summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp659
1 files changed, 659 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp b/contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp
new file mode 100644
index 000000000000..0584ec0bd2b3
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp
@@ -0,0 +1,659 @@
+//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// The machine combiner pass uses machine trace metrics to ensure the combined
+// instructions do not lengthen the critical path or the resource depth.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineTraceMetrics.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "machine-combiner"
+
+STATISTIC(NumInstCombined, "Number of machineinst combined");
+
+static cl::opt<unsigned>
+inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
+ cl::desc("Incremental depth computation will be used for basic "
+ "blocks with more instructions."), cl::init(500));
+
+static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
+ cl::desc("Dump all substituted intrs"),
+ cl::init(false));
+
+#ifdef EXPENSIVE_CHECKS
+static cl::opt<bool> VerifyPatternOrder(
+ "machine-combiner-verify-pattern-order", cl::Hidden,
+ cl::desc(
+ "Verify that the generated patterns are ordered by increasing latency"),
+ cl::init(true));
+#else
+static cl::opt<bool> VerifyPatternOrder(
+ "machine-combiner-verify-pattern-order", cl::Hidden,
+ cl::desc(
+ "Verify that the generated patterns are ordered by increasing latency"),
+ cl::init(false));
+#endif
+
+namespace {
+class MachineCombiner : public MachineFunctionPass {
+ const TargetSubtargetInfo *STI;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MCSchedModel SchedModel;
+ MachineRegisterInfo *MRI;
+ MachineLoopInfo *MLI; // Current MachineLoopInfo
+ MachineTraceMetrics *Traces;
+ MachineTraceMetrics::Ensemble *MinInstr;
+
+ TargetSchedModel TSchedModel;
+
+ /// True if optimizing for code size.
+ bool OptSize;
+
+public:
+ static char ID;
+ MachineCombiner() : MachineFunctionPass(ID) {
+ initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ StringRef getPassName() const override { return "Machine InstCombiner"; }
+
+private:
+ bool doSubstitute(unsigned NewSize, unsigned OldSize);
+ bool combineInstructions(MachineBasicBlock *);
+ MachineInstr *getOperandDef(const MachineOperand &MO);
+ unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
+ MachineTraceMetrics::Trace BlockTrace);
+ unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
+ MachineTraceMetrics::Trace BlockTrace);
+ bool
+ improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
+ MachineTraceMetrics::Trace BlockTrace,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
+ MachineCombinerPattern Pattern, bool SlackIsAccurate);
+ bool preservesResourceLen(MachineBasicBlock *MBB,
+ MachineTraceMetrics::Trace BlockTrace,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs);
+ void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
+ SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
+ std::pair<unsigned, unsigned>
+ getLatenciesForInstrSequences(MachineInstr &MI,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ MachineTraceMetrics::Trace BlockTrace);
+
+ void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
+ SmallVector<MachineCombinerPattern, 16> &Patterns);
+};
+}
+
+char MachineCombiner::ID = 0;
+char &llvm::MachineCombinerID = MachineCombiner::ID;
+
+INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
+ "Machine InstCombiner", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
+INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
+ false, false)
+
+void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addRequired<MachineTraceMetrics>();
+ AU.addPreserved<MachineTraceMetrics>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
+ MachineInstr *DefInstr = nullptr;
+ // We need a virtual register definition.
+ if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ DefInstr = MRI->getUniqueVRegDef(MO.getReg());
+ // PHI's have no depth etc.
+ if (DefInstr && DefInstr->isPHI())
+ DefInstr = nullptr;
+ return DefInstr;
+}
+
+/// Computes depth of instructions in vector \InsInstr.
+///
+/// \param InsInstrs is a vector of machine instructions
+/// \param InstrIdxForVirtReg is a dense map of virtual register to index
+/// of defining machine instruction in \p InsInstrs
+/// \param BlockTrace is a trace of machine instructions
+///
+/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
+unsigned
+MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
+ MachineTraceMetrics::Trace BlockTrace) {
+ SmallVector<unsigned, 16> InstrDepth;
+ assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
+ "Missing machine model\n");
+
+ // For each instruction in the new sequence compute the depth based on the
+ // operands. Use the trace information when possible. For new operands which
+ // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
+ for (auto *InstrPtr : InsInstrs) { // for each Use
+ unsigned IDepth = 0;
+ for (const MachineOperand &MO : InstrPtr->operands()) {
+ // Check for virtual register operand.
