diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp | 4598 |
1 files changed, 4598 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp new file mode 100644 index 000000000000..bf817f00f83d --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp @@ -0,0 +1,4598 @@ +//===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the SelectionDAG::Legalize method. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "legalizedag" + +namespace { + +/// Keeps track of state when getting the sign of a floating-point value as an +/// integer. +struct FloatSignAsInt { + EVT FloatVT; + SDValue Chain; + SDValue FloatPtr; + SDValue IntPtr; + MachinePointerInfo IntPointerInfo; + MachinePointerInfo FloatPointerInfo; + SDValue IntValue; + APInt SignMask; + uint8_t SignBit; +}; + +//===----------------------------------------------------------------------===// +/// This takes an arbitrary SelectionDAG as input and +/// hacks on it until the target machine can handle it. This involves +/// eliminating value sizes the machine cannot handle (promoting small sizes to +/// large sizes or splitting up large values into small values) as well as +/// eliminating operations the machine cannot handle. +/// +/// This code also does a small amount of optimization and recognition of idioms +/// as part of its processing. For example, if a target does not support a +/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this +/// will attempt merge setcc and brc instructions into brcc's. +class SelectionDAGLegalize { + const TargetMachine &TM; + const TargetLowering &TLI; + SelectionDAG &DAG; + + /// The set of nodes which have already been legalized. We hold a + /// reference to it in order to update as necessary on node deletion. + SmallPtrSetImpl<SDNode *> &LegalizedNodes; + + /// A set of all the nodes updated during legalization. + SmallSetVector<SDNode *, 16> *UpdatedNodes; + + EVT getSetCCResultType(EVT VT) const { + return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + } + + // Libcall insertion helpers. + +public: + SelectionDAGLegalize(SelectionDAG &DAG, + SmallPtrSetImpl<SDNode *> &LegalizedNodes, + SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) + : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), + LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} + + /// Legalizes the given operation. + void LegalizeOp(SDNode *Node); + +private: + SDValue OptimizeFloatStore(StoreSDNode *ST); + + void LegalizeLoadOps(SDNode *Node); + void LegalizeStoreOps(SDNode *Node); + + /// Some targets cannot handle a variable + /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it + /// is necessary to spill the vector being inserted into to memory, perform + /// the insert there, and then read the result back. + SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, + const SDLoc &dl); + SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, + const SDLoc &dl); + + /// Return a vector shuffle operation which + /// performs the same shuffe in terms of order or result bytes, but on a type + /// whose vector element type is narrower than the original shuffle type. + /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> + SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, + SDValue N1, SDValue N2, + ArrayRef<int> Mask) const; + + bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, + bool &NeedInvert, const SDLoc &dl); + + SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); + + std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, + SDNode *Node, bool isSigned); + SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, + RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, + RTLIB::Libcall Call_F128, + RTLIB::Libcall Call_PPCF128); + SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, + RTLIB::Libcall Call_I8, + RTLIB::Libcall Call_I16, + RTLIB::Libcall Call_I32, + RTLIB::Libcall Call_I64, + RTLIB::Libcall Call_I128); + SDValue ExpandArgFPLibCall(SDNode *Node, + RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, + RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, + RTLIB::Libcall Call_PPCF128); + void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); + void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); + + SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, + const SDLoc &dl); + SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, + const SDLoc &dl, SDValue ChainIn); + SDValue ExpandBUILD_VECTOR(SDNode *Node); + SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); + void ExpandDYNAMIC_STACKALLOC(SDNode *Node, + SmallVectorImpl<SDValue> &Results); + void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, + SDValue Value) const; + SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, + SDValue NewIntValue) const; + SDValue ExpandFCOPYSIGN(SDNode *Node) const; + SDValue ExpandFABS(SDNode *Node) const; + SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, + const SDLoc &dl); + SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, + const SDLoc &dl); + SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, + const SDLoc &dl); + + SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); + SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); + + SDValue ExpandExtractFromVectorThroughStack(SDValue Op); + SDValue ExpandInsertToVectorThroughStack(SDValue Op); + SDValue ExpandVectorBuildThroughStack(SDNode* Node); + + SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); + SDValue ExpandConstant(ConstantSDNode *CP); + + // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall + bool ExpandNode(SDNode *Node); + void ConvertNodeToLibcall(SDNode *Node); + void PromoteNode(SDNode *Node); + +public: + // Node replacement helpers + + void ReplacedNode(SDNode *N) { + LegalizedNodes.erase(N); + if (UpdatedNodes) + UpdatedNodes->insert(N); + } + + void ReplaceNode(SDNode *Old, SDNode *New) { + LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); + dbgs() << " with: "; New->dump(&DAG)); + + assert(Old->getNumValues() == New->getNumValues() && + "Replacing one node with another that produces a different number " + "of values!"); + DAG.ReplaceAllUsesWith(Old, New); + if (UpdatedNodes) + UpdatedNodes->insert(New); + ReplacedNode(Old); + } + + void ReplaceNode(SDValue Old, SDValue New) { + LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); + dbgs() << " with: "; New->dump(&DAG)); + + DAG.ReplaceAllUsesWith(Old, New); + if (UpdatedNodes) + UpdatedNodes->insert(New.getNode()); + ReplacedNode(Old.getNode()); + } + + void ReplaceNode(SDNode *Old, const SDValue *New) { + LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); + + DAG.ReplaceAllUsesWith(Old, New); + for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { + LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); + New[i]->dump(&DAG)); + if (UpdatedNodes) + UpdatedNodes->insert(New[i].getNode()); + } + ReplacedNode(Old); + } +}; + +} // end anonymous namespace + +/// Return a vector shuffle operation which +/// performs the same shuffle in terms of order or result bytes, but on a type +/// whose vector element type is narrower than the original shuffle type. +/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> +SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( + EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, + ArrayRef<int> Mask) const { + unsigned NumMaskElts = VT.getVectorNumElements(); + unsigned NumDestElts = NVT.getVectorNumElements(); + unsigned NumEltsGrowth = NumDestElts / NumMaskElts; + + assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); + + if (NumEltsGrowth == 1) + return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); + + SmallVector<int, 8> NewMask; + for (unsigned i = 0; i != NumMaskElts; ++i) { + int Idx = Mask[i]; + for (unsigned j = 0; j != NumEltsGrowth; ++j) { + if (Idx < 0) + NewMask.push_back(-1); + else + NewMask.push_back(Idx * NumEltsGrowth + j); + } + } + assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); + assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); + return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); +} + +/// Expands the ConstantFP node to an integer constant or +/// a load from the constant pool. +SDValue +SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { + bool Extend = false; + SDLoc dl(CFP); + + // If a FP immediate is precise when represented as a float and if the + // target can do an extending load from float to double, we put it into + // the constant pool as a float, even if it's is statically typed as a + // double. This shrinks FP constants and canonicalizes them for targets where + // an FP extending load is the same cost as a normal load (such as on the x87 + // fp stack or PPC FP unit). + EVT VT = CFP->getValueType(0); + ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); + if (!UseCP) { + assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); + return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, + (VT == MVT::f64) ? MVT::i64 : MVT::i32); + } + + APFloat APF = CFP->getValueAPF(); + EVT OrigVT = VT; + EVT SVT = VT; + + // We don't want to shrink SNaNs. Converting the SNaN back to its real type + // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). + if (!APF.isSignaling()) { + while (SVT != MVT::f32 && SVT != MVT::f16) { + SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); + if (ConstantFPSDNode::isValueValidForType(SVT, APF) && + // Only do this if the target has a native EXTLOAD instruction from + // smaller type. + TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && + TLI.ShouldShrinkFPConstant(OrigVT)) { + Type *SType = SVT.getTypeForEVT(*DAG.getContext()); + LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); + VT = SVT; + Extend = true; + } + } + } + + SDValue CPIdx = + DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); + unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + if (Extend) { + SDValue Result = DAG.getExtLoad( + ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, + Alignment); + return Result; + } + SDValue Result = DAG.getLoad( + OrigVT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); + return Result; +} + +/// Expands the Constant node to a load from the constant pool. +SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { + SDLoc dl(CP); + EVT VT = CP->getValueType(0); + SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), + TLI.getPointerTy(DAG.getDataLayout())); + unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + SDValue Result = DAG.getLoad( + VT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); + return Result; +} + +/// Some target cannot handle a variable insertion index for the +/// INSERT_VECTOR_ELT instruction. In this case, it +/// is necessary to spill the vector being inserted into to memory, perform +/// the insert there, and then read the result back. +SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, + SDValue Val, + SDValue Idx, + const SDLoc &dl) { + SDValue Tmp1 = Vec; + SDValue Tmp2 = Val; + SDValue Tmp3 = Idx; + + // If the target doesn't support this, we have to spill the input vector + // to a temporary stack slot, update the element, then reload it. This is + // badness. We could also load the value into a vector register (either + // with a "move to register" or "extload into register" instruction, then + // permute it into place, if the idx is a constant and if the idx is + // supported by the target. + EVT VT = Tmp1.getValueType(); + EVT EltVT = VT.getVectorElementType(); + SDValue StackPtr = DAG.CreateStackTemporary(VT); + + int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + + // Store the vector. + SDValue Ch = DAG.getStore( + DAG.getEntryNode(), dl, Tmp1, StackPtr, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); + + SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); + + // Store the scalar value. + Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); + // Load the updated vector. + return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( + DAG.getMachineFunction(), SPFI)); +} + +SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, + SDValue Idx, + const SDLoc &dl) { + if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { + // SCALAR_TO_VECTOR requires that the type of the value being inserted + // match the element type of the vector being created, except for + // integers in which case the inserted value can be over width. + EVT EltVT = Vec.getValueType().getVectorElementType(); + if (Val.getValueType() == EltVT || + (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { + SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + Vec.getValueType(), Val); + + unsigned NumElts = Vec.getValueType().getVectorNumElements(); + // We generate a shuffle of InVec and ScVec, so the shuffle mask + // should be 0,1,2,3,4,5... with the appropriate element replaced with + // elt 0 of the RHS. + SmallVector<int, 8> ShufOps; + for (unsigned i = 0; i != NumElts; ++i) + ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); + + return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); + } + } + return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); +} + +SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { + LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); + // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' + // FIXME: We shouldn't do this for TargetConstantFP's. + // FIXME: move this to the DAG Combiner! Note that we can't regress due + // to phase ordering between legalized code and the dag combiner. This + // probably means that we need to integrate dag combiner and legalizer + // together. + // We generally can't do this one for long doubles. + SDValue Chain = ST->getChain(); + SDValue Ptr = ST->getBasePtr(); + unsigned Alignment = ST->getAlignment(); + MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); + AAMDNodes AAInfo = ST->getAAInfo(); + SDLoc dl(ST); + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { + if (CFP->getValueType(0) == MVT::f32 && + TLI.isTypeLegal(MVT::i32)) { + SDValue Con = DAG.getConstant(CFP->getValueAPF(). + bitcastToAPInt().zextOrTrunc(32), + SDLoc(CFP), MVT::i32); + return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, + MMOFlags, AAInfo); + } + + if (CFP->getValueType(0) == MVT::f64) { + // If this target supports 64-bit registers, do a single 64-bit store. + if (TLI.isTypeLegal(MVT::i64)) { + SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). + zextOrTrunc(64), SDLoc(CFP), MVT::i64); + return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), + Alignment, MMOFlags, AAInfo); + } + + if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { + // Otherwise, if the target supports 32-bit registers, use 2 32-bit + // stores. If the target supports neither 32- nor 64-bits, this + // xform is certainly not worth it. + const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); + SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); + SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); + if (DAG.getDataLayout().isBigEndian()) + std::swap(Lo, Hi); + + Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, + MMOFlags, AAInfo); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, + DAG.getConstant(4, dl, Ptr.getValueType())); + Hi = DAG.getStore(Chain, dl, Hi, Ptr, + ST->getPointerInfo().getWithOffset(4), + MinAlign(Alignment, 4U), MMOFlags, AAInfo); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); + } + } + } + return SDValue(nullptr, 0); +} + +void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { + StoreSDNode *ST = cast<StoreSDNode>(Node); + SDValue Chain = ST->getChain(); + SDValue Ptr = ST->getBasePtr(); + SDLoc dl(Node); + + unsigned Alignment = ST->getAlignment(); + MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); + AAMDNodes AAInfo = ST->getAAInfo(); + + if (!ST->isTruncatingStore()) { + LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); + if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { + ReplaceNode(ST, OptStore); + return; + } + + SDValue Value = ST->getValue(); + MVT VT = Value.getSimpleValueType(); + switch (TLI.getOperationAction(ISD::STORE, VT)) { + default: llvm_unreachable("This action is not supported yet!"); + case TargetLowering::Legal: { + // If this is an unaligned store and the target doesn't support it, + // expand it. + EVT MemVT = ST->getMemoryVT(); + const DataLayout &DL = DAG.getDataLayout(); + if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, + *ST->getMemOperand())) { + LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); + SDValue Result = TLI.expandUnalignedStore(ST, DAG); + ReplaceNode(SDValue(ST, 0), Result); + } else + LLVM_DEBUG(dbgs() << "Legal store\n"); + break; + } + case TargetLowering::Custom: { + LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); + SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); + if (Res && Res != SDValue(Node, 0)) + ReplaceNode(SDValue(Node, 0), Res); + return; + } + case TargetLowering::Promote: { + MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); + assert(NVT.getSizeInBits() == VT.getSizeInBits() && + "Can only promote stores to same size type"); + Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); + SDValue Result = + DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), + Alignment, MMOFlags, AAInfo); + ReplaceNode(SDValue(Node, 0), Result); + break; + } + } + return; + } + + LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); + SDValue Value = ST->getValue(); + EVT StVT = ST->getMemoryVT(); + unsigned StWidth = StVT.getSizeInBits(); + auto &DL = DAG.getDataLayout(); + + if (StWidth != StVT.getStoreSizeInBits()) { + // Promote to a byte-sized store with upper bits zero if not + // storing an integral number of bytes. For example, promote + // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) + EVT NVT = EVT::getIntegerVT(*DAG.getContext(), + StVT.getStoreSizeInBits()); + Value = DAG.getZeroExtendInReg(Value, dl, StVT); + SDValue Result = + DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, + Alignment, MMOFlags, AAInfo); + ReplaceNode(SDValue(Node, 0), Result); + } else if (StWidth & (StWidth - 1)) { + // If not storing a power-of-2 number of bits, expand as two stores. + assert(!StVT.isVector() && "Unsupported truncstore!"); + unsigned LogStWidth = Log2_32(StWidth); + assert(LogStWidth < 32); + unsigned RoundWidth = 1 << LogStWidth; + assert(RoundWidth < StWidth); + unsigned ExtraWidth = StWidth - RoundWidth; + assert(ExtraWidth < RoundWidth); + assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && + "Store size not an integral number of bytes!"); + EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); + EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); + SDValue Lo, Hi; + unsigned IncrementSize; + + if (DL.isLittleEndian()) { + // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) + // Store the bottom RoundWidth bits. + Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), + RoundVT, Alignment, MMOFlags, AAInfo); + + // Store the remaining ExtraWidth bits. + IncrementSize = RoundWidth / 8; + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, dl, + Ptr.getValueType())); + Hi = DAG.getNode( + ISD::SRL, dl, Value.getValueType(), Value, + DAG.getConstant(RoundWidth, dl, + TLI.getShiftAmountTy(Value.getValueType(), DL))); + Hi = DAG.getTruncStore( + Chain, dl, Hi, Ptr, + ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, + MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); + } else { + // Big endian - avoid unaligned stores. + // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X + // Store the top RoundWidth bits. + Hi = DAG.getNode( + ISD::SRL, dl, Value.getValueType(), Value, + DAG.getConstant(ExtraWidth, dl, + TLI.getShiftAmountTy(Value.getValueType(), DL))); + Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), + RoundVT, Alignment, MMOFlags, AAInfo); + + // Store the remaining ExtraWidth bits. + IncrementSize = RoundWidth / 8; + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, dl, + Ptr.getValueType())); + Lo = DAG.getTruncStore( + Chain, dl, Value, Ptr, + ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, + MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); + } + + // The order of the stores doesn't matter. + SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); + ReplaceNode(SDValue(Node, 0), Result); + } else { + switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { + default: llvm_unreachable("This action is not supported yet!"); + case TargetLowering::Legal: { + EVT MemVT = ST->getMemoryVT(); + // If this is an unaligned store and the target doesn't support it, + // expand it. + if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, + *ST->getMemOperand())) { + SDValue Result = TLI.expandUnalignedStore(ST, DAG); + ReplaceNode(SDValue(ST, 0), Result); + } + break; + } + case TargetLowering::Custom: { + SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); + if (Res && Res != SDValue(Node, 0)) + ReplaceNode(SDValue(Node, 0), Res); + return; + } + case TargetLowering::Expand: + assert(!StVT.isVector() && + "Vector Stores are handled in LegalizeVectorOps"); + + SDValue Result; + + // TRUNCSTORE:i16 i32 -> STORE i16 + if (TLI.isTypeLegal(StVT)) { + Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); + Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), + Alignment, MMOFlags, AAInfo); + } else { + // The in-memory type isn't legal. Truncate to the type it would promote + // to, and then do a truncstore. + Value = DAG.getNode(ISD::TRUNCATE, dl, + TLI.getTypeToTransformTo(*DAG.getContext(), StVT), + Value); + Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), + StVT, Alignment, MMOFlags, AAInfo); + } + + ReplaceNode(SDValue(Node, 0), Result); + break; + } + } +} + +void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { + LoadSDNode *LD = cast<LoadSDNode>(Node); + SDValue Chain = LD->getChain(); // The chain. + SDValue Ptr = LD->getBasePtr(); // The base pointer. + SDValue Value; // The value returned by the load op. + SDLoc dl(Node); + + ISD::LoadExtType ExtType = LD->getExtensionType(); + if (ExtType == ISD::NON_EXTLOAD) { + LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); + MVT VT = Node->getSimpleValueType(0); + SDValue RVal = SDValue(Node, 0); + SDValue RChain = SDValue(Node, 1); + + switch (TLI.getOperationAction(Node->getOpcode(), VT)) { + default: llvm_unreachable("This action is not supported yet!"); + case TargetLowering::Legal: { + EVT MemVT = LD->getMemoryVT(); + const DataLayout &DL = DAG.getDataLayout(); + // If this is an unaligned load and the target doesn't support it, + // expand it. + if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, + *LD->getMemOperand())) { + std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); + } + break; + } + case TargetLowering::Custom: + if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { + RVal = Res; + RChain = Res.getValue(1); + } + break; + + case TargetLowering::Promote: { + MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); + assert(NVT.getSizeInBits() == VT.getSizeInBits() && + "Can only promote loads to same size type"); + + SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); + RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); + RChain = Res.getValue(1); + break; + } + } + if (RChain.getNode() != Node) { + assert(RVal.getNode() != Node && "Load must be completely replaced"); + DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); + DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); + if (UpdatedNodes) { + UpdatedNodes->insert(RVal.getNode()); + UpdatedNodes->insert(RChain.getNode()); + } + ReplacedNode(Node); + } + return; + } + + LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); + EVT SrcVT = LD->getMemoryVT(); + unsigned SrcWidth = SrcVT.getSizeInBits(); + unsigned Alignment = LD->getAlignment(); + MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); + AAMDNodes AAInfo = LD->getAAInfo(); + + if (SrcWidth != SrcVT.getStoreSizeInBits() && + // Some targets pretend to have an i1 loading operation, and actually + // load an i8. This trick is correct for ZEXTLOAD because the top 7 + // bits are guaranteed to be zero; it helps the optimizers understand + // that these bits are zero. It is also useful for EXTLOAD, since it + // tells the optimizers that those bits are undefined. It would be + // nice to have an effective generic way of getting these benefits... + // Until such a way is found, don't insist on promoting i1 here. + (SrcVT != MVT::i1 || + TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == + TargetLowering::Promote)) { + // Promote to a byte-sized load if not loading an integral number of + // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. + unsigned NewWidth = SrcVT.getStoreSizeInBits(); + EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); + SDValue Ch; + + // The extra bits are guaranteed to be zero, since we stored them that + // way. A zext load from NVT thus automatically gives zext from SrcVT. + + ISD::LoadExtType NewExtType = + ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; + + SDValue Result = + DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, + LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); + + Ch = Result.getValue(1); // The chain. + + if (ExtType == ISD::SEXTLOAD) + // Having the top bits zero doesn't help when sign extending. + Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, + Result.getValueType(), + Result, DAG.getValueType(SrcVT)); + else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) + // All the top bits are guaranteed to be zero - inform the optimizers. + Result = DAG.getNode(ISD::AssertZext, dl, + Result.getValueType(), Result, + DAG.getValueType(SrcVT)); + + Value = Result; + Chain = Ch; + } else if (SrcWidth & (SrcWidth - 1)) { + // If not loading a power-of-2 number of bits, expand as two loads. + assert(!SrcVT.isVector() && "Unsupported extload!"); + unsigned LogSrcWidth = Log2_32(SrcWidth); + assert(LogSrcWidth < 32); + unsigned RoundWidth = 1 << LogSrcWidth; + assert(RoundWidth < SrcWidth); + unsigned ExtraWidth = SrcWidth - RoundWidth; + assert(ExtraWidth < RoundWidth); + assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && + "Load size not an integral number of bytes!"); + EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); + EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); + SDValue Lo, Hi, Ch; + unsigned IncrementSize; + auto &DL = DAG.getDataLayout(); + + if (DL.isLittleEndian()) { + // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) + // Load the bottom RoundWidth bits. + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, + LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, + AAInfo); + + // Load the remaining ExtraWidth bits. + IncrementSize = RoundWidth / 8; + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, dl, + Ptr.getValueType())); + Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, + LD->getPointerInfo().getWithOffset(IncrementSize), + ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, + AAInfo); + + // Build a factor node to remember that this load is independent of + // the other one. + Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + // Move the top bits to the right place. + Hi = DAG.getNode( + ISD::SHL, dl, Hi.getValueType(), Hi, + DAG.getConstant(RoundWidth, dl, + TLI.getShiftAmountTy(Hi.getValueType(), DL))); + + // Join the hi and lo parts. + Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); + } else { + // Big endian - avoid unaligned loads. + // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 + // Load the top RoundWidth bits. + Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, + LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, + AAInfo); + + // Load the remaining ExtraWidth bits. + IncrementSize = RoundWidth / 8; + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, dl, + Ptr.getValueType())); + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, + LD->getPointerInfo().getWithOffset(IncrementSize), + ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, + AAInfo); + + // Build a factor node to remember that this load is independent of + // the other one. + Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + // Move the top bits to the right place. + Hi = DAG.getNode( + ISD::SHL, dl, Hi.getValueType(), Hi, + DAG.getConstant(ExtraWidth, dl, + TLI.getShiftAmountTy(Hi.getValueType(), DL))); + + // Join the hi and lo parts. + Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); + } + + Chain = Ch; + } else { + bool isCustom = false; + switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), + SrcVT.getSimpleVT())) { + default: llvm_unreachable("This action is not supported yet!"); + case TargetLowering::Custom: + isCustom = true; + LLVM_FALLTHROUGH; + case TargetLowering::Legal: + Value = SDValue(Node, 0); + Chain = SDValue(Node, 1); + + if (isCustom) { + if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { + Value = Res; + Chain = Res.getValue(1); + } + } else { + // If this is an unaligned load and the target doesn't support it, + // expand it. + EVT MemVT = LD->getMemoryVT(); + const DataLayout &DL = DAG.getDataLayout(); + if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, + *LD->getMemOperand())) { + std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); + } + } + break; + + case TargetLowering::Expand: { + EVT DestVT = Node->getValueType(0); + if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { + // If the source type is not legal, see if there is a legal extload to + // an intermediate type that we can then extend further. + EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); + if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? + TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { + // If we are loading a legal type, this is a non-extload followed by a + // full extend. + ISD::LoadExtType MidExtType = + (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; + + SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, + SrcVT, LD->getMemOperand()); + unsigned ExtendOp = + ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); + Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); + Chain = Load.getValue(1); + break; + } + + // Handle the special case of fp16 extloads. EXTLOAD doesn't have the + // normal undefined upper bits behavior to allow using an in-reg extend + // with the illegal FP type, so load as an integer and do the + // from-integer conversion. + if (SrcVT.getScalarType() == MVT::f16) { + EVT ISrcVT = SrcVT.changeTypeToInteger(); + EVT IDestVT = DestVT.changeTypeToInteger(); + EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); + + SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, + Chain, Ptr, ISrcVT, + LD->getMemOperand()); + Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); + Chain = Result.getValue(1); + break; + } + } + + assert(!SrcVT.isVector() && + "Vector Loads are handled in LegalizeVectorOps"); + + // FIXME: This does not work for vectors on most targets. Sign- + // and zero-extend operations are currently folded into extending + // loads, whether they are legal or not, and then we end up here + // without any support for legalizing them. + assert(ExtType != ISD::EXTLOAD && + "EXTLOAD should always be supported!"); + // Turn the unsupported load into an EXTLOAD followed by an + // explicit zero/sign extend inreg. + SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, + Node->getValueType(0), + Chain, Ptr, SrcVT, + LD->getMemOperand()); + SDValue ValRes; + if (ExtType == ISD::SEXTLOAD) + ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, + Result.getValueType(), + Result, DAG.getValueType(SrcVT)); + else + ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); + Value = ValRes; + Chain = Result.getValue(1); + break; + } + } + } + + // Since loads produce two values, make sure to remember that we legalized + // both of them. + if (Chain.getNode() != Node) { + assert(Value.getNode() != Node && "Load must be completely replaced"); + DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); + DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); + if (UpdatedNodes) { + UpdatedNodes->insert(Value.getNode()); + UpdatedNodes->insert(Chain.getNode()); + } + ReplacedNode(Node); + } +} + +/// Return a legal replacement for the given operation, with all legal operands. +void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { + LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); + + // Allow illegal target nodes and illegal registers. + if (Node->getOpcode() == ISD::TargetConstant || + Node->getOpcode() == ISD::Register) + return; + +#ifndef NDEBUG + for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) + assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == + TargetLowering::TypeLegal || + TLI.isTypeLegal(Node->getValueType(i))) && + "Unexpected illegal type!"); + + for (const SDValue &Op : Node->op_values()) + assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == + TargetLowering::TypeLegal || + TLI.isTypeLegal(Op.getValueType()) || + Op.getOpcode() == ISD::TargetConstant || + Op.getOpcode() == ISD::Register) && + "Unexpected illegal type!"); +#endif + + // Figure out the correct action; the way to query this varies by opcode + TargetLowering::LegalizeAction Action = TargetLowering::Legal; + bool SimpleFinishLegalizing = true; + switch (Node->getOpcode()) { + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_VOID: + case ISD::STACKSAVE: + Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); + break; + case ISD::GET_DYNAMIC_AREA_OFFSET: + Action = TLI.getOperationAction(Node->getOpcode(), + Node->getValueType(0)); + break; + case ISD::VAARG: + Action = TLI.getOperationAction(Node->getOpcode(), + Node->getValueType(0)); + if (Action != TargetLowering::Promote) + Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); + break; + case ISD::FP_TO_FP16: + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + case ISD::EXTRACT_VECTOR_ELT: + case ISD::LROUND: + case ISD::LLROUND: + case ISD::LRINT: + case ISD::LLRINT: + Action = TLI.getOperationAction(Node->getOpcode(), + Node->getOperand(0).getValueType()); + break; + case ISD::FP_ROUND_INREG: + case ISD::SIGN_EXTEND_INREG: { + EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); + Action = TLI.getOperationAction(Node->getOpcode(), InnerType); + break; + } + case ISD::ATOMIC_STORE: + Action = TLI.getOperationAction(Node->getOpcode(), + Node->getOperand(2).getValueType()); + break; + case ISD::SELECT_CC: + case ISD::SETCC: + case ISD::BR_CC: { + unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : + Node->getOpcode() == ISD::SETCC ? 2 : 1; + unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; + MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); + ISD::CondCode CCCode = + cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); + Action = TLI.getCondCodeAction(CCCode, OpVT); + if (Action == TargetLowering::Legal) { + if (Node->getOpcode() == ISD::SELECT_CC) + Action = TLI.getOperationAction(Node->getOpcode(), + Node->getValueType(0)); + else + Action = TLI.getOperationAction(Node->getOpcode(), OpVT); + } + break; + } + case ISD::LOAD: + case ISD::STORE: + // FIXME: Model these properly. LOAD and STORE are complicated, and + // STORE expects the unlegalized operand in some cases. + SimpleFinishLegalizing = false; + break; + case ISD::CALLSEQ_START: + case ISD::CALLSEQ_END: + // FIXME: This shouldn't be necessary. These nodes have special properties + // dealing with the recursive nature of legalization. Removing this + // special case should be done as part of making LegalizeDAG non-recursive. + SimpleFinishLegalizing = false; + break; + case ISD::EXTRACT_ELEMENT: + case ISD::FLT_ROUNDS_: + case ISD::MERGE_VALUES: + case ISD::EH_RETURN: + case ISD::FRAME_TO_ARGS_OFFSET: + case ISD::EH_DWARF_CFA: + case ISD::EH_SJLJ_SETJMP: + case ISD::EH_SJLJ_LONGJMP: + case ISD::EH_SJLJ_SETUP_DISPATCH: + // These operations lie about being legal: when they claim to be legal, + // they should actually be expanded. + Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); + if (Action == TargetLowering::Legal) + Action = TargetLowering::Expand; + break; + case ISD::INIT_TRAMPOLINE: + case ISD::ADJUST_TRAMPOLINE: + case ISD::FRAMEADDR: + case ISD::RETURNADDR: + case ISD::ADDROFRETURNADDR: + case ISD::SPONENTRY: + // These operations lie about being legal: when they claim to be legal, + // they should actually be custom-lowered. + Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); + if (Action == TargetLowering::Legal) + Action = TargetLowering::Custom; + break; + case ISD::READCYCLECOUNTER: + // READCYCLECOUNTER returns an i64, even if type legalization might have + // expanded that to several smaller types. + Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); + break; + case ISD::READ_REGISTER: + case ISD::WRITE_REGISTER: + // Named register is legal in the DAG, but blocked by register name + // selection if not implemented by target (to chose the correct register) + // They'll be converted to Copy(To/From)Reg. + Action = TargetLowering::Legal; + break; + case ISD::DEBUGTRAP: + Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); + if (Action == TargetLowering::Expand) { + // replace ISD::DEBUGTRAP with ISD::TRAP + SDValue NewVal; + NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), + Node->getOperand(0)); + ReplaceNode(Node, NewVal.getNode()); + LegalizeOp(NewVal.getNode()); + return; + } + break; + case ISD::STRICT_FADD: + case ISD::STRICT_FSUB: + case ISD::STRICT_FMUL: + case ISD::STRICT_FDIV: + case ISD::STRICT_FREM: + case ISD::STRICT_FSQRT: + case ISD::STRICT_FMA: + case ISD::STRICT_FPOW: + case ISD::STRICT_FPOWI: + case ISD::STRICT_FSIN: + case ISD::STRICT_FCOS: + case ISD::STRICT_FEXP: + case ISD::STRICT_FEXP2: + case ISD::STRICT_FLOG: + case ISD::STRICT_FLOG10: + case ISD::STRICT_FLOG2: + case ISD::STRICT_FRINT: + case ISD::STRICT_FNEARBYINT: + case ISD::STRICT_FMAXNUM: + case ISD::STRICT_FMINNUM: + case ISD::STRICT_FCEIL: + case ISD::STRICT_FFLOOR: + case ISD::STRICT_FROUND: + case ISD::STRICT_FTRUNC: + case ISD::STRICT_FP_ROUND: + case ISD::STRICT_FP_EXTEND: + // These pseudo-ops get legalized as if they were their non-strict + // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT + // is also legal, but if ISD::FSQRT requires expansion then so does + // ISD::STRICT_FSQRT. + Action = TLI.getStrictFPOperationAction(Node->getOpcode(), + Node->getValueType(0)); + break; + case ISD::SADDSAT: + case ISD::UADDSAT: + case ISD::SSUBSAT: + case ISD::USUBSAT: { + Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); + break; + } + case ISD::SMULFIX: + case ISD::SMULFIXSAT: + case ISD::UMULFIX: { + unsigned Scale = Node->getConstantOperandVal(2); + Action = TLI.getFixedPointOperationAction(Node->getOpcode(), + Node->getValueType(0), Scale); + break; + } + case ISD::MSCATTER: + Action = TLI.getOperationAction(Node->getOpcode(), + cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); + break; + case ISD::MSTORE: + Action = TLI.getOperationAction(Node->getOpcode(), + cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); + break; + case ISD::VECREDUCE_FADD: + case ISD::VECREDUCE_FMUL: + case ISD::VECREDUCE_ADD: + case ISD::VECREDUCE_MUL: + case ISD::VECREDUCE_AND: + case ISD::VECREDUCE_OR: + case ISD::VECREDUCE_XOR: + case ISD::VECREDUCE_SMAX: + case ISD::VECREDUCE_SMIN: + case ISD::VECREDUCE_UMAX: + case ISD::VECREDUCE_UMIN: + case ISD::VECREDUCE_FMAX: + case ISD::VECREDUCE_FMIN: + Action = TLI.getOperationAction( + Node->getOpcode(), Node->getOperand(0).getValueType()); + break; + default: + if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { + Action = TargetLowering::Legal; + } else { + Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); + } + break; + } + + if (SimpleFinishLegalizing) { + SDNode *NewNode = Node; + switch (Node->getOpcode()) { + default: break; + case ISD::SHL: + case ISD::SRL: + case ISD::SRA: + case ISD::ROTL: + case ISD::ROTR: { + // Legalizing shifts/rotates requires adjusting the shift amount + // to the appropriate width. + SDValue Op0 = Node->getOperand(0); + SDValue Op1 = Node->getOperand(1); + if (!Op1.getValueType().isVector()) { + SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); + // The getShiftAmountOperand() may create a new operand node or + // return the existing one. If new operand is created we need + // to update the parent node. + // Do not try to legalize SAO here! It will be automatically legalized + // in the next round. + if (SAO != Op1) + NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); + } + } + break; + case ISD::FSHL: + case ISD::FSHR: + case ISD::SRL_PARTS: + case ISD::SRA_PARTS: + case ISD::SHL_PARTS: { + // Legalizing shifts/rotates requires adjusting the shift amount + // to the appropriate width. + SDValue Op0 = Node->getOperand(0); + SDValue Op1 = Node->getOperand(1); + SDValue Op2 = Node->getOperand(2); + if (!Op2.getValueType().isVector()) { + SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); + // The getShiftAmountOperand() may create a new operand node or + // return the existing one. If new operand is created we need + // to update the parent node. + if (SAO != Op2) + NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); + } + break; + } + } + + if (NewNode != Node) { + ReplaceNode(Node, NewNode); + Node = NewNode; + } + switch (Action) { + case TargetLowering::Legal: + LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); + return; + case TargetLowering::Custom: + LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); + // FIXME: The handling for custom lowering with multiple results is + // a complete mess. + if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { + if (!(Res.getNode() != Node || Res.getResNo() != 0)) + return; + + if (Node->getNumValues() == 1) { + LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); + // We can just directly replace this node with the lowered value. + ReplaceNode(SDValue(Node, 0), Res); + return; + } + + SmallVector<SDValue, 8> ResultVals; + for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) + ResultVals.push_back(Res.getValue(i)); + LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); + ReplaceNode(Node, ResultVals.data()); + return; + } + LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); + LLVM_FALLTHROUGH; + case TargetLowering::Expand: + if (ExpandNode(Node)) + return; + LLVM_FALLTHROUGH; + case TargetLowering::LibCall: + ConvertNodeToLibcall(Node); + return; + case TargetLowering::Promote: + PromoteNode(Node); + return; + } + } + + switch (Node->getOpcode()) { + default: +#ifndef NDEBUG + dbgs() << "NODE: "; + Node->dump( &DAG); + dbgs() << "\n"; +#endif + llvm_unreachable("Do not know how to legalize this operator!"); + + case ISD::CALLSEQ_START: + case ISD::CALLSEQ_END: + break; + case ISD::LOAD: + return LegalizeLoadOps(Node); + case ISD::STORE: + return LegalizeStoreOps(Node); + } +} + +SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { + SDValue Vec = Op.getOperand(0); + SDValue Idx = Op.getOperand(1); + SDLoc dl(Op); + + // Before we generate a new store to a temporary stack slot, see if there is + // already one that we can use. There often is because when we scalarize + // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole + // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in + // the vector. If all are expanded here, we don't want one store per vector + // element. + + // Caches for hasPredecessorHelper + SmallPtrSet<const SDNode *, 32> Visited; + SmallVector<const SDNode *, 16> Worklist; + Visited.insert(Op.getNode()); + Worklist.push_back(Idx.getNode()); + SDValue StackPtr, Ch; + for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), + UE = Vec.getNode()->use_end(); UI != UE; ++UI) { + SDNode *User = *UI; + if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { + if (ST->isIndexed() || ST->isTruncatingStore() || + ST->getValue() != Vec) + continue; + + // Make sure that nothing else could have stored into the destination of + // this store. + if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) + continue; + + // If the index is dependent on the store we will introduce a cycle when + // creating the load (the load uses the index, and by replacing the chain + // we will make the index dependent on the load). Also, the store might be + // dependent on the extractelement and introduce a cycle when creating + // the load. + if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || + ST->hasPredecessor(Op.getNode())) + continue; + + StackPtr = ST->getBasePtr(); + Ch = SDValue(ST, 0); + break; + } + } + + EVT VecVT = Vec.getValueType(); + + if (!Ch.getNode()) { + // Store the value to a temporary stack slot, then LOAD the returned part. + StackPtr = DAG.CreateStackTemporary(VecVT); + Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, + MachinePointerInfo()); + } + + StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); + + SDValue NewLoad; + + if (Op.getValueType().isVector()) + NewLoad = + DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); + else + NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, + MachinePointerInfo(), + VecVT.getVectorElementType()); + + // Replace the chain going out of the store, by the one out of the load. + DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); + + // We introduced a cycle though, so update the loads operands, making sure + // to use the original store's chain as an incoming chain. + SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), + NewLoad->op_end()); + NewLoadOperands[0] = Ch; + NewLoad = + SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); + return NewLoad; +} + +SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { + assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); + + SDValue Vec = Op.getOperand(0); + SDValue Part = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + SDLoc dl(Op); + + // Store the value to a temporary stack slot, then LOAD the returned part. + EVT VecVT = Vec.getValueType(); + SDValue StackPtr = DAG.CreateStackTemporary(VecVT); + int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + MachinePointerInfo PtrInfo = + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); + + // First store the whole vector. + SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); + + // Then store the inserted part. + SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); + + // Store the subvector. + Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); + + // Finally, load the updated vector. + return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); +} + +SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { + // We can't handle this case efficiently. Allocate a sufficiently + // aligned object on the stack, store each element into it, then load + // the result as a vector. + // Create the stack frame object. + EVT VT = Node->getValueType(0); + EVT EltVT = VT.getVectorElementType(); + SDLoc dl(Node); + SDValue FIPtr = DAG.CreateStackTemporary(VT); + int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); + MachinePointerInfo PtrInfo = + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); + + // Emit a store of each element to the stack slot. + SmallVector<SDValue, 8> Stores; + unsigned TypeByteSize = EltVT.getSizeInBits() / 8; + assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); + // Store (in the right endianness) the elements to memory. + for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { + // Ignore undef elements. + if (Node->getOperand(i).isUndef()) continue; + + unsigned Offset = TypeByteSize*i; + + SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); + Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); + + // If the destination vector element type is narrower than the source + // element type, only store the bits necessary. + if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { + Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, + Node->getOperand(i), Idx, + PtrInfo.getWithOffset(Offset), EltVT)); + } else + Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), + Idx, PtrInfo.getWithOffset(Offset))); + } + + SDValue StoreChain; + if (!Stores.empty()) // Not all undef elements? + StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); + else + StoreChain = DAG.getEntryNode(); + + // Result is a load from the stack slot. + return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); +} + +/// Bitcast a floating-point value to an integer value. Only bitcast the part +/// containing the sign bit if the target has no integer value capable of +/// holding all bits of the floating-point value. +void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, + const SDLoc &DL, + SDValue Value) const { + EVT FloatVT = Value.getValueType(); + unsigned NumBits = FloatVT.getSizeInBits(); + State.FloatVT = FloatVT; + EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); + // Convert to an integer of the same size. + if (TLI.isTypeLegal(IVT)) { + State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); + State.SignMask = APInt::getSignMask(NumBits); + State.SignBit = NumBits - 1; + return; + } + + auto &DataLayout = DAG.getDataLayout(); + // Store the float to memory, then load the sign part out as an integer. + MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); + // First create a temporary that is aligned for both the load and store. + SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); + int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + // Then store the float to it. + State.FloatPtr = StackPtr; + MachineFunction &MF = DAG.getMachineFunction(); + State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); + State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, + State.FloatPointerInfo); + + SDValue IntPtr; + if (DataLayout.isBigEndian()) { + assert(FloatVT.isByteSized() && "Unsupported floating point type!"); + // Load out a legal integer with the same sign bit as the float. + IntPtr = StackPtr; + State.IntPointerInfo = State.FloatPointerInfo; + } else { + // Advance the pointer so that the loaded byte will contain the sign bit. + unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; + IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, + DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); + State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, + ByteOffset); + } + + State.IntPtr = IntPtr; + State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, + State.IntPointerInfo, MVT::i8); + State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); + State.SignBit = 7; +} + +/// Replace the integer value produced by getSignAsIntValue() with a new value +/// and cast the result back to a floating-point type. +SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, + const SDLoc &DL, + SDValue NewIntValue) const { + if (!State.Chain) + return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); + + // Override the part containing the sign bit in the value stored on the stack. + SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, + State.IntPointerInfo, MVT::i8); + return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, + State.FloatPointerInfo); +} + +SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { + SDLoc DL(Node); + SDValue Mag = Node->getOperand(0); + SDValue Sign = Node->getOperand(1); + + // Get sign bit into an integer value. + FloatSignAsInt SignAsInt; + getSignAsIntValue(SignAsInt, DL, Sign); + + EVT IntVT = SignAsInt.IntValue.getValueType(); + SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); + SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, + SignMask); + + // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) + EVT FloatVT = Mag.getValueType(); + if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && + TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { + SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); + SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); + SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, + DAG.getConstant(0, DL, IntVT), ISD::SETNE); + return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); + } + + // Transform Mag value to integer, and clear the sign bit. + FloatSignAsInt MagAsInt; + getSignAsIntValue(MagAsInt, DL, Mag); + EVT MagVT = MagAsInt.IntValue.getValueType(); + SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); + SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, + ClearSignMask); + + // Get the signbit at the right position for MagAsInt. + int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; + EVT ShiftVT = IntVT; + if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { + SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); + ShiftVT = MagVT; + } + if (ShiftAmount > 0) { + SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); + SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); + } else if (ShiftAmount < 0) { + SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); + SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); + } + if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { + SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); + } + + // Store the part with the modified sign and convert back to float. + SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); + return modifySignAsInt(MagAsInt, DL, CopiedSign); +} + +SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { + SDLoc DL(Node); + SDValue Value = Node->getOperand(0); + + // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. + EVT FloatVT = Value.getValueType(); + if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { + SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); + return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); + } + + // Transform value to integer, clear the sign bit and transform back. + FloatSignAsInt ValueAsInt; + getSignAsIntValue(ValueAsInt, DL, Value); + EVT IntVT = ValueAsInt.IntValue.getValueType(); + SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); + SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, + ClearSignMask); + return modifySignAsInt(ValueAsInt, DL, ClearedSign); +} + +void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, + SmallVectorImpl<SDValue> &Results) { + unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); + assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" + " not tell us which reg is the stack pointer!"); + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + SDValue Tmp1 = SDValue(Node, 0); + SDValue Tmp2 = SDValue(Node, 1); + SDValue Tmp3 = Node->getOperand(2); + SDValue Chain = Tmp1.getOperand(0); + + // Chain the dynamic stack allocation so that it doesn't modify the stack + // pointer when other instructions are using the stack. + Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); + + SDValue Size = Tmp2.getOperand(1); + SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); + Chain = SP.getValue(1); + unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); + unsigned StackAlign = + DAG.getSubtarget().getFrameLowering()->getStackAlignment(); + Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value + if (Align > StackAlign) + Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, + DAG.getConstant(-(uint64_t)Align, dl, VT)); + Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain + + Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), + DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); + + Results.push_back(Tmp1); + Results.push_back(Tmp2); +} + +/// Legalize a SETCC with given LHS and RHS and condition code CC on the current +/// target. +/// +/// If the SETCC has been legalized using AND / OR, then the legalized node +/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert +/// will be set to false. +/// +/// If the SETCC has been legalized by using getSetCCSwappedOperands(), +/// then the values of LHS and RHS will be swapped, CC will be set to the +/// new condition, and NeedInvert will be set to false. +/// +/// If the SETCC has been legalized using the inverse condcode, then LHS and +/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert +/// will be set to true. The caller must invert the result of the SETCC with +/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect +/// of a true/false result. +/// +/// \returns true if the SetCC has been legalized, false if it hasn't. +bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, + SDValue &RHS, SDValue &CC, + bool &NeedInvert, + const SDLoc &dl) { + MVT OpVT = LHS.getSimpleValueType(); + ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); + NeedInvert = false; + bool NeedSwap = false; + switch (TLI.getCondCodeAction(CCCode, OpVT)) { + default: llvm_unreachable("Unknown condition code action!"); + case TargetLowering::Legal: + // Nothing to do. + break; + case TargetLowering::Expand: { + ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); + if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { + std::swap(LHS, RHS); + CC = DAG.getCondCode(InvCC); + return true; + } + // Swapping operands didn't work. Try inverting the condition. + InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); + if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { + // If inverting the condition is not enough, try swapping operands + // on top of it. + InvCC = ISD::getSetCCSwappedOperands(InvCC); + NeedSwap = true; + } + if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { + CC = DAG.getCondCode(InvCC); + NeedInvert = true; + if (NeedSwap) + std::swap(LHS, RHS); + return true; + } + + ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; + unsigned Opc = 0; + switch (CCCode) { + default: llvm_unreachable("Don't know how to expand this condition!"); + case ISD::SETO: + assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) + && "If SETO is expanded, SETOEQ must be legal!"); + CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; + case ISD::SETUO: + assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) + && "If SETUO is expanded, SETUNE must be legal!"); + CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; + case ISD::SETOEQ: + case ISD::SETOGT: + case ISD::SETOGE: + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETONE: + case ISD::SETUEQ: + case ISD::SETUNE: + case ISD::SETUGT: + case ISD::SETUGE: + case ISD::SETULT: + case ISD::SETULE: + // If we are floating point, assign and break, otherwise fall through. + if (!OpVT.isInteger()) { + // We can use the 4th bit to tell if we are the unordered + // or ordered version of the opcode. + CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; + Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; + CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); + break; + } + // Fallthrough if we are unsigned integer. + LLVM_FALLTHROUGH; + case ISD::SETLE: + case ISD::SETGT: + case ISD::SETGE: + case ISD::SETLT: + case ISD::SETNE: + case ISD::SETEQ: + // If all combinations of inverting the condition and swapping operands + // didn't work then we have no means to expand the condition. + llvm_unreachable("Don't know how to expand this condition!"); + } + + SDValue SetCC1, SetCC2; + if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { + // If we aren't the ordered or unorder operation, + // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). + SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); + SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); + } else { + // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) + SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); + SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); + } + LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); + RHS = SDValue(); + CC = SDValue(); + return true; + } + } + return false; +} + +/// Emit a store/load combination to the stack. This stores +/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does +/// a load from the stack slot to DestVT, extending it if needed. +/// The resultant code need not be legal. +SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, + EVT DestVT, const SDLoc &dl) { + return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); +} + +SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, + EVT DestVT, const SDLoc &dl, + SDValue Chain) { + // Create the stack frame object. + unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( + SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); + SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); + + FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); + int SPFI = StackPtrFI->getIndex(); + MachinePointerInfo PtrInfo = + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); + + unsigned SrcSize = SrcOp.getValueSizeInBits(); + unsigned SlotSize = SlotVT.getSizeInBits(); + unsigned DestSize = DestVT.getSizeInBits(); + Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); + unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); + + // Emit a store to the stack slot. Use a truncstore if the input value is + // later than DestVT. + SDValue Store; + + if (SrcSize > SlotSize) + Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, + SlotVT, SrcAlign); + else { + assert(SrcSize == SlotSize && "Invalid store"); + Store = + DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); + } + + // Result is a load from the stack slot. + if (SlotSize == DestSize) + return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); + + assert(SlotSize < DestSize && "Unknown extension!"); + return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, + DestAlign); +} + +SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { + SDLoc dl(Node); + // Create a vector sized/aligned stack slot, store the value to element #0, + // then load the whole vector back out. + SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); + + FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); + int SPFI = StackPtrFI->getIndex(); + + SDValue Ch = DAG.getTruncStore( + DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), + Node->getValueType(0).getVectorElementType()); + return DAG.getLoad( + Node->getValueType(0), dl, Ch, StackPtr, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); +} + +static bool +ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, + const TargetLowering &TLI, SDValue &Res) { + unsigned NumElems = Node->getNumOperands(); + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + + // Try to group the scalars into pairs, shuffle the pairs together, then + // shuffle the pairs of pairs together, etc. until the vector has + // been built. This will work only if all of the necessary shuffle masks + // are legal. + + // We do this in two phases; first to check the legality of the shuffles, + // and next, assuming that all shuffles are legal, to create the new nodes. + for (int Phase = 0; Phase < 2; ++Phase) { + SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, + NewIntermedVals; + for (unsigned i = 0; i < NumElems; ++i) { + SDValue V = Node->getOperand(i); + if (V.isUndef()) + continue; + + SDValue Vec; + if (Phase) + Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); + IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); + } + + while (IntermedVals.size() > 2) { + NewIntermedVals.clear(); + for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { + // This vector and the next vector are shuffled together (simply to + // append the one to the other). + SmallVector<int, 16> ShuffleVec(NumElems, -1); + + SmallVector<int, 16> FinalIndices; + FinalIndices.reserve(IntermedVals[i].second.size() + + IntermedVals[i+1].second.size()); + + int k = 0; + for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; + ++j, ++k) { + ShuffleVec[k] = j; + FinalIndices.push_back(IntermedVals[i].second[j]); + } + for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; + ++j, ++k) { + ShuffleVec[k] = NumElems + j; + FinalIndices.push_back(IntermedVals[i+1].second[j]); + } + + SDValue Shuffle; + if (Phase) + Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, + IntermedVals[i+1].first, + ShuffleVec); + else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) + return false; + NewIntermedVals.push_back( + std::make_pair(Shuffle, std::move(FinalIndices))); + } + + // If we had an odd number of defined values, then append the last + // element to the array of new vectors. + if ((IntermedVals.size() & 1) != 0) + NewIntermedVals.push_back(IntermedVals.back()); + + IntermedVals.swap(NewIntermedVals); + } + + assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && + "Invalid number of intermediate vectors"); + SDValue Vec1 = IntermedVals[0].first; + SDValue Vec2; + if (IntermedVals.size() > 1) + Vec2 = IntermedVals[1].first; + else if (Phase) + Vec2 = DAG.getUNDEF(VT); + + SmallVector<int, 16> ShuffleVec(NumElems, -1); + for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) + ShuffleVec[IntermedVals[0].second[i]] = i; + for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) + ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; + + if (Phase) + Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); + else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) + return false; + } + + return true; +} + +/// Expand a BUILD_VECTOR node on targets that don't +/// support the operation, but do support the resultant vector type. +SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { + unsigned NumElems = Node->getNumOperands(); + SDValue Value1, Value2; + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT OpVT = Node->getOperand(0).getValueType(); + EVT EltVT = VT.getVectorElementType(); + + // If the only non-undef value is the low element, turn this into a + // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. + bool isOnlyLowElement = true; + bool MoreThanTwoValues = false; + bool isConstant = true; + for (unsigned i = 0; i < NumElems; ++i) { + SDValue V = Node->getOperand(i); + if (V.isUndef()) + continue; + if (i > 0) + isOnlyLowElement = false; + if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) + isConstant = false; + + if (!Value1.getNode()) { + Value1 = V; + } else if (!Value2.getNode()) { + if (V != Value1) + Value2 = V; + } else if (V != Value1 && V != Value2) { + MoreThanTwoValues = true; + } + } + + if (!Value1.getNode()) + return DAG.getUNDEF(VT); + + if (isOnlyLowElement) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); + + // If all elements are constants, create a load from the constant pool. + if (isConstant) { + SmallVector<Constant*, 16> CV; + for (unsigned i = 0, e = NumElems; i != e; ++i) { + if (ConstantFPSDNode *V = + dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { + CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); + } else if (ConstantSDNode *V = + dyn_cast<ConstantSDNode>(Node->getOperand(i))) { + if (OpVT==EltVT) + CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); + else { + // If OpVT and EltVT don't match, EltVT is not legal and the + // element values have been promoted/truncated earlier. Undo this; + // we don't want a v16i8 to become a v16i32 for example. + const ConstantInt *CI = V->getConstantIntValue(); + CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), + CI->getZExtValue())); + } + } else { + assert(Node->getOperand(i).isUndef()); + Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); + CV.push_back(UndefValue::get(OpNTy)); + } + } + Constant *CP = ConstantVector::get(CV); + SDValue CPIdx = + DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); + unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + return DAG.getLoad( + VT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + Alignment); + } + + SmallSet<SDValue, 16> DefinedValues; + for (unsigned i = 0; i < NumElems; ++i) { + if (Node->getOperand(i).isUndef()) + continue; + DefinedValues.insert(Node->getOperand(i)); + } + + if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { + if (!MoreThanTwoValues) { + SmallVector<int, 8> ShuffleVec(NumElems, -1); + for (unsigned i = 0; i < NumElems; ++i) { + SDValue V = Node->getOperand(i); + if (V.isUndef()) + continue; + ShuffleVec[i] = V == Value1 ? 0 : NumElems; + } + if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { + // Get the splatted value into the low element of a vector register. + SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); + SDValue Vec2; + if (Value2.getNode()) + Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); + else + Vec2 = DAG.getUNDEF(VT); + + // Return shuffle(LowValVec, undef, <0,0,0,0>) + return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); + } + } else { + SDValue Res; + if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) + return Res; + } + } + + // Otherwise, we can't handle this case efficiently. + return ExpandVectorBuildThroughStack(Node); +} + +// Expand a node into a call to a libcall. If the result value +// does not fit into a register, return the lo part and set the hi part to the +// by-reg argument. If it does fit into a single register, return the result +// and leave the Hi part unset. +SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, + bool isSigned) { + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + for (const SDValue &Op : Node->op_values()) { + EVT ArgVT = Op.getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + Entry.Node = Op; + Entry.Ty = ArgTy; + Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); + Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); + Args.push_back(Entry); + } + SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), + TLI.getPointerTy(DAG.getDataLayout())); + + EVT RetVT = Node->getValueType(0); + Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + + // By default, the input chain to this libcall is the entry node of the + // function. If the libcall is going to be emitted as a tail call then + // TLI.isUsedByReturnOnly will change it to the right chain if the return + // node which is being folded has a non-entry input chain. + SDValue InChain = DAG.getEntryNode(); + + // isTailCall may be true since the callee does not reference caller stack + // frame. Check if it's in the right position and that the return types match. + SDValue TCChain = InChain; + const Function &F = DAG.getMachineFunction().getFunction(); + bool isTailCall = + TLI.isInTailCallPosition(DAG, Node, TCChain) && + (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); + if (isTailCall) + InChain = TCChain; + + TargetLowering::CallLoweringInfo CLI(DAG); + bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); + CLI.setDebugLoc(SDLoc(Node)) + .setChain(InChain) + .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, + std::move(Args)) + .setTailCall(isTailCall) + .setSExtResult(signExtend) + .setZExtResult(!signExtend) + .setIsPostTypeLegalization(true); + + std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); + + if (!CallInfo.second.getNode()) { + LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump()); + // It's a tailcall, return the chain (which is the DAG root). + return DAG.getRoot(); + } + + LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump()); + return CallInfo.first; +} + +// Expand a node into a call to a libcall. Similar to +// ExpandLibCall except that the first operand is the in-chain. +std::pair<SDValue, SDValue> +SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, + SDNode *Node, + bool isSigned) { + SDValue InChain = Node->getOperand(0); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { + EVT ArgVT = Node->getOperand(i).getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + Entry.Node = Node->getOperand(i); + Entry.Ty = ArgTy; + Entry.IsSExt = isSigned; + Entry.IsZExt = !isSigned; + Args.push_back(Entry); + } + SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), + TLI.getPointerTy(DAG.getDataLayout())); + + Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(SDLoc(Node)) + .setChain(InChain) + .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, + std::move(Args)) + .setSExtResult(isSigned) + .setZExtResult(!isSigned); + + std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); + + return CallInfo; +} + +SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, + RTLIB::Libcall Call_F32, + RTLIB::Libcall Call_F64, + RTLIB::Libcall Call_F80, + RTLIB::Libcall Call_F128, + RTLIB::Libcall Call_PPCF128) { + if (Node->isStrictFPOpcode()) + Node = DAG.mutateStrictFPToFP(Node); + + RTLIB::Libcall LC; + switch (Node->getSimpleValueType(0).SimpleTy) { + default: llvm_unreachable("Unexpected request for libcall!"); + case MVT::f32: LC = Call_F32; break; + case MVT::f64: LC = Call_F64; break; + case MVT::f80: LC = Call_F80; break; + case MVT::f128: LC = Call_F128; break; + case MVT::ppcf128: LC = Call_PPCF128; break; + } + return ExpandLibCall(LC, Node, false); +} + +SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, + RTLIB::Libcall Call_I8, + RTLIB::Libcall Call_I16, + RTLIB::Libcall Call_I32, + RTLIB::Libcall Call_I64, + RTLIB::Libcall Call_I128) { + RTLIB::Libcall LC; + switch (Node->getSimpleValueType(0).SimpleTy) { + default: llvm_unreachable("Unexpected request for libcall!"); + case MVT::i8: LC = Call_I8; break; + case MVT::i16: LC = Call_I16; break; + case MVT::i32: LC = Call_I32; break; + case MVT::i64: LC = Call_I64; break; + case MVT::i128: LC = Call_I128; break; + } + return ExpandLibCall(LC, Node, isSigned); +} + +/// Expand the node to a libcall based on first argument type (for instance +/// lround and its variant). +SDValue SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, + RTLIB::Libcall Call_F32, + RTLIB::Libcall Call_F64, + RTLIB::Libcall Call_F80, + RTLIB::Libcall Call_F128, + RTLIB::Libcall Call_PPCF128) { + RTLIB::Libcall LC; + switch (Node->getOperand(0).getValueType().getSimpleVT().SimpleTy) { + default: llvm_unreachable("Unexpected request for libcall!"); + case MVT::f32: LC = Call_F32; break; + case MVT::f64: LC = Call_F64; break; + case MVT::f80: LC = Call_F80; break; + case MVT::f128: LC = Call_F128; break; + case MVT::ppcf128: LC = Call_PPCF128; break; + } + + return ExpandLibCall(LC, Node, false); +} + +/// Issue libcalls to __{u}divmod to compute div / rem pairs. +void +SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, + SmallVectorImpl<SDValue> &Results) { + unsigned Opcode = Node->getOpcode(); + bool isSigned = Opcode == ISD::SDIVREM; + + RTLIB::Libcall LC; + switch (Node->getSimpleValueType(0).SimpleTy) { + default: llvm_unreachable("Unexpected request for libcall!"); + case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; + case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; + case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; + case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; + case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; + } + + // The input chain to this libcall is the entry node of the function. + // Legalizing the call will automatically add the previous call to the + // dependence. + SDValue InChain = DAG.getEntryNode(); + + EVT RetVT = Node->getValueType(0); + Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + for (const SDValue &Op : Node->op_values()) { + EVT ArgVT = Op.getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + Entry.Node = Op; + Entry.Ty = ArgTy; + Entry.IsSExt = isSigned; + Entry.IsZExt = !isSigned; + Args.push_back(Entry); + } + + // Also pass the return address of the remainder. + SDValue FIPtr = DAG.CreateStackTemporary(RetVT); + Entry.Node = FIPtr; + Entry.Ty = RetTy->getPointerTo(); + Entry.IsSExt = isSigned; + Entry.IsZExt = !isSigned; + Args.push_back(Entry); + + SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), + TLI.getPointerTy(DAG.getDataLayout())); + + SDLoc dl(Node); + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl) + .setChain(InChain) + .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, + std::move(Args)) + .setSExtResult(isSigned) + .setZExtResult(!isSigned); + + std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); + + // Remainder is loaded back from the stack frame. + SDValue Rem = + DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); + Results.push_back(CallInfo.first); + Results.push_back(Rem); +} + +/// Return true if sincos libcall is available. +static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { + RTLIB::Libcall LC; + switch (Node->getSimpleValueType(0).SimpleTy) { + default: llvm_unreachable("Unexpected request for libcall!"); + case MVT::f32: LC = RTLIB::SINCOS_F32; break; + case MVT::f64: LC = RTLIB::SINCOS_F64; break; + case MVT::f80: LC = RTLIB::SINCOS_F80; break; + case MVT::f128: LC = RTLIB::SINCOS_F128; break; + case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; + } + return TLI.getLibcallName(LC) != nullptr; +} + +/// Only issue sincos libcall if both sin and cos are needed. +static bool useSinCos(SDNode *Node) { + unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN + ? ISD::FCOS : ISD::FSIN; + + SDValue Op0 = Node->getOperand(0); + for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), + UE = Op0.getNode()->use_end(); UI != UE; ++UI) { + SDNode *User = *UI; + if (User == Node) + continue; + // The other user might have been turned into sincos already. + if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) + return true; + } + return false; +} + +/// Issue libcalls to sincos to compute sin / cos pairs. +void +SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, + SmallVectorImpl<SDValue> &Results) { + RTLIB::Libcall LC; + switch (Node->getSimpleValueType(0).SimpleTy) { + default: llvm_unreachable("Unexpected request for libcall!"); + case MVT::f32: LC = RTLIB::SINCOS_F32; break; + case MVT::f64: LC = RTLIB::SINCOS_F64; break; + case MVT::f80: LC = RTLIB::SINCOS_F80; break; + case MVT::f128: LC = RTLIB::SINCOS_F128; break; + case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; + } + + // The input chain to this libcall is the entry node of the function. + // Legalizing the call will automatically add the previous call to the + // dependence. + SDValue InChain = DAG.getEntryNode(); + + EVT RetVT = Node->getValueType(0); + Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + + // Pass the argument. + Entry.Node = Node->getOperand(0); + Entry.Ty = RetTy; + Entry.IsSExt = false; + Entry.IsZExt = false; + Args.push_back(Entry); + + // Pass the return address of sin. + SDValue SinPtr = DAG.CreateStackTemporary(RetVT); + Entry.Node = SinPtr; + Entry.Ty = RetTy->getPointerTo(); + Entry.IsSExt = false; + Entry.IsZExt = false; + Args.push_back(Entry); + + // Also pass the return address of the cos. + SDValue CosPtr = DAG.CreateStackTemporary(RetVT); + Entry.Node = CosPtr; + Entry.Ty = RetTy->getPointerTo(); + Entry.IsSExt = false; + Entry.IsZExt = false; + Args.push_back(Entry); + + SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), + TLI.getPointerTy(DAG.getDataLayout())); + + SDLoc dl(Node); + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( + TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, + std::move(Args)); + + std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); + + Results.push_back( + DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); + Results.push_back( + DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); +} + +/// This function is responsible for legalizing a +/// INT_TO_FP operation of the specified operand when the target requests that +/// we expand it. At this point, we know that the result and operand types are +/// legal for the target. +SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, + EVT DestVT, + const SDLoc &dl) { + EVT SrcVT = Op0.getValueType(); + + // TODO: Should any fast-math-flags be set for the created nodes? + LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); + if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { + LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " + "expansion\n"); + + // Get the stack frame index of a 8 byte buffer. + SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); + + // word offset constant for Hi/Lo address computation + SDValue WordOff = DAG.getConstant(sizeof(int), dl, + StackSlot.getValueType()); + // set up Hi and Lo (into buffer) address based on endian + SDValue Hi = StackSlot; + SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), + StackSlot, WordOff); + if (DAG.getDataLayout().isLittleEndian()) + std::swap(Hi, Lo); + + // if signed map to unsigned space + SDValue Op0Mapped; + if (isSigned) { + // constant used to invert sign bit (signed to unsigned mapping) + SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); + Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); + } else { + Op0Mapped = Op0; + } + // store the lo of the constructed double - based on integer input + SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, + MachinePointerInfo()); + // initial hi portion of constructed double + SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); + // store the hi of the constructed double - biased exponent + SDValue Store2 = + DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); + // load the constructed double + SDValue Load = + DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); + // FP constant to bias correct the final result + SDValue Bias = DAG.getConstantFP(isSigned ? + BitsToDouble(0x4330000080000000ULL) : + BitsToDouble(0x4330000000000000ULL), + dl, MVT::f64); + // subtract the bias + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); + // final result + SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); + return Result; + } + assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); + // Code below here assumes !isSigned without checking again. + + SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); + + SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, + DAG.getConstant(0, dl, SrcVT), ISD::SETLT); + SDValue Zero = DAG.getIntPtrConstant(0, dl), + Four = DAG.getIntPtrConstant(4, dl); + SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), + SignSet, Four, Zero); + + // If the sign bit of the integer is set, the large number will be treated + // as a negative number. To counteract this, the dynamic code adds an + // offset depending on the data type. + uint64_t FF; + switch (SrcVT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Unsupported integer type!"); + case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) + case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) + case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) + case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) + } + if (DAG.getDataLayout().isLittleEndian()) + FF <<= 32; + Constant *FudgeFactor = ConstantInt::get( + Type::getInt64Ty(*DAG.getContext()), FF); + + SDValue CPIdx = + DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); + unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); + Alignment = std::min(Alignment, 4u); + SDValue FudgeInReg; + if (DestVT == MVT::f32) + FudgeInReg = DAG.getLoad( + MVT::f32, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + Alignment); + else { + SDValue Load = DAG.getExtLoad( + ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, + Alignment); + HandleSDNode Handle(Load); + LegalizeOp(Load.getNode()); + FudgeInReg = Handle.getValue(); + } + + return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); +} + +/// This function is responsible for legalizing a +/// *INT_TO_FP operation of the specified operand when the target requests that +/// we promote it. At this point, we know that the result and operand types are +/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP +/// operation that takes a larger input. +SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, + bool isSigned, + const SDLoc &dl) { + // First step, figure out the appropriate *INT_TO_FP operation to use. + EVT NewInTy = LegalOp.getValueType(); + + unsigned OpToUse = 0; + + // Scan for the appropriate larger type to use. + while (true) { + NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); + assert(NewInTy.isInteger() && "Ran out of possibilities!"); + + // If the target supports SINT_TO_FP of this type, use it. + if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { + OpToUse = ISD::SINT_TO_FP; + break; + } + if (isSigned) continue; + + // If the target supports UINT_TO_FP of this type, use it. + if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { + OpToUse = ISD::UINT_TO_FP; + break; + } + + // Otherwise, try a larger type. + } + + // Okay, we found the operation and type to use. Zero extend our input to the + // desired type then run the operation on it. + return DAG.getNode(OpToUse, dl, DestVT, + DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, + dl, NewInTy, LegalOp)); +} + +/// This function is responsible for legalizing a +/// FP_TO_*INT operation of the specified operand when the target requests that +/// we promote it. At this point, we know that the result and operand types are +/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT +/// operation that returns a larger result. +SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, + bool isSigned, + const SDLoc &dl) { + // First step, figure out the appropriate FP_TO*INT operation to use. + EVT NewOutTy = DestVT; + + unsigned OpToUse = 0; + + // Scan for the appropriate larger type to use. + while (true) { + NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); + assert(NewOutTy.isInteger() && "Ran out of possibilities!"); + + // A larger signed type can hold all unsigned values of the requested type, + // so using FP_TO_SINT is valid + if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { + OpToUse = ISD::FP_TO_SINT; + break; + } + + // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. + if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { + OpToUse = ISD::FP_TO_UINT; + break; + } + + // Otherwise, try a larger type. + } + + // Okay, we found the operation and type to use. + SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); + + // Truncate the result of the extended FP_TO_*INT operation to the desired + // size. + return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); +} + +/// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. +SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { + EVT VT = Op.getValueType(); + EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); + unsigned Sz = VT.getScalarSizeInBits(); + + SDValue Tmp, Tmp2, Tmp3; + + // If we can, perform BSWAP first and then the mask+swap the i4, then i2 + // and finally the i1 pairs. + // TODO: We can easily support i4/i2 legal types if any target ever does. + if (Sz >= 8 && isPowerOf2_32(Sz)) { + // Create the masks - repeating the pattern every byte. + APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); + APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); + APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); + APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); + APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); + APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); + + // BSWAP if the type is wider than a single byte. + Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); + + // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); + Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + + // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); + Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + + // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); + Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + return Tmp; + } + + Tmp = DAG.getConstant(0, dl, VT); + for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { + if (I < J) + Tmp2 = + DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); + else + Tmp2 = + DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); + + APInt Shift(Sz, 1); + Shift <<= J; + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); + Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); + } + + return Tmp; +} + +/// Open code the operations for BSWAP of the specified operation. +SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { + EVT VT = Op.getValueType(); + EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; + switch (VT.getSimpleVT().getScalarType().SimpleTy) { + default: llvm_unreachable("Unhandled Expand type in BSWAP!"); + case MVT::i16: + // Use a rotate by 8. This can be further expanded if necessary. + return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); + case MVT::i32: + Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); + Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, + DAG.getConstant(0xFF0000, dl, VT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); + Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); + return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); + case MVT::i64: + Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); + Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); + Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); + Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); + Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); + Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); + Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); + Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, + DAG.getConstant(255ULL<<48, dl, VT)); + Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, + DAG.getConstant(255ULL<<40, dl, VT)); + Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, + DAG.getConstant(255ULL<<32, dl, VT)); + Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, + DAG.getConstant(255ULL<<24, dl, VT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, + DAG.getConstant(255ULL<<16, dl, VT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, + DAG.getConstant(255ULL<<8 , dl, VT)); + Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); + Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); + Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); + Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); + return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); + } +} + +bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { + LLVM_DEBUG(dbgs() << "Trying to expand node\n"); + SmallVector<SDValue, 8> Results; + SDLoc dl(Node); + SDValue Tmp1, Tmp2, Tmp3, Tmp4; + bool NeedInvert; + switch (Node->getOpcode()) { + case ISD::ABS: + if (TLI.expandABS(Node, Tmp1, DAG)) + Results.push_back(Tmp1); + break; + case ISD::CTPOP: + if (TLI.expandCTPOP(Node, Tmp1, DAG)) + Results.push_back(Tmp1); + break; + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + if (TLI.expandCTLZ(Node, Tmp1, DAG)) + Results.push_back(Tmp1); + break; + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + if (TLI.expandCTTZ(Node, Tmp1, DAG)) + Results.push_back(Tmp1); + break; + case ISD::BITREVERSE: + Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); + break; + case ISD::BSWAP: + Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); + break; + case ISD::FRAMEADDR: + case ISD::RETURNADDR: + case ISD::FRAME_TO_ARGS_OFFSET: + Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); + break; + case ISD::EH_DWARF_CFA: { + SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, + TLI.getPointerTy(DAG.getDataLayout())); + SDValue Offset = DAG.getNode(ISD::ADD, dl, + CfaArg.getValueType(), + DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, + CfaArg.getValueType()), + CfaArg); + SDValue FA = DAG.getNode( + ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), + DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); + Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), + FA, Offset)); + break; + } + case ISD::FLT_ROUNDS_: + Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); + break; + case ISD::EH_RETURN: + case ISD::EH_LABEL: + case ISD::PREFETCH: + case ISD::VAEND: + case ISD::EH_SJLJ_LONGJMP: + // If the target didn't expand these, there's nothing to do, so just + // preserve the chain and be done. + Results.push_back(Node->getOperand(0)); + break; + case ISD::READCYCLECOUNTER: + // If the target didn't expand this, just return 'zero' and preserve the + // chain. + Results.append(Node->getNumValues() - 1, + DAG.getConstant(0, dl, Node->getValueType(0))); + Results.push_back(Node->getOperand(0)); + break; + case ISD::EH_SJLJ_SETJMP: + // If the target didn't expand this, just return 'zero' and preserve the + // chain. + Results.push_back(DAG.getConstant(0, dl, MVT::i32)); + Results.push_back(Node->getOperand(0)); + break; + case ISD::ATOMIC_LOAD: { + // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. + SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); + SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); + SDValue Swap = DAG.getAtomicCmpSwap( + ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, + Node->getOperand(0), Node->getOperand(1), Zero, Zero, + cast<AtomicSDNode>(Node)->getMemOperand()); + Results.push_back(Swap.getValue(0)); + Results.push_back(Swap.getValue(1)); + break; + } + case ISD::ATOMIC_STORE: { + // There is no libcall for atomic store; fake it with ATOMIC_SWAP. + SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, + cast<AtomicSDNode>(Node)->getMemoryVT(), + Node->getOperand(0), + Node->getOperand(1), Node->getOperand(2), + cast<AtomicSDNode>(Node)->getMemOperand()); + Results.push_back(Swap.getValue(1)); + break; + } + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { + // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and + // splits out the success value as a comparison. Expanding the resulting + // ATOMIC_CMP_SWAP will produce a libcall. + SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); + SDValue Res = DAG.getAtomicCmpSwap( + ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, + Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), + Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); + + SDValue ExtRes = Res; + SDValue LHS = Res; + SDValue RHS = Node->getOperand(1); + + EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); + EVT OuterType = Node->getValueType(0); + switch (TLI.getExtendForAtomicOps()) { + case ISD::SIGN_EXTEND: + LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, + DAG.getValueType(AtomicType)); + RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, + Node->getOperand(2), DAG.getValueType(AtomicType)); + ExtRes = LHS; + break; + case ISD::ZERO_EXTEND: + LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, + DAG.getValueType(AtomicType)); + RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); + ExtRes = LHS; + break; + case ISD::ANY_EXTEND: + LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); + RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); + break; + default: + llvm_unreachable("Invalid atomic op extension"); + } + + SDValue Success = + DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); + + Results.push_back(ExtRes.getValue(0)); + Results.push_back(Success); + Results.push_back(Res.getValue(1)); + break; + } + case ISD::DYNAMIC_STACKALLOC: + ExpandDYNAMIC_STACKALLOC(Node, Results); + break; + case ISD::MERGE_VALUES: + for (unsigned i = 0; i < Node->getNumValues(); i++) + Results.push_back(Node->getOperand(i)); + break; + case ISD::UNDEF: { + EVT VT = Node->getValueType(0); + if (VT.isInteger()) + Results.push_back(DAG.getConstant(0, dl, VT)); + else { + assert(VT.isFloatingPoint() && "Unknown value type!"); + Results.push_back(DAG.getConstantFP(0, dl, VT)); + } + break; + } + case ISD::STRICT_FP_ROUND: + Tmp1 = EmitStackConvert(Node->getOperand(1), + Node->getValueType(0), + Node->getValueType(0), dl, Node->getOperand(0)); + ReplaceNode(Node, Tmp1.getNode()); + LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); + return true; + case ISD::FP_ROUND: + case ISD::BITCAST: + Tmp1 = EmitStackConvert(Node->getOperand(0), + Node->getValueType(0), + Node->getValueType(0), dl); + Results.push_back(Tmp1); + break; + case ISD::STRICT_FP_EXTEND: + Tmp1 = EmitStackConvert(Node->getOperand(1), + Node->getOperand(1).getValueType(), + Node->getValueType(0), dl, Node->getOperand(0)); + ReplaceNode(Node, Tmp1.getNode()); + LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); + return true; + case ISD::FP_EXTEND: + Tmp1 = EmitStackConvert(Node->getOperand(0), + Node->getOperand(0).getValueType(), + Node->getValueType(0), dl); + Results.push_back(Tmp1); + break; + case ISD::SIGN_EXTEND_INREG: { + EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); + EVT VT = Node->getValueType(0); + + // An in-register sign-extend of a boolean is a negation: + // 'true' (1) sign-extended is -1. + // 'false' (0) sign-extended is 0. + // However, we must mask the high bits of the source operand because the + // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. + + // TODO: Do this for vectors too? + if (ExtraVT.getSizeInBits() == 1) { + SDValue One = DAG.getConstant(1, dl, VT); + SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); + Results.push_back(Neg); + break; + } + + // NOTE: we could fall back on load/store here too for targets without + // SRA. However, it is doubtful that any exist. + EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); + unsigned BitsDiff = VT.getScalarSizeInBits() - + ExtraVT.getScalarSizeInBits(); + SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); + Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), + Node->getOperand(0), ShiftCst); + Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); + Results.push_back(Tmp1); + break; + } + case ISD::FP_ROUND_INREG: { + // The only way we can lower this is to turn it into a TRUNCSTORE, + // EXTLOAD pair, targeting a temporary location (a stack slot). + + // NOTE: there is a choice here between constantly creating new stack + // slots and always reusing the same one. We currently always create + // new ones, as reuse may inhibit scheduling. + EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); + Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, + Node->getValueType(0), dl); + Results.push_back(Tmp1); + break; + } + case ISD::UINT_TO_FP: + if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) { + Results.push_back(Tmp1); + break; + } + LLVM_FALLTHROUGH; + case ISD::SINT_TO_FP: + Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, + Node->getOperand(0), Node->getValueType(0), dl); + Results.push_back(Tmp1); + break; + case ISD::FP_TO_SINT: + if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) + Results.push_back(Tmp1); + break; + case ISD::FP_TO_UINT: + if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG)) + Results.push_back(Tmp1); + break; + case ISD::LROUND: + Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, + RTLIB::LROUND_F64, RTLIB::LROUND_F80, + RTLIB::LROUND_F128, + RTLIB::LROUND_PPCF128)); + break; + case ISD::LLROUND: + Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, + RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, + RTLIB::LLROUND_F128, + RTLIB::LLROUND_PPCF128)); + break; + case ISD::LRINT: + Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, + RTLIB::LRINT_F64, RTLIB::LRINT_F80, + RTLIB::LRINT_F128, + RTLIB::LRINT_PPCF128)); + break; + case ISD::LLRINT: + Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, + RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, + RTLIB::LLRINT_F128, + RTLIB::LLRINT_PPCF128)); + break; + case ISD::VAARG: + Results.push_back(DAG.expandVAArg(Node)); + Results.push_back(Results[0].getValue(1)); + break; + case ISD::VACOPY: + Results.push_back(DAG.expandVACopy(Node)); + break; + case ISD::EXTRACT_VECTOR_ELT: + if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) + // This must be an access of the only element. Return it. + Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), + Node->getOperand(0)); + else + Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); + Results.push_back(Tmp1); + break; + case ISD::EXTRACT_SUBVECTOR: + Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); + break; + case ISD::INSERT_SUBVECTOR: + Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); + break; + case ISD::CONCAT_VECTORS: + Results.push_back(ExpandVectorBuildThroughStack(Node)); + break; + case ISD::SCALAR_TO_VECTOR: + Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); + break; + case ISD::INSERT_VECTOR_ELT: + Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), + Node->getOperand(1), + Node->getOperand(2), dl)); + break; + case ISD::VECTOR_SHUFFLE: { + SmallVector<int, 32> NewMask; + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); + + EVT VT = Node->getValueType(0); + EVT EltVT = VT.getVectorElementType(); + SDValue Op0 = Node->getOperand(0); + SDValue Op1 = Node->getOperand(1); + if (!TLI.isTypeLegal(EltVT)) { + EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); + + // BUILD_VECTOR operands are allowed to be wider than the element type. + // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept + // it. + if (NewEltVT.bitsLT(EltVT)) { + // Convert shuffle node. + // If original node was v4i64 and the new EltVT is i32, + // cast operands to v8i32 and re-build the mask. + + // Calculate new VT, the size of the new VT should be equal to original. + EVT NewVT = + EVT::getVectorVT(*DAG.getContext(), NewEltVT, + VT.getSizeInBits() / NewEltVT.getSizeInBits()); + assert(NewVT.bitsEq(VT)); + + // cast operands to new VT + Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); + Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); + + // Convert the shuffle mask + unsigned int factor = + NewVT.getVectorNumElements()/VT.getVectorNumElements(); + + // EltVT gets smaller + assert(factor > 0); + + for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { + if (Mask[i] < 0) { + for (unsigned fi = 0; fi < factor; ++fi) + NewMask.push_back(Mask[i]); + } + else { + for (unsigned fi = 0; fi < factor; ++fi) + NewMask.push_back(Mask[i]*factor+fi); + } + } + Mask = NewMask; + VT = NewVT; + } + EltVT = NewEltVT; + } + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<SDValue, 16> Ops; + for (unsigned i = 0; i != NumElems; ++i) { + if (Mask[i] < 0) { + Ops.push_back(DAG.getUNDEF(EltVT)); + continue; + } + unsigned Idx = Mask[i]; + if (Idx < NumElems) + Ops.push_back(DAG.getNode( + ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, + DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); + else + Ops.push_back(DAG.getNode( + ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, + DAG.getConstant(Idx - NumElems, dl, + TLI.getVectorIdxTy(DAG.getDataLayout())))); + } + + Tmp1 = DAG.getBuildVector(VT, dl, Ops); + // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. + Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); + Results.push_back(Tmp1); + break; + } + case ISD::EXTRACT_ELEMENT: { + EVT OpTy = Node->getOperand(0).getValueType(); + if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { + // 1 -> Hi + Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), + DAG.getConstant(OpTy.getSizeInBits() / 2, dl, + TLI.getShiftAmountTy( + Node->getOperand(0).getValueType(), + DAG.getDataLayout()))); + Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); + } else { + // 0 -> Lo + Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), + Node->getOperand(0)); + } + Results.push_back(Tmp1); + break; + } + case ISD::STACKSAVE: + // Expand to CopyFromReg if the target set + // StackPointerRegisterToSaveRestore. + if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { + Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, + Node->getValueType(0))); + Results.push_back(Results[0].getValue(1)); + } else { + Results.push_back(DAG.getUNDEF(Node->getValueType(0))); + Results.push_back(Node->getOperand(0)); + } + break; + case ISD::STACKRESTORE: + // Expand to CopyToReg if the target set + // StackPointerRegisterToSaveRestore. + if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { + Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, + Node->getOperand(1))); + } else { + Results.push_back(Node->getOperand(0)); + } + break; + case ISD::GET_DYNAMIC_AREA_OFFSET: + Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); + Results.push_back(Results[0].getValue(0)); + break; + case ISD::FCOPYSIGN: + Results.push_back(ExpandFCOPYSIGN(Node)); + break; + case ISD::FNEG: + // Expand Y = FNEG(X) -> Y = SUB -0.0, X + Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); + // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. + Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, + Node->getOperand(0)); + Results.push_back(Tmp1); + break; + case ISD::FABS: + Results.push_back(ExpandFABS(Node)); + break; + case ISD::SMIN: + case ISD::SMAX: + case ISD::UMIN: + case ISD::UMAX: { + // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B + ISD::CondCode Pred; + switch (Node->getOpcode()) { + default: llvm_unreachable("How did we get here?"); + case ISD::SMAX: Pred = ISD::SETGT; break; + case ISD::SMIN: Pred = ISD::SETLT; break; + case ISD::UMAX: Pred = ISD::SETUGT; break; + case ISD::UMIN: Pred = ISD::SETULT; break; + } + Tmp1 = Node->getOperand(0); + Tmp2 = Node->getOperand(1); + Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); + Results.push_back(Tmp1); + break; + } + case ISD::FMINNUM: + case ISD::FMAXNUM: { + if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) + Results.push_back(Expanded); + break; + } + case ISD::FSIN: + case ISD::FCOS: { + EVT VT = Node->getValueType(0); + // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / + // fcos which share the same operand and both are used. + if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || + isSinCosLibcallAvailable(Node, TLI)) + && useSinCos(Node)) { + SDVTList VTs = DAG.getVTList(VT, VT); + Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); + if (Node->getOpcode() == ISD::FCOS) + Tmp1 = Tmp1.getValue(1); + Results.push_back(Tmp1); + } + break; + } + case ISD::FMAD: + llvm_unreachable("Illegal fmad should never be formed"); + + case ISD::FP16_TO_FP: + if (Node->getValueType(0) != MVT::f32) { + // We can extend to types bigger than f32 in two steps without changing + // the result. Since "f16 -> f32" is much more commonly available, give + // CodeGen the option of emitting that before resorting to a libcall. + SDValue Res = + DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); + Results.push_back( + DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); + } + break; + case ISD::FP_TO_FP16: + LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); + if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { + SDValue Op = Node->getOperand(0); + MVT SVT = Op.getSimpleValueType(); + if ((SVT == MVT::f64 || SVT == MVT::f80) && + TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { + // Under fastmath, we can expand this node into a fround followed by + // a float-half conversion. + SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, + DAG.getIntPtrConstant(0, dl)); + Results.push_back( + DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); + } + } + break; + case ISD::ConstantFP: { + ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); + // Check to see if this FP immediate is already legal. + // If this is a legal constant, turn it into a TargetConstantFP node. + if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), + DAG.getMachineFunction().getFunction().hasOptSize())) + Results.push_back(ExpandConstantFP(CFP, true)); + break; + } + case ISD::Constant: { + ConstantSDNode *CP = cast<ConstantSDNode>(Node); + Results.push_back(ExpandConstant(CP)); + break; + } + case ISD::FSUB: { + EVT VT = Node->getValueType(0); + if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && + TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { + const SDNodeFlags Flags = Node->getFlags(); + Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); + Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); + Results.push_back(Tmp1); + } + break; + } + case ISD::SUB: { + EVT VT = Node->getValueType(0); + assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && + TLI.isOperationLegalOrCustom(ISD::XOR, VT) && + "Don't know how to expand this subtraction!"); + Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), + DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, + VT)); + Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); + Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); + break; + } + case ISD::UREM: + case ISD::SREM: { + EVT VT = Node->getValueType(0); + bool isSigned = Node->getOpcode() == ISD::SREM; + unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; + unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; + Tmp2 = Node->getOperand(0); + Tmp3 = Node->getOperand(1); + if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { + SDVTList VTs = DAG.getVTList(VT, VT); + Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); + Results.push_back(Tmp1); + } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { + // X % Y -> X-X/Y*Y + Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); + Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); + Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); + Results.push_back(Tmp1); + } + break; + } + case ISD::UDIV: + case ISD::SDIV: { + bool isSigned = Node->getOpcode() == ISD::SDIV; + unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; + EVT VT = Node->getValueType(0); + if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { + SDVTList VTs = DAG.getVTList(VT, VT); + Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), + Node->getOperand(1)); + Results.push_back(Tmp1); + } + break; + } + case ISD::MULHU: + case ISD::MULHS: { + unsigned ExpandOpcode = + Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; + EVT VT = Node->getValueType(0); + SDVTList VTs = DAG.getVTList(VT, VT); + + Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), + Node->getOperand(1)); + Results.push_back(Tmp1.getValue(1)); + break; + } + case ISD::UMUL_LOHI: + case ISD::SMUL_LOHI: { + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + MVT VT = LHS.getSimpleValueType(); + unsigned MULHOpcode = + Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; + + if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { + Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); + Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); + break; + } + + SmallVector<SDValue, 4> Halves; + EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); + assert(TLI.isTypeLegal(HalfType)); + if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, + HalfType, DAG, + TargetLowering::MulExpansionKind::Always)) { + for (unsigned i = 0; i < 2; ++i) { + SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); + SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); + SDValue Shift = DAG.getConstant( + HalfType.getScalarSizeInBits(), dl, + TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); + Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); + Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); + } + break; + } + break; + } + case ISD::MUL: { + EVT VT = Node->getValueType(0); + SDVTList VTs = DAG.getVTList(VT, VT); + // See if multiply or divide can be lowered using two-result operations. + // We just need the low half of the multiply; try both the signed + // and unsigned forms. If the target supports both SMUL_LOHI and + // UMUL_LOHI, form a preference by checking which forms of plain + // MULH it supports. + bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); + bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); + bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); + bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); + unsigned OpToUse = 0; + if (HasSMUL_LOHI && !HasMULHS) { + OpToUse = ISD::SMUL_LOHI; + } else if (HasUMUL_LOHI && !HasMULHU) { + OpToUse = ISD::UMUL_LOHI; + } else if (HasSMUL_LOHI) { + OpToUse = ISD::SMUL_LOHI; + } else if (HasUMUL_LOHI) { + OpToUse = ISD::UMUL_LOHI; + } + if (OpToUse) { + Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), + Node->getOperand(1))); + break; + } + + SDValue Lo, Hi; + EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); + if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && + TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && + TLI.isOperationLegalOrCustom(ISD::SHL, VT) && + TLI.isOperationLegalOrCustom(ISD::OR, VT) && + TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, + TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { + Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); + Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); + SDValue Shift = + DAG.getConstant(HalfType.getSizeInBits(), dl, + TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); + Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); + Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); + } + break; + } + case ISD::FSHL: + case ISD::FSHR: + if (TLI.expandFunnelShift(Node, Tmp1, DAG)) + Results.push_back(Tmp1); + break; + case ISD::ROTL: + case ISD::ROTR: + if (TLI.expandROT(Node, Tmp1, DAG)) + Results.push_back(Tmp1); + break; + case ISD::SADDSAT: + case ISD::UADDSAT: + case ISD::SSUBSAT: + case ISD::USUBSAT: + Results.push_back(TLI.expandAddSubSat(Node, DAG)); + break; + case ISD::SMULFIX: + case ISD::SMULFIXSAT: + case ISD::UMULFIX: + Results.push_back(TLI.expandFixedPointMul(Node, DAG)); + break; + case ISD::ADDCARRY: + case ISD::SUBCARRY: { + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + SDValue Carry = Node->getOperand(2); + + bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; + + // Initial add of the 2 operands. + unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; + EVT VT = LHS.getValueType(); + SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); + + // Initial check for overflow. + EVT CarryType = Node->getValueType(1); + EVT SetCCType = getSetCCResultType(Node->getValueType(0)); + ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; + SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); + + // Add of the sum and the carry. + SDValue CarryExt = + DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1); + SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); + + // Second check for overflow. If we are adding, we can only overflow if the + // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. + // If we are subtracting, we can only overflow if the initial sum is 0 and + // the carry is set, resulting in a new sum of all 1s. + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue Overflow2 = + IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) + : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); + Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, + DAG.getZExtOrTrunc(Carry, dl, SetCCType)); + + SDValue ResultCarry = + DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); + + Results.push_back(Sum2); + Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); + break; + } + case ISD::SADDO: + case ISD::SSUBO: { + SDValue Result, Overflow; + TLI.expandSADDSUBO(Node, Result, Overflow, DAG); + Results.push_back(Result); + Results.push_back(Overflow); + break; + } + case ISD::UADDO: + case ISD::USUBO: { + SDValue Result, Overflow; + TLI.expandUADDSUBO(Node, Result, Overflow, DAG); + Results.push_back(Result); + Results.push_back(Overflow); + break; + } + case ISD::UMULO: + case ISD::SMULO: { + SDValue Result, Overflow; + if (TLI.expandMULO(Node, Result, Overflow, DAG)) { + Results.push_back(Result); + Results.push_back(Overflow); + } + break; + } + case ISD::BUILD_PAIR: { + EVT PairTy = Node->getValueType(0); + Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); + Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); + Tmp2 = DAG.getNode( + ISD::SHL, dl, PairTy, Tmp2, + DAG.getConstant(PairTy.getSizeInBits() / 2, dl, + TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); + Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); + break; + } + case ISD::SELECT: + Tmp1 = Node->getOperand(0); + Tmp2 = Node->getOperand(1); + Tmp3 = Node->getOperand(2); + if (Tmp1.getOpcode() == ISD::SETCC) { + Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), + Tmp2, Tmp3, + cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); + } else { + Tmp1 = DAG.getSelectCC(dl, Tmp1, + DAG.getConstant(0, dl, Tmp1.getValueType()), + Tmp2, Tmp3, ISD::SETNE); + } + Tmp1->setFlags(Node->getFlags()); + Results.push_back(Tmp1); + break; + case ISD::BR_JT: { + SDValue Chain = Node->getOperand(0); + SDValue Table = Node->getOperand(1); + SDValue Index = Node->getOperand(2); + + const DataLayout &TD = DAG.getDataLayout(); + EVT PTy = TLI.getPointerTy(TD); + + unsigned EntrySize = + DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); + + // For power-of-two jumptable entry sizes convert multiplication to a shift. + // This transformation needs to be done here since otherwise the MIPS + // backend will end up emitting a three instruction multiply sequence + // instead of a single shift and MSP430 will call a runtime function. + if (llvm::isPowerOf2_32(EntrySize)) + Index = DAG.getNode( + ISD::SHL, dl, Index.getValueType(), Index, + DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); + else + Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, + DAG.getConstant(EntrySize, dl, Index.getValueType())); + SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), + Index, Table); + + EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); + SDValue LD = DAG.getExtLoad( + ISD::SEXTLOAD, dl, PTy, Chain, Addr, + MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); + Addr = LD; + if (TLI.isJumpTableRelative()) { + // For PIC, the sequence is: + // BRIND(load(Jumptable + index) + RelocBase) + // RelocBase can be JumpTable, GOT or some sort of global base. + Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, + TLI.getPICJumpTableRelocBase(Table, DAG)); + } + + Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); + Results.push_back(Tmp1); + break; + } + case ISD::BRCOND: + // Expand brcond's setcc into its constituent parts and create a BR_CC + // Node. + Tmp1 = Node->getOperand(0); + Tmp2 = Node->getOperand(1); + if (Tmp2.getOpcode() == ISD::SETCC) { + Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, + Tmp1, Tmp2.getOperand(2), + Tmp2.getOperand(0), Tmp2.getOperand(1), + Node->getOperand(2)); + } else { + // We test only the i1 bit. Skip the AND if UNDEF or another AND. + if (Tmp2.isUndef() || + (Tmp2.getOpcode() == ISD::AND && + isa<ConstantSDNode>(Tmp2.getOperand(1)) && + cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) + Tmp3 = Tmp2; + else + Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, + DAG.getConstant(1, dl, Tmp2.getValueType())); + Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, + DAG.getCondCode(ISD::SETNE), Tmp3, + DAG.getConstant(0, dl, Tmp3.getValueType()), + Node->getOperand(2)); + } + Results.push_back(Tmp1); + break; + case ISD::SETCC: { + Tmp1 = Node->getOperand(0); + Tmp2 = Node->getOperand(1); + Tmp3 = Node->getOperand(2); + bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, + Tmp3, NeedInvert, dl); + + if (Legalized) { + // If we expanded the SETCC by swapping LHS and RHS, or by inverting the + // condition code, create a new SETCC node. + if (Tmp3.getNode()) + Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), + Tmp1, Tmp2, Tmp3, Node->getFlags()); + + // If we expanded the SETCC by inverting the condition code, then wrap + // the existing SETCC in a NOT to restore the intended condition. + if (NeedInvert) + Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); + + Results.push_back(Tmp1); + break; + } + + // Otherwise, SETCC for the given comparison type must be completely + // illegal; expand it into a SELECT_CC. + EVT VT = Node->getValueType(0); + int TrueValue; + switch (TLI.getBooleanContents(Tmp1.getValueType())) { + case TargetLowering::ZeroOrOneBooleanContent: + case TargetLowering::UndefinedBooleanContent: + TrueValue = 1; + break; + case TargetLowering::ZeroOrNegativeOneBooleanContent: + TrueValue = -1; + break; + } + Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, + DAG.getConstant(TrueValue, dl, VT), + DAG.getConstant(0, dl, VT), + Tmp3); + Tmp1->setFlags(Node->getFlags()); + Results.push_back(Tmp1); + break; + } + case ISD::SELECT_CC: { + Tmp1 = Node->getOperand(0); // LHS + Tmp2 = Node->getOperand(1); // RHS + Tmp3 = Node->getOperand(2); // True + Tmp4 = Node->getOperand(3); // False + EVT VT = Node->getValueType(0); + SDValue CC = Node->getOperand(4); + ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); + + if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { + // If the condition code is legal, then we need to expand this + // node using SETCC and SELECT. + EVT CmpVT = Tmp1.getValueType(); + assert(!TLI.isOperationExpand(ISD::SELECT, VT) && + "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " + "expanded."); + EVT CCVT = getSetCCResultType(CmpVT); + SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); + Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); + break; + } + + // SELECT_CC is legal, so the condition code must not be. + bool Legalized = false; + // Try to legalize by inverting the condition. This is for targets that + // might support an ordered version of a condition, but not the unordered + // version (or vice versa). + ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, + Tmp1.getValueType().isInteger()); + if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { + // Use the new condition code and swap true and false + Legalized = true; + Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); + Tmp1->setFlags(Node->getFlags()); + } else { + // If The inverse is not legal, then try to swap the arguments using + // the inverse condition code. + ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); + if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { + // The swapped inverse condition is legal, so swap true and false, + // lhs and rhs. + Legalized = true; + Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); + Tmp1->setFlags(Node->getFlags()); + } + } + + if (!Legalized) { + Legalized = LegalizeSetCCCondCode( + getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, + dl); + + assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); + + // If we expanded the SETCC by inverting the condition code, then swap + // the True/False operands to match. + if (NeedInvert) + std::swap(Tmp3, Tmp4); + + // If we expanded the SETCC by swapping LHS and RHS, or by inverting the + // condition code, create a new SELECT_CC node. + if (CC.getNode()) { + Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), + Tmp1, Tmp2, Tmp3, Tmp4, CC); + } else { + Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); + CC = DAG.getCondCode(ISD::SETNE); + Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, + Tmp2, Tmp3, Tmp4, CC); + } + Tmp1->setFlags(Node->getFlags()); + } + Results.push_back(Tmp1); + break; + } + case ISD::BR_CC: { + Tmp1 = Node->getOperand(0); // Chain + Tmp2 = Node->getOperand(2); // LHS + Tmp3 = Node->getOperand(3); // RHS + Tmp4 = Node->getOperand(1); // CC + + bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( + Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); + (void)Legalized; + assert(Legalized && "Can't legalize BR_CC with legal condition!"); + + assert(!NeedInvert && "Don't know how to invert BR_CC!"); + + // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC + // node. + if (Tmp4.getNode()) { + Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, + Tmp4, Tmp2, Tmp3, Node->getOperand(4)); + } else { + Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); + Tmp4 = DAG.getCondCode(ISD::SETNE); + Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, + Tmp2, Tmp3, Node->getOperand(4)); + } + Results.push_back(Tmp1); + break; + } + case ISD::BUILD_VECTOR: + Results.push_back(ExpandBUILD_VECTOR(Node)); + break; + case ISD::SRA: + case ISD::SRL: + case ISD::SHL: { + // Scalarize vector SRA/SRL/SHL. + EVT VT = Node->getValueType(0); + assert(VT.isVector() && "Unable to legalize non-vector shift"); + assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); + unsigned NumElem = VT.getVectorNumElements(); + + SmallVector<SDValue, 8> Scalars; + for (unsigned Idx = 0; Idx < NumElem; Idx++) { + SDValue Ex = DAG.getNode( + ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), + DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); + SDValue Sh = DAG.getNode( + ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), + DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); + Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, + VT.getScalarType(), Ex, Sh)); + } + + SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); + ReplaceNode(SDValue(Node, 0), Result); + break; + } + case ISD::VECREDUCE_FADD: + case ISD::VECREDUCE_FMUL: + case ISD::VECREDUCE_ADD: + case ISD::VECREDUCE_MUL: + case ISD::VECREDUCE_AND: + case ISD::VECREDUCE_OR: + case ISD::VECREDUCE_XOR: + case ISD::VECREDUCE_SMAX: + case ISD::VECREDUCE_SMIN: + case ISD::VECREDUCE_UMAX: + case ISD::VECREDUCE_UMIN: + case ISD::VECREDUCE_FMAX: + case ISD::VECREDUCE_FMIN: + Results.push_back(TLI.expandVecReduce(Node, DAG)); + break; + case ISD::GLOBAL_OFFSET_TABLE: + case ISD::GlobalAddress: + case ISD::GlobalTLSAddress: + case ISD::ExternalSymbol: + case ISD::ConstantPool: + case ISD::JumpTable: + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_VOID: + // FIXME: Custom lowering for these operations shouldn't return null! + break; + } + + // Replace the original node with the legalized result. + if (Results.empty()) { + LLVM_DEBUG(dbgs() << "Cannot expand node\n"); + return false; + } + + LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); + ReplaceNode(Node, Results.data()); + return true; +} + +void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { + LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); + SmallVector<SDValue, 8> Results; + SDLoc dl(Node); + // FIXME: Check flags on the node to see if we can use a finite call. + bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; + unsigned Opc = Node->getOpcode(); + switch (Opc) { + case ISD::ATOMIC_FENCE: { + // If the target didn't lower this, lower it to '__sync_synchronize()' call + // FIXME: handle "fence singlethread" more efficiently. + TargetLowering::ArgListTy Args; + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl) + .setChain(Node->getOperand(0)) + .setLibCallee( + CallingConv::C, Type::getVoidTy(*DAG.getContext()), + DAG.getExternalSymbol("__sync_synchronize", + TLI.getPointerTy(DAG.getDataLayout())), + std::move(Args)); + + std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); + + Results.push_back(CallResult.second); + break; + } + // By default, atomic intrinsics are marked Legal and lowered. Targets + // which don't support them directly, however, may want libcalls, in which + // case they mark them Expand, and we get here. + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_CLR: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: + case ISD::ATOMIC_CMP_SWAP: { + MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); + RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); + assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); + + std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); + Results.push_back(Tmp.first); + Results.push_back(Tmp.second); + break; + } + case ISD::TRAP: { + // If this operation is not supported, lower it to 'abort()' call + TargetLowering::ArgListTy Args; + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl) + .setChain(Node->getOperand(0)) + .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), + DAG.getExternalSymbol( + "abort", TLI.getPointerTy(DAG.getDataLayout())), + std::move(Args)); + std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); + + Results.push_back(CallResult.second); + break; + } + case ISD::FMINNUM: + case ISD::STRICT_FMINNUM: + Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, + RTLIB::FMIN_F80, RTLIB::FMIN_F128, + RTLIB::FMIN_PPCF128)); + break; + case ISD::FMAXNUM: + case ISD::STRICT_FMAXNUM: + Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, + RTLIB::FMAX_F80, RTLIB::FMAX_F128, + RTLIB::FMAX_PPCF128)); + break; + case ISD::FSQRT: + case ISD::STRICT_FSQRT: + Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, + RTLIB::SQRT_F80, RTLIB::SQRT_F128, + RTLIB::SQRT_PPCF128)); + break; + case ISD::FCBRT: + Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, + RTLIB::CBRT_F80, RTLIB::CBRT_F128, + RTLIB::CBRT_PPCF128)); + break; + case ISD::FSIN: + case ISD::STRICT_FSIN: + Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, + RTLIB::SIN_F80, RTLIB::SIN_F128, + RTLIB::SIN_PPCF128)); + break; + case ISD::FCOS: + case ISD::STRICT_FCOS: + Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, + RTLIB::COS_F80, RTLIB::COS_F128, + RTLIB::COS_PPCF128)); + break; + case ISD::FSINCOS: + // Expand into sincos libcall. + ExpandSinCosLibCall(Node, Results); + break; + case ISD::FLOG: + case ISD::STRICT_FLOG: + if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, + RTLIB::LOG_FINITE_F64, + RTLIB::LOG_FINITE_F80, + RTLIB::LOG_FINITE_F128, + RTLIB::LOG_FINITE_PPCF128)); + else + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, + RTLIB::LOG_F80, RTLIB::LOG_F128, + RTLIB::LOG_PPCF128)); + break; + case ISD::FLOG2: + case ISD::STRICT_FLOG2: + if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, + RTLIB::LOG2_FINITE_F64, + RTLIB::LOG2_FINITE_F80, + RTLIB::LOG2_FINITE_F128, + RTLIB::LOG2_FINITE_PPCF128)); + else + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, + RTLIB::LOG2_F80, RTLIB::LOG2_F128, + RTLIB::LOG2_PPCF128)); + break; + case ISD::FLOG10: + case ISD::STRICT_FLOG10: + if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, + RTLIB::LOG10_FINITE_F64, + RTLIB::LOG10_FINITE_F80, + RTLIB::LOG10_FINITE_F128, + RTLIB::LOG10_FINITE_PPCF128)); + else + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, + RTLIB::LOG10_F80, RTLIB::LOG10_F128, + RTLIB::LOG10_PPCF128)); + break; + case ISD::FEXP: + case ISD::STRICT_FEXP: + if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) + Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, + RTLIB::EXP_FINITE_F64, + RTLIB::EXP_FINITE_F80, + RTLIB::EXP_FINITE_F128, + RTLIB::EXP_FINITE_PPCF128)); + else + Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, + RTLIB::EXP_F80, RTLIB::EXP_F128, + RTLIB::EXP_PPCF128)); + break; + case ISD::FEXP2: + case ISD::STRICT_FEXP2: + if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) + Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, + RTLIB::EXP2_FINITE_F64, + RTLIB::EXP2_FINITE_F80, + RTLIB::EXP2_FINITE_F128, + RTLIB::EXP2_FINITE_PPCF128)); + else + Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, + RTLIB::EXP2_F80, RTLIB::EXP2_F128, + RTLIB::EXP2_PPCF128)); + break; + case ISD::FTRUNC: + case ISD::STRICT_FTRUNC: + Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, + RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, + RTLIB::TRUNC_PPCF128)); + break; + case ISD::FFLOOR: + case ISD::STRICT_FFLOOR: + Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, + RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, + RTLIB::FLOOR_PPCF128)); + break; + case ISD::FCEIL: + case ISD::STRICT_FCEIL: + Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, + RTLIB::CEIL_F80, RTLIB::CEIL_F128, + RTLIB::CEIL_PPCF128)); + break; + case ISD::FRINT: + case ISD::STRICT_FRINT: + Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, + RTLIB::RINT_F80, RTLIB::RINT_F128, + RTLIB::RINT_PPCF128)); + break; + case ISD::FNEARBYINT: + case ISD::STRICT_FNEARBYINT: + Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, + RTLIB::NEARBYINT_F64, + RTLIB::NEARBYINT_F80, + RTLIB::NEARBYINT_F128, + RTLIB::NEARBYINT_PPCF128)); + break; + case ISD::FROUND: + case ISD::STRICT_FROUND: + Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, + RTLIB::ROUND_F64, + RTLIB::ROUND_F80, + RTLIB::ROUND_F128, + RTLIB::ROUND_PPCF128)); + break; + case ISD::FPOWI: + case ISD::STRICT_FPOWI: + Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, + RTLIB::POWI_F80, RTLIB::POWI_F128, + RTLIB::POWI_PPCF128)); + break; + case ISD::FPOW: + case ISD::STRICT_FPOW: + if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) + Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, + RTLIB::POW_FINITE_F64, + RTLIB::POW_FINITE_F80, + RTLIB::POW_FINITE_F128, + RTLIB::POW_FINITE_PPCF128)); + else + Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, + RTLIB::POW_F80, RTLIB::POW_F128, + RTLIB::POW_PPCF128)); + break; + case ISD::FDIV: + Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, + RTLIB::DIV_F80, RTLIB::DIV_F128, + RTLIB::DIV_PPCF128)); + break; + case ISD::FREM: + case ISD::STRICT_FREM: + Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, + RTLIB::REM_F80, RTLIB::REM_F128, + RTLIB::REM_PPCF128)); + break; + case ISD::FMA: + case ISD::STRICT_FMA: + Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, + RTLIB::FMA_F80, RTLIB::FMA_F128, + RTLIB::FMA_PPCF128)); + break; + case ISD::FADD: + Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, + RTLIB::ADD_F80, RTLIB::ADD_F128, + RTLIB::ADD_PPCF128)); + break; + case ISD::FMUL: + Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, + RTLIB::MUL_F80, RTLIB::MUL_F128, + RTLIB::MUL_PPCF128)); + break; + case ISD::FP16_TO_FP: + if (Node->getValueType(0) == MVT::f32) { + Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); + } + break; + case ISD::FP_TO_FP16: { + RTLIB::Libcall LC = + RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); + assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); + Results.push_back(ExpandLibCall(LC, Node, false)); + break; + } + case ISD::FSUB: + Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, + RTLIB::SUB_F80, RTLIB::SUB_F128, + RTLIB::SUB_PPCF128)); + break; + case ISD::SREM: + Results.push_back(ExpandIntLibCall(Node, true, + RTLIB::SREM_I8, + RTLIB::SREM_I16, RTLIB::SREM_I32, + RTLIB::SREM_I64, RTLIB::SREM_I128)); + break; + case ISD::UREM: + Results.push_back(ExpandIntLibCall(Node, false, + RTLIB::UREM_I8, + RTLIB::UREM_I16, RTLIB::UREM_I32, + RTLIB::UREM_I64, RTLIB::UREM_I128)); + break; + case ISD::SDIV: + Results.push_back(ExpandIntLibCall(Node, true, + RTLIB::SDIV_I8, + RTLIB::SDIV_I16, RTLIB::SDIV_I32, + RTLIB::SDIV_I64, RTLIB::SDIV_I128)); + break; + case ISD::UDIV: + Results.push_back(ExpandIntLibCall(Node, false, + RTLIB::UDIV_I8, + RTLIB::UDIV_I16, RTLIB::UDIV_I32, + RTLIB::UDIV_I64, RTLIB::UDIV_I128)); + break; + case ISD::SDIVREM: + case ISD::UDIVREM: + // Expand into divrem libcall + ExpandDivRemLibCall(Node, Results); + break; + case ISD::MUL: + Results.push_back(ExpandIntLibCall(Node, false, + RTLIB::MUL_I8, + RTLIB::MUL_I16, RTLIB::MUL_I32, + RTLIB::MUL_I64, RTLIB::MUL_I128)); + break; + case ISD::CTLZ_ZERO_UNDEF: + switch (Node->getSimpleValueType(0).SimpleTy) { + default: + llvm_unreachable("LibCall explicitly requested, but not available"); + case MVT::i32: + Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); + break; + case MVT::i64: + Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); + break; + case MVT::i128: + Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); + break; + } + break; + } + + // Replace the original node with the legalized result. + if (!Results.empty()) { + LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); + ReplaceNode(Node, Results.data()); + } else + LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); +} + +// Determine the vector type to use in place of an original scalar element when +// promoting equally sized vectors. +static MVT getPromotedVectorElementType(const TargetLowering &TLI, + MVT EltVT, MVT NewEltVT) { + unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); + MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); + assert(TLI.isTypeLegal(MidVT) && "unexpected"); + return MidVT; +} + +void SelectionDAGLegalize::PromoteNode(SDNode *Node) { + LLVM_DEBUG(dbgs() << "Trying to promote node\n"); + SmallVector<SDValue, 8> Results; + MVT OVT = Node->getSimpleValueType(0); + if (Node->getOpcode() == ISD::UINT_TO_FP || + Node->getOpcode() == ISD::SINT_TO_FP || + Node->getOpcode() == ISD::SETCC || + Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || + Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { + OVT = Node->getOperand(0).getSimpleValueType(); + } + if (Node->getOpcode() == ISD::BR_CC) + OVT = Node->getOperand(2).getSimpleValueType(); + MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); + SDLoc dl(Node); + SDValue Tmp1, Tmp2, Tmp3; + switch (Node->getOpcode()) { + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + case ISD::CTPOP: + // Zero extend the argument. + Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); + if (Node->getOpcode() == ISD::CTTZ) { + // The count is the same in the promoted type except if the original + // value was zero. This can be handled by setting the bit just off + // the top of the original type. + auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), + OVT.getSizeInBits()); + Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, + DAG.getConstant(TopBit, dl, NVT)); + } + // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is + // already the correct result. + Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); + if (Node->getOpcode() == ISD::CTLZ || + Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { + // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) + Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, + DAG.getConstant(NVT.getSizeInBits() - + OVT.getSizeInBits(), dl, NVT)); + } + Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); + break; + case ISD::BITREVERSE: + case ISD::BSWAP: { + unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); + Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); + Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); + Tmp1 = DAG.getNode( + ISD::SRL, dl, NVT, Tmp1, + DAG.getConstant(DiffBits, dl, + TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); + + Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); + break; + } + case ISD::FP_TO_UINT: + case ISD::FP_TO_SINT: + Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), + Node->getOpcode() == ISD::FP_TO_SINT, dl); + Results.push_back(Tmp1); + break; + case ISD::UINT_TO_FP: + case ISD::SINT_TO_FP: + Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), + Node->getOpcode() == ISD::SINT_TO_FP, dl); + Results.push_back(Tmp1); + break; + case ISD::VAARG: { + SDValue Chain = Node->getOperand(0); // Get the chain. + SDValue Ptr = Node->getOperand(1); // Get the pointer. + + unsigned TruncOp; + if (OVT.isVector()) { + TruncOp = ISD::BITCAST; + } else { + assert(OVT.isInteger() + && "VAARG promotion is supported only for vectors or integer types"); + TruncOp = ISD::TRUNCATE; + } + + // Perform the larger operation, then convert back + Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), + Node->getConstantOperandVal(3)); + Chain = Tmp1.getValue(1); + + Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); + + // Modified the chain result - switch anything that used the old chain to + // use the new one. + DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); + DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); + if (UpdatedNodes) { + UpdatedNodes->insert(Tmp2.getNode()); + UpdatedNodes->insert(Chain.getNode()); + } + ReplacedNode(Node); + break; + } + case ISD::MUL: + case ISD::SDIV: + case ISD::SREM: + case ISD::UDIV: + case ISD::UREM: + case ISD::AND: + case ISD::OR: + case ISD::XOR: { + unsigned ExtOp, TruncOp; + if (OVT.isVector()) { + ExtOp = ISD::BITCAST; + TruncOp = ISD::BITCAST; + } else { + assert(OVT.isInteger() && "Cannot promote logic operation"); + + switch (Node->getOpcode()) { + default: + ExtOp = ISD::ANY_EXTEND; + break; + case ISD::SDIV: + case ISD::SREM: + ExtOp = ISD::SIGN_EXTEND; + break; + case ISD::UDIV: + case ISD::UREM: + ExtOp = ISD::ZERO_EXTEND; + break; + } + TruncOp = ISD::TRUNCATE; + } + // Promote each of the values to the new type. + Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); + // Perform the larger operation, then convert back + Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); + Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); + break; + } + case ISD::UMUL_LOHI: + case ISD::SMUL_LOHI: { + // Promote to a multiply in a wider integer type. + unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND + : ISD::SIGN_EXTEND; + Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); + Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); + + auto &DL = DAG.getDataLayout(); + unsigned OriginalSize = OVT.getScalarSizeInBits(); + Tmp2 = DAG.getNode( + ISD::SRL, dl, NVT, Tmp1, + DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); + Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); + Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); + break; + } + case ISD::SELECT: { + unsigned ExtOp, TruncOp; + if (Node->getValueType(0).isVector() || + Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { + ExtOp = ISD::BITCAST; + TruncOp = ISD::BITCAST; + } else if (Node->getValueType(0).isInteger()) { + ExtOp = ISD::ANY_EXTEND; + TruncOp = ISD::TRUNCATE; + } else { + ExtOp = ISD::FP_EXTEND; + TruncOp = ISD::FP_ROUND; + } + Tmp1 = Node->getOperand(0); + // Promote each of the values to the new type. + Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); + Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); + // Perform the larger operation, then round down. + Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); + Tmp1->setFlags(Node->getFlags()); + if (TruncOp != ISD::FP_ROUND) + Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); + else + Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, + DAG.getIntPtrConstant(0, dl)); + Results.push_back(Tmp1); + break; + } + case ISD::VECTOR_SHUFFLE: { + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); + + // Cast the two input vectors. + Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); + + // Convert the shuffle mask to the right # elements. + Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); + Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); + Results.push_back(Tmp1); + break; + } + case ISD::SETCC: { + unsigned ExtOp = ISD::FP_EXTEND; + if (NVT.isInteger()) { + ISD::CondCode CCCode = + cast<CondCodeSDNode>(Node->getOperand(2))->get(); + ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + } + Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); + Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, + Tmp2, Node->getOperand(2), Node->getFlags())); + break; + } + case ISD::BR_CC: { + unsigned ExtOp = ISD::FP_EXTEND; + if (NVT.isInteger()) { + ISD::CondCode CCCode = + cast<CondCodeSDNode>(Node->getOperand(1))->get(); + ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + } + Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); + Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); + Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), + Node->getOperand(0), Node->getOperand(1), + Tmp1, Tmp2, Node->getOperand(4))); + break; + } + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + case ISD::FMINNUM: + case ISD::FMAXNUM: + case ISD::FPOW: + Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); + Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, + Node->getFlags()); + Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, + Tmp3, DAG.getIntPtrConstant(0, dl))); + break; + case ISD::FMA: + Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); + Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); + Results.push_back( + DAG.getNode(ISD::FP_ROUND, dl, OVT, + DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), + DAG.getIntPtrConstant(0, dl))); + break; + case ISD::FCOPYSIGN: + case ISD::FPOWI: { + Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); + Tmp2 = Node->getOperand(1); + Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); + + // fcopysign doesn't change anything but the sign bit, so + // (fp_round (fcopysign (fpext a), b)) + // is as precise as + // (fp_round (fpext a)) + // which is a no-op. Mark it as a TRUNCating FP_ROUND. + const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); + Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, + Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); + break; + } + case ISD::FFLOOR: + case ISD::FCEIL: + case ISD::FRINT: + case ISD::FNEARBYINT: + case ISD::FROUND: + case ISD::FTRUNC: + case ISD::FNEG: + case ISD::FSQRT: + case ISD::FSIN: + case ISD::FCOS: + case ISD::FLOG: + case ISD::FLOG2: + case ISD::FLOG10: + case ISD::FABS: + case ISD::FEXP: + case ISD::FEXP2: + Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); + Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, + Tmp2, DAG.getIntPtrConstant(0, dl))); + break; + case ISD::BUILD_VECTOR: { + MVT EltVT = OVT.getVectorElementType(); + MVT NewEltVT = NVT.getVectorElementType(); + + // Handle bitcasts to a different vector type with the same total bit size + // + // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 + // => + // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) + + assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && + "Invalid promote type for build_vector"); + assert(NewEltVT.bitsLT(EltVT) && "not handled"); + + MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); + + SmallVector<SDValue, 8> NewOps; + for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { + SDValue Op = Node->getOperand(I); + NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); + } + + SDLoc SL(Node); + SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); + SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); + Results.push_back(CvtVec); + break; + } + case ISD::EXTRACT_VECTOR_ELT: { + MVT EltVT = OVT.getVectorElementType(); + MVT NewEltVT = NVT.getVectorElementType(); + + // Handle bitcasts to a different vector type with the same total bit size. + // + // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 + // => + // v4i32:castx = bitcast x:v2i64 + // + // i64 = bitcast + // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), + // (i32 (extract_vector_elt castx, (2 * y + 1))) + // + + assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && + "Invalid promote type for extract_vector_elt"); + assert(NewEltVT.bitsLT(EltVT) && "not handled"); + + MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); + unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); + + SDValue Idx = Node->getOperand(1); + EVT IdxVT = Idx.getValueType(); + SDLoc SL(Node); + SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); + SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); + + SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); + + SmallVector<SDValue, 8> NewOps; + for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { + SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); + SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); + + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, + CastVec, TmpIdx); + NewOps.push_back(Elt); + } + + SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); + Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); + break; + } + case ISD::INSERT_VECTOR_ELT: { + MVT EltVT = OVT.getVectorElementType(); + MVT NewEltVT = NVT.getVectorElementType(); + + // Handle bitcasts to a different vector type with the same total bit size + // + // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 + // => + // v4i32:castx = bitcast x:v2i64 + // v2i32:casty = bitcast y:i64 + // + // v2i64 = bitcast + // (v4i32 insert_vector_elt + // (v4i32 insert_vector_elt v4i32:castx, + // (extract_vector_elt casty, 0), 2 * z), + // (extract_vector_elt casty, 1), (2 * z + 1)) + + assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && + "Invalid promote type for insert_vector_elt"); + assert(NewEltVT.bitsLT(EltVT) && "not handled"); + + MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); + unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); + + SDValue Val = Node->getOperand(1); + SDValue Idx = Node->getOperand(2); + EVT IdxVT = Idx.getValueType(); + SDLoc SL(Node); + + SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); + SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); + + SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); + SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); + + SDValue NewVec = CastVec; + for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { + SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); + SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); + + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, + CastVal, IdxOffset); + + NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, + NewVec, Elt, InEltIdx); + } + + Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); + break; + } + case ISD::SCALAR_TO_VECTOR: { + MVT EltVT = OVT.getVectorElementType(); + MVT NewEltVT = NVT.getVectorElementType(); + + // Handle bitcasts to different vector type with the same total bit size. + // + // e.g. v2i64 = scalar_to_vector x:i64 + // => + // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) + // + + MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); + SDValue Val = Node->getOperand(0); + SDLoc SL(Node); + + SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); + SDValue Undef = DAG.getUNDEF(MidVT); + + SmallVector<SDValue, 8> NewElts; + NewElts.push_back(CastVal); + for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) + NewElts.push_back(Undef); + + SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); + SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); + Results.push_back(CvtVec); + break; + } + case ISD::ATOMIC_SWAP: { + AtomicSDNode *AM = cast<AtomicSDNode>(Node); + SDLoc SL(Node); + SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); + assert(NVT.getSizeInBits() == OVT.getSizeInBits() && + "unexpected promotion type"); + assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && + "unexpected atomic_swap with illegal type"); + + SDValue NewAtomic + = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, + DAG.getVTList(NVT, MVT::Other), + { AM->getChain(), AM->getBasePtr(), CastVal }, + AM->getMemOperand()); + Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); + Results.push_back(NewAtomic.getValue(1)); + break; + } + } + + // Replace the original node with the legalized result. + if (!Results.empty()) { + LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); + ReplaceNode(Node, Results.data()); + } else + LLVM_DEBUG(dbgs() << "Could not promote node\n"); +} + +/// This is the entry point for the file. +void SelectionDAG::Legalize() { + AssignTopologicalOrder(); + + SmallPtrSet<SDNode *, 16> LegalizedNodes; + // Use a delete listener to remove nodes which were deleted during + // legalization from LegalizeNodes. This is needed to handle the situation + // where a new node is allocated by the object pool to the same address of a + // previously deleted node. + DAGNodeDeletedListener DeleteListener( + *this, + [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); + + SelectionDAGLegalize Legalizer(*this, LegalizedNodes); + + // Visit all the nodes. We start in topological order, so that we see + // nodes with their original operands intact. Legalization can produce + // new nodes which may themselves need to be legalized. Iterate until all + // nodes have been legalized. + while (true) { + bool AnyLegalized = false; + for (auto NI = allnodes_end(); NI != allnodes_begin();) { + --NI; + + SDNode *N = &*NI; + if (N->use_empty() && N != getRoot().getNode()) { + ++NI; + DeleteNode(N); + continue; + } + + if (LegalizedNodes.insert(N).second) { + AnyLegalized = true; + Legalizer.LegalizeOp(N); + + if (N->use_empty() && N != getRoot().getNode()) { + ++NI; + DeleteNode(N); + } + } + } + if (!AnyLegalized) + break; + + } + + // Remove dead nodes now. + RemoveDeadNodes(); +} + +bool SelectionDAG::LegalizeOp(SDNode *N, + SmallSetVector<SDNode *, 16> &UpdatedNodes) { + SmallPtrSet<SDNode *, 16> LegalizedNodes; + SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); + + // Directly insert the node in question, and legalize it. This will recurse + // as needed through operands. + LegalizedNodes.insert(N); + Legalizer.LegalizeOp(N); + + return LegalizedNodes.count(N); +} |