diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp | 1476 |
1 files changed, 1476 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp b/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp new file mode 100644 index 000000000000..80a235aeaa5c --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp @@ -0,0 +1,1476 @@ +//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// Replaces repeated sequences of instructions with function calls. +/// +/// This works by placing every instruction from every basic block in a +/// suffix tree, and repeatedly querying that tree for repeated sequences of +/// instructions. If a sequence of instructions appears often, then it ought +/// to be beneficial to pull out into a function. +/// +/// The MachineOutliner communicates with a given target using hooks defined in +/// TargetInstrInfo.h. The target supplies the outliner with information on how +/// a specific sequence of instructions should be outlined. This information +/// is used to deduce the number of instructions necessary to +/// +/// * Create an outlined function +/// * Call that outlined function +/// +/// Targets must implement +/// * getOutliningCandidateInfo +/// * buildOutlinedFrame +/// * insertOutlinedCall +/// * isFunctionSafeToOutlineFrom +/// +/// in order to make use of the MachineOutliner. +/// +/// This was originally presented at the 2016 LLVM Developers' Meeting in the +/// talk "Reducing Code Size Using Outlining". For a high-level overview of +/// how this pass works, the talk is available on YouTube at +/// +/// https://www.youtube.com/watch?v=yorld-WSOeU +/// +/// The slides for the talk are available at +/// +/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf +/// +/// The talk provides an overview of how the outliner finds candidates and +/// ultimately outlines them. It describes how the main data structure for this +/// pass, the suffix tree, is queried and purged for candidates. It also gives +/// a simplified suffix tree construction algorithm for suffix trees based off +/// of the algorithm actually used here, Ukkonen's algorithm. +/// +/// For the original RFC for this pass, please see +/// +/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html +/// +/// For more information on the suffix tree data structure, please see +/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf +/// +//===----------------------------------------------------------------------===// +#include "llvm/CodeGen/MachineOutliner.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/Twine.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Mangler.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <functional> +#include <tuple> +#include <vector> + +#define DEBUG_TYPE "machine-outliner" + +using namespace llvm; +using namespace ore; +using namespace outliner; + +STATISTIC(NumOutlined, "Number of candidates outlined"); +STATISTIC(FunctionsCreated, "Number of functions created"); + +// Set to true if the user wants the outliner to run on linkonceodr linkage +// functions. This is false by default because the linker can dedupe linkonceodr +// functions. Since the outliner is confined to a single module (modulo LTO), +// this is off by default. It should, however, be the default behaviour in +// LTO. +static cl::opt<bool> EnableLinkOnceODROutlining( + "enable-linkonceodr-outlining", + cl::Hidden, + cl::desc("Enable the machine outliner on linkonceodr functions"), + cl::init(false)); + +namespace { + +/// Represents an undefined index in the suffix tree. +const unsigned EmptyIdx = -1; + +/// A node in a suffix tree which represents a substring or suffix. +/// +/// Each node has either no children or at least two children, with the root +/// being a exception in the empty tree. +/// +/// Children are represented as a map between unsigned integers and nodes. If +/// a node N has a child M on unsigned integer k, then the mapping represented +/// by N is a proper prefix of the mapping represented by M. Note that this, +/// although similar to a trie is somewhat different: each node stores a full +/// substring of the full mapping rather than a single character state. +/// +/// Each internal node contains a pointer to the internal node representing +/// the same string, but with the first character chopped off. This is stored +/// in \p Link. Each leaf node stores the start index of its respective +/// suffix in \p SuffixIdx. +struct SuffixTreeNode { + + /// The children of this node. + /// + /// A child existing on an unsigned integer implies that from the mapping + /// represented by the current node, there is a way to reach another + /// mapping by tacking that character on the end of the current string. + DenseMap<unsigned, SuffixTreeNode *> Children; + + /// The start index of this node's substring in the main string. + unsigned StartIdx = EmptyIdx; + + /// The end index of this node's substring in the main string. + /// + /// Every leaf node must have its \p EndIdx incremented at the end of every + /// step in the construction algorithm. To avoid having to update O(N) + /// nodes individually at the end of every step, the end index is stored + /// as a pointer. + unsigned *EndIdx = nullptr; + + /// For leaves, the start index of the suffix represented by this node. + /// + /// For all other nodes, this is ignored. + unsigned SuffixIdx = EmptyIdx; + + /// For internal nodes, a pointer to the internal node representing + /// the same sequence with the first character chopped off. + /// + /// This acts as a shortcut in Ukkonen's algorithm. One of the things that + /// Ukkonen's algorithm does to achieve linear-time construction is + /// keep track of which node the next insert should be at. This makes each + /// insert O(1), and there are a total of O(N) inserts. The suffix link + /// helps with inserting children of internal nodes. + /// + /// Say we add a child to an internal node with associated mapping S. The + /// next insertion must be at the node representing S - its first character. + /// This is given by the way that we iteratively build the tree in Ukkonen's + /// algorithm. The main idea is to look at the suffixes of each prefix in the + /// string, starting with the longest suffix of the prefix, and ending with + /// the shortest. Therefore, if we keep pointers between such nodes, we can + /// move to the next insertion point in O(1) time. If we don't, then we'd + /// have to query from the root, which takes O(N) time. This would make the + /// construction algorithm O(N^2) rather than O(N). + SuffixTreeNode *Link = nullptr; + + /// The length of the string formed by concatenating