summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp1476
1 files changed, 1476 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp b/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp
new file mode 100644
index 000000000000..80a235aeaa5c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp
@@ -0,0 +1,1476 @@
+//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// Replaces repeated sequences of instructions with function calls.
+///
+/// This works by placing every instruction from every basic block in a
+/// suffix tree, and repeatedly querying that tree for repeated sequences of
+/// instructions. If a sequence of instructions appears often, then it ought
+/// to be beneficial to pull out into a function.
+///
+/// The MachineOutliner communicates with a given target using hooks defined in
+/// TargetInstrInfo.h. The target supplies the outliner with information on how
+/// a specific sequence of instructions should be outlined. This information
+/// is used to deduce the number of instructions necessary to
+///
+/// * Create an outlined function
+/// * Call that outlined function
+///
+/// Targets must implement
+/// * getOutliningCandidateInfo
+/// * buildOutlinedFrame
+/// * insertOutlinedCall
+/// * isFunctionSafeToOutlineFrom
+///
+/// in order to make use of the MachineOutliner.
+///
+/// This was originally presented at the 2016 LLVM Developers' Meeting in the
+/// talk "Reducing Code Size Using Outlining". For a high-level overview of
+/// how this pass works, the talk is available on YouTube at
+///
+/// https://www.youtube.com/watch?v=yorld-WSOeU
+///
+/// The slides for the talk are available at
+///
+/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
+///
+/// The talk provides an overview of how the outliner finds candidates and
+/// ultimately outlines them. It describes how the main data structure for this
+/// pass, the suffix tree, is queried and purged for candidates. It also gives
+/// a simplified suffix tree construction algorithm for suffix trees based off
+/// of the algorithm actually used here, Ukkonen's algorithm.
+///
+/// For the original RFC for this pass, please see
+///
+/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
+///
+/// For more information on the suffix tree data structure, please see
+/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
+///
+//===----------------------------------------------------------------------===//
+#include "llvm/CodeGen/MachineOutliner.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <functional>
+#include <tuple>
+#include <vector>
+
+#define DEBUG_TYPE "machine-outliner"
+
+using namespace llvm;
+using namespace ore;
+using namespace outliner;
+
+STATISTIC(NumOutlined, "Number of candidates outlined");
+STATISTIC(FunctionsCreated, "Number of functions created");
+
+// Set to true if the user wants the outliner to run on linkonceodr linkage
+// functions. This is false by default because the linker can dedupe linkonceodr
+// functions. Since the outliner is confined to a single module (modulo LTO),
+// this is off by default. It should, however, be the default behaviour in
+// LTO.
+static cl::opt<bool> EnableLinkOnceODROutlining(
+ "enable-linkonceodr-outlining",
+ cl::Hidden,
+ cl::desc("Enable the machine outliner on linkonceodr functions"),
+ cl::init(false));
+
+namespace {
+
+/// Represents an undefined index in the suffix tree.
+const unsigned EmptyIdx = -1;
+
+/// A node in a suffix tree which represents a substring or suffix.
+///
+/// Each node has either no children or at least two children, with the root
+/// being a exception in the empty tree.
+///
+/// Children are represented as a map between unsigned integers and nodes. If
+/// a node N has a child M on unsigned integer k, then the mapping represented
+/// by N is a proper prefix of the mapping represented by M. Note that this,
+/// although similar to a trie is somewhat different: each node stores a full
+/// substring of the full mapping rather than a single character state.
+///
+/// Each internal node contains a pointer to the internal node representing
+/// the same string, but with the first character chopped off. This is stored
+/// in \p Link. Each leaf node stores the start index of its respective
+/// suffix in \p SuffixIdx.
+struct SuffixTreeNode {
+
+ /// The children of this node.
+ ///
+ /// A child existing on an unsigned integer implies that from the mapping
+ /// represented by the current node, there is a way to reach another
+ /// mapping by tacking that character on the end of the current string.
+ DenseMap<unsigned, SuffixTreeNode *> Children;
+
+ /// The start index of this node's substring in the main string.
+ unsigned StartIdx = EmptyIdx;
+
+ /// The end index of this node's substring in the main string.
+ ///
+ /// Every leaf node must have its \p EndIdx incremented at the end of every
+ /// step in the construction algorithm. To avoid having to update O(N)
+ /// nodes individually at the end of every step, the end index is stored
+ /// as a pointer.
+ unsigned *EndIdx = nullptr;
+
+ /// For leaves, the start index of the suffix represented by this node.
+ ///
+ /// For all other nodes, this is ignored.
+ unsigned SuffixIdx = EmptyIdx;
+
+ /// For internal nodes, a pointer to the internal node representing
+ /// the same sequence with the first character chopped off.
+ ///
+ /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
+ /// Ukkonen's algorithm does to achieve linear-time construction is
+ /// keep track of which node the next insert should be at. This makes each
+ /// insert O(1), and there are a total of O(N) inserts. The suffix link
+ /// helps with inserting children of internal nodes.
+ ///
+ /// Say we add a child to an internal node with associated mapping S. The
+ /// next insertion must be at the node representing S - its first character.
+ /// This is given by the way that we iteratively build the tree in Ukkonen's
+ /// algorithm. The main idea is to look at the suffixes of each prefix in the
+ /// string, starting with the longest suffix of the prefix, and ending with
+ /// the shortest. Therefore, if we keep pointers between such nodes, we can
+ /// move to the next insertion point in O(1) time. If we don't, then we'd
+ /// have to query from the root, which takes O(N) time. This would make the
+ /// construction algorithm O(N^2) rather than O(N).
+ SuffixTreeNode *Link = nullptr;
+
+ /// The length of the string formed by concatenating the edge labels from the
+ /// root to this node.
+ unsigned ConcatLen = 0;
+
+ /// Returns true if this node is a leaf.
+ bool isLeaf() const { return SuffixIdx != EmptyIdx; }
+
+ /// Returns true if this node is the root of its owning \p SuffixTree.
+ bool isRoot() const { return StartIdx == EmptyIdx; }
+
+ /// Return the number of elements in the substring associated with this node.
+ size_t size() const {
+
+ // Is it the root? If so, it's the empty string so return 0.
+ if (isRoot())
+ return 0;
+
+ assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
+
+ // Size = the number of elements in the string.
+ // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
+ return *EndIdx - StartIdx + 1;
+ }
+
+ SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
+ : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
+
+ SuffixTreeNode() {}
+};
+
+/// A data structure for fast substring queries.
+///
+/// Suffix trees represent the suffixes of their input strings in their leaves.
+/// A suffix tree is a type of compressed trie structure where each node
+/// represents an entire substring rather than a single character. Each leaf
+/// of the tree is a suffix.
+///
+/// A suffix tree can be seen as a type of state machine where each state is a
+/// substring of the full string. The tree is structured so that, for a string
+/// of length N, there are exactly N leaves in the tree. This structure allows
+/// us to quickly find repeated substrings of the input string.
+///
+/// In this implementation, a "string" is a vector of unsigned integers.
+/// These integers may result from hashing some data type. A suffix tree can
+/// contain 1 or many strings, which can then be queried as one large string.
+///
+/// The suffix tree is implemented using Ukkonen's algorithm for linear-time
+/// suffix tree construction. Ukkonen's algorithm is explained in more detail
+/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
+/// paper is available at
+///
+/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
+class SuffixTree {
+public:
+ /// Each element is an integer representing an instruction in the module.
+ ArrayRef<unsigned> Str;
+
+ /// A repeated substring in the tree.
+ struct RepeatedSubstring {
+ /// The length of the string.
+ unsigned Length;
+
+ /// The start indices of each occurrence.
+ std::vector<unsigned> StartIndices;
+ };
+
+private:
+ /// Maintains each node in the tree.
+ SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
+
+ /// The root of the suffix tree.
+ ///
+ /// The root represents the empty string. It is maintained by the
+ /// \p NodeAllocator like every other node in the tree.
+ SuffixTreeNode *Root = nullptr;
+
+ /// Maintains the end indices of the internal nodes in the tree.
+ ///
+ /// Each internal node is guaranteed to never have its end index change
+ /// during the construction algorithm; however, leaves must be updated at
+ /// every step. Therefore, we need to store leaf end indices by reference
+ /// to avoid updating O(N) leaves at every step of construction. Thus,
+ /// every internal node must be allocated its own end index.
+ BumpPtrAllocator InternalEndIdxAllocator;
+
+ /// The end index of each leaf in the tree.
+ unsigned LeafEndIdx = -1;
+
+ /// Helper struct which keeps track of the next insertion point in
+ /// Ukkonen's algorithm.
+ struct ActiveState {
+ /// The next node to insert at.
+ SuffixTreeNode *Node;
+
+ /// The index of the first character in the substring currently being added.
+ unsigned Idx = EmptyIdx;
+
+ /// The length of the substring we have to add at the current step.
+ unsigned Len = 0;
+ };
+
+ /// The point the next insertion will take place at in the
+ /// construction algorithm.
+ ActiveState Active;
+
+ /// Allocate a leaf node and add it to the tree.
+ ///
+ /// \param Parent The parent of this node.
+ /// \param StartIdx The start index of this node's associated string.
+ /// \param Edge The label on the edge leaving \p Parent to this node.
+ ///
+ /// \returns A pointer to the allocated leaf node.
+ SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
+ unsigned Edge) {
+
+ assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
+
+ SuffixTreeNode *N = new (NodeAllocator.Allocate())
+ SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
+ Parent.Children[Edge] = N;
+
+ return N;
+ }
+
+ /// Allocate an internal node and add it to the tree.
+ ///
+ /// \param Parent The parent of this node. Only null when allocating the root.
+ /// \param StartIdx The start index of this node's associated string.
+ /// \param EndIdx The end index of this node's associated string.
+ /// \param Edge The label on the edge leaving \p Parent to this node.
+ ///
+ /// \returns A pointer to the allocated internal node.
+ SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
+ unsigned EndIdx, unsigned Edge) {
+
+ assert(StartIdx <= EndIdx && "String can't start after it ends!");
+ assert(!(!Parent && StartIdx != EmptyIdx) &&
+ "Non-root internal nodes must have parents!");
+
+ unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
+ SuffixTreeNode *N = new (NodeAllocator.Allocate())
+ SuffixTreeNode(StartIdx, E, Root);
+ if (Parent)
+ Parent->Children[Edge] = N;
+
+ return N;
+ }
+
+ /// Set the suffix indices of the leaves to the start indices of their
+ /// respective suffixes.
+ ///
+ /// \param[in] CurrNode The node currently being visited.
+ /// \param CurrNodeLen The concatenation of all node sizes from the root to
+ /// this node. Used to produce suffix indices.
+ void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) {
+
+ bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
+
+ // Store the concatenation of lengths down from the root.
+ CurrNode.ConcatLen = CurrNodeLen;
+ // Traverse the tree depth-first.
+ for (auto &ChildPair : CurrNode.Children) {
+ assert(ChildPair.second && "Node had a null child!");
+ setSuffixIndices(*ChildPair.second,
+ CurrNodeLen + ChildPair.second->size());
+ }
+
+ // Is this node a leaf? If it is, give it a suffix index.
+ if (IsLeaf)
+ CurrNode.SuffixIdx = Str.size() - CurrNodeLen;
+ }
+
+ /// Construct the suffix tree for the prefix of the input ending at
+ /// \p EndIdx.
+ ///
+ /// Used to construct the full suffix tree iteratively. At the end of each
+ /// step, the constructed suffix tree is either a valid suffix tree, or a
+ /// suffix tree with implicit suffixes. At the end of the final step, the
+ /// suffix tree is a valid tree.
+ ///
+ /// \param EndIdx The end index of the current prefix in the main string.
+ /// \param SuffixesToAdd The number of suffixes that must be added
+ /// to complete the suffix tree at the current phase.
+ ///
+ /// \returns The number of suffixes that have not been added at the end of
+ /// this step.
+ unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
+ SuffixTreeNode *NeedsLink = nullptr;
+
+ while (SuffixesToAdd > 0) {
+
+ // Are we waiting to add anything other than just the last character?
+ if (Active.Len == 0) {
+ // If not, then say the active index is the end index.