+ if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
+ continue;
+ if (!MO.isUse())
+ continue;
+ unsigned DepthOp = 0;
+ unsigned LatencyOp = 0;
+ DenseMap<unsigned, unsigned>::iterator II =
+ InstrIdxForVirtReg.find(MO.getReg());
+ if (II != InstrIdxForVirtReg.end()) {
+ // Operand is new virtual register not in trace
+ assert(II->second < InstrDepth.size() && "Bad Index");
+ MachineInstr *DefInstr = InsInstrs[II->second];
+ assert(DefInstr &&
+ "There must be a definition for a new virtual register");
+ DepthOp = InstrDepth[II->second];
+ int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
+ int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
+ LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
+ InstrPtr, UseIdx);
+ } else {
+ MachineInstr *DefInstr = getOperandDef(MO);
+ if (DefInstr) {
+ DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
+ LatencyOp = TSchedModel.computeOperandLatency(
+ DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
+ InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
+ }
+ }
+ IDepth = std::max(IDepth, DepthOp + LatencyOp);
+ }
+ InstrDepth.push_back(IDepth);
+ }
+ unsigned NewRootIdx = InsInstrs.size() - 1;
+ return InstrDepth[NewRootIdx];
+}
+
+/// Computes instruction latency as max of latency of defined operands.
+///
+/// \param Root is a machine instruction that could be replaced by NewRoot.
+/// It is used to compute a more accurate latency information for NewRoot in
+/// case there is a dependent instruction in the same trace (\p BlockTrace)
+/// \param NewRoot is the instruction for which the latency is computed
+/// \param BlockTrace is a trace of machine instructions
+///
+/// \returns Latency of \p NewRoot
+unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
+ MachineTraceMetrics::Trace BlockTrace) {
+ assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
+ "Missing machine model\n");
+
+ // Check each definition in NewRoot and compute the latency
+ unsigned NewRootLatency = 0;
+
+ for (const MachineOperand &MO : NewRoot->operands()) {
+ // Check for virtual register operand.
+ if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
+ continue;
+ if (!MO.isDef())
+ continue;
+ // Get the first instruction that uses MO
+ MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
+ RI++;
+ if (RI == MRI->reg_end())
+ continue;
+ MachineInstr *UseMO = RI->getParent();
+ unsigned LatencyOp = 0;
+ if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
+ LatencyOp = TSchedModel.computeOperandLatency(
+ NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
+ UseMO->findRegisterUseOperandIdx(MO.getReg()));
+ } else {
+ LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
+ }
+ NewRootLatency = std::max(NewRootLatency, LatencyOp);
+ }
+ return NewRootLatency;
+}
+
+/// The combiner's goal may differ based on which pattern it is attempting
+/// to optimize.
+enum class CombinerObjective {
+ MustReduceDepth, // The data dependency chain must be improved.
+ Default // The critical path must not be lengthened.
+};
+
+static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
+ // TODO: If C++ ever gets a real enum class, make this part of the
+ // MachineCombinerPattern class.
+ switch (P) {
+ case MachineCombinerPattern::REASSOC_AX_BY:
+ case MachineCombinerPattern::REASSOC_AX_YB:
+ case MachineCombinerPattern::REASSOC_XA_BY:
+ case MachineCombinerPattern::REASSOC_XA_YB:
+ return CombinerObjective::MustReduceDepth;
+ default:
+ return CombinerObjective::Default;
+ }
+}
+
+/// Estimate the latency of the new and original instruction sequence by summing
+/// up the latencies of the inserted and deleted instructions. This assumes
+/// that the inserted and deleted instructions are dependent instruction chains,
+/// which might not hold in all cases.
+std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
+ MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ MachineTraceMetrics::Trace BlockTrace) {
+ assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
+ unsigned NewRootLatency = 0;
+ // NewRoot is the last instruction in the \p InsInstrs vector.
+ MachineInstr *NewRoot = InsInstrs.back();
+ for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
+ NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
+ NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
+
+ unsigned RootLatency = 0;
+ for (auto I : DelInstrs)
+ RootLatency += TSchedModel.computeInstrLatency(I);
+
+ return {NewRootLatency, RootLatency};
+}
+
+/// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
+/// The new code sequence ends in MI NewRoot. A necessary condition for the new
+/// sequence to replace the old sequence is that it cannot lengthen the critical
+/// path. The definition of "improve" may be restricted by specifying that the
+/// new path improves the data dependency chain (MustReduceDepth).
+bool MachineCombiner::improvesCriticalPathLen(
+ MachineBasicBlock *MBB, MachineInstr *Root,
+ MachineTraceMetrics::Trace BlockTrace,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
+ MachineCombinerPattern Pattern,
+ bool SlackIsAccurate) {
+ assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
+ "Missing machine model\n");
+ // Get depth and latency of NewRoot and Root.
+ unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
+ unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
+
+ LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: "
+ << NewRootDepth << "\tRootDepth: " << RootDepth);
+
+ // For a transform such as reassociation, the cost equation is
+ // conservatively calculated so that we must improve the depth (data
+ // dependency cycles) in the critical path to proceed with the transform.
+ // Being conservative also protects against inaccuracies in the underlying
+ // machine trace metrics and CPU models.
+ if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
+ LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
+ LLVM_DEBUG(NewRootDepth < RootDepth
+ ? dbgs() << "\t and it does it\n"
+ : dbgs() << "\t but it does NOT do it\n");
+ return NewRootDepth < RootDepth;
+ }
+
+ // A more flexible cost calculation for the critical path includes the slack
+ // of the original code sequence. This may allow the transform to proceed
+ // even if the instruction depths (data dependency cycles) become worse.
+
+ // Account for the latency of the inserted and deleted instructions by
+ unsigned NewRootLatency, RootLatency;
+ std::tie(NewRootLatency, RootLatency) =
+ getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
+
+ unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
+ unsigned NewCycleCount = NewRootDepth + NewRootLatency;
+ unsigned OldCycleCount =
+ RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
+ LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
+ << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
+ << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
+ << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
+ << "\n\tRootDepth + RootLatency + RootSlack = "
+ << OldCycleCount;);
+ LLVM_DEBUG(NewCycleCount <= OldCycleCount
+ ? dbgs() << "\n\t It IMPROVES PathLen because"
+ : dbgs() << "\n\t It DOES NOT improve PathLen because");
+ LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
+ << ", OldCycleCount = " << OldCycleCount << "\n");
+
+ return NewCycleCount <= OldCycleCount;
+}
+
+/// helper routine to convert instructions into SC
+void MachineCombiner::instr2instrSC(
+ SmallVectorImpl<MachineInstr *> &Instrs,
+ SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
+ for (auto *InstrPtr : Instrs) {
+ unsigned Opc = InstrPtr->getOpcode();
+ unsigned Idx = TII->get(Opc).getSchedClass();
+ const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
+ InstrsSC.push_back(SC);
+ }
+}
+
+/// True when the new instructions do not increase resource length
+bool MachineCombiner::preservesResourceLen(
+ MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs) {
+ if (!TSchedModel.hasInstrSchedModel())
+ return true;
+
+ // Compute current resource length
+
+ //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
+ SmallVector <const MachineBasicBlock *, 1> MBBarr;
+ MBBarr.push_back(MBB);
+ unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
+
+ // Deal with SC rather than Instructions.
+ SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
+ SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
+
+ instr2instrSC(InsInstrs, InsInstrsSC);
+ instr2instrSC(DelInstrs, DelInstrsSC);
+
+ ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
+ ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
+
+ // Compute new resource length.
+ unsigned ResLenAfterCombine =
+ BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
+
+ LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
+ << ResLenBeforeCombine
+ << " and after: " << ResLenAfterCombine << "\n";);
+ LLVM_DEBUG(
+ ResLenAfterCombine <= ResLenBeforeCombine
+ ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n"
+ : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource "
+ "Length\n");
+
+ return ResLenAfterCombine <= ResLenBeforeCombine;
+}
+
+/// \returns true when new instruction sequence should be generated
+/// independent if it lengthens critical path or not
+bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
+ if (OptSize && (NewSize < OldSize))
+ return true;
+ if (!TSchedModel.hasInstrSchedModelOrItineraries())
+ return true;
+ return false;
+}
+
+/// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
+/// depths if requested.