the edge labels from the + /// root to this node. + unsigned ConcatLen = 0; + + /// Returns true if this node is a leaf. + bool isLeaf() const { return SuffixIdx != EmptyIdx; } + + /// Returns true if this node is the root of its owning \p SuffixTree. + bool isRoot() const { return StartIdx == EmptyIdx; } + + /// Return the number of elements in the substring associated with this node. + size_t size() const { + + // Is it the root? If so, it's the empty string so return 0. + if (isRoot()) + return 0; + + assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); + + // Size = the number of elements in the string. + // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. + return *EndIdx - StartIdx + 1; + } + + SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) + : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} + + SuffixTreeNode() {} +}; + +/// A data structure for fast substring queries. +/// +/// Suffix trees represent the suffixes of their input strings in their leaves. +/// A suffix tree is a type of compressed trie structure where each node +/// represents an entire substring rather than a single character. Each leaf +/// of the tree is a suffix. +/// +/// A suffix tree can be seen as a type of state machine where each state is a +/// substring of the full string. The tree is structured so that, for a string +/// of length N, there are exactly N leaves in the tree. This structure allows +/// us to quickly find repeated substrings of the input string. +/// +/// In this implementation, a "string" is a vector of unsigned integers. +/// These integers may result from hashing some data type. A suffix tree can +/// contain 1 or many strings, which can then be queried as one large string. +/// +/// The suffix tree is implemented using Ukkonen's algorithm for linear-time +/// suffix tree construction. Ukkonen's algorithm is explained in more detail +/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The +/// paper is available at +/// +/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf +class SuffixTree { +public: + /// Each element is an integer representing an instruction in the module. + ArrayRef<unsigned> Str; + + /// A repeated substring in the tree. + struct RepeatedSubstring { + /// The length of the string. + unsigned Length; + + /// The start indices of each occurrence. + std::vector<unsigned> StartIndices; + }; + +private: + /// Maintains each node in the tree. + SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; + + /// The root of the suffix tree. + /// + /// The root represents the empty string. It is maintained by the + /// \p NodeAllocator like every other node in the tree. + SuffixTreeNode *Root = nullptr; + + /// Maintains the end indices of the internal nodes in the tree. + /// + /// Each internal node is guaranteed to never have its end index change + /// during the construction algorithm; however, leaves must be updated at + /// every step. Therefore, we need to store leaf end indices by reference + /// to avoid updating O(N) leaves at every step of construction. Thus, + /// every internal node must be allocated its own end index. + BumpPtrAllocator InternalEndIdxAllocator; + + /// The end index of each leaf in the tree. + unsigned LeafEndIdx = -1; + + /// Helper struct which keeps track of the next insertion point in + /// Ukkonen's algorithm. + struct ActiveState { + /// The next node to insert at. + SuffixTreeNode *Node; + + /// The index of the first character in the substring currently being added. + unsigned Idx = EmptyIdx; + + /// The length of the substring we have to add at the current step. + unsigned Len = 0; + }; + + /// The point the next insertion will take place at in the + /// construction algorithm. + ActiveState Active; + + /// Allocate a leaf node and add it to the tree. + /// + /// \param Parent The parent of this node. + /// \param StartIdx The start index of this node's associated string. + /// \param Edge The label on the edge leaving \p Parent to this node. + /// + /// \returns A pointer to the allocated leaf node. + SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, + unsigned Edge) { + + assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); + + SuffixTreeNode *N = new (NodeAllocator.Allocate()) + SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); + Parent.Children[Edge] = N; + + return N; + } + + /// Allocate an internal node and add it to the tree. + /// + /// \param Parent The parent of this node. Only null when allocating the root. + /// \param StartIdx The start index of this node's associated string. + /// \param EndIdx The end index of this node's associated string. + /// \param Edge The label on the edge leaving \p Parent to this node. + /// + /// \returns A pointer to the allocated internal node. + SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, + unsigned EndIdx, unsigned Edge) { + + assert(StartIdx <= EndIdx && "String can't start after it ends!"); + assert(!(!Parent && StartIdx != EmptyIdx) && + "Non-root internal nodes must have parents!"); + + unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); + SuffixTreeNode *N = new (NodeAllocator.Allocate()) + SuffixTreeNode(StartIdx, E, Root); + if (Parent) + Parent->Children[Edge] = N; + + return N; + } + + /// Set the suffix indices of the leaves to the start indices of their + /// respective suffixes. + /// + /// \param[in] CurrNode The node currently being visited. + /// \param CurrNodeLen The concatenation of all node sizes from the root to + /// this node. Used to produce suffix indices. + void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) { + + bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); + + // Store the concatenation of lengths down from the root. + CurrNode.ConcatLen = CurrNodeLen; + // Traverse the tree depth-first. + for (auto &ChildPair : CurrNode.Children) { + assert(ChildPair.second && "Node had a null child!"); + setSuffixIndices(*ChildPair.second, + CurrNodeLen + ChildPair.second->size()); + } + + // Is this node a leaf? If it is, give it a suffix index. + if (IsLeaf) + CurrNode.SuffixIdx = Str.size() - CurrNodeLen; + } + + /// Construct the suffix tree for the prefix of the input ending at + /// \p EndIdx. + /// + /// Used to construct the full suffix tree iteratively. At the end of each + /// step, the constructed suffix tree is either a valid suffix tree, or a + /// suffix tree with implicit suffixes. At the end of the final step, the + /// suffix tree is a valid tree. + /// + /// \param EndIdx The end index of the current prefix in the main string. + /// \param SuffixesToAdd The number of suffixes that must be added + /// to complete the suffix tree at the current phase. + /// + /// \returns The number of suffixes that have not been added at the end of + /// this step. + unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { + SuffixTreeNode *NeedsLink = nullptr; + + while (SuffixesToAdd > 0) { + + // Are we waiting to add anything other than just the last character? + if (Active.Len == 0) { + // If not, then say the active index is the end index. + Active.Idx = EndIdx; + } + + assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); + + // The first character in the current substring we're looking at. + unsigned FirstChar = Str[Active.Idx]; + + // Have we inserted anything starting with FirstChar at the current node? + if (Active.Node->Children.count(FirstChar) == 0) { + // If not, then we can just insert a leaf and move too the next step. + insertLeaf(*Active.Node, EndIdx, FirstChar); + + // The active node is an internal node, and we visited it, so it must + // need a link if it doesn't have one. + if (NeedsLink) { + NeedsLink->Link = Active.Node; + NeedsLink = nullptr; + } + } else { + // There's a match with FirstChar, so look for the point in the tree to + // insert a new node. + SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; + + unsigned SubstringLen = NextNode->size(); + + // Is the current suffix we're trying to insert longer than the size of + // the child we want to move to? + if (Active.Len >= SubstringLen) { + // If yes, then consume the characters we've seen and move to the next + // node. + Active.Idx += SubstringLen; + Active.Len -= SubstringLen; + Active.Node = NextNode; + continue; + } + + // Otherwise, the suffix we're trying to insert must be contained in the + // next node we want to move to. + unsigned LastChar = Str[EndIdx]; + + // Is the string we're trying to insert a substring of the next node? + if (Str[NextNode->StartIdx + Active.Len] == LastChar) { + // If yes, then we're done for this step. Remember our insertion point + // and move to the next end index. At this point, we have an implicit + // suffix tree. + if (NeedsLink && !Active.Node->isRoot()) { + NeedsLink->Link = Active.Node; + NeedsLink = nullptr; + } + + Active.Len++; + break; + } + + // The string we're trying to insert isn't a substring of the next node, + // but matches up to a point. Split the node. + // + // For example, say we ended our search at a node n and we're trying to + // insert ABD. Then we'll create a new node s for AB, reduce n to just + // representing C, and insert a new leaf node l to represent d. This + // allows us to ensure that if n was a leaf, it remains a leaf. + // + // | ABC ---split---> | AB + // n s + // C / \ D + // n l + + // The node s from the diagram + SuffixTreeNode *SplitNode = + insertInternalNode(Active.Node, NextNode->StartIdx, + NextNode->StartIdx + Active.Len - 1, FirstChar); + + // Insert the new node representing the new substring into the tree as + // a child of the split node. This is the node l from the diagram. + insertLeaf(*SplitNode, EndIdx, LastChar); + + // Make the old node a child of the split node and update its start + // index. This is the node n from the diagram. + NextNode->StartIdx += Active.Len; + SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; + + // SplitNode is an internal node, update the suffix link. + if (NeedsLink) + NeedsLink->Link = SplitNode; + + NeedsLink = SplitNode; + } + + // We've added something new to the tree, so there's one less suffix to + // add. + SuffixesToAdd--; + + if (Active.Node->isRoot()) { + if (Active.Len > 0) { + Active.Len--; + Active.Idx = EndIdx - SuffixesToAdd + 1; + } + } else { + // Start the next phase at the next smallest suffix. + Active.Node = Active.Node->Link; + } + } + + return SuffixesToAdd; + } + +public: + /// Construct a suffix tree from a sequence of unsigned integers. + /// + /// \param Str The string to construct the suffix tree for. + SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { + Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); + Active.Node = Root; + + // Keep track of the number of suffixes we have to add of the current + // prefix. + unsigned SuffixesToAdd = 0; + Active.Node = Root; + + // Construct the suffix tree iteratively on each prefix of the string. + // PfxEndIdx is the end index of the current prefix. + // End is one past the last element in the string. + for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; + PfxEndIdx++) { + SuffixesToAdd++; + LeafEndIdx = PfxEndIdx; // Extend each of the leaves. + SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); + } + + // Set the suffix indices of each leaf. + assert(Root && "Root node can't be nullptr!"); + setSuffixIndices(*Root, 0); + } + + + /// Iterator for finding all repeated substrings in the suffix tree. + struct RepeatedSubstringIterator { + private: + /// The current node we're visiting. + SuffixTreeNode *N = nullptr; + + /// The repeated substring associated with this node. + RepeatedSubstring RS; + + /// The nodes left to visit. + std::vector<SuffixTreeNode *> ToVisit; + + /// The minimum length of a repeated substring to find. + /// Since we're outlining, we want at least two instructions in the range. + /// FIXME: This may not be true for targets like X86 which support many + /// instruction lengths. + const unsigned MinLength = 2; + + /// Move the iterator to the next repeated substring. + void advance() { + // Clear the current state. If we're at the end of the range, then this + // is the state we want to be in. + RS = RepeatedSubstring(); + N = nullptr; + + // Each leaf node represents a repeat of a string. + std::vector<SuffixTreeNode *> LeafChildren; + + // Continue visiting nodes until we find one which repeats more than once. + while (!ToVisit.empty()) { + SuffixTreeNode *Curr = ToVisit.back(); + ToVisit.pop_back(); + LeafChildren.clear(); + + // Keep track of the length of the string associated with the node. If + // it's too short, we'll quit. + unsigned Length = Curr->ConcatLen; + + // Iterate over each child, saving internal nodes for visiting, and + // leaf nodes in LeafChildren. Internal nodes represent individual + // strings, which may repeat. + for (auto &ChildPair : Curr->Children) { + // Save all of this node's children for processing. + if (!ChildPair.second->isLeaf()) + ToVisit.push_back(ChildPair.second); + + // It's not an internal node, so it must be a leaf. If we have a + // long enough string, then save the leaf children. + else if (Length >= MinLength) + LeafChildren.push_back(ChildPair.second); + } + + // The root never represents a repeated substring. If we're looking at + // that, then skip it. + if (Curr->isRoot()) + continue; + + // Do we have any repeated substrings? + if (LeafChildren.size() >= 2) { + // Yes. Update the state to reflect this, and then bail out. + N = Curr; + RS.Length = Length; + for (SuffixTreeNode *Leaf : LeafChildren) + RS.StartIndices.push_back(Leaf->SuffixIdx); + break; + } + } + + // At this point, either NewRS is an empty RepeatedSubstring, or it was + // set in the above loop. Similarly, N is either nullptr, or the node + // associated with NewRS. + } + + public: + /// Return the current repeated substring. + RepeatedSubstring &operator*() { return RS; } + + RepeatedSubstringIterator &operator++() { + advance(); + return *this; + } + + RepeatedSubstringIterator operator++(int I) { + RepeatedSubstringIterator It(*this); + advance(); + return It; + } + + bool operator==(const RepeatedSubstringIterator &Other) { + return N == Other.N; + } + bool operator!=(const RepeatedSubstringIterator &Other) { + return !(*this == Other); + } + + RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { + // Do we have a non-null node? + if (N) { + // Yes. At the first step, we need to visit all of N's children. + // Note: This means that we visit N last. + ToVisit.push_back(N); + advance(); + } + } +}; + + typedef RepeatedSubstringIterator iterator; + iterator begin() { return iterator(Root); } + iterator end() { return iterator(nullptr); } +}; + +/// Maps \p MachineInstrs to unsigned integers and stores the mappings. +struct InstructionMapper { + + /// The next available integer to assign to a \p MachineInstr that + /// cannot be outlined. + /// + /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. + unsigned IllegalInstrNumber = -3; + + /// The next available integer to assign to a \p MachineInstr that can + /// be outlined. + unsigned LegalInstrNumber = 0; + + /// Correspondence from \p MachineInstrs to unsigned integers. + DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> + InstructionIntegerMap; + + /// Correspondence between \p MachineBasicBlocks and target-defined flags. + DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; + + /// The vector of unsigned integers that the module is mapped to. + std::vector<unsigned> UnsignedVec; + + /// Stores the location of the instruction associated with the integer + /// at index i in \p UnsignedVec for each index i. + std::vector<MachineBasicBlock::iterator> InstrList; + + // Set if we added an illegal number in the previous step. + // Since each illegal number is unique, we only need one of them between + // each range of legal numbers. This lets us make sure we don't add more + // than one illegal number per range. + bool AddedIllegalLastTime = false; + + /// Maps \p *It to a legal integer. + /// + /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, + /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. + /// + /// \returns The integer that \p *It was mapped to. + unsigned mapToLegalUnsigned( + MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, + bool &HaveLegalRange, unsigned &NumLegalInBlock, + std::vector<unsigned> &UnsignedVecForMBB, + std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { + // We added something legal, so we should unset the AddedLegalLastTime + // flag. + AddedIllegalLastTime = false; + + // If we have at least two adjacent legal instructions (which may have + // invisible instructions in between), remember that. + if (CanOutlineWithPrevInstr) + HaveLegalRange = true; + CanOutlineWithPrevInstr = true; + + // Keep track of the number of legal instructions we insert. + NumLegalInBlock++; + + // Get the integer for this instruction or give it the current + // LegalInstrNumber. + InstrListForMBB.push_back(It); + MachineInstr &MI = *It; + bool WasInserted; + DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator + ResultIt; + std::tie(ResultIt, WasInserted) = + InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); + unsigned MINumber = ResultIt->second; + + // There was an insertion. + if (WasInserted) + LegalInstrNumber++; + + UnsignedVecForMBB.push_back(MINumber); + + // Make sure we don't overflow or use any integers reserved by the DenseMap. + if (LegalInstrNumber >= IllegalInstrNumber) + report_fatal_error("Instruction mapping overflow!"); + + assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && + "Tried to assign DenseMap tombstone or empty key to instruction."); + assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && + "Tried to assign DenseMap tombstone or empty key to instruction."); + + return MINumber; + } + + /// Maps \p *It to an illegal integer. + /// + /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p + /// IllegalInstrNumber. + /// + /// \returns The integer that \p *It was mapped to. + unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It, + bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB, + std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { + // Can't outline an illegal instruction. Set the flag. + CanOutlineWithPrevInstr = false; + + // Only add one illegal number per range of legal numbers. + if (AddedIllegalLastTime) + return IllegalInstrNumber; + + // Remember that we added an illegal number last time. + AddedIllegalLastTime = true; + unsigned MINumber = IllegalInstrNumber; + + InstrListForMBB.push_back(It); + UnsignedVecForMBB.push_back(IllegalInstrNumber); + IllegalInstrNumber--; + + assert(LegalInstrNumber < IllegalInstrNumber && + "Instruction mapping overflow!"); + + assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && + "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); + + assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && + "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); + + return MINumber; + } + + /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds + /// and appends it to \p UnsignedVec and \p InstrList. + /// + /// Two instructions are assigned the same integer if they are identical. + /// If an instruction is deemed unsafe to outline, then it will be assigned an + /// unique integer. The resulting mapping is placed into a suffix tree and + /// queried for candidates. + /// + /// \param MBB The \p MachineBasicBlock to be translated into integers. + /// \param TII \p TargetInstrInfo for the function. + void convertToUnsignedVec(MachineBasicBlock &MBB, + const TargetInstrInfo &TII) { + unsigned Flags = 0; + + // Don't even map in this case. + if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) + return; + + // Store info for the MBB for later outlining. + MBBFlagsMap[&MBB] = Flags; + + MachineBasicBlock::iterator It = MBB.begin(); + + // The number of instructions in this block that will be considered for + // outlining. + unsigned NumLegalInBlock = 0; + + // True if we have at least two legal instructions which aren't separated + // by an illegal instruction. + bool HaveLegalRange = false; + + // True if we can perform outlining given the last mapped (non-invisible) + // instruction. This lets us know if we have a legal range. + bool CanOutlineWithPrevInstr = false; + + // FIXME: Should this all just be handled in the target, rather than using + // repeated calls to getOutliningType? + std::vector<unsigned> UnsignedVecForMBB; + std::vector<MachineBasicBlock::iterator> InstrListForMBB; + + for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) { + // Keep track of where this instruction is in the module. + switch (TII.getOutliningType(It, Flags)) { + case InstrType::Illegal: + mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, + UnsignedVecForMBB, InstrListForMBB); + break; + + case InstrType::Legal: + mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, + NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); + break; + + case InstrType::LegalTerminator: + mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, + NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); + // The instruction also acts as a terminator, so we have to record that + // in the string. + mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, + InstrListForMBB); + break; + + case InstrType::Invisible: + // Normally this is set by mapTo(Blah)Unsigned, but we just want to + // skip this instruction. So, unset the flag here. + AddedIllegalLastTime = false; + break; + } + } + + // Are there enough legal instructions in the block for outlining to be + // possible? + if (HaveLegalRange) { + // After we're done every insertion, uniquely terminate this part of the + // "string". This makes sure we won't match across basic block or function + // boundaries since the "end" is encoded uniquely and thus appears in no + // repeated substring. + mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, + InstrListForMBB); + InstrList.insert(InstrList.end(), InstrListForMBB.begin(), + InstrListForMBB.end()); + UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), + UnsignedVecForMBB.end()); + } + } + + InstructionMapper() { + // Make sure that the implementation of DenseMapInfo<unsigned> hasn't + // changed. + assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && + "DenseMapInfo<unsigned>'s empty key isn't -1!"); + assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && + "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); + } +}; + +/// An interprocedural pass which finds repeated sequences of +/// instructions and replaces them with calls to functions. +/// +/// Each instruction is mapped to an unsigned integer and placed in a string. +/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree +/// is then repeatedly queried for repeated sequences of instructions. Each +/// non-overlapping repeated sequence is then placed in its own +/// \p MachineFunction and each instance is then replaced with a call to that +/// function. +struct MachineOutliner : public ModulePass { + + static char ID; + + /// Set to true if the outliner should consider functions with + /// linkonceodr linkage. + bool OutlineFromLinkOnceODRs = false; + + /// Set to true if the outliner should run on all functions in the module + /// considered safe for outlining. + /// Set to true by default for compatibility with llc's -run-pass option. + /// Set when the pass is constructed in TargetPassConfig. + bool RunOnAllFunctions = true; + + StringRef getPassName() const override { return "Machine Outliner"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineModuleInfo>(); + AU.addPreserved<MachineModuleInfo>(); + AU.setPreservesAll(); + ModulePass::getAnalysisUsage(AU); + } + + MachineOutliner() : ModulePass(ID) { + initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); + } + + /// Remark output explaining that not outlining a set of candidates would be + /// better than outlining that set. + void emitNotOutliningCheaperRemark( + unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, + OutlinedFunction &OF); + + /// Remark output explaining that a function was outlined. + void emitOutlinedFunctionRemark(OutlinedFunction &OF); + + /// Find all repeated substrings that satisfy the outlining cost model by + /// constructing a suffix tree. + /// + /// If a substring appears at least twice, then it must be represented by + /// an internal node which appears in at least two suffixes. Each suffix + /// is represented by a leaf node. To do this, we visit each internal node + /// in the tree, using the leaf children of each internal node. If an + /// internal node represents a beneficial substring, then we use each of + /// its leaf children to find the locations of its substring. + /// + /// \param Mapper Contains outlining mapping information. + /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions + /// each type of candidate. + void findCandidates(InstructionMapper &Mapper, + std::vector<OutlinedFunction> &FunctionList); + + /// Replace the sequences of instructions represented by \p OutlinedFunctions + /// with calls to functions. + /// + /// \param M The module we are outlining from. + /// \param FunctionList A list of functions to be inserted into the module. + /// \param Mapper Contains the instruction mappings for the module. + bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, + InstructionMapper &Mapper); + + /// Creates a function for \p OF and inserts it into the module. + MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, + InstructionMapper &Mapper, + unsigned Name); + + /// Construct a suffix tree on the instructions in \p M and outline repeated + /// strings from that tree. + bool runOnModule(Module &M) override; + + /// Return a DISubprogram for OF if one exists, and null otherwise. Helper + /// function for remark emission. + DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { + DISubprogram *SP; + for (const Candidate &C : OF.Candidates) + if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram())) + return SP; + return nullptr; + } + + /// Populate and \p InstructionMapper with instruction-to-integer mappings. + /// These are used to construct a suffix tree. + void populateMapper(InstructionMapper &Mapper, Module &M, + MachineModuleInfo &MMI); + + /// Initialize information necessary to output a size remark. + /// FIXME: This should be handled by the pass manager, not the outliner. + /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy + /// pass manager. + void initSizeRemarkInfo( + const Module &M, const MachineModuleInfo &MMI, + StringMap<unsigned> &FunctionToInstrCount); + + /// Emit the remark. + // FIXME: This should be handled by the pass manager, not the outliner. + void emitInstrCountChangedRemark( + const Module &M, const MachineModuleInfo &MMI, + const StringMap<unsigned> &FunctionToInstrCount); +}; +} // Anonymous namespace. + +char MachineOutliner::ID = 0; + +namespace llvm { +ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { + MachineOutliner *OL = new MachineOutliner(); + OL->RunOnAllFunctions = RunOnAllFunctions; + return OL; +} + +} // namespace llvm + +INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, + false) + +void MachineOutliner::emitNotOutliningCheaperRemark( + unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, + OutlinedFunction &OF) { + // FIXME: Right now, we arbitrarily choose some Candidate from the + // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. + // We should probably sort these by function name or something to make sure + // the remarks are stable. + Candidate &C = CandidatesForRepeatedSeq.front(); + MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); + MORE.emit([&]() { + MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", + C.front()->getDebugLoc(), C.getMBB()); + R << "Did not outline " << NV("Length", StringLen) << " instructions" + << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) + << " locations." + << " Bytes from outlining all occurrences (" + << NV("OutliningCost", OF.getOutliningCost()) << ")" + << " >= Unoutlined instruction bytes (" + << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" + << " (Also found at: "; + + // Tell the user the other places the candidate was found. + for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { + R << NV((Twine("OtherStartLoc") + Twine(i)).str(), + CandidatesForRepeatedSeq[i].front()->getDebugLoc()); + if (i != e - 1) + R << ", "; + } + + R << ")"; + return R; + }); +} + +void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { + MachineBasicBlock *MBB = &*OF.MF->begin(); + MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); + MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", + MBB->findDebugLoc(MBB->begin()), MBB); + R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " + << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " + << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) + << " locations. " + << "(Found at: "; + + // Tell the user the other places the candidate was found. + for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { + + R << NV((Twine("StartLoc") + Twine(i)).str(), + OF.Candidates[i].front()->getDebugLoc()); + if (i != e - 1) + R << ", "; + } + + R << ")"; + + MORE.emit(R); +} + +void +MachineOutliner::findCandidates(InstructionMapper &Mapper, + std::vector<OutlinedFunction> &FunctionList) { + FunctionList.clear(); + SuffixTree ST(Mapper.UnsignedVec); + + // First, find dall of the repeated substrings in the tree of minimum length + // 2. + std::vector<Candidate> CandidatesForRepeatedSeq; + for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { + CandidatesForRepeatedSeq.clear(); + SuffixTree::RepeatedSubstring RS = *It; + unsigned StringLen = RS.Length; + for (const unsigned &StartIdx : RS.StartIndices) { + unsigned EndIdx = StartIdx + StringLen - 1; + // Trick: Discard some candidates that would be incompatible with the + // ones we've already found for this sequence. This will save us some + // work in candidate selection. + // + // If two candidates overlap, then we can't outline them both. This + // happens when we have candidates that look like, say + // + // AA (where each "A" is an instruction). + // + // We might have some portion of the module that looks like this: + // AAAAAA (6 A's) + // + // In this case, there are 5 different copies of "AA" in this range, but + // at most 3 can be outlined. If only outlining 3 of these is going to + // be unbeneficial, then we ought to not bother. + // + // Note that two things DON'T overlap when they look like this: + // start1...end1 .... start2...end2 + // That is, one must either + // * End before the other starts + // * Start after the other ends + if (std::all_of( + CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), + [&StartIdx, &EndIdx](const Candidate &C) { + return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); + })) { + // It doesn't overlap with anything, so we can outline it. + // Each sequence is over [StartIt, EndIt]. + // Save the candidate and its location. + + MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; + MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; + MachineBasicBlock *MBB = StartIt->getParent(); + + CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, + EndIt, MBB, FunctionList.size(), + Mapper.MBBFlagsMap[MBB]); + } + } + + // We've found something we might want to outline. + // Create an OutlinedFunction to store it and check if it'd be beneficial + // to outline. + if (CandidatesForRepeatedSeq.size() < 2) + continue; + + // Arbitrarily choose a TII from the first candidate. + // FIXME: Should getOutliningCandidateInfo move to TargetMachine? + const TargetInstrInfo *TII = + CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); + + OutlinedFunction OF = + TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); + + // If we deleted too many candidates, then there's nothing worth outlining. + // FIXME: This should take target-specified instruction sizes into account. + if (OF.Candidates.size() < 2) + continue; + + // Is it better to outline this candidate than not? + if (OF.getBenefit() < 1) { + emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); + continue; + } + + FunctionList.push_back(OF); + } +} + +MachineFunction * +MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF, + InstructionMapper &Mapper, + unsigned Name) { + + // Create the function name. This should be unique. + // FIXME: We should have a better naming scheme. This should be stable, + // regardless of changes to the outliner's cost model/traversal order. + std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str(); + + // Create the function using an IR-level function. + LLVMContext &C = M.getContext(); + Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), + Function::ExternalLinkage, FunctionName, M); + + // NOTE: If this is linkonceodr, then we can take advantage of linker deduping + // which gives us better results when we outline from linkonceodr functions. + F->setLinkage(GlobalValue::InternalLinkage); + F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + + // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's + // necessary. + + // Set optsize/minsize, so we don't insert padding between outlined + // functions. + F->addFnAttr(Attribute::OptimizeForSize); + F->addFnAttr(Attribute::MinSize); + + // Include target features from an arbitrary candidate for the outlined + // function. This makes sure the outlined function knows what kinds of + // instructions are going into it. This is fine, since all parent functions + // must necessarily support the instructions that are in the outlined region. + Candidate &FirstCand = OF.Candidates.front(); + const Function &ParentFn = FirstCand.getMF()->getFunction(); + if (ParentFn.hasFnAttribute("target-features")) + F->addFnAttr(ParentFn.getFnAttribute("target-features")); + + BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); + IRBuilder<> Builder(EntryBB); + Builder.CreateRetVoid(); + + MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); + MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); + MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); + const TargetSubtargetInfo &STI = MF.getSubtarget(); + const TargetInstrInfo &TII = *STI.getInstrInfo(); + + // Insert the new function into the module. + MF.insert(MF.begin(), &MBB); + + for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; + ++I) { + MachineInstr *NewMI = MF.CloneMachineInstr(&*I); + NewMI->dropMemRefs(MF); + + // Don't keep debug information for outlined instructions. + NewMI->setDebugLoc(DebugLoc()); + MBB.insert(MBB.end(), NewMI); + } + + TII.buildOutlinedFrame(MBB, MF, OF); + + // Outlined functions shouldn't preserve liveness. + MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); + MF.getRegInfo().freezeReservedRegs(MF); + + // If there's a DISubprogram associated with this outlined function, then + // emit debug info for the outlined function. + if (DISubprogram *SP = getSubprogramOrNull(OF)) { + // We have a DISubprogram. Get its DICompileUnit. + DICompileUnit *CU = SP->getUnit(); + DIBuilder DB(M, true, CU); + DIFile *Unit = SP->getFile(); + Mangler Mg; + // Get the mangled name of the function for the linkage name. + std::string Dummy; + llvm::raw_string_ostream MangledNameStream(Dummy); + Mg.getNameWithPrefix(MangledNameStream, F, false); + + DISubprogram *OutlinedSP = DB.createFunction( + Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), + Unit /* File */, + 0 /* Line 0 is reserved for compiler-generated code. */, + DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ + 0, /* Line 0 is reserved for compiler-generated code. */ + DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, + /* Outlined code is optimized code by definition. */ + DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); + + // Don't add any new variables to the subprogram. + DB.finalizeSubprogram(OutlinedSP); + + // Attach subprogram to the function. + F->setSubprogram(OutlinedSP); + // We're done with the DIBuilder. + DB.finalize(); + } + + return &MF; +} + +bool MachineOutliner::outline(Module &M, + std::vector<OutlinedFunction> &FunctionList, + InstructionMapper &Mapper) { + + bool OutlinedSomething = false; + + // Number to append to the current outlined function. + unsigned OutlinedFunctionNum = 0; + + // Sort by benefit. The most beneficial functions should be outlined first. + llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, + const OutlinedFunction &RHS) { + return LHS.getBenefit() > RHS.getBenefit(); + }); + + // Walk over each function, outlining them as we go along. Functions are + // outlined greedily, based off the sort above. + for (OutlinedFunction &OF : FunctionList) { + // If we outlined something that overlapped with a candidate in a previous + // step, then we can't outline from it. + erase_if(OF.Candidates, [&Mapper](Candidate &C) { + return std::any_of( + Mapper.UnsignedVec.begin() + C.getStartIdx(), + Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, + [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); + }); + + // If we made it unbeneficial to outline this function, skip it. + if (OF.getBenefit() < 1) + continue; + + // It's beneficial. Create the function and outline its sequence's + // occurrences. + OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); + emitOutlinedFunctionRemark(OF); + FunctionsCreated++; + OutlinedFunctionNum++; // Created a function, move to the next name. + MachineFunction *MF = OF.MF; + const TargetSubtargetInfo &STI = MF->getSubtarget(); + const TargetInstrInfo &TII = *STI.getInstrInfo(); + + // Replace occurrences of the sequence with calls to the new function. + for (Candidate &C : OF.Candidates) { + MachineBasicBlock &MBB = *C.getMBB(); + MachineBasicBlock::iterator StartIt = C.front(); + MachineBasicBlock::iterator EndIt = C.back(); + + // Insert the call. + auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); + + // If the caller tracks liveness, then we need to make sure that + // anything we outline doesn't break liveness assumptions. The outlined + // functions themselves currently don't track liveness, but we should + // make sure that the ranges we yank things out of aren't wrong. + if (MBB.getParent()->getProperties().hasProperty( + MachineFunctionProperties::Property::TracksLiveness)) { + // Helper lambda for adding implicit def operands to the call + // instruction. It also updates call site information for moved + // code. + auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) { + for (MachineOperand &MOP : MI.operands()) { + // Skip over anything that isn't a register. + if (!MOP.isReg()) + continue; + + // If it's a def, add it to the call instruction. + if (MOP.isDef()) + CallInst->addOperand(MachineOperand::CreateReg( + MOP.getReg(), true, /* isDef = true */ + true /* isImp = true */)); + } + if (MI.isCall()) + MI.getMF()->updateCallSiteInfo(&MI); + }; + // Copy over the defs in the outlined range. + // First inst in outlined range <-- Anything that's defined in this + // ... .. range has to be added as an + // implicit Last inst in outlined range <-- def to the call + // instruction. Also remove call site information for outlined block + // of code. + std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls); + } + + // Erase from the point after where the call was inserted up to, and + // including, the final instruction in the sequence. + // Erase needs one past the end, so we need std::next there too. + MBB.erase(std::next(StartIt), std::next(EndIt)); + + // Keep track of what we removed by marking them all as -1. + std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), + Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, + [](unsigned &I) { I = static_cast<unsigned>(-1); }); + OutlinedSomething = true; + + // Statistics. + NumOutlined++; + } + } + + LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); + + return OutlinedSomething; +} + +void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, + MachineModuleInfo &MMI) { + // Build instruction mappings for each function in the module. Start by + // iterating over each Function in M. + for (Function &F : M) { + + // If there's nothing in F, then there's no reason to try and outline from + // it. + if (F.empty()) + continue; + + // There's something in F. Check if it has a MachineFunction associated with + // it. + MachineFunction *MF = MMI.getMachineFunction(F); + + // If it doesn't, then there's nothing to outline from. Move to the next + // Function. + if (!MF) + continue; + + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + + if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) + continue; + + // We have a MachineFunction. Ask the target if it's suitable for outlining. + // If it isn't, then move on to the next Function in the module. + if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) + continue; + + // We have a function suitable for outlining. Iterate over every + // MachineBasicBlock in MF and try to map its instructions to a list of + // unsigned integers. + for (MachineBasicBlock &MBB : *MF) { + // If there isn't anything in MBB, then there's no point in outlining from + // it. + // If there are fewer than 2 instructions in the MBB, then it can't ever + // contain something worth outlining. + // FIXME: This should be based off of the maximum size in B of an outlined + // call versus the size in B of the MBB. + if (MBB.empty() || MBB.size() < 2) + continue; + + // Check if MBB could be the target of an indirect branch. If it is, then + // we don't want to outline from it. + if (MBB.hasAddressTaken()) + continue; + + // MBB is suitable for outlining. Map it to a list of unsigneds. + Mapper.convertToUnsignedVec(MBB, *TII); + } + } +} + +void MachineOutliner::initSizeRemarkInfo( + const Module &M, const MachineModuleInfo &MMI, + StringMap<unsigned> &FunctionToInstrCount) { + // Collect instruction counts for every function. We'll use this to emit + // per-function size remarks later. + for (const Function &F : M) { + MachineFunction *MF = MMI.getMachineFunction(F); + + // We only care about MI counts here. If there's no MachineFunction at this + // point, then there won't be after the outliner runs, so let's move on. + if (!MF) + continue; + FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); + } +} + +void MachineOutliner::emitInstrCountChangedRemark( + const Module &M, const MachineModuleInfo &MMI, + const StringMap<unsigned> &FunctionToInstrCount) { + // Iterate over each function in the module and emit remarks. + // Note that we won't miss anything by doing this, because the outliner never + // deletes functions. + for (const Function &F : M) { + MachineFunction *MF = MMI.getMachineFunction(F); + + // The outliner never deletes functions. If we don't have a MF here, then we + // didn't have one prior to outlining either. + if (!MF) + continue; + + std::string Fname = F.getName(); + unsigned FnCountAfter = MF->getInstructionCount(); + unsigned FnCountBefore = 0; + + // Check if the function was recorded before. + auto It = FunctionToInstrCount.find(Fname); + + // Did we have a previously-recorded size? If yes, then set FnCountBefore + // to that. + if (It != FunctionToInstrCount.end()) + FnCountBefore = It->second; + + // Compute the delta and emit a remark if there was a change. + int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - + static_cast<int64_t>(FnCountBefore); + if (FnDelta == 0) + continue; + + MachineOptimizationRemarkEmitter MORE(*MF, nullptr); + MORE.emit([&]() { + MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", + DiagnosticLocation(), + &MF->front()); + R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") + << ": Function: " + << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) + << ": MI instruction count changed from " + << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", + FnCountBefore) + << " to " + << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", + FnCountAfter) + << "; Delta: " + << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); + return R; + }); + } +} + +bool MachineOutliner::runOnModule(Module &M) { + // Check if there's anything in the module. If it's empty, then there's + // nothing to outline. + if (M.empty()) + return false; + + MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); + + // If the user passed -enable-machine-outliner=always or + // -enable-machine-outliner, the pass will run on all functions in the module. + // Otherwise, if the target supports default outlining, it will run on all + // functions deemed by the target to be worth outlining from by default. Tell + // the user how the outliner is running. + LLVM_DEBUG( + dbgs() << "Machine Outliner: Running on "; + if (RunOnAllFunctions) + dbgs() << "all functions"; + else + dbgs() << "target-default functions"; + dbgs() << "\n" + ); + + // If the user specifies that they want to outline from linkonceodrs, set + // it here. + OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; + InstructionMapper Mapper; + + // Prepare instruction mappings for the suffix tree. + populateMapper(Mapper, M, MMI); + std::vector<OutlinedFunction> FunctionList; + + // Find all of the outlining candidates. + findCandidates(Mapper, FunctionList); + + // If we've requested size remarks, then collect the MI counts of every + // function before outlining, and the MI counts after outlining. + // FIXME: This shouldn't be in the outliner at all; it should ultimately be + // the pass manager's responsibility. + // This could pretty easily be placed in outline instead, but because we + // really ultimately *don't* want this here, it's done like this for now + // instead. + + // Check if we want size remarks. + bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); + StringMap<unsigned> FunctionToInstrCount; + if (ShouldEmitSizeRemarks) + initSizeRemarkInfo(M, MMI, FunctionToInstrCount); + + // Outline each of the candidates and return true if something was outlined. + bool OutlinedSomething = outline(M, FunctionList, Mapper); + + // If we outlined something, we definitely changed the MI count of the + // module. If we've asked for size remarks, then output them. + // FIXME: This should be in the pass manager. + if (ShouldEmitSizeRemarks && OutlinedSomething) + emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); + + return OutlinedSomething; +} |