+ Active.Idx = EndIdx;
+ }
+
+ assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
+
+ // The first character in the current substring we're looking at.
+ unsigned FirstChar = Str[Active.Idx];
+
+ // Have we inserted anything starting with FirstChar at the current node?
+ if (Active.Node->Children.count(FirstChar) == 0) {
+ // If not, then we can just insert a leaf and move too the next step.
+ insertLeaf(*Active.Node, EndIdx, FirstChar);
+
+ // The active node is an internal node, and we visited it, so it must
+ // need a link if it doesn't have one.
+ if (NeedsLink) {
+ NeedsLink->Link = Active.Node;
+ NeedsLink = nullptr;
+ }
+ } else {
+ // There's a match with FirstChar, so look for the point in the tree to
+ // insert a new node.
+ SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
+
+ unsigned SubstringLen = NextNode->size();
+
+ // Is the current suffix we're trying to insert longer than the size of
+ // the child we want to move to?
+ if (Active.Len >= SubstringLen) {
+ // If yes, then consume the characters we've seen and move to the next
+ // node.
+ Active.Idx += SubstringLen;
+ Active.Len -= SubstringLen;
+ Active.Node = NextNode;
+ continue;
+ }
+
+ // Otherwise, the suffix we're trying to insert must be contained in the
+ // next node we want to move to.
+ unsigned LastChar = Str[EndIdx];
+
+ // Is the string we're trying to insert a substring of the next node?
+ if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
+ // If yes, then we're done for this step. Remember our insertion point
+ // and move to the next end index. At this point, we have an implicit
+ // suffix tree.
+ if (NeedsLink && !Active.Node->isRoot()) {
+ NeedsLink->Link = Active.Node;
+ NeedsLink = nullptr;
+ }
+
+ Active.Len++;
+ break;
+ }
+
+ // The string we're trying to insert isn't a substring of the next node,
+ // but matches up to a point. Split the node.
+ //
+ // For example, say we ended our search at a node n and we're trying to
+ // insert ABD. Then we'll create a new node s for AB, reduce n to just
+ // representing C, and insert a new leaf node l to represent d. This
+ // allows us to ensure that if n was a leaf, it remains a leaf.
+ //
+ // | ABC ---split---> | AB
+ // n s
+ // C / \ D
+ // n l
+
+ // The node s from the diagram
+ SuffixTreeNode *SplitNode =
+ insertInternalNode(Active.Node, NextNode->StartIdx,
+ NextNode->StartIdx + Active.Len - 1, FirstChar);
+
+ // Insert the new node representing the new substring into the tree as
+ // a child of the split node. This is the node l from the diagram.
+ insertLeaf(*SplitNode, EndIdx, LastChar);
+
+ // Make the old node a child of the split node and update its start
+ // index. This is the node n from the diagram.
+ NextNode->StartIdx += Active.Len;
+ SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
+
+ // SplitNode is an internal node, update the suffix link.
+ if (NeedsLink)
+ NeedsLink->Link = SplitNode;
+
+ NeedsLink = SplitNode;
+ }
+
+ // We've added something new to the tree, so there's one less suffix to
+ // add.
+ SuffixesToAdd--;
+
+ if (Active.Node->isRoot()) {
+ if (Active.Len > 0) {
+ Active.Len--;
+ Active.Idx = EndIdx - SuffixesToAdd + 1;
+ }
+ } else {
+ // Start the next phase at the next smallest suffix.
+ Active.Node = Active.Node->Link;
+ }
+ }
+
+ return SuffixesToAdd;
+ }
+
+public:
+ /// Construct a suffix tree from a sequence of unsigned integers.
+ ///
+ /// \param Str The string to construct the suffix tree for.
+ SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
+ Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
+ Active.Node = Root;
+
+ // Keep track of the number of suffixes we have to add of the current
+ // prefix.
+ unsigned SuffixesToAdd = 0;
+ Active.Node = Root;
+
+ // Construct the suffix tree iteratively on each prefix of the string.
+ // PfxEndIdx is the end index of the current prefix.
+ // End is one past the last element in the string.
+ for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
+ PfxEndIdx++) {
+ SuffixesToAdd++;
+ LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
+ SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
+ }
+
+ // Set the suffix indices of each leaf.
+ assert(Root && "Root node can't be nullptr!");
+ setSuffixIndices(*Root, 0);
+ }
+
+
+ /// Iterator for finding all repeated substrings in the suffix tree.
+ struct RepeatedSubstringIterator {
+ private:
+ /// The current node we're visiting.
+ SuffixTreeNode *N = nullptr;
+
+ /// The repeated substring associated with this node.
+ RepeatedSubstring RS;
+
+ /// The nodes left to visit.
+ std::vector<SuffixTreeNode *> ToVisit;
+
+ /// The minimum length of a repeated substring to find.
+ /// Since we're outlining, we want at least two instructions in the range.
+ /// FIXME: This may not be true for targets like X86 which support many
+ /// instruction lengths.
+ const unsigned MinLength = 2;
+
+ /// Move the iterator to the next repeated substring.
+ void advance() {
+ // Clear the current state. If we're at the end of the range, then this
+ // is the state we want to be in.
+ RS = RepeatedSubstring();
+ N = nullptr;
+
+ // Each leaf node represents a repeat of a string.
+ std::vector<SuffixTreeNode *> LeafChildren;
+
+ // Continue visiting nodes until we find one which repeats more than once.
+ while (!ToVisit.empty()) {
+ SuffixTreeNode *Curr = ToVisit.back();
+ ToVisit.pop_back();
+ LeafChildren.clear();
+
+ // Keep track of the length of the string associated with the node. If
+ // it's too short, we'll quit.
+ unsigned Length = Curr->ConcatLen;
+
+ // Iterate over each child, saving internal nodes for visiting, and
+ // leaf nodes in LeafChildren. Internal nodes represent individual
+ // strings, which may repeat.
+ for (auto &ChildPair : Curr->Children) {
+ // Save all of this node's children for processing.
+ if (!ChildPair.second->isLeaf())
+ ToVisit.push_back(ChildPair.second);
+
+ // It's not an internal node, so it must be a leaf. If we have a
+ // long enough string, then save the leaf children.