+///
+/// \param MBB basic block to insert instructions in
+/// \param MI current machine instruction
+/// \param InsInstrs new instructions to insert in \p MBB
+/// \param DelInstrs instruction to delete from \p MBB
+/// \param MinInstr is a pointer to the machine trace information
+/// \param RegUnits set of live registers, needed to compute instruction depths
+/// \param IncrementalUpdate if true, compute instruction depths incrementally,
+/// otherwise invalidate the trace
+static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
+ SmallVector<MachineInstr *, 16> InsInstrs,
+ SmallVector<MachineInstr *, 16> DelInstrs,
+ MachineTraceMetrics::Ensemble *MinInstr,
+ SparseSet<LiveRegUnit> &RegUnits,
+ bool IncrementalUpdate) {
+ for (auto *InstrPtr : InsInstrs)
+ MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
+
+ for (auto *InstrPtr : DelInstrs) {
+ InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
+ // Erase all LiveRegs defined by the removed instruction
+ for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
+ if (I->MI == InstrPtr)
+ I = RegUnits.erase(I);
+ else
+ I++;
+ }
+ }
+
+ if (IncrementalUpdate)
+ for (auto *InstrPtr : InsInstrs)
+ MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
+ else
+ MinInstr->invalidate(MBB);
+
+ NumInstCombined++;
+}
+
+// Check that the difference between original and new latency is decreasing for
+// later patterns. This helps to discover sub-optimal pattern orderings.
+void MachineCombiner::verifyPatternOrder(
+ MachineBasicBlock *MBB, MachineInstr &Root,
+ SmallVector<MachineCombinerPattern, 16> &Patterns) {
+ long PrevLatencyDiff = std::numeric_limits<long>::max();
+ (void)PrevLatencyDiff; // Variable is used in assert only.
+ for (auto P : Patterns) {
+ SmallVector<MachineInstr *, 16> InsInstrs;
+ SmallVector<MachineInstr *, 16> DelInstrs;
+ DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
+ TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
+ InstrIdxForVirtReg);
+ // Found pattern, but did not generate alternative sequence.
+ // This can happen e.g. when an immediate could not be materialized
+ // in a single instruction.
+ if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
+ continue;
+
+ unsigned NewRootLatency, RootLatency;
+ std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
+ Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
+ long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
+ assert(CurrentLatencyDiff <= PrevLatencyDiff &&
+ "Current pattern is better than previous pattern.");
+ PrevLatencyDiff = CurrentLatencyDiff;
+ }
+}
+
+/// Substitute a slow code sequence with a faster one by
+/// evaluating instruction combining pattern.
+/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
+/// combining based on machine trace metrics. Only combine a sequence of
+/// instructions when this neither lengthens the critical path nor increases
+/// resource pressure. When optimizing for codesize always combine when the new
+/// sequence is shorter.
+bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
+ bool Changed = false;
+ LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
+
+ bool IncrementalUpdate = false;
+ auto BlockIter = MBB->begin();
+ decltype(BlockIter) LastUpdate;
+ // Check if the block is in a loop.
+ const MachineLoop *ML = MLI->getLoopFor(MBB);
+ if (!MinInstr)
+ MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
+
+ SparseSet<LiveRegUnit> RegUnits;
+ RegUnits.setUniverse(TRI->getNumRegUnits());
+
+ while (BlockIter != MBB->end()) {
+ auto &MI = *BlockIter++;
+ SmallVector<MachineCombinerPattern, 16> Patterns;
+ // The motivating example is:
+ //
+ // MUL Other MUL_op1 MUL_op2 Other
+ // \ / \ | /
+ // ADD/SUB => MADD/MSUB
+ // (=Root) (=NewRoot)
+
+ // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
+ // usually beneficial for code size it unfortunately can hurt performance
+ // when the ADD is on the critical path, but the MUL is not. With the
+ // substitution the MUL becomes part of the critical path (in form of the
+ // MADD) and can lengthen it on architectures where the MADD latency is
+ // longer than the ADD latency.
+ //
+ // For each instruction we check if it can be the root of a combiner
+ // pattern. Then for each pattern the new code sequence in form of MI is
+ // generated and evaluated. When the efficiency criteria (don't lengthen
+ // critical path, don't use more resources) is met the new sequence gets
+ // hooked up into the basic block before the old sequence is removed.
+ //
+ // The algorithm does not try to evaluate all patterns and pick the best.
