure we're not extending any live
+ // ranges.
+ if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
+ LIS.getInstructionIndex(*UseMI)))
+ return false;
+
+ // We also need to make sure it is safe to move the load.
+ // Assume there are stores between DefMI and UseMI.
+ bool SawStore = true;
+ if (!DefMI->isSafeToMove(nullptr, SawStore))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
+ << " into single use: " << *UseMI);
+
+ SmallVector<unsigned, 8> Ops;
+ if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
+ return false;
+
+ MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
+ if (!FoldMI)
+ return false;
+ LLVM_DEBUG(dbgs() << " folded: " << *FoldMI);
+ LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
+ if (UseMI->isCall())
+ UseMI->getMF()->updateCallSiteInfo(UseMI, FoldMI);
+ UseMI->eraseFromParent();
+ DefMI->addRegisterDead(LI->reg, nullptr);
+ Dead.push_back(DefMI);
+ ++NumDCEFoldedLoads;
+ return true;
+}
+
+bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
+ const MachineOperand &MO) const {
+ const MachineInstr &MI = *MO.getParent();
+ SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
+ if (LI.Query(Idx).isKill())
+ return true;
+ const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
+ unsigned SubReg = MO.getSubReg();
+ LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
+ for (const LiveInterval::SubRange &S : LI.subranges()) {
+ if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
+ return true;
+ }
+ return false;
+}
+
+/// Find all live intervals that need to shrink, then remove the instruction.
+void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
+ AliasAnalysis *AA) {
+ assert(MI->allDefsAreDead() && "Def isn't really dead");
+ SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
+
+ // Never delete a bundled instruction.
+ if (MI->isBundled()) {
+ return;
+ }
+ // Never delete inline asm.
+ if (MI->isInlineAsm()) {
+ LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
+ return;
+ }
+
+ // Use the same criteria as DeadMachineInstructionElim.
+ bool SawStore = false;
+ if (!MI->isSafeToMove(nullptr, SawStore)) {
+ LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
+ return;
+ }
+
+ LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
+
+ // Collect virtual registers to be erased after MI is gone.
+ SmallVector<unsigned, 8> RegsToErase;
+ bool ReadsPhysRegs = false;
+ bool isOrigDef = false;
+ unsigned Dest;
+ // Only optimize rematerialize case when the instruction has one def, since
+ // otherwise we could leave some dead defs in the code. This case is
+ // extremely rare.
+ if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
+ MI->getDesc().getNumDefs() == 1) {
+ Dest = MI->getOperand(0).getReg();
+ unsigned Original = VRM->getOriginal(Dest);
+ LiveInterval &OrigLI = LIS.getInterval(Original);
+ VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
+ // The original live-range may have been shrunk to
+ // an empty live-range. It happens when it is dead, but
+ // we still keep it around to be able to rematerialize
+ // other values that depend on it.
+ if (OrigVNI)
+ isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
+ }
+
+ // Check for live intervals that may shrink
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end(); MOI != MOE; ++MOI) {
+ if (!MOI->isReg())
+ continue;
+ unsigned Reg = MOI->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // Check if MI reads any unreserved physregs.
+ if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
+ ReadsPhysRegs = true;
+ else if (MOI->isDef())
+ LIS.removePhysRegDefAt(Reg, Idx);
+ continue;
+ }
+ LiveInterval &LI = LIS.getInterval(Reg);
+
+ // Shrink read registers, unless it is likely to be expensive and
+ // unlikely to change anything. We typically don't want to shrink the
+ // PIC base register that has lots of uses everywhere.
+ // Always shrink COPY uses that probably come from live range splitting.
+ if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
+ (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
+ ToShrink.insert(&LI);
+
+ // Remove defined value.
+ if (MOI->isDef()) {
+ if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
+ TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
+ LIS.removeVRegDefAt(LI, Idx);
+ if (LI.empty())
+ RegsToErase.push_back(Reg);
+ }
+ }
+
+ // Currently, we don't support DCE of physreg live ranges. If MI reads
+ // any unreserved physregs, don't erase the instruction, but turn it into
+ // a KILL instead. This way, the physreg live ranges don't end up
+ // dangling.
+ // FIXME: It would be better to have something like shrinkToUses() for
+ // physregs. That could potentially enable more DCE and it would free up
+ // the physreg. It would not happen often, though.
+ if (ReadsPhysRegs) {
+ MI->setDesc(TII.get(TargetOpcode::KILL));
+ // Remove all operands that aren't physregs.
+ for (unsigned i = MI->getNumOperands(); i; --i) {
+ const MachineOperand &MO = MI->getOperand(i-1);
+ if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
+ continue;
+ MI->RemoveOperand(i-1);
+ }
+ LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
+ } else {
+ // If the dest of MI is an original reg and MI is reMaterializable,
+ // don't delete the inst. Replace the dest with a new reg, and keep
+ // the inst for remat of other siblings. The inst is saved in
+ // LiveRangeEdit::DeadRemats and will be deleted after all the
+ // allocations of the func are done.
+ if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
+ LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
+ VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
+ NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
+ pop_back();
+ DeadRemats->insert(MI);
+ const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
+ MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
+ MI->getOperand(0).setIsDead(true);
+ } else {
+ if (TheDelegate)
+ TheDelegate->LRE_WillEraseInstruction(MI);
+ LIS.RemoveMachineInstrFromMaps(*MI);
+ MI->eraseFromParent();
+ ++NumDCEDeleted;
+ }
+ }
+
+ // Erase any virtregs that are now empty and unused. There may be <undef>
+ // uses around. Keep the empty live range in that case.
+ for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
+ unsigned Reg = RegsToErase[i];
+ if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
+ ToShrink.remove(&LIS.getInterval(Reg));
+ eraseVirtReg(Reg);
+ }
+ }
+}
+
+void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
+ ArrayRef<unsigned> RegsBeingSpilled,
+ AliasAnalysis *AA) {
+ ToShrinkSet ToShrink;
+
+ for (;;) {
+ // Erase all dead defs.
+ while (!Dead.empty())
+ eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
+
+ if (ToShrink.empty())
+ break;
+
+ // Shrink just one live interval. Then delete new dead defs.
+ LiveInterval *LI = ToShrink.back();
+ ToShrink.pop_back();
+ if (foldAsLoad(LI, Dead))
+ continue;
+ unsigned VReg = LI->reg;
+ if (TheDelegate)
+ TheDelegate->LRE_WillShrinkVirtReg(VReg);
+ if (!LIS.shrinkToUses(LI, &Dead))
+ continue;
+
+ // Don't create new intervals for a register being spilled.
+ // The new intervals would have to be spilled anyway so its not worth it.
+ // Also they currently aren't spilled so creating them and not spilling
+ // them results in incorrect code.
+ bool BeingSpilled = false;
+ for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
+ if (VReg == RegsBeingSpilled[i]) {
+ BeingSpilled = true;
+ break;
+ }
+ }
+
+ if (BeingSpilled) continue;
+
+ // LI may have been separated, create new intervals.
+ LI->RenumberValues();
+ SmallVector<LiveInterval*, 8> SplitLIs;
+ LIS.splitSeparateComponents(*LI, SplitLIs);
+ if (!SplitLIs.empty())
+ ++NumFracRanges;
+
+ unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
+ for (const LiveInterval *SplitLI : SplitLIs) {
+ // If LI is an original interval that hasn't been split yet, make the new
+ // intervals their own originals instead of referring to LI. The original
+ // interval must contain all the split products, and LI doesn't.
+ if (Original != VReg && Original != 0)
+ VRM->setIsSplitFromReg(SplitLI->reg, Original);
+ if (TheDelegate)
+ TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
+ }
+ }
+}
+
+// Keep track of new virtual registers created via
+// MachineRegisterInfo::createVirtualRegister.
+void
+LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
+{
+ if (VRM)
+ VRM->grow();
+
+ NewRegs.push_back(VReg);
+}
+
+void
+LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
+ const MachineLoopInfo &Loops,
+ const MachineBlockFrequencyInfo &MBFI) {
+ VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
+ for (unsigned I = 0, Size = size(); I < Size; ++I) {
+ LiveInterval &LI = LIS.getInterval(get(I));
+ if (MRI.recomputeRegClass(LI.reg))
+ LLVM_DEBUG({
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ dbgs() << "Inflated " << printReg(LI.reg) << " to "
+ << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
+ });
+ VRAI.calculateSpillWeightAndHint(LI);
+ }
+}