+ else if (Length >= MinLength)
+ LeafChildren.push_back(ChildPair.second);
+ }
+
+ // The root never represents a repeated substring. If we're looking at
+ // that, then skip it.
+ if (Curr->isRoot())
+ continue;
+
+ // Do we have any repeated substrings?
+ if (LeafChildren.size() >= 2) {
+ // Yes. Update the state to reflect this, and then bail out.
+ N = Curr;
+ RS.Length = Length;
+ for (SuffixTreeNode *Leaf : LeafChildren)
+ RS.StartIndices.push_back(Leaf->SuffixIdx);
+ break;
+ }
+ }
+
+ // At this point, either NewRS is an empty RepeatedSubstring, or it was
+ // set in the above loop. Similarly, N is either nullptr, or the node
+ // associated with NewRS.
+ }
+
+ public:
+ /// Return the current repeated substring.
+ RepeatedSubstring &operator*() { return RS; }
+
+ RepeatedSubstringIterator &operator++() {
+ advance();
+ return *this;
+ }
+
+ RepeatedSubstringIterator operator++(int I) {
+ RepeatedSubstringIterator It(*this);
+ advance();
+ return It;
+ }
+
+ bool operator==(const RepeatedSubstringIterator &Other) {
+ return N == Other.N;
+ }
+ bool operator!=(const RepeatedSubstringIterator &Other) {
+ return !(*this == Other);
+ }
+
+ RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
+ // Do we have a non-null node?
+ if (N) {
+ // Yes. At the first step, we need to visit all of N's children.
+ // Note: This means that we visit N last.
+ ToVisit.push_back(N);
+ advance();
+ }
+ }
+};
+
+ typedef RepeatedSubstringIterator iterator;
+ iterator begin() { return iterator(Root); }
+ iterator end() { return iterator(nullptr); }
+};
+
+/// Maps \p MachineInstrs to unsigned integers and stores the mappings.
+struct InstructionMapper {
+
+ /// The next available integer to assign to a \p MachineInstr that
+ /// cannot be outlined.
+ ///
+ /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
+ unsigned IllegalInstrNumber = -3;
+
+ /// The next available integer to assign to a \p MachineInstr that can
+ /// be outlined.
+ unsigned LegalInstrNumber = 0;
+
+ /// Correspondence from \p MachineInstrs to unsigned integers.
+ DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
+ InstructionIntegerMap;
+
+ /// Correspondence between \p MachineBasicBlocks and target-defined flags.
+ DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
+
+ /// The vector of unsigned integers that the module is mapped to.
+ std::vector<unsigned> UnsignedVec;
+
+ /// Stores the location of the instruction associated with the integer
+ /// at index i in \p UnsignedVec for each index i.
+ std::vector<MachineBasicBlock::iterator> InstrList;
+
+ // Set if we added an illegal number in the previous step.
+ // Since each illegal number is unique, we only need one of them between
+ // each range of legal numbers. This lets us make sure we don't add more
+ // than one illegal number per range.
+ bool AddedIllegalLastTime = false;
+
+ /// Maps \p *It to a legal integer.
+ ///
+ /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
+ /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
+ ///
+ /// \returns The integer that \p *It was mapped to.
+ unsigned mapToLegalUnsigned(
+ MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
+ bool &HaveLegalRange, unsigned &NumLegalInBlock,
+ std::vector<unsigned> &UnsignedVecForMBB,
+ std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
+ // We added something legal, so we should unset the AddedLegalLastTime
+ // flag.
+ AddedIllegalLastTime = false;
+
+ // If we have at least two adjacent legal instructions (which may have
+ // invisible instructions in between), remember that.
+ if (CanOutlineWithPrevInstr)
+ HaveLegalRange = true;
+ CanOutlineWithPrevInstr = true;
+
+ // Keep track of the number of legal instructions we insert.
+ NumLegalInBlock++;
+
+ // Get the integer for this instruction or give it the current
+ // LegalInstrNumber.
+ InstrListForMBB.push_back(It);
+ MachineInstr &MI = *It;
+ bool WasInserted;
+ DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
+ ResultIt;
+ std::tie(ResultIt, WasInserted) =
+ InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
+ unsigned MINumber = ResultIt->second;
+
+ // There was an insertion.
+ if (WasInserted)
+ LegalInstrNumber++;
+
+ UnsignedVecForMBB.push_back(MINumber);
+
+ // Make sure we don't overflow or use any integers reserved by the DenseMap.
+ if (LegalInstrNumber >= IllegalInstrNumber)
+ report_fatal_error("Instruction mapping overflow!");
+
+ assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
+ "Tried to assign DenseMap tombstone or empty key to instruction.");
+ assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
+ "Tried to assign DenseMap tombstone or empty key to instruction.");
+
+ return MINumber;
+ }
+
+ /// Maps \p *It to an illegal integer.
+ ///
+ /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
+ /// IllegalInstrNumber.
+ ///
+ /// \returns The integer that \p *It was mapped to.
+ unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It,
+ bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB,
+ std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
+ // Can't outline an illegal instruction. Set the flag.
+ CanOutlineWithPrevInstr = false;
+
+ // Only add one illegal number per range of legal numbers.
+ if (AddedIllegalLastTime)
+ return IllegalInstrNumber;
+
+ // Remember that we added an illegal number last time.
+ AddedIllegalLastTime = true;
+ unsigned MINumber = IllegalInstrNumber;
+
+ InstrListForMBB.push_back(It);
+ UnsignedVecForMBB.push_back(IllegalInstrNumber);
+ IllegalInstrNumber--;
+
+ assert(LegalInstrNumber < IllegalInstrNumber &&
+ "Instruction mapping overflow!");
+
+ assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
+ "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
+
+ assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
+ "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
+
+ return MINumber;
+ }
+
+ /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
+ /// and appends it to \p UnsignedVec and \p InstrList.
+ ///
+ /// Two instructions are assigned the same integer if they are identical.
+ /// If an instruction is deemed unsafe to outline, then it will be assigned an
+ /// unique integer. The resulting mapping is placed into a suffix tree and
+ /// queried for candidates.
+ ///
+ /// \param MBB The \p MachineBasicBlock to be translated into integers.
+ /// \param TII \p TargetInstrInfo for the function.