+ // This is only an artificial restriction though. In practice there is
+ // mostly one pattern, and getMachineCombinerPatterns() can order patterns
+ // based on an internal cost heuristic. If
+ // machine-combiner-verify-pattern-order is enabled, all patterns are
+ // checked to ensure later patterns do not provide better latency savings.
+
+ if (!TII->getMachineCombinerPatterns(MI, Patterns))
+ continue;
+
+ if (VerifyPatternOrder)
+ verifyPatternOrder(MBB, MI, Patterns);
+
+ for (auto P : Patterns) {
+ SmallVector<MachineInstr *, 16> InsInstrs;
+ SmallVector<MachineInstr *, 16> DelInstrs;
+ DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
+ TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
+ InstrIdxForVirtReg);
+ unsigned NewInstCount = InsInstrs.size();
+ unsigned OldInstCount = DelInstrs.size();
+ // Found pattern, but did not generate alternative sequence.
+ // This can happen e.g. when an immediate could not be materialized
+ // in a single instruction.
+ if (!NewInstCount)
+ continue;
+
+ LLVM_DEBUG(if (dump_intrs) {
+ dbgs() << "\tFor the Pattern (" << (int)P
+ << ") these instructions could be removed\n";
+ for (auto const *InstrPtr : DelInstrs)
+ InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
+ /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
+ dbgs() << "\tThese instructions could replace the removed ones\n";
+ for (auto const *InstrPtr : InsInstrs)
+ InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
+ /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
+ });
+
+ bool SubstituteAlways = false;
+ if (ML && TII->isThroughputPattern(P))
+ SubstituteAlways = true;
+
+ if (IncrementalUpdate) {
+ // Update depths since the last incremental update.
+ MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
+ LastUpdate = BlockIter;
+ }
+
+ // Substitute when we optimize for codesize and the new sequence has
+ // fewer instructions OR
+ // the new sequence neither lengthens the critical path nor increases
+ // resource pressure.
+ if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
+ insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
+ RegUnits, IncrementalUpdate);
+ // Eagerly stop after the first pattern fires.
+ Changed = true;
+ break;
+ } else {
+ // For big basic blocks, we only compute the full trace the first time
+ // we hit this. We do not invalidate the trace, but instead update the
+ // instruction depths incrementally.
+ // NOTE: Only the instruction depths up to MI are accurate. All other
+ // trace information is not updated.
+ MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
+ Traces->verifyAnalysis();
+ if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
+ InstrIdxForVirtReg, P,
+ !IncrementalUpdate) &&
+ preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
+ if (MBB->size() > inc_threshold) {
+ // Use incremental depth updates for basic blocks above treshold
+ IncrementalUpdate = true;
+ LastUpdate = BlockIter;
+ }
+
+ insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
+ RegUnits, IncrementalUpdate);
+
+ // Eagerly stop after the first pattern fires.
+ Changed = true;
+ break;
+ }
+ // Cleanup instructions of the alternative code sequence. There is no
+ // use for them.
+ MachineFunction *MF = MBB->getParent();
+ for (auto *InstrPtr : InsInstrs)
+ MF->DeleteMachineInstr(InstrPtr);
+ }
+ InstrIdxForVirtReg.clear();
+ }
+ }
+
+ if (Changed && IncrementalUpdate)
+ Traces->invalidate(MBB);
+ return Changed;
+}
+
+bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
+ STI = &MF.getSubtarget();
+ TII = STI->getInstrInfo();
+ TRI = STI->getRegisterInfo();
+ SchedModel = STI->getSchedModel();
+ TSchedModel.init(STI);
+ MRI = &MF.getRegInfo();
+ MLI = &getAnalysis<MachineLoopInfo>();
+ Traces = &getAnalysis<MachineTraceMetrics>();
+ MinInstr = nullptr;
+ OptSize = MF.getFunction().hasOptSize();
+
+ LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
+ if (!TII->useMachineCombiner()) {
+ LLVM_DEBUG(
+ dbgs()
+ << " Skipping pass: Target does not support machine combiner\n");
+ return false;
+ }
+
+ bool Changed = false;
+
+ // Try to combine instructions.
+ for (auto &MBB : MF)
+ Changed |= combineInstructions(&MBB);
+
+ return Changed;
+}