diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp | 2183 |
1 files changed, 0 insertions, 2183 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp b/contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp deleted file mode 100644 index 163e52d9199d..000000000000 --- a/contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp +++ /dev/null @@ -1,2183 +0,0 @@ -//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// - -#include "llvm/CodeGen/ModuloSchedule.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/CodeGen/LiveIntervals.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineLoopUtils.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/InitializePasses.h" -#include "llvm/MC/MCContext.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" - -#define DEBUG_TYPE "pipeliner" -using namespace llvm; - -void ModuloSchedule::print(raw_ostream &OS) { - for (MachineInstr *MI : ScheduledInstrs) - OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; -} - -//===----------------------------------------------------------------------===// -// ModuloScheduleExpander implementation -//===----------------------------------------------------------------------===// - -/// Return the register values for the operands of a Phi instruction. -/// This function assume the instruction is a Phi. -static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, - unsigned &InitVal, unsigned &LoopVal) { - assert(Phi.isPHI() && "Expecting a Phi."); - - InitVal = 0; - LoopVal = 0; - for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) - if (Phi.getOperand(i + 1).getMBB() != Loop) - InitVal = Phi.getOperand(i).getReg(); - else - LoopVal = Phi.getOperand(i).getReg(); - - assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); -} - -/// Return the Phi register value that comes from the incoming block. -static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { - for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) - if (Phi.getOperand(i + 1).getMBB() != LoopBB) - return Phi.getOperand(i).getReg(); - return 0; -} - -/// Return the Phi register value that comes the loop block. -static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { - for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) - if (Phi.getOperand(i + 1).getMBB() == LoopBB) - return Phi.getOperand(i).getReg(); - return 0; -} - -void ModuloScheduleExpander::expand() { - BB = Schedule.getLoop()->getTopBlock(); - Preheader = *BB->pred_begin(); - if (Preheader == BB) - Preheader = *std::next(BB->pred_begin()); - - // Iterate over the definitions in each instruction, and compute the - // stage difference for each use. Keep the maximum value. - for (MachineInstr *MI : Schedule.getInstructions()) { - int DefStage = Schedule.getStage(MI); - for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { - MachineOperand &Op = MI->getOperand(i); - if (!Op.isReg() || !Op.isDef()) - continue; - - Register Reg = Op.getReg(); - unsigned MaxDiff = 0; - bool PhiIsSwapped = false; - for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), - EI = MRI.use_end(); - UI != EI; ++UI) { - MachineOperand &UseOp = *UI; - MachineInstr *UseMI = UseOp.getParent(); - int UseStage = Schedule.getStage(UseMI); - unsigned Diff = 0; - if (UseStage != -1 && UseStage >= DefStage) - Diff = UseStage - DefStage; - if (MI->isPHI()) { - if (isLoopCarried(*MI)) - ++Diff; - else - PhiIsSwapped = true; - } - MaxDiff = std::max(Diff, MaxDiff); - } - RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); - } - } - - generatePipelinedLoop(); -} - -void ModuloScheduleExpander::generatePipelinedLoop() { - LoopInfo = TII->analyzeLoopForPipelining(BB); - assert(LoopInfo && "Must be able to analyze loop!"); - - // Create a new basic block for the kernel and add it to the CFG. - MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); - - unsigned MaxStageCount = Schedule.getNumStages() - 1; - - // Remember the registers that are used in different stages. The index is - // the iteration, or stage, that the instruction is scheduled in. This is - // a map between register names in the original block and the names created - // in each stage of the pipelined loop. - ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; - InstrMapTy InstrMap; - - SmallVector<MachineBasicBlock *, 4> PrologBBs; - - // Generate the prolog instructions that set up the pipeline. - generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); - MF.insert(BB->getIterator(), KernelBB); - - // Rearrange the instructions to generate the new, pipelined loop, - // and update register names as needed. - for (MachineInstr *CI : Schedule.getInstructions()) { - if (CI->isPHI()) - continue; - unsigned StageNum = Schedule.getStage(CI); - MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); - updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); - KernelBB->push_back(NewMI); - InstrMap[NewMI] = CI; - } - - // Copy any terminator instructions to the new kernel, and update - // names as needed. - for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), - E = BB->instr_end(); - I != E; ++I) { - MachineInstr *NewMI = MF.CloneMachineInstr(&*I); - updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); - KernelBB->push_back(NewMI); - InstrMap[NewMI] = &*I; - } - - NewKernel = KernelBB; - KernelBB->transferSuccessors(BB); - KernelBB->replaceSuccessor(BB, KernelBB); - - generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, - InstrMap, MaxStageCount, MaxStageCount, false); - generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, - MaxStageCount, MaxStageCount, false); - - LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); - - SmallVector<MachineBasicBlock *, 4> EpilogBBs; - // Generate the epilog instructions to complete the pipeline. - generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); - - // We need this step because the register allocation doesn't handle some - // situations well, so we insert copies to help out. - splitLifetimes(KernelBB, EpilogBBs); - - // Remove dead instructions due to loop induction variables. - removeDeadInstructions(KernelBB, EpilogBBs); - - // Add branches between prolog and epilog blocks. - addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); - - delete[] VRMap; -} - -void ModuloScheduleExpander::cleanup() { - // Remove the original loop since it's no longer referenced. - for (auto &I : *BB) - LIS.RemoveMachineInstrFromMaps(I); - BB->clear(); - BB->eraseFromParent(); -} - -/// Generate the pipeline prolog code. -void ModuloScheduleExpander::generateProlog(unsigned LastStage, - MachineBasicBlock *KernelBB, - ValueMapTy *VRMap, - MBBVectorTy &PrologBBs) { - MachineBasicBlock *PredBB = Preheader; - InstrMapTy InstrMap; - - // Generate a basic block for each stage, not including the last stage, - // which will be generated in the kernel. Each basic block may contain - // instructions from multiple stages/iterations. - for (unsigned i = 0; i < LastStage; ++i) { - // Create and insert the prolog basic block prior to the original loop - // basic block. The original loop is removed later. - MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); - PrologBBs.push_back(NewBB); - MF.insert(BB->getIterator(), NewBB); - NewBB->transferSuccessors(PredBB); - PredBB->addSuccessor(NewBB); - PredBB = NewBB; - - // Generate instructions for each appropriate stage. Process instructions - // in original program order. - for (int StageNum = i; StageNum >= 0; --StageNum) { - for (MachineBasicBlock::iterator BBI = BB->instr_begin(), - BBE = BB->getFirstTerminator(); - BBI != BBE; ++BBI) { - if (Schedule.getStage(&*BBI) == StageNum) { - if (BBI->isPHI()) - continue; - MachineInstr *NewMI = - cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); - updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); - NewBB->push_back(NewMI); - InstrMap[NewMI] = &*BBI; - } - } - } - rewritePhiValues(NewBB, i, VRMap, InstrMap); - LLVM_DEBUG({ - dbgs() << "prolog:\n"; - NewBB->dump(); - }); - } - - PredBB->replaceSuccessor(BB, KernelBB); - - // Check if we need to remove the branch from the preheader to the original - // loop, and replace it with a branch to the new loop. - unsigned numBranches = TII->removeBranch(*Preheader); - if (numBranches) { - SmallVector<MachineOperand, 0> Cond; - TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); - } -} - -/// Generate the pipeline epilog code. The epilog code finishes the iterations -/// that were started in either the prolog or the kernel. We create a basic -/// block for each stage that needs to complete. -void ModuloScheduleExpander::generateEpilog(unsigned LastStage, - MachineBasicBlock *KernelBB, - ValueMapTy *VRMap, - MBBVectorTy &EpilogBBs, - MBBVectorTy &PrologBBs) { - // We need to change the branch from the kernel to the first epilog block, so - // this call to analyze branch uses the kernel rather than the original BB. - MachineBasicBlock *TBB = nullptr, *FBB = nullptr; - SmallVector<MachineOperand, 4> Cond; - bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); - assert(!checkBranch && "generateEpilog must be able to analyze the branch"); - if (checkBranch) - return; - - MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); - if (*LoopExitI == KernelBB) - ++LoopExitI; - assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); - MachineBasicBlock *LoopExitBB = *LoopExitI; - - MachineBasicBlock *PredBB = KernelBB; - MachineBasicBlock *EpilogStart = LoopExitBB; - InstrMapTy InstrMap; - - // Generate a basic block for each stage, not including the last stage, - // which was generated for the kernel. Each basic block may contain - // instructions from multiple stages/iterations. - int EpilogStage = LastStage + 1; - for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { - MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); - EpilogBBs.push_back(NewBB); - MF.insert(BB->getIterator(), NewBB); - - PredBB->replaceSuccessor(LoopExitBB, NewBB); - NewBB->addSuccessor(LoopExitBB); - - if (EpilogStart == LoopExitBB) - EpilogStart = NewBB; - - // Add instructions to the epilog depending on the current block. - // Process instructions in original program order. - for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { - for (auto &BBI : *BB) { - if (BBI.isPHI()) - continue; - MachineInstr *In = &BBI; - if ((unsigned)Schedule.getStage(In) == StageNum) { - // Instructions with memoperands in the epilog are updated with - // conservative values. - MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); - updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); - NewBB->push_back(NewMI); - InstrMap[NewMI] = In; - } - } - } - generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, - InstrMap, LastStage, EpilogStage, i == 1); - generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, - LastStage, EpilogStage, i == 1); - PredBB = NewBB; - - LLVM_DEBUG({ - dbgs() << "epilog:\n"; - NewBB->dump(); - }); - } - - // Fix any Phi nodes in the loop exit block. - LoopExitBB->replacePhiUsesWith(BB, PredBB); - - // Create a branch to the new epilog from the kernel. - // Remove the original branch and add a new branch to the epilog. - TII->removeBranch(*KernelBB); - TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); - // Add a branch to the loop exit. - if (EpilogBBs.size() > 0) { - MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); - SmallVector<MachineOperand, 4> Cond1; - TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); - } -} - -/// Replace all uses of FromReg that appear outside the specified -/// basic block with ToReg. -static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, - MachineBasicBlock *MBB, - MachineRegisterInfo &MRI, - LiveIntervals &LIS) { - for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), - E = MRI.use_end(); - I != E;) { - MachineOperand &O = *I; - ++I; - if (O.getParent()->getParent() != MBB) - O.setReg(ToReg); - } - if (!LIS.hasInterval(ToReg)) - LIS.createEmptyInterval(ToReg); -} - -/// Return true if the register has a use that occurs outside the -/// specified loop. -static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, - MachineRegisterInfo &MRI) { - for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), - E = MRI.use_end(); - I != E; ++I) - if (I->getParent()->getParent() != BB) - return true; - return false; -} - -/// Generate Phis for the specific block in the generated pipelined code. -/// This function looks at the Phis from the original code to guide the -/// creation of new Phis. -void ModuloScheduleExpander::generateExistingPhis( - MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, - MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, - unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { - // Compute the stage number for the initial value of the Phi, which - // comes from the prolog. The prolog to use depends on to which kernel/ - // epilog that we're adding the Phi. - unsigned PrologStage = 0; - unsigned PrevStage = 0; - bool InKernel = (LastStageNum == CurStageNum); - if (InKernel) { - PrologStage = LastStageNum - 1; - PrevStage = CurStageNum; - } else { - PrologStage = LastStageNum - (CurStageNum - LastStageNum); - PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; - } - - for (MachineBasicBlock::iterator BBI = BB->instr_begin(), - BBE = BB->getFirstNonPHI(); - BBI != BBE; ++BBI) { - Register Def = BBI->getOperand(0).getReg(); - - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(*BBI, BB, InitVal, LoopVal); - - unsigned PhiOp1 = 0; - // The Phi value from the loop body typically is defined in the loop, but - // not always. So, we need to check if the value is defined in the loop. - unsigned PhiOp2 = LoopVal; - if (VRMap[LastStageNum].count(LoopVal)) - PhiOp2 = VRMap[LastStageNum][LoopVal]; - - int StageScheduled = Schedule.getStage(&*BBI); - int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); - unsigned NumStages = getStagesForReg(Def, CurStageNum); - if (NumStages == 0) { - // We don't need to generate a Phi anymore, but we need to rename any uses - // of the Phi value. - unsigned NewReg = VRMap[PrevStage][LoopVal]; - rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, - InitVal, NewReg); - if (VRMap[CurStageNum].count(LoopVal)) - VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; - } - // Adjust the number of Phis needed depending on the number of prologs left, - // and the distance from where the Phi is first scheduled. The number of - // Phis cannot exceed the number of prolog stages. Each stage can - // potentially define two values. - unsigned MaxPhis = PrologStage + 2; - if (!InKernel && (int)PrologStage <= LoopValStage) - MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); - unsigned NumPhis = std::min(NumStages, MaxPhis); - - unsigned NewReg = 0; - unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; - // In the epilog, we may need to look back one stage to get the correct - // Phi name because the epilog and prolog blocks execute the same stage. - // The correct name is from the previous block only when the Phi has - // been completely scheduled prior to the epilog, and Phi value is not - // needed in multiple stages. - int StageDiff = 0; - if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && - NumPhis == 1) - StageDiff = 1; - // Adjust the computations below when the phi and the loop definition - // are scheduled in different stages. - if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) - StageDiff = StageScheduled - LoopValStage; - for (unsigned np = 0; np < NumPhis; ++np) { - // If the Phi hasn't been scheduled, then use the initial Phi operand - // value. Otherwise, use the scheduled version of the instruction. This - // is a little complicated when a Phi references another Phi. - if (np > PrologStage || StageScheduled >= (int)LastStageNum) - PhiOp1 = InitVal; - // Check if the Phi has already been scheduled in a prolog stage. - else if (PrologStage >= AccessStage + StageDiff + np && - VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) - PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; - // Check if the Phi has already been scheduled, but the loop instruction - // is either another Phi, or doesn't occur in the loop. - else if (PrologStage >= AccessStage + StageDiff + np) { - // If the Phi references another Phi, we need to examine the other - // Phi to get the correct value. - PhiOp1 = LoopVal; - MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); - int Indirects = 1; - while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { - int PhiStage = Schedule.getStage(InstOp1); - if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) - PhiOp1 = getInitPhiReg(*InstOp1, BB); - else - PhiOp1 = getLoopPhiReg(*InstOp1, BB); - InstOp1 = MRI.getVRegDef(PhiOp1); - int PhiOpStage = Schedule.getStage(InstOp1); - int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); - if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && - VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { - PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; - break; - } - ++Indirects; - } - } else - PhiOp1 = InitVal; - // If this references a generated Phi in the kernel, get the Phi operand - // from the incoming block. - if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) - if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) - PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); - - MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); - bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); - // In the epilog, a map lookup is needed to get the value from the kernel, - // or previous epilog block. How is does this depends on if the - // instruction is scheduled in the previous block. - if (!InKernel) { - int StageDiffAdj = 0; - if (LoopValStage != -1 && StageScheduled > LoopValStage) - StageDiffAdj = StageScheduled - LoopValStage; - // Use the loop value defined in the kernel, unless the kernel - // contains the last definition of the Phi. - if (np == 0 && PrevStage == LastStageNum && - (StageScheduled != 0 || LoopValStage != 0) && - VRMap[PrevStage - StageDiffAdj].count(LoopVal)) - PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; - // Use the value defined by the Phi. We add one because we switch - // from looking at the loop value to the Phi definition. - else if (np > 0 && PrevStage == LastStageNum && - VRMap[PrevStage - np + 1].count(Def)) - PhiOp2 = VRMap[PrevStage - np + 1][Def]; - // Use the loop value defined in the kernel. - else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && - VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) - PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; - // Use the value defined by the Phi, unless we're generating the first - // epilog and the Phi refers to a Phi in a different stage. - else if (VRMap[PrevStage - np].count(Def) && - (!LoopDefIsPhi || (PrevStage != LastStageNum) || - (LoopValStage == StageScheduled))) - PhiOp2 = VRMap[PrevStage - np][Def]; - } - - // Check if we can reuse an existing Phi. This occurs when a Phi - // references another Phi, and the other Phi is scheduled in an - // earlier stage. We can try to reuse an existing Phi up until the last - // stage of the current Phi. - if (LoopDefIsPhi) { - if (static_cast<int>(PrologStage - np) >= StageScheduled) { - int LVNumStages = getStagesForPhi(LoopVal); - int StageDiff = (StageScheduled - LoopValStage); - LVNumStages -= StageDiff; - // Make sure the loop value Phi has been processed already. - if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { - NewReg = PhiOp2; - unsigned ReuseStage = CurStageNum; - if (isLoopCarried(*PhiInst)) - ReuseStage -= LVNumStages; - // Check if the Phi to reuse has been generated yet. If not, then - // there is nothing to reuse. - if (VRMap[ReuseStage - np].count(LoopVal)) { - NewReg = VRMap[ReuseStage - np][LoopVal]; - - rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, - Def, NewReg); - // Update the map with the new Phi name. - VRMap[CurStageNum - np][Def] = NewReg; - PhiOp2 = NewReg; - if (VRMap[LastStageNum - np - 1].count(LoopVal)) - PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; - - if (IsLast && np == NumPhis - 1) - replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); - continue; - } - } - } - if (InKernel && StageDiff > 0 && - VRMap[CurStageNum - StageDiff - np].count(LoopVal)) - PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; - } - - const TargetRegisterClass *RC = MRI.getRegClass(Def); - NewReg = MRI.createVirtualRegister(RC); - - MachineInstrBuilder NewPhi = - BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), - TII->get(TargetOpcode::PHI), NewReg); - NewPhi.addReg(PhiOp1).addMBB(BB1); - NewPhi.addReg(PhiOp2).addMBB(BB2); - if (np == 0) - InstrMap[NewPhi] = &*BBI; - - // We define the Phis after creating the new pipelined code, so - // we need to rename the Phi values in scheduled instructions. - - unsigned PrevReg = 0; - if (InKernel && VRMap[PrevStage - np].count(LoopVal)) - PrevReg = VRMap[PrevStage - np][LoopVal]; - rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, - NewReg, PrevReg); - // If the Phi has been scheduled, use the new name for rewriting. - if (VRMap[CurStageNum - np].count(Def)) { - unsigned R = VRMap[CurStageNum - np][Def]; - rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, - NewReg); - } - - // Check if we need to rename any uses that occurs after the loop. The - // register to replace depends on whether the Phi is scheduled in the - // epilog. - if (IsLast && np == NumPhis - 1) - replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); - - // In the kernel, a dependent Phi uses the value from this Phi. - if (InKernel) - PhiOp2 = NewReg; - - // Update the map with the new Phi name. - VRMap[CurStageNum - np][Def] = NewReg; - } - - while (NumPhis++ < NumStages) { - rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, - NewReg, 0); - } - - // Check if we need to rename a Phi that has been eliminated due to - // scheduling. - if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) - replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); - } -} - -/// Generate Phis for the specified block in the generated pipelined code. -/// These are new Phis needed because the definition is scheduled after the -/// use in the pipelined sequence. -void ModuloScheduleExpander::generatePhis( - MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, - MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, - unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { - // Compute the stage number that contains the initial Phi value, and - // the Phi from the previous stage. - unsigned PrologStage = 0; - unsigned PrevStage = 0; - unsigned StageDiff = CurStageNum - LastStageNum; - bool InKernel = (StageDiff == 0); - if (InKernel) { - PrologStage = LastStageNum - 1; - PrevStage = CurStageNum; - } else { - PrologStage = LastStageNum - StageDiff; - PrevStage = LastStageNum + StageDiff - 1; - } - - for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), - BBE = BB->instr_end(); - BBI != BBE; ++BBI) { - for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = BBI->getOperand(i); - if (!MO.isReg() || !MO.isDef() || - !Register::isVirtualRegister(MO.getReg())) - continue; - - int StageScheduled = Schedule.getStage(&*BBI); - assert(StageScheduled != -1 && "Expecting scheduled instruction."); - Register Def = MO.getReg(); - unsigned NumPhis = getStagesForReg(Def, CurStageNum); - // An instruction scheduled in stage 0 and is used after the loop - // requires a phi in the epilog for the last definition from either - // the kernel or prolog. - if (!InKernel && NumPhis == 0 && StageScheduled == 0 && - hasUseAfterLoop(Def, BB, MRI)) - NumPhis = 1; - if (!InKernel && (unsigned)StageScheduled > PrologStage) - continue; - - unsigned PhiOp2 = VRMap[PrevStage][Def]; - if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) - if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) - PhiOp2 = getLoopPhiReg(*InstOp2, BB2); - // The number of Phis can't exceed the number of prolog stages. The - // prolog stage number is zero based. - if (NumPhis > PrologStage + 1 - StageScheduled) - NumPhis = PrologStage + 1 - StageScheduled; - for (unsigned np = 0; np < NumPhis; ++np) { - unsigned PhiOp1 = VRMap[PrologStage][Def]; - if (np <= PrologStage) - PhiOp1 = VRMap[PrologStage - np][Def]; - if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { - if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) - PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); - if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) - PhiOp1 = getInitPhiReg(*InstOp1, NewBB); - } - if (!InKernel) - PhiOp2 = VRMap[PrevStage - np][Def]; - - const TargetRegisterClass *RC = MRI.getRegClass(Def); - Register NewReg = MRI.createVirtualRegister(RC); - - MachineInstrBuilder NewPhi = - BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), - TII->get(TargetOpcode::PHI), NewReg); - NewPhi.addReg(PhiOp1).addMBB(BB1); - NewPhi.addReg(PhiOp2).addMBB(BB2); - if (np == 0) - InstrMap[NewPhi] = &*BBI; - - // Rewrite uses and update the map. The actions depend upon whether - // we generating code for the kernel or epilog blocks. - if (InKernel) { - rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, - NewReg); - rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, - NewReg); - - PhiOp2 = NewReg; - VRMap[PrevStage - np - 1][Def] = NewReg; - } else { - VRMap[CurStageNum - np][Def] = NewReg; - if (np == NumPhis - 1) - rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, - NewReg); - } - if (IsLast && np == NumPhis - 1) - replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); - } - } - } -} - -/// Remove instructions that generate values with no uses. -/// Typically, these are induction variable operations that generate values -/// used in the loop itself. A dead instruction has a definition with -/// no uses, or uses that occur in the original loop only. -void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, - MBBVectorTy &EpilogBBs) { - // For each epilog block, check that the value defined by each instruction - // is used. If not, delete it. - for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), - MBE = EpilogBBs.rend(); - MBB != MBE; ++MBB) - for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), - ME = (*MBB)->instr_rend(); - MI != ME;) { - // From DeadMachineInstructionElem. Don't delete inline assembly. - if (MI->isInlineAsm()) { - ++MI; - continue; - } - bool SawStore = false; - // Check if it's safe to remove the instruction due to side effects. - // We can, and want to, remove Phis here. - if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { - ++MI; - continue; - } - bool used = true; - for (MachineInstr::mop_iterator MOI = MI->operands_begin(), - MOE = MI->operands_end(); - MOI != MOE; ++MOI) { - if (!MOI->isReg() || !MOI->isDef()) - continue; - Register reg = MOI->getReg(); - // Assume physical registers are used, unless they are marked dead. - if (Register::isPhysicalRegister(reg)) { - used = !MOI->isDead(); - if (used) - break; - continue; - } - unsigned realUses = 0; - for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), - EI = MRI.use_end(); - UI != EI; ++UI) { - // Check if there are any uses that occur only in the original - // loop. If so, that's not a real use. - if (UI->getParent()->getParent() != BB) { - realUses++; - used = true; - break; - } - } - if (realUses > 0) - break; - used = false; - } - if (!used) { - LIS.RemoveMachineInstrFromMaps(*MI); - MI++->eraseFromParent(); - continue; - } - ++MI; - } - // In the kernel block, check if we can remove a Phi that generates a value - // used in an instruction removed in the epilog block. - for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), - BBE = KernelBB->getFirstNonPHI(); - BBI != BBE;) { - MachineInstr *MI = &*BBI; - ++BBI; - Register reg = MI->getOperand(0).getReg(); - if (MRI.use_begin(reg) == MRI.use_end()) { - LIS.RemoveMachineInstrFromMaps(*MI); - MI->eraseFromParent(); - } - } -} - -/// For loop carried definitions, we split the lifetime of a virtual register -/// that has uses past the definition in the next iteration. A copy with a new -/// virtual register is inserted before the definition, which helps with -/// generating a better register assignment. -/// -/// v1 = phi(a, v2) v1 = phi(a, v2) -/// v2 = phi(b, v3) v2 = phi(b, v3) -/// v3 = .. v4 = copy v1 -/// .. = V1 v3 = .. -/// .. = v4 -void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, - MBBVectorTy &EpilogBBs) { - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - for (auto &PHI : KernelBB->phis()) { - Register Def = PHI.getOperand(0).getReg(); - // Check for any Phi definition that used as an operand of another Phi - // in the same block. - for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), - E = MRI.use_instr_end(); - I != E; ++I) { - if (I->isPHI() && I->getParent() == KernelBB) { - // Get the loop carried definition. - unsigned LCDef = getLoopPhiReg(PHI, KernelBB); - if (!LCDef) - continue; - MachineInstr *MI = MRI.getVRegDef(LCDef); - if (!MI || MI->getParent() != KernelBB || MI->isPHI()) - continue; - // Search through the rest of the block looking for uses of the Phi - // definition. If one occurs, then split the lifetime. - unsigned SplitReg = 0; - for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), - KernelBB->instr_end())) - if (BBJ.readsRegister(Def)) { - // We split the lifetime when we find the first use. - if (SplitReg == 0) { - SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); - BuildMI(*KernelBB, MI, MI->getDebugLoc(), - TII->get(TargetOpcode::COPY), SplitReg) - .addReg(Def); - } - BBJ.substituteRegister(Def, SplitReg, 0, *TRI); - } - if (!SplitReg) - continue; - // Search through each of the epilog blocks for any uses to be renamed. - for (auto &Epilog : EpilogBBs) - for (auto &I : *Epilog) - if (I.readsRegister(Def)) - I.substituteRegister(Def, SplitReg, 0, *TRI); - break; - } - } - } -} - -/// Remove the incoming block from the Phis in a basic block. -static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { - for (MachineInstr &MI : *BB) { - if (!MI.isPHI()) - break; - for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) - if (MI.getOperand(i + 1).getMBB() == Incoming) { - MI.RemoveOperand(i + 1); - MI.RemoveOperand(i); - break; - } - } -} - -/// Create branches from each prolog basic block to the appropriate epilog -/// block. These edges are needed if the loop ends before reaching the -/// kernel. -void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, - MBBVectorTy &PrologBBs, - MachineBasicBlock *KernelBB, - MBBVectorTy &EpilogBBs, - ValueMapTy *VRMap) { - assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); - MachineBasicBlock *LastPro = KernelBB; - MachineBasicBlock *LastEpi = KernelBB; - - // Start from the blocks connected to the kernel and work "out" - // to the first prolog and the last epilog blocks. - SmallVector<MachineInstr *, 4> PrevInsts; - unsigned MaxIter = PrologBBs.size() - 1; - for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { - // Add branches to the prolog that go to the corresponding - // epilog, and the fall-thru prolog/kernel block. - MachineBasicBlock *Prolog = PrologBBs[j]; - MachineBasicBlock *Epilog = EpilogBBs[i]; - - SmallVector<MachineOperand, 4> Cond; - Optional<bool> StaticallyGreater = - LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); - unsigned numAdded = 0; - if (!StaticallyGreater.hasValue()) { - Prolog->addSuccessor(Epilog); - numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); - } else if (*StaticallyGreater == false) { - Prolog->addSuccessor(Epilog); - Prolog->removeSuccessor(LastPro); - LastEpi->removeSuccessor(Epilog); - numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); - removePhis(Epilog, LastEpi); - // Remove the blocks that are no longer referenced. - if (LastPro != LastEpi) { - LastEpi->clear(); - LastEpi->eraseFromParent(); - } - if (LastPro == KernelBB) { - LoopInfo->disposed(); - NewKernel = nullptr; - } - LastPro->clear(); - LastPro->eraseFromParent(); - } else { - numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); - removePhis(Epilog, Prolog); - } - LastPro = Prolog; - LastEpi = Epilog; - for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), - E = Prolog->instr_rend(); - I != E && numAdded > 0; ++I, --numAdded) - updateInstruction(&*I, false, j, 0, VRMap); - } - - if (NewKernel) { - LoopInfo->setPreheader(PrologBBs[MaxIter]); - LoopInfo->adjustTripCount(-(MaxIter + 1)); - } -} - -/// Return true if we can compute the amount the instruction changes -/// during each iteration. Set Delta to the amount of the change. -bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - const MachineOperand *BaseOp; - int64_t Offset; - if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) - return false; - - if (!BaseOp->isReg()) - return false; - - Register BaseReg = BaseOp->getReg(); - - MachineRegisterInfo &MRI = MF.getRegInfo(); - // Check if there is a Phi. If so, get the definition in the loop. - MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); - if (BaseDef && BaseDef->isPHI()) { - BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); - BaseDef = MRI.getVRegDef(BaseReg); - } - if (!BaseDef) - return false; - - int D = 0; - if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) - return false; - - Delta = D; - return true; -} - -/// Update the memory operand with a new offset when the pipeliner -/// generates a new copy of the instruction that refers to a -/// different memory location. -void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, - MachineInstr &OldMI, - unsigned Num) { - if (Num == 0) - return; - // If the instruction has memory operands, then adjust the offset - // when the instruction appears in different stages. - if (NewMI.memoperands_empty()) - return; - SmallVector<MachineMemOperand *, 2> NewMMOs; - for (MachineMemOperand *MMO : NewMI.memoperands()) { - // TODO: Figure out whether isAtomic is really necessary (see D57601). - if (MMO->isVolatile() || MMO->isAtomic() || - (MMO->isInvariant() && MMO->isDereferenceable()) || - (!MMO->getValue())) { - NewMMOs.push_back(MMO); - continue; - } - unsigned Delta; - if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { - int64_t AdjOffset = Delta * Num; - NewMMOs.push_back( - MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); - } else { - NewMMOs.push_back( - MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); - } - } - NewMI.setMemRefs(MF, NewMMOs); -} - -/// Clone the instruction for the new pipelined loop and update the -/// memory operands, if needed. -MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, - unsigned CurStageNum, - unsigned InstStageNum) { - MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); - // Check for tied operands in inline asm instructions. This should be handled - // elsewhere, but I'm not sure of the best solution. - if (OldMI->isInlineAsm()) - for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { - const auto &MO = OldMI->getOperand(i); - if (MO.isReg() && MO.isUse()) - break; - unsigned UseIdx; - if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) - NewMI->tieOperands(i, UseIdx); - } - updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); - return NewMI; -} - -/// Clone the instruction for the new pipelined loop. If needed, this -/// function updates the instruction using the values saved in the -/// InstrChanges structure. -MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( - MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { - MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); - auto It = InstrChanges.find(OldMI); - if (It != InstrChanges.end()) { - std::pair<unsigned, int64_t> RegAndOffset = It->second; - unsigned BasePos, OffsetPos; - if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) - return nullptr; - int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); - MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); - if (Schedule.getStage(LoopDef) > (signed)InstStageNum) - NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); - NewMI->getOperand(OffsetPos).setImm(NewOffset); - } - updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); - return NewMI; -} - -/// Update the machine instruction with new virtual registers. This -/// function may change the defintions and/or uses. -void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, - bool LastDef, - unsigned CurStageNum, - unsigned InstrStageNum, - ValueMapTy *VRMap) { - for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = NewMI->getOperand(i); - if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) - continue; - Register reg = MO.getReg(); - if (MO.isDef()) { - // Create a new virtual register for the definition. - const TargetRegisterClass *RC = MRI.getRegClass(reg); - Register NewReg = MRI.createVirtualRegister(RC); - MO.setReg(NewReg); - VRMap[CurStageNum][reg] = NewReg; - if (LastDef) - replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); - } else if (MO.isUse()) { - MachineInstr *Def = MRI.getVRegDef(reg); - // Compute the stage that contains the last definition for instruction. - int DefStageNum = Schedule.getStage(Def); - unsigned StageNum = CurStageNum; - if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { - // Compute the difference in stages between the defintion and the use. - unsigned StageDiff = (InstrStageNum - DefStageNum); - // Make an adjustment to get the last definition. - StageNum -= StageDiff; - } - if (VRMap[StageNum].count(reg)) - MO.setReg(VRMap[StageNum][reg]); - } - } -} - -/// Return the instruction in the loop that defines the register. -/// If the definition is a Phi, then follow the Phi operand to -/// the instruction in the loop. -MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { - SmallPtrSet<MachineInstr *, 8> Visited; - MachineInstr *Def = MRI.getVRegDef(Reg); - while (Def->isPHI()) { - if (!Visited.insert(Def).second) - break; - for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) - if (Def->getOperand(i + 1).getMBB() == BB) { - Def = MRI.getVRegDef(Def->getOperand(i).getReg()); - break; - } - } - return Def; -} - -/// Return the new name for the value from the previous stage. -unsigned ModuloScheduleExpander::getPrevMapVal( - unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, - ValueMapTy *VRMap, MachineBasicBlock *BB) { - unsigned PrevVal = 0; - if (StageNum > PhiStage) { - MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); - if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) - // The name is defined in the previous stage. - PrevVal = VRMap[StageNum - 1][LoopVal]; - else if (VRMap[StageNum].count(LoopVal)) - // The previous name is defined in the current stage when the instruction - // order is swapped. - PrevVal = VRMap[StageNum][LoopVal]; - else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) - // The loop value hasn't yet been scheduled. - PrevVal = LoopVal; - else if (StageNum == PhiStage + 1) - // The loop value is another phi, which has not been scheduled. - PrevVal = getInitPhiReg(*LoopInst, BB); - else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) - // The loop value is another phi, which has been scheduled. - PrevVal = - getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), - LoopStage, VRMap, BB); - } - return PrevVal; -} - -/// Rewrite the Phi values in the specified block to use the mappings -/// from the initial operand. Once the Phi is scheduled, we switch -/// to using the loop value instead of the Phi value, so those names -/// do not need to be rewritten. -void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, - unsigned StageNum, - ValueMapTy *VRMap, - InstrMapTy &InstrMap) { - for (auto &PHI : BB->phis()) { - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(PHI, BB, InitVal, LoopVal); - Register PhiDef = PHI.getOperand(0).getReg(); - - unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); - unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); - unsigned NumPhis = getStagesForPhi(PhiDef); - if (NumPhis > StageNum) - NumPhis = StageNum; - for (unsigned np = 0; np <= NumPhis; ++np) { - unsigned NewVal = - getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); - if (!NewVal) - NewVal = InitVal; - rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, - NewVal); - } - } -} - -/// Rewrite a previously scheduled instruction to use the register value -/// from the new instruction. Make sure the instruction occurs in the -/// basic block, and we don't change the uses in the new instruction. -void ModuloScheduleExpander::rewriteScheduledInstr( - MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, - unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, - unsigned PrevReg) { - bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); - int StagePhi = Schedule.getStage(Phi) + PhiNum; - // Rewrite uses that have been scheduled already to use the new - // Phi register. - for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), - EI = MRI.use_end(); - UI != EI;) { - MachineOperand &UseOp = *UI; - MachineInstr *UseMI = UseOp.getParent(); - ++UI; - if (UseMI->getParent() != BB) - continue; - if (UseMI->isPHI()) { - if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) - continue; - if (getLoopPhiReg(*UseMI, BB) != OldReg) - continue; - } - InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); - assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); - MachineInstr *OrigMI = OrigInstr->second; - int StageSched = Schedule.getStage(OrigMI); - int CycleSched = Schedule.getCycle(OrigMI); - unsigned ReplaceReg = 0; - // This is the stage for the scheduled instruction. - if (StagePhi == StageSched && Phi->isPHI()) { - int CyclePhi = Schedule.getCycle(Phi); - if (PrevReg && InProlog) - ReplaceReg = PrevReg; - else if (PrevReg && !isLoopCarried(*Phi) && - (CyclePhi <= CycleSched || OrigMI->isPHI())) - ReplaceReg = PrevReg; - else - ReplaceReg = NewReg; - } - // The scheduled instruction occurs before the scheduled Phi, and the - // Phi is not loop carried. - if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) - ReplaceReg = NewReg; - if (StagePhi > StageSched && Phi->isPHI()) - ReplaceReg = NewReg; - if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) - ReplaceReg = NewReg; - if (ReplaceReg) { - MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); - UseOp.setReg(ReplaceReg); - } - } -} - -bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { - if (!Phi.isPHI()) - return false; - int DefCycle = Schedule.getCycle(&Phi); - int DefStage = Schedule.getStage(&Phi); - - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); - MachineInstr *Use = MRI.getVRegDef(LoopVal); - if (!Use || Use->isPHI()) - return true; - int LoopCycle = Schedule.getCycle(Use); - int LoopStage = Schedule.getStage(Use); - return (LoopCycle > DefCycle) || (LoopStage <= DefStage); -} - -//===----------------------------------------------------------------------===// -// PeelingModuloScheduleExpander implementation -//===----------------------------------------------------------------------===// -// This is a reimplementation of ModuloScheduleExpander that works by creating -// a fully correct steady-state kernel and peeling off the prolog and epilogs. -//===----------------------------------------------------------------------===// - -namespace { -// Remove any dead phis in MBB. Dead phis either have only one block as input -// (in which case they are the identity) or have no uses. -void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, - LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { - bool Changed = true; - while (Changed) { - Changed = false; - for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) { - MachineInstr &MI = *I++; - assert(MI.isPHI()); - if (MRI.use_empty(MI.getOperand(0).getReg())) { - if (LIS) - LIS->RemoveMachineInstrFromMaps(MI); - MI.eraseFromParent(); - Changed = true; - } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { - MRI.constrainRegClass(MI.getOperand(1).getReg(), - MRI.getRegClass(MI.getOperand(0).getReg())); - MRI.replaceRegWith(MI.getOperand(0).getReg(), - MI.getOperand(1).getReg()); - if (LIS) - LIS->RemoveMachineInstrFromMaps(MI); - MI.eraseFromParent(); - Changed = true; - } - } - } -} - -/// Rewrites the kernel block in-place to adhere to the given schedule. -/// KernelRewriter holds all of the state required to perform the rewriting. -class KernelRewriter { - ModuloSchedule &S; - MachineBasicBlock *BB; - MachineBasicBlock *PreheaderBB, *ExitBB; - MachineRegisterInfo &MRI; - const TargetInstrInfo *TII; - LiveIntervals *LIS; - - // Map from register class to canonical undef register for that class. - DenseMap<const TargetRegisterClass *, Register> Undefs; - // Map from <LoopReg, InitReg> to phi register for all created phis. Note that - // this map is only used when InitReg is non-undef. - DenseMap<std::pair<unsigned, unsigned>, Register> Phis; - // Map from LoopReg to phi register where the InitReg is undef. - DenseMap<Register, Register> UndefPhis; - - // Reg is used by MI. Return the new register MI should use to adhere to the - // schedule. Insert phis as necessary. - Register remapUse(Register Reg, MachineInstr &MI); - // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. - // If InitReg is not given it is chosen arbitrarily. It will either be undef - // or will be chosen so as to share another phi. - Register phi(Register LoopReg, Optional<Register> InitReg = {}, - const TargetRegisterClass *RC = nullptr); - // Create an undef register of the given register class. - Register undef(const TargetRegisterClass *RC); - -public: - KernelRewriter(MachineLoop &L, ModuloSchedule &S, - LiveIntervals *LIS = nullptr); - void rewrite(); -}; -} // namespace - -KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, - LiveIntervals *LIS) - : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()), - ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), - TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { - PreheaderBB = *BB->pred_begin(); - if (PreheaderBB == BB) - PreheaderBB = *std::next(BB->pred_begin()); -} - -void KernelRewriter::rewrite() { - // Rearrange the loop to be in schedule order. Note that the schedule may - // contain instructions that are not owned by the loop block (InstrChanges and - // friends), so we gracefully handle unowned instructions and delete any - // instructions that weren't in the schedule. - auto InsertPt = BB->getFirstTerminator(); - MachineInstr *FirstMI = nullptr; - for (MachineInstr *MI : S.getInstructions()) { - if (MI->isPHI()) - continue; - if (MI->getParent()) - MI->removeFromParent(); - BB->insert(InsertPt, MI); - if (!FirstMI) - FirstMI = MI; - } - assert(FirstMI && "Failed to find first MI in schedule"); - - // At this point all of the scheduled instructions are between FirstMI - // and the end of the block. Kill from the first non-phi to FirstMI. - for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { - if (LIS) - LIS->RemoveMachineInstrFromMaps(*I); - (I++)->eraseFromParent(); - } - - // Now remap every instruction in the loop. - for (MachineInstr &MI : *BB) { - if (MI.isPHI() || MI.isTerminator()) - continue; - for (MachineOperand &MO : MI.uses()) { - if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) - continue; - Register Reg = remapUse(MO.getReg(), MI); - MO.setReg(Reg); - } - } - EliminateDeadPhis(BB, MRI, LIS); - - // Ensure a phi exists for all instructions that are either referenced by - // an illegal phi or by an instruction outside the loop. This allows us to - // treat remaps of these values the same as "normal" values that come from - // loop-carried phis. - for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { - if (MI->isPHI()) { - Register R = MI->getOperand(0).getReg(); - phi(R); - continue; - } - - for (MachineOperand &Def : MI->defs()) { - for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { - if (MI.getParent() != BB) { - phi(Def.getReg()); - break; - } - } - } - } -} - -Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { - MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); - if (!Producer) - return Reg; - - int ConsumerStage = S.getStage(&MI); - if (!Producer->isPHI()) { - // Non-phi producers are simple to remap. Insert as many phis as the - // difference between the consumer and producer stages. - if (Producer->getParent() != BB) - // Producer was not inside the loop. Use the register as-is. - return Reg; - int ProducerStage = S.getStage(Producer); - assert(ConsumerStage != -1 && - "In-loop consumer should always be scheduled!"); - assert(ConsumerStage >= ProducerStage); - unsigned StageDiff = ConsumerStage - ProducerStage; - - for (unsigned I = 0; I < StageDiff; ++I) - Reg = phi(Reg); - return Reg; - } - - // First, dive through the phi chain to find the defaults for the generated - // phis. - SmallVector<Optional<Register>, 4> Defaults; - Register LoopReg = Reg; - auto LoopProducer = Producer; - while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { - LoopReg = getLoopPhiReg(*LoopProducer, BB); - Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); - LoopProducer = MRI.getUniqueVRegDef(LoopReg); - assert(LoopProducer); - } - int LoopProducerStage = S.getStage(LoopProducer); - - Optional<Register> IllegalPhiDefault; - - if (LoopProducerStage == -1) { - // Do nothing. - } else if (LoopProducerStage > ConsumerStage) { - // This schedule is only representable if ProducerStage == ConsumerStage+1. - // In addition, Consumer's cycle must be scheduled after Producer in the - // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP - // functions. -#ifndef NDEBUG // Silence unused variables in non-asserts mode. - int LoopProducerCycle = S.getCycle(LoopProducer); - int ConsumerCycle = S.getCycle(&MI); -#endif - assert(LoopProducerCycle <= ConsumerCycle); - assert(LoopProducerStage == ConsumerStage + 1); - // Peel off the first phi from Defaults and insert a phi between producer - // and consumer. This phi will not be at the front of the block so we - // consider it illegal. It will only exist during the rewrite process; it - // needs to exist while we peel off prologs because these could take the - // default value. After that we can replace all uses with the loop producer - // value. - IllegalPhiDefault = Defaults.front(); - Defaults.erase(Defaults.begin()); - } else { - assert(ConsumerStage >= LoopProducerStage); - int StageDiff = ConsumerStage - LoopProducerStage; - if (StageDiff > 0) { - LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() - << " to " << (Defaults.size() + StageDiff) << "\n"); - // If we need more phis than we have defaults for, pad out with undefs for - // the earliest phis, which are at the end of the defaults chain (the - // chain is in reverse order). - Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() - ? Optional<Register>() - : Defaults.back()); - } - } - - // Now we know the number of stages to jump back, insert the phi chain. - auto DefaultI = Defaults.rbegin(); - while (DefaultI != Defaults.rend()) - LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); - - if (IllegalPhiDefault.hasValue()) { - // The consumer optionally consumes LoopProducer in the same iteration - // (because the producer is scheduled at an earlier cycle than the consumer) - // or the initial value. To facilitate this we create an illegal block here - // by embedding a phi in the middle of the block. We will fix this up - // immediately prior to pruning. - auto RC = MRI.getRegClass(Reg); - Register R = MRI.createVirtualRegister(RC); - BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) - .addReg(IllegalPhiDefault.getValue()) - .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. - .addReg(LoopReg) - .addMBB(BB); // Block choice is arbitrary and has no effect. - return R; - } - - return LoopReg; -} - -Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, - const TargetRegisterClass *RC) { - // If the init register is not undef, try and find an existing phi. - if (InitReg.hasValue()) { - auto I = Phis.find({LoopReg, InitReg.getValue()}); - if (I != Phis.end()) - return I->second; - } else { - for (auto &KV : Phis) { - if (KV.first.first == LoopReg) - return KV.second; - } - } - - // InitReg is either undef or no existing phi takes InitReg as input. Try and - // find a phi that takes undef as input. - auto I = UndefPhis.find(LoopReg); - if (I != UndefPhis.end()) { - Register R = I->second; - if (!InitReg.hasValue()) - // Found a phi taking undef as input, and this input is undef so return - // without any more changes. - return R; - // Found a phi taking undef as input, so rewrite it to take InitReg. - MachineInstr *MI = MRI.getVRegDef(R); - MI->getOperand(1).setReg(InitReg.getValue()); - Phis.insert({{LoopReg, InitReg.getValue()}, R}); - MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); - UndefPhis.erase(I); - return R; - } - - // Failed to find any existing phi to reuse, so create a new one. - if (!RC) - RC = MRI.getRegClass(LoopReg); - Register R = MRI.createVirtualRegister(RC); - if (InitReg.hasValue()) - MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); - BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) - .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) - .addMBB(PreheaderBB) - .addReg(LoopReg) - .addMBB(BB); - if (!InitReg.hasValue()) - UndefPhis[LoopReg] = R; - else - Phis[{LoopReg, *InitReg}] = R; - return R; -} - -Register KernelRewriter::undef(const TargetRegisterClass *RC) { - Register &R = Undefs[RC]; - if (R == 0) { - // Create an IMPLICIT_DEF that defines this register if we need it. - // All uses of this should be removed by the time we have finished unrolling - // prologs and epilogs. - R = MRI.createVirtualRegister(RC); - auto *InsertBB = &PreheaderBB->getParent()->front(); - BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), - TII->get(TargetOpcode::IMPLICIT_DEF), R); - } - return R; -} - -namespace { -/// Describes an operand in the kernel of a pipelined loop. Characteristics of -/// the operand are discovered, such as how many in-loop PHIs it has to jump -/// through and defaults for these phis. -class KernelOperandInfo { - MachineBasicBlock *BB; - MachineRegisterInfo &MRI; - SmallVector<Register, 4> PhiDefaults; - MachineOperand *Source; - MachineOperand *Target; - -public: - KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, - const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) - : MRI(MRI) { - Source = MO; - BB = MO->getParent()->getParent(); - while (isRegInLoop(MO)) { - MachineInstr *MI = MRI.getVRegDef(MO->getReg()); - if (MI->isFullCopy()) { - MO = &MI->getOperand(1); - continue; - } - if (!MI->isPHI()) - break; - // If this is an illegal phi, don't count it in distance. - if (IllegalPhis.count(MI)) { - MO = &MI->getOperand(3); - continue; - } - - Register Default = getInitPhiReg(*MI, BB); - MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) - : &MI->getOperand(3); - PhiDefaults.push_back(Default); - } - Target = MO; - } - - bool operator==(const KernelOperandInfo &Other) const { - return PhiDefaults.size() == Other.PhiDefaults.size(); - } - - void print(raw_ostream &OS) const { - OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " - << *Source->getParent(); - } - -private: - bool isRegInLoop(MachineOperand *MO) { - return MO->isReg() && MO->getReg().isVirtual() && - MRI.getVRegDef(MO->getReg())->getParent() == BB; - } -}; -} // namespace - -MachineBasicBlock * -PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { - MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); - if (LPD == LPD_Front) - PeeledFront.push_back(NewBB); - else - PeeledBack.push_front(NewBB); - for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); - ++I, ++NI) { - CanonicalMIs[&*I] = &*I; - CanonicalMIs[&*NI] = &*I; - BlockMIs[{NewBB, &*I}] = &*NI; - BlockMIs[{BB, &*I}] = &*I; - } - return NewBB; -} - -void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, - int MinStage) { - for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); - I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { - MachineInstr *MI = &*I++; - int Stage = getStage(MI); - if (Stage == -1 || Stage >= MinStage) - continue; - - for (MachineOperand &DefMO : MI->defs()) { - SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; - for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { - // Only PHIs can use values from this block by construction. - // Match with the equivalent PHI in B. - assert(UseMI.isPHI()); - Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), - MI->getParent()); - Subs.emplace_back(&UseMI, Reg); - } - for (auto &Sub : Subs) - Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, - *MRI.getTargetRegisterInfo()); - } - if (LIS) - LIS->RemoveMachineInstrFromMaps(*MI); - MI->eraseFromParent(); - } -} - -void PeelingModuloScheduleExpander::moveStageBetweenBlocks( - MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { - auto InsertPt = DestBB->getFirstNonPHI(); - DenseMap<Register, Register> Remaps; - for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) { - MachineInstr *MI = &*I++; - if (MI->isPHI()) { - // This is an illegal PHI. If we move any instructions using an illegal - // PHI, we need to create a legal Phi - Register PhiR = MI->getOperand(0).getReg(); - auto RC = MRI.getRegClass(PhiR); - Register NR = MRI.createVirtualRegister(RC); - MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), DebugLoc(), - TII->get(TargetOpcode::PHI), NR) - .addReg(PhiR) - .addMBB(SourceBB); - BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI; - CanonicalMIs[NI] = CanonicalMIs[MI]; - Remaps[PhiR] = NR; - continue; - } - if (getStage(MI) != Stage) - continue; - MI->removeFromParent(); - DestBB->insert(InsertPt, MI); - auto *KernelMI = CanonicalMIs[MI]; - BlockMIs[{DestBB, KernelMI}] = MI; - BlockMIs.erase({SourceBB, KernelMI}); - } - SmallVector<MachineInstr *, 4> PhiToDelete; - for (MachineInstr &MI : DestBB->phis()) { - assert(MI.getNumOperands() == 3); - MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); - // If the instruction referenced by the phi is moved inside the block - // we don't need the phi anymore. - if (getStage(Def) == Stage) { - Register PhiReg = MI.getOperand(0).getReg(); - MRI.replaceRegWith(MI.getOperand(0).getReg(), - Def->getOperand(0).getReg()); - MI.getOperand(0).setReg(PhiReg); - PhiToDelete.push_back(&MI); - } - } - for (auto *P : PhiToDelete) - P->eraseFromParent(); - InsertPt = DestBB->getFirstNonPHI(); - // Helper to clone Phi instructions into the destination block. We clone Phi - // greedily to avoid combinatorial explosion of Phi instructions. - auto clonePhi = [&](MachineInstr *Phi) { - MachineInstr *NewMI = MF.CloneMachineInstr(Phi); - DestBB->insert(InsertPt, NewMI); - Register OrigR = Phi->getOperand(0).getReg(); - Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); - NewMI->getOperand(0).setReg(R); - NewMI->getOperand(1).setReg(OrigR); - NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); - Remaps[OrigR] = R; - CanonicalMIs[NewMI] = CanonicalMIs[Phi]; - BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; - PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; - return R; - }; - for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { - for (MachineOperand &MO : I->uses()) { - if (!MO.isReg()) - continue; - if (Remaps.count(MO.getReg())) - MO.setReg(Remaps[MO.getReg()]); - else { - // If we are using a phi from the source block we need to add a new phi - // pointing to the old one. - MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); - if (Use && Use->isPHI() && Use->getParent() == SourceBB) { - Register R = clonePhi(Use); - MO.setReg(R); - } - } - } - } -} - -Register -PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, - MachineInstr *Phi) { - unsigned distance = PhiNodeLoopIteration[Phi]; - MachineInstr *CanonicalUse = CanonicalPhi; - for (unsigned I = 0; I < distance; ++I) { - assert(CanonicalUse->isPHI()); - assert(CanonicalUse->getNumOperands() == 5); - unsigned LoopRegIdx = 3, InitRegIdx = 1; - if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) - std::swap(LoopRegIdx, InitRegIdx); - CanonicalUse = - MRI.getVRegDef(CanonicalUse->getOperand(LoopRegIdx).getReg()); - } - return CanonicalUse->getOperand(0).getReg(); -} - -void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { - BitVector LS(Schedule.getNumStages(), true); - BitVector AS(Schedule.getNumStages(), true); - LiveStages[BB] = LS; - AvailableStages[BB] = AS; - - // Peel out the prologs. - LS.reset(); - for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { - LS[I] = 1; - Prologs.push_back(peelKernel(LPD_Front)); - LiveStages[Prologs.back()] = LS; - AvailableStages[Prologs.back()] = LS; - } - - // Create a block that will end up as the new loop exiting block (dominated by - // all prologs and epilogs). It will only contain PHIs, in the same order as - // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property - // that the exiting block is a (sub) clone of BB. This in turn gives us the - // property that any value deffed in BB but used outside of BB is used by a - // PHI in the exiting block. - MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); - EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); - // Push out the epilogs, again in reverse order. - // We can't assume anything about the minumum loop trip count at this point, - // so emit a fairly complex epilog. - - // We first peel number of stages minus one epilogue. Then we remove dead - // stages and reorder instructions based on their stage. If we have 3 stages - // we generate first: - // E0[3, 2, 1] - // E1[3', 2'] - // E2[3''] - // And then we move instructions based on their stages to have: - // E0[3] - // E1[2, 3'] - // E2[1, 2', 3''] - // The transformation is legal because we only move instructions past - // instructions of a previous loop iteration. - for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { - Epilogs.push_back(peelKernel(LPD_Back)); - MachineBasicBlock *B = Epilogs.back(); - filterInstructions(B, Schedule.getNumStages() - I); - // Keep track at which iteration each phi belongs to. We need it to know - // what version of the variable to use during prologue/epilogue stitching. - EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); - for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi) - PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I; - } - for (size_t I = 0; I < Epilogs.size(); I++) { - LS.reset(); - for (size_t J = I; J < Epilogs.size(); J++) { - int Iteration = J; - unsigned Stage = Schedule.getNumStages() - 1 + I - J; - // Move stage one block at a time so that Phi nodes are updated correctly. - for (size_t K = Iteration; K > I; K--) - moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); - LS[Stage] = 1; - } - LiveStages[Epilogs[I]] = LS; - AvailableStages[Epilogs[I]] = AS; - } - - // Now we've defined all the prolog and epilog blocks as a fallthrough - // sequence, add the edges that will be followed if the loop trip count is - // lower than the number of stages (connecting prologs directly with epilogs). - auto PI = Prologs.begin(); - auto EI = Epilogs.begin(); - assert(Prologs.size() == Epilogs.size()); - for (; PI != Prologs.end(); ++PI, ++EI) { - MachineBasicBlock *Pred = *(*EI)->pred_begin(); - (*PI)->addSuccessor(*EI); - for (MachineInstr &MI : (*EI)->phis()) { - Register Reg = MI.getOperand(1).getReg(); - MachineInstr *Use = MRI.getUniqueVRegDef(Reg); - if (Use && Use->getParent() == Pred) { - MachineInstr *CanonicalUse = CanonicalMIs[Use]; - if (CanonicalUse->isPHI()) { - // If the use comes from a phi we need to skip as many phi as the - // distance between the epilogue and the kernel. Trace through the phi - // chain to find the right value. - Reg = getPhiCanonicalReg(CanonicalUse, Use); - } - Reg = getEquivalentRegisterIn(Reg, *PI); - } - MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); - MI.addOperand(MachineOperand::CreateMBB(*PI)); - } - } - - // Create a list of all blocks in order. - SmallVector<MachineBasicBlock *, 8> Blocks; - llvm::copy(PeeledFront, std::back_inserter(Blocks)); - Blocks.push_back(BB); - llvm::copy(PeeledBack, std::back_inserter(Blocks)); - - // Iterate in reverse order over all instructions, remapping as we go. - for (MachineBasicBlock *B : reverse(Blocks)) { - for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); - I != std::next(B->getFirstNonPHI()->getReverseIterator());) { - MachineInstr *MI = &*I++; - rewriteUsesOf(MI); - } - } - for (auto *MI : IllegalPhisToDelete) { - if (LIS) - LIS->RemoveMachineInstrFromMaps(*MI); - MI->eraseFromParent(); - } - IllegalPhisToDelete.clear(); - - // Now all remapping has been done, we're free to optimize the generated code. - for (MachineBasicBlock *B : reverse(Blocks)) - EliminateDeadPhis(B, MRI, LIS); - EliminateDeadPhis(ExitingBB, MRI, LIS); -} - -MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { - MachineFunction &MF = *BB->getParent(); - MachineBasicBlock *Exit = *BB->succ_begin(); - if (Exit == BB) - Exit = *std::next(BB->succ_begin()); - - MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); - MF.insert(std::next(BB->getIterator()), NewBB); - - // Clone all phis in BB into NewBB and rewrite. - for (MachineInstr &MI : BB->phis()) { - auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); - Register OldR = MI.getOperand(3).getReg(); - Register R = MRI.createVirtualRegister(RC); - SmallVector<MachineInstr *, 4> Uses; - for (MachineInstr &Use : MRI.use_instructions(OldR)) - if (Use.getParent() != BB) - Uses.push_back(&Use); - for (MachineInstr *Use : Uses) - Use->substituteRegister(OldR, R, /*SubIdx=*/0, - *MRI.getTargetRegisterInfo()); - MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) - .addReg(OldR) - .addMBB(BB); - BlockMIs[{NewBB, &MI}] = NI; - CanonicalMIs[NI] = &MI; - } - BB->replaceSuccessor(Exit, NewBB); - Exit->replacePhiUsesWith(BB, NewBB); - NewBB->addSuccessor(Exit); - - MachineBasicBlock *TBB = nullptr, *FBB = nullptr; - SmallVector<MachineOperand, 4> Cond; - bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); - (void)CanAnalyzeBr; - assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); - TII->removeBranch(*BB); - TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, - Cond, DebugLoc()); - TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); - return NewBB; -} - -Register -PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, - MachineBasicBlock *BB) { - MachineInstr *MI = MRI.getUniqueVRegDef(Reg); - unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); - return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); -} - -void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { - if (MI->isPHI()) { - // This is an illegal PHI. The loop-carried (desired) value is operand 3, - // and it is produced by this block. - Register PhiR = MI->getOperand(0).getReg(); - Register R = MI->getOperand(3).getReg(); - int RMIStage = getStage(MRI.getUniqueVRegDef(R)); - if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) - R = MI->getOperand(1).getReg(); - MRI.setRegClass(R, MRI.getRegClass(PhiR)); - MRI.replaceRegWith(PhiR, R); - // Postpone deleting the Phi as it may be referenced by BlockMIs and used - // later to figure out how to remap registers. - MI->getOperand(0).setReg(PhiR); - IllegalPhisToDelete.push_back(MI); - return; - } - - int Stage = getStage(MI); - if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || - LiveStages[MI->getParent()].test(Stage)) - // Instruction is live, no rewriting to do. - return; - - for (MachineOperand &DefMO : MI->defs()) { - SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; - for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { - // Only PHIs can use values from this block by construction. - // Match with the equivalent PHI in B. - assert(UseMI.isPHI()); - Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), - MI->getParent()); - Subs.emplace_back(&UseMI, Reg); - } - for (auto &Sub : Subs) - Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, - *MRI.getTargetRegisterInfo()); - } - if (LIS) - LIS->RemoveMachineInstrFromMaps(*MI); - MI->eraseFromParent(); -} - -void PeelingModuloScheduleExpander::fixupBranches() { - // Work outwards from the kernel. - bool KernelDisposed = false; - int TC = Schedule.getNumStages() - 1; - for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); - ++PI, ++EI, --TC) { - MachineBasicBlock *Prolog = *PI; - MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); - MachineBasicBlock *Epilog = *EI; - SmallVector<MachineOperand, 4> Cond; - TII->removeBranch(*Prolog); - Optional<bool> StaticallyGreater = - Info->createTripCountGreaterCondition(TC, *Prolog, Cond); - if (!StaticallyGreater.hasValue()) { - LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); - // Dynamically branch based on Cond. - TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); - } else if (*StaticallyGreater == false) { - LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); - // Prolog never falls through; branch to epilog and orphan interior - // blocks. Leave it to unreachable-block-elim to clean up. - Prolog->removeSuccessor(Fallthrough); - for (MachineInstr &P : Fallthrough->phis()) { - P.RemoveOperand(2); - P.RemoveOperand(1); - } - TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); - KernelDisposed = true; - } else { - LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); - // Prolog always falls through; remove incoming values in epilog. - Prolog->removeSuccessor(Epilog); - for (MachineInstr &P : Epilog->phis()) { - P.RemoveOperand(4); - P.RemoveOperand(3); - } - } - } - - if (!KernelDisposed) { - Info->adjustTripCount(-(Schedule.getNumStages() - 1)); - Info->setPreheader(Prologs.back()); - } else { - Info->disposed(); - } -} - -void PeelingModuloScheduleExpander::rewriteKernel() { - KernelRewriter KR(*Schedule.getLoop(), Schedule); - KR.rewrite(); -} - -void PeelingModuloScheduleExpander::expand() { - BB = Schedule.getLoop()->getTopBlock(); - Preheader = Schedule.getLoop()->getLoopPreheader(); - LLVM_DEBUG(Schedule.dump()); - Info = TII->analyzeLoopForPipelining(BB); - assert(Info); - - rewriteKernel(); - peelPrologAndEpilogs(); - fixupBranches(); -} - -void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { - BB = Schedule.getLoop()->getTopBlock(); - Preheader = Schedule.getLoop()->getLoopPreheader(); - - // Dump the schedule before we invalidate and remap all its instructions. - // Stash it in a string so we can print it if we found an error. - std::string ScheduleDump; - raw_string_ostream OS(ScheduleDump); - Schedule.print(OS); - OS.flush(); - - // First, run the normal ModuleScheduleExpander. We don't support any - // InstrChanges. - assert(LIS && "Requires LiveIntervals!"); - ModuloScheduleExpander MSE(MF, Schedule, *LIS, - ModuloScheduleExpander::InstrChangesTy()); - MSE.expand(); - MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); - if (!ExpandedKernel) { - // The expander optimized away the kernel. We can't do any useful checking. - MSE.cleanup(); - return; - } - // Before running the KernelRewriter, re-add BB into the CFG. - Preheader->addSuccessor(BB); - - // Now run the new expansion algorithm. - KernelRewriter KR(*Schedule.getLoop(), Schedule); - KR.rewrite(); - peelPrologAndEpilogs(); - - // Collect all illegal phis that the new algorithm created. We'll give these - // to KernelOperandInfo. - SmallPtrSet<MachineInstr *, 4> IllegalPhis; - for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { - if (NI->isPHI()) - IllegalPhis.insert(&*NI); - } - - // Co-iterate across both kernels. We expect them to be identical apart from - // phis and full COPYs (we look through both). - SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; - auto OI = ExpandedKernel->begin(); - auto NI = BB->begin(); - for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { - while (OI->isPHI() || OI->isFullCopy()) - ++OI; - while (NI->isPHI() || NI->isFullCopy()) - ++NI; - assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); - // Analyze every operand separately. - for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); - OOpI != OI->operands_end(); ++OOpI, ++NOpI) - KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), - KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); - } - - bool Failed = false; - for (auto &OldAndNew : KOIs) { - if (OldAndNew.first == OldAndNew.second) - continue; - Failed = true; - errs() << "Modulo kernel validation error: [\n"; - errs() << " [golden] "; - OldAndNew.first.print(errs()); - errs() << " "; - OldAndNew.second.print(errs()); - errs() << "]\n"; - } - - if (Failed) { - errs() << "Golden reference kernel:\n"; - ExpandedKernel->print(errs()); - errs() << "New kernel:\n"; - BB->print(errs()); - errs() << ScheduleDump; - report_fatal_error( - "Modulo kernel validation (-pipeliner-experimental-cg) failed"); - } - - // Cleanup by removing BB from the CFG again as the original - // ModuloScheduleExpander intended. - Preheader->removeSuccessor(BB); - MSE.cleanup(); -} - -//===----------------------------------------------------------------------===// -// ModuloScheduleTestPass implementation -//===----------------------------------------------------------------------===// -// This pass constructs a ModuloSchedule from its module and runs -// ModuloScheduleExpander. -// -// The module is expected to contain a single-block analyzable loop. -// The total order of instructions is taken from the loop as-is. -// Instructions are expected to be annotated with a PostInstrSymbol. -// This PostInstrSymbol must have the following format: -// "Stage=%d Cycle=%d". -//===----------------------------------------------------------------------===// - -namespace { -class ModuloScheduleTest : public MachineFunctionPass { -public: - static char ID; - - ModuloScheduleTest() : MachineFunctionPass(ID) { - initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); - } - - bool runOnMachineFunction(MachineFunction &MF) override; - void runOnLoop(MachineFunction &MF, MachineLoop &L); - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<MachineLoopInfo>(); - AU.addRequired<LiveIntervals>(); - MachineFunctionPass::getAnalysisUsage(AU); - } -}; -} // namespace - -char ModuloScheduleTest::ID = 0; - -INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", - "Modulo Schedule test pass", false, false) -INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) -INITIALIZE_PASS_DEPENDENCY(LiveIntervals) -INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", - "Modulo Schedule test pass", false, false) - -bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { - MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); - for (auto *L : MLI) { - if (L->getTopBlock() != L->getBottomBlock()) - continue; - runOnLoop(MF, *L); - return false; - } - return false; -} - -static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { - std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); - std::pair<StringRef, StringRef> StageTokenAndValue = - getToken(StageAndCycle.first, "-"); - std::pair<StringRef, StringRef> CycleTokenAndValue = - getToken(StageAndCycle.second, "-"); - if (StageTokenAndValue.first != "Stage" || - CycleTokenAndValue.first != "_Cycle") { - llvm_unreachable( - "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); - return; - } - - StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); - CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); - - dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; -} - -void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { - LiveIntervals &LIS = getAnalysis<LiveIntervals>(); - MachineBasicBlock *BB = L.getTopBlock(); - dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; - - DenseMap<MachineInstr *, int> Cycle, Stage; - std::vector<MachineInstr *> Instrs; - for (MachineInstr &MI : *BB) { - if (MI.isTerminator()) - continue; - Instrs.push_back(&MI); - if (MCSymbol *Sym = MI.getPostInstrSymbol()) { - dbgs() << "Parsing post-instr symbol for " << MI; - parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); - } - } - - ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), - std::move(Stage)); - ModuloScheduleExpander MSE( - MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); - MSE.expand(); - MSE.cleanup(); -} - -//===----------------------------------------------------------------------===// -// ModuloScheduleTestAnnotater implementation -//===----------------------------------------------------------------------===// - -void ModuloScheduleTestAnnotater::annotate() { - for (MachineInstr *MI : S.getInstructions()) { - SmallVector<char, 16> SV; - raw_svector_ostream OS(SV); - OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); - MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); - MI->setPostInstrSymbol(MF, Sym); - } -} |