+ void convertToUnsignedVec(MachineBasicBlock &MBB,
+ const TargetInstrInfo &TII) {
+ unsigned Flags = 0;
+
+ // Don't even map in this case.
+ if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
+ return;
+
+ // Store info for the MBB for later outlining.
+ MBBFlagsMap[&MBB] = Flags;
+
+ MachineBasicBlock::iterator It = MBB.begin();
+
+ // The number of instructions in this block that will be considered for
+ // outlining.
+ unsigned NumLegalInBlock = 0;
+
+ // True if we have at least two legal instructions which aren't separated
+ // by an illegal instruction.
+ bool HaveLegalRange = false;
+
+ // True if we can perform outlining given the last mapped (non-invisible)
+ // instruction. This lets us know if we have a legal range.
+ bool CanOutlineWithPrevInstr = false;
+
+ // FIXME: Should this all just be handled in the target, rather than using
+ // repeated calls to getOutliningType?
+ std::vector<unsigned> UnsignedVecForMBB;
+ std::vector<MachineBasicBlock::iterator> InstrListForMBB;
+
+ for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
+ // Keep track of where this instruction is in the module.
+ switch (TII.getOutliningType(It, Flags)) {
+ case InstrType::Illegal:
+ mapToIllegalUnsigned(It, CanOutlineWithPrevInstr,
+ UnsignedVecForMBB, InstrListForMBB);
+ break;
+
+ case InstrType::Legal:
+ mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
+ NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
+ break;
+
+ case InstrType::LegalTerminator:
+ mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
+ NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
+ // The instruction also acts as a terminator, so we have to record that
+ // in the string.
+ mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
+ InstrListForMBB);
+ break;
+
+ case InstrType::Invisible:
+ // Normally this is set by mapTo(Blah)Unsigned, but we just want to
+ // skip this instruction. So, unset the flag here.
+ AddedIllegalLastTime = false;
+ break;
+ }
+ }
+
+ // Are there enough legal instructions in the block for outlining to be
+ // possible?
+ if (HaveLegalRange) {
+ // After we're done every insertion, uniquely terminate this part of the
+ // "string". This makes sure we won't match across basic block or function
+ // boundaries since the "end" is encoded uniquely and thus appears in no
+ // repeated substring.
+ mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
+ InstrListForMBB);
+ InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
+ InstrListForMBB.end());
+ UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
+ UnsignedVecForMBB.end());
+ }
+ }
+
+ InstructionMapper() {
+ // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
+ // changed.
+ assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
+ "DenseMapInfo<unsigned>'s empty key isn't -1!");
+ assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
+ "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
+ }
+};
+
+/// An interprocedural pass which finds repeated sequences of
+/// instructions and replaces them with calls to functions.
+///
+/// Each instruction is mapped to an unsigned integer and placed in a string.
+/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
+/// is then repeatedly queried for repeated sequences of instructions. Each
+/// non-overlapping repeated sequence is then placed in its own
+/// \p MachineFunction and each instance is then replaced with a call to that
+/// function.
+struct MachineOutliner : public ModulePass {
+
+ static char ID;
+
+ /// Set to true if the outliner should consider functions with
+ /// linkonceodr linkage.
+ bool OutlineFromLinkOnceODRs = false;
+
+ /// Set to true if the outliner should run on all functions in the module
+ /// considered safe for outlining.
+ /// Set to true by default for compatibility with llc's -run-pass option.
+ /// Set when the pass is constructed in TargetPassConfig.
+ bool RunOnAllFunctions = true;
+
+ StringRef getPassName() const override { return "Machine Outliner"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineModuleInfo>();
+ AU.addPreserved<MachineModuleInfo>();
+ AU.setPreservesAll();
+ ModulePass::getAnalysisUsage(AU);
+ }
+
+ MachineOutliner() : ModulePass(ID) {
+ initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ /// Remark output explaining that not outlining a set of candidates would be
+ /// better than outlining that set.
+ void emitNotOutliningCheaperRemark(
+ unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
+ OutlinedFunction &OF);
+
+ /// Remark output explaining that a function was outlined.
+ void emitOutlinedFunctionRemark(OutlinedFunction &OF);
+
+ /// Find all repeated substrings that satisfy the outlining cost model by
+ /// constructing a suffix tree.
+ ///
+ /// If a substring appears at least twice, then it must be represented by
+ /// an internal node which appears in at least two suffixes. Each suffix
+ /// is represented by a leaf node. To do this, we visit each internal node
+ /// in the tree, using the leaf children of each internal node. If an
+ /// internal node represents a beneficial substring, then we use each of
+ /// its leaf children to find the locations of its substring.
+ ///
+ /// \param Mapper Contains outlining mapping information.
+ /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
+ /// each type of candidate.
+ void findCandidates(InstructionMapper &Mapper,
+ std::vector<OutlinedFunction> &FunctionList);
+
+ /// Replace the sequences of instructions represented by \p OutlinedFunctions
+ /// with calls to functions.
+ ///
+ /// \param M The module we are outlining from.
+ /// \param FunctionList A list of functions to be inserted into the module.
+ /// \param Mapper Contains the instruction mappings for the module.
+ bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList,
+ InstructionMapper &Mapper);
+
+ /// Creates a function for \p OF and inserts it into the module.
+ MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
+ InstructionMapper &Mapper,
+ unsigned Name);
+
+ /// Construct a suffix tree on the instructions in \p M and outline repeated
+ /// strings from that tree.
+ bool runOnModule(Module &M) override;
+
+ /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
+ /// function for remark emission.
+ DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
+ DISubprogram *SP;
+ for (const Candidate &C : OF.Candidates)
+ if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram()))
+ return SP;
+ return nullptr;
+ }
+
+ /// Populate and \p InstructionMapper with instruction-to-integer mappings.
+ /// These are used to construct a suffix tree.
+ void populateMapper(InstructionMapper &Mapper, Module &M,
+ MachineModuleInfo &MMI);
+
+ /// Initialize information necessary to output a size remark.
+ /// FIXME: This should be handled by the pass manager, not the outliner.
+ /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
+ /// pass manager.
+ void initSizeRemarkInfo(
+ const Module &M, const MachineModuleInfo &MMI,
+ StringMap<unsigned> &FunctionToInstrCount);
+
+ /// Emit the remark.
+ // FIXME: This should be handled by the pass manager, not the outliner.
+ void emitInstrCountChangedRemark(
+ const Module &M, const MachineModuleInfo &MMI,
+ const StringMap<unsigned> &FunctionToInstrCount);
+};
+} // Anonymous namespace.
+
+char MachineOutliner::ID = 0;
+
+namespace llvm {
+ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
+ MachineOutliner *OL = new MachineOutliner();
+ OL->RunOnAllFunctions = RunOnAllFunctions;
+ return OL;
+}
+
+} // namespace llvm
+
+INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
+ false)
+
+void MachineOutliner::emitNotOutliningCheaperRemark(
+ unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
+ OutlinedFunction &OF) {
+ // FIXME: Right now, we arbitrarily choose some Candidate from the
+ // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
+ // We should probably sort these by function name or something to make sure
+ // the remarks are stable.
+ Candidate &C = CandidatesForRepeatedSeq.front();
+ MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
+ MORE.emit([&]() {
+ MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
+ C.front()->getDebugLoc(), C.getMBB());
+ R << "Did not outline " << NV("Length", StringLen) << " instructions"
+ << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
+ << " locations."
+ << " Bytes from outlining all occurrences ("
+ << NV("OutliningCost", OF.getOutliningCost()) << ")"
+ << " >= Unoutlined instruction bytes ("
+ << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
+ << " (Also found at: ";
+
+ // Tell the user the other places the candidate was found.
+ for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
+ R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
+ CandidatesForRepeatedSeq[i].front()->getDebugLoc());
+ if (i != e - 1)
+ R << ", ";
+ }
+
+ R << ")";
+ return R;
+ });
+}
+
+void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
+ MachineBasicBlock *MBB = &*OF.MF->begin();
+ MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
+ MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
+ MBB->findDebugLoc(MBB->begin()), MBB);
+ R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
+ << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
+ << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
+ << " locations. "
+ << "(Found at: ";
+
+ // Tell the user the other places the candidate was found.
+ for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
+
+ R << NV((Twine("StartLoc") + Twine(i)).str(),
+ OF.Candidates[i].front()->getDebugLoc());
+ if (i != e - 1)
+ R << ", ";
+ }
+
+ R << ")";
+
+ MORE.emit(R);
+}
+
+void
+MachineOutliner::findCandidates(InstructionMapper &Mapper,
+ std::vector<OutlinedFunction> &FunctionList) {
+ FunctionList.clear();
+ SuffixTree ST(Mapper.UnsignedVec);
+
+ // First, find dall of the repeated substrings in the tree of minimum length
+ // 2.
+ std::vector<Candidate> CandidatesForRepeatedSeq;
+ for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
+ CandidatesForRepeatedSeq.clear();
+ SuffixTree::RepeatedSubstring RS = *It;
+ unsigned StringLen = RS.Length;
+ for (const unsigned &StartIdx : RS.StartIndices) {
+ unsigned EndIdx = StartIdx + StringLen - 1;
+ // Trick: Discard some candidates that would be incompatible with the
+ // ones we've already found for this sequence. This will save us some
+ // work in candidate selection.
+ //
+ // If two candidates overlap, then we can't outline them both. This
+ // happens when we have candidates that look like, say
+ //
+ // AA (where each "A" is an instruction).
+ //
+ // We might have some portion of the module that looks like this:
+ // AAAAAA (6 A's)
+ //
+ // In this case, there are 5 different copies of "AA" in this range, but
+ // at most 3 can be outlined. If only outlining 3 of these is going to
+ // be unbeneficial, then we ought to not bother.
+ //
+ // Note that two things DON'T overlap when they look like this:
+ // start1...end1 .... start2...end2
+ // That is, one must either
+ // * End before the other starts
+ // * Start after the other ends
+ if (std::all_of(
+ CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
+ [&StartIdx, &EndIdx](const Candidate &C) {
+ return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
+ })) {
+ // It doesn't overlap with anything, so we can outline it.
+ // Each sequence is over [StartIt, EndIt].
+ // Save the candidate and its location.
+
+ MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
+ MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
+ MachineBasicBlock *MBB = StartIt->getParent();
+
+ CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
+ EndIt, MBB, FunctionList.size(),
+ Mapper.MBBFlagsMap[MBB]);
+ }
+ }
+
+ // We've found something we might want to outline.
+ // Create an OutlinedFunction to store it and check if it'd be beneficial
+ // to outline.
+ if (CandidatesForRepeatedSeq.size() < 2)
+ continue;
+
+ // Arbitrarily choose a TII from the first candidate.
+ // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
+ const TargetInstrInfo *TII =
+ CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
+
+ OutlinedFunction OF =
+ TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
+
+ // If we deleted too many candidates, then there's nothing worth outlining.
+ // FIXME: This should take target-specified instruction sizes into account.
+ if (OF.Candidates.size() < 2)
+ continue;
+
+ // Is it better to outline this candidate than not?
+ if (OF.getBenefit() < 1) {
+ emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
+ continue;
+ }
+
+ FunctionList.push_back(OF);
+ }
+}
+
+MachineFunction *
+MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF,
+ InstructionMapper &Mapper,
+ unsigned Name) {
+
+ // Create the function name. This should be unique.
+ // FIXME: We should have a better naming scheme. This should be stable,
+ // regardless of changes to the outliner's cost model/traversal order.
+ std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str();
+
+ // Create the function using an IR-level function.
+ LLVMContext &C = M.getContext();
+ Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false),
+ Function::ExternalLinkage, FunctionName, M);
+
+ // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
+ // which gives us better results when we outline from linkonceodr functions.
+ F->setLinkage(GlobalValue::InternalLinkage);
+ F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
+
+ // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
+ // necessary.
+
+ // Set optsize/minsize, so we don't insert padding between outlined
+ // functions.
+ F->addFnAttr(Attribute::OptimizeForSize);
+ F->addFnAttr(Attribute::MinSize);
+
+ // Include target features from an arbitrary candidate for the outlined
+ // function. This makes sure the outlined function knows what kinds of
+ // instructions are going into it. This is fine, since all parent functions
+ // must necessarily support the instructions that are in the outlined region.
+ Candidate &FirstCand = OF.Candidates.front();
+ const Function &ParentFn = FirstCand.getMF()->getFunction();
+ if (ParentFn.hasFnAttribute("target-features"))
+ F->addFnAttr(ParentFn.getFnAttribute("target-features"));
+
+ BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
+ IRBuilder<> Builder(EntryBB);
+ Builder.CreateRetVoid();
+
+ MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
+ MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
+ MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
+ const TargetSubtargetInfo &STI = MF.getSubtarget();
+ const TargetInstrInfo &TII = *STI.getInstrInfo();
+
+ // Insert the new function into the module.
+ MF.insert(MF.begin(), &MBB);
+
+ for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E;
+ ++I) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
+ NewMI->dropMemRefs(MF);
+
+ // Don't keep debug information for outlined instructions.
+ NewMI->setDebugLoc(DebugLoc());
+ MBB.insert(MBB.end(), NewMI);
+ }
+
+ TII.buildOutlinedFrame(MBB, MF, OF);
+
+ // Outlined functions shouldn't preserve liveness.
+ MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
+ MF.getRegInfo().freezeReservedRegs(MF);
+
+ // If there's a DISubprogram associated with this outlined function, then
+ // emit debug info for the outlined function.
+ if (DISubprogram *SP = getSubprogramOrNull(OF)) {
+ // We have a DISubprogram. Get its DICompileUnit.
+ DICompileUnit *CU = SP->getUnit();
+ DIBuilder DB(M, true, CU);
+ DIFile *Unit = SP->getFile();
+ Mangler Mg;
+ // Get the mangled name of the function for the linkage name.
+ std::string Dummy;
+ llvm::raw_string_ostream MangledNameStream(Dummy);
+ Mg.getNameWithPrefix(MangledNameStream, F, false);
+
+ DISubprogram *OutlinedSP = DB.createFunction(
+ Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
+ Unit /* File */,
+ 0 /* Line 0 is reserved for compiler-generated code. */,
+ DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
+ 0, /* Line 0 is reserved for compiler-generated code. */
+ DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
+ /* Outlined code is optimized code by definition. */
+ DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
+
+ // Don't add any new variables to the subprogram.
+ DB.finalizeSubprogram(OutlinedSP);
+
+ // Attach subprogram to the function.
+ F->setSubprogram(OutlinedSP);
+ // We're done with the DIBuilder.
+ DB.finalize();
+ }
+
+ return &MF;
+}
+
+bool MachineOutliner::outline(Module &M,
+ std::vector<OutlinedFunction> &FunctionList,
+ InstructionMapper &Mapper) {
+
+ bool OutlinedSomething = false;
+
+ // Number to append to the current outlined function.
+ unsigned OutlinedFunctionNum = 0;
+
+ // Sort by benefit. The most beneficial functions should be outlined first.
+ llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS,
+ const OutlinedFunction &RHS) {
+ return LHS.getBenefit() > RHS.getBenefit();
+ });
+
+ // Walk over each function, outlining them as we go along. Functions are
+ // outlined greedily, based off the sort above.
+ for (OutlinedFunction &OF : FunctionList) {
+ // If we outlined something that overlapped with a candidate in a previous
+ // step, then we can't outline from it.
+ erase_if(OF.Candidates, [&Mapper](Candidate &C) {
+ return std::any_of(
+ Mapper.UnsignedVec.begin() + C.getStartIdx(),
+ Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
+ [](unsigned I) { return (I == static_cast<unsigned>(-1)); });
+ });
+
+ // If we made it unbeneficial to outline this function, skip it.
+ if (OF.getBenefit() < 1)
+ continue;
+
+ // It's beneficial. Create the function and outline its sequence's
+ // occurrences.
+ OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
+ emitOutlinedFunctionRemark(OF);
+ FunctionsCreated++;
+ OutlinedFunctionNum++; // Created a function, move to the next name.
+ MachineFunction *MF = OF.MF;
+ const TargetSubtargetInfo &STI = MF->getSubtarget();
+ const TargetInstrInfo &TII = *STI.getInstrInfo();
+
+ // Replace occurrences of the sequence with calls to the new function.
+ for (Candidate &C : OF.Candidates) {
+ MachineBasicBlock &MBB = *C.getMBB();
+ MachineBasicBlock::iterator StartIt = C.front();
+ MachineBasicBlock::iterator EndIt = C.back();
+
+ // Insert the call.
+ auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);
+
+ // If the caller tracks liveness, then we need to make sure that
+ // anything we outline doesn't break liveness assumptions. The outlined
+ // functions themselves currently don't track liveness, but we should
+ // make sure that the ranges we yank things out of aren't wrong.
+ if (MBB.getParent()->getProperties().hasProperty(
+ MachineFunctionProperties::Property::TracksLiveness)) {
+ // Helper lambda for adding implicit def operands to the call
+ // instruction. It also updates call site information for moved
+ // code.
+ auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) {
+ for (MachineOperand &MOP : MI.operands()) {
+ // Skip over anything that isn't a register.
+ if (!MOP.isReg())
+ continue;
+
+ // If it's a def, add it to the call instruction.
+ if (MOP.isDef())
+ CallInst->addOperand(MachineOperand::CreateReg(
+ MOP.getReg(), true, /* isDef = true */
+ true /* isImp = true */));
+ }
+ if (MI.isCall())
+ MI.getMF()->updateCallSiteInfo(&MI);
+ };
+ // Copy over the defs in the outlined range.
+ // First inst in outlined range <-- Anything that's defined in this
+ // ... .. range has to be added as an
+ // implicit Last inst in outlined range <-- def to the call
+ // instruction. Also remove call site information for outlined block
+ // of code.
+ std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls);
+ }
+
+ // Erase from the point after where the call was inserted up to, and
+ // including, the final instruction in the sequence.
+ // Erase needs one past the end, so we need std::next there too.
+ MBB.erase(std::next(StartIt), std::next(EndIt));
+
+ // Keep track of what we removed by marking them all as -1.
+ std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(),
+ Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
+ [](unsigned &I) { I = static_cast<unsigned>(-1); });
+ OutlinedSomething = true;
+
+ // Statistics.
+ NumOutlined++;
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
+
+ return OutlinedSomething;
+}
+
+void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
+ MachineModuleInfo &MMI) {
+ // Build instruction mappings for each function in the module. Start by
+ // iterating over each Function in M.
+ for (Function &F : M) {
+
+ // If there's nothing in F, then there's no reason to try and outline from
+ // it.
+ if (F.empty())
+ continue;
+
+ // There's something in F. Check if it has a MachineFunction associated with
+ // it.
+ MachineFunction *MF = MMI.getMachineFunction(F);
+
+ // If it doesn't, then there's nothing to outline from. Move to the next
+ // Function.
+ if (!MF)
+ continue;
+
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+
+ if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
+ continue;
+
+ // We have a MachineFunction. Ask the target if it's suitable for outlining.
+ // If it isn't, then move on to the next Function in the module.
+ if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
+ continue;
+
+ // We have a function suitable for outlining. Iterate over every
+ // MachineBasicBlock in MF and try to map its instructions to a list of
+ // unsigned integers.
+ for (MachineBasicBlock &MBB : *MF) {
+ // If there isn't anything in MBB, then there's no point in outlining from
+ // it.
+ // If there are fewer than 2 instructions in the MBB, then it can't ever
+ // contain something worth outlining.
+ // FIXME: This should be based off of the maximum size in B of an outlined
+ // call versus the size in B of the MBB.
+ if (MBB.empty() || MBB.size() < 2)
+ continue;
+
+ // Check if MBB could be the target of an indirect branch. If it is, then
+ // we don't want to outline from it.
+ if (MBB.hasAddressTaken())
+ continue;
+
+ // MBB is suitable for outlining. Map it to a list of unsigneds.
+ Mapper.convertToUnsignedVec(MBB, *TII);
+ }
+ }
+}
+
+void MachineOutliner::initSizeRemarkInfo(
+ const Module &M, const MachineModuleInfo &MMI,
+ StringMap<unsigned> &FunctionToInstrCount) {
+ // Collect instruction counts for every function. We'll use this to emit
+ // per-function size remarks later.
+ for (const Function &F : M) {
+ MachineFunction *MF = MMI.getMachineFunction(F);
+
+ // We only care about MI counts here. If there's no MachineFunction at this
+ // point, then there won't be after the outliner runs, so let's move on.
+ if (!MF)
+ continue;
+ FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
+ }
+}
+
+void MachineOutliner::emitInstrCountChangedRemark(
+ const Module &M, const MachineModuleInfo &MMI,
+ const StringMap<unsigned> &FunctionToInstrCount) {
+ // Iterate over each function in the module and emit remarks.
+ // Note that we won't miss anything by doing this, because the outliner never
+ // deletes functions.
+ for (const Function &F : M) {
+ MachineFunction *MF = MMI.getMachineFunction(F);
+
+ // The outliner never deletes functions. If we don't have a MF here, then we
+ // didn't have one prior to outlining either.
+ if (!MF)
+ continue;
+
+ std::string Fname = F.getName();
+ unsigned FnCountAfter = MF->getInstructionCount();
+ unsigned FnCountBefore = 0;
+
+ // Check if the function was recorded before.
+ auto It = FunctionToInstrCount.find(Fname);
+
+ // Did we have a previously-recorded size? If yes, then set FnCountBefore
+ // to that.
+ if (It != FunctionToInstrCount.end())
+ FnCountBefore = It->second;
+
+ // Compute the delta and emit a remark if there was a change.
+ int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
+ static_cast<int64_t>(FnCountBefore);
+ if (FnDelta == 0)
+ continue;
+
+ MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
+ MORE.emit([&]() {
+ MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
+ DiagnosticLocation(),
+ &MF->front());
+ R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
+ << ": Function: "
+ << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
+ << ": MI instruction count changed from "
+ << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
+ FnCountBefore)
+ << " to "
+ << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
+ FnCountAfter)
+ << "; Delta: "
+ << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
+ return R;
+ });
+ }
+}
+
+bool MachineOutliner::runOnModule(Module &M) {
+ // Check if there's anything in the module. If it's empty, then there's
+ // nothing to outline.
+ if (M.empty())
+ return false;
+
+ MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
+
+ // If the user passed -enable-machine-outliner=always or
+ // -enable-machine-outliner, the pass will run on all functions in the module.
+ // Otherwise, if the target supports default outlining, it will run on all
+ // functions deemed by the target to be worth outlining from by default. Tell
+ // the user how the outliner is running.
+ LLVM_DEBUG(
+ dbgs() << "Machine Outliner: Running on ";
+ if (RunOnAllFunctions)
+ dbgs() << "all functions";
+ else
+ dbgs() << "target-default functions";
+ dbgs() << "\n"
+ );
+
+ // If the user specifies that they want to outline from linkonceodrs, set
+ // it here.
+ OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
+ InstructionMapper Mapper;
+
+ // Prepare instruction mappings for the suffix tree.
+ populateMapper(Mapper, M, MMI);
+ std::vector<OutlinedFunction> FunctionList;
+
+ // Find all of the outlining candidates.
+ findCandidates(Mapper, FunctionList);
+
+ // If we've requested size remarks, then collect the MI counts of every
+ // function before outlining, and the MI counts after outlining.
+ // FIXME: This shouldn't be in the outliner at all; it should ultimately be
+ // the pass manager's responsibility.
+ // This could pretty easily be placed in outline instead, but because we
+ // really ultimately *don't* want this here, it's done like this for now
+ // instead.
+
+ // Check if we want size remarks.
+ bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
+ StringMap<unsigned> FunctionToInstrCount;
+ if (ShouldEmitSizeRemarks)
+ initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
+
+ // Outline each of the candidates and return true if something was outlined.
+ bool OutlinedSomething = outline(M, FunctionList, Mapper);
+
+ // If we outlined something, we definitely changed the MI count of the
+ // module. If we've asked for size remarks, then output them.
+ // FIXME: This should be in the pass manager.
+ if (ShouldEmitSizeRemarks && OutlinedSomething)
+ emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
+
+ return OutlinedSomething;
+}