diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp | 9595 |
1 files changed, 9595 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp new file mode 100644 index 000000000000..6b0245dfd380 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp @@ -0,0 +1,9595 @@ +//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This implements the SelectionDAG class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/SelectionDAG.h" +#include "SDNodeDbgValue.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/SelectionDAGTargetInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Mutex.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <cstdlib> +#include <limits> +#include <set> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; + +/// makeVTList - Return an instance of the SDVTList struct initialized with the +/// specified members. +static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { + SDVTList Res = {VTs, NumVTs}; + return Res; +} + +// Default null implementations of the callbacks. +void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} +void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} +void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} + +void SelectionDAG::DAGNodeDeletedListener::anchor() {} + +#define DEBUG_TYPE "selectiondag" + +static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", + cl::Hidden, cl::init(true), + cl::desc("Gang up loads and stores generated by inlining of memcpy")); + +static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", + cl::desc("Number limit for gluing ld/st of memcpy."), + cl::Hidden, cl::init(0)); + +static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { + LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); +} + +//===----------------------------------------------------------------------===// +// ConstantFPSDNode Class +//===----------------------------------------------------------------------===// + +/// isExactlyValue - We don't rely on operator== working on double values, as +/// it returns true for things that are clearly not equal, like -0.0 and 0.0. +/// As such, this method can be used to do an exact bit-for-bit comparison of +/// two floating point values. +bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { + return getValueAPF().bitwiseIsEqual(V); +} + +bool ConstantFPSDNode::isValueValidForType(EVT VT, + const APFloat& Val) { + assert(VT.isFloatingPoint() && "Can only convert between FP types"); + + // convert modifies in place, so make a copy. + APFloat Val2 = APFloat(Val); + bool losesInfo; + (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), + APFloat::rmNearestTiesToEven, + &losesInfo); + return !losesInfo; +} + +//===----------------------------------------------------------------------===// +// ISD Namespace +//===----------------------------------------------------------------------===// + +bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { + auto *BV = dyn_cast<BuildVectorSDNode>(N); + if (!BV) + return false; + + APInt SplatUndef; + unsigned SplatBitSize; + bool HasUndefs; + unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); + return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, + EltSize) && + EltSize == SplatBitSize; +} + +// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be +// specializations of the more general isConstantSplatVector()? + +bool ISD::isBuildVectorAllOnes(const SDNode *N) { + // Look through a bit convert. + while (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0).getNode(); + + if (N->getOpcode() != ISD::BUILD_VECTOR) return false; + + unsigned i = 0, e = N->getNumOperands(); + + // Skip over all of the undef values. + while (i != e && N->getOperand(i).isUndef()) + ++i; + + // Do not accept an all-undef vector. + if (i == e) return false; + + // Do not accept build_vectors that aren't all constants or which have non-~0 + // elements. We have to be a bit careful here, as the type of the constant + // may not be the same as the type of the vector elements due to type + // legalization (the elements are promoted to a legal type for the target and + // a vector of a type may be legal when the base element type is not). + // We only want to check enough bits to cover the vector elements, because + // we care if the resultant vector is all ones, not whether the individual + // constants are. + SDValue NotZero = N->getOperand(i); + unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { + if (CN->getAPIntValue().countTrailingOnes() < EltSize) + return false; + } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { + if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) + return false; + } else + return false; + + // Okay, we have at least one ~0 value, check to see if the rest match or are + // undefs. Even with the above element type twiddling, this should be OK, as + // the same type legalization should have applied to all the elements. + for (++i; i != e; ++i) + if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) + return false; + return true; +} + +bool ISD::isBuildVectorAllZeros(const SDNode *N) { + // Look through a bit convert. + while (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0).getNode(); + + if (N->getOpcode() != ISD::BUILD_VECTOR) return false; + + bool IsAllUndef = true; + for (const SDValue &Op : N->op_values()) { + if (Op.isUndef()) + continue; + IsAllUndef = false; + // Do not accept build_vectors that aren't all constants or which have non-0 + // elements. We have to be a bit careful here, as the type of the constant + // may not be the same as the type of the vector elements due to type + // legalization (the elements are promoted to a legal type for the target + // and a vector of a type may be legal when the base element type is not). + // We only want to check enough bits to cover the vector elements, because + // we care if the resultant vector is all zeros, not whether the individual + // constants are. + unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { + if (CN->getAPIntValue().countTrailingZeros() < EltSize) + return false; + } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { + if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) + return false; + } else + return false; + } + + // Do not accept an all-undef vector. + if (IsAllUndef) + return false; + return true; +} + +bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + + for (const SDValue &Op : N->op_values()) { + if (Op.isUndef()) + continue; + if (!isa<ConstantSDNode>(Op)) + return false; + } + return true; +} + +bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + + for (const SDValue &Op : N->op_values()) { + if (Op.isUndef()) + continue; + if (!isa<ConstantFPSDNode>(Op)) + return false; + } + return true; +} + +bool ISD::allOperandsUndef(const SDNode *N) { + // Return false if the node has no operands. + // This is "logically inconsistent" with the definition of "all" but + // is probably the desired behavior. + if (N->getNumOperands() == 0) + return false; + return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); +} + +bool ISD::matchUnaryPredicate(SDValue Op, + std::function<bool(ConstantSDNode *)> Match, + bool AllowUndefs) { + // FIXME: Add support for scalar UNDEF cases? + if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) + return Match(Cst); + + // FIXME: Add support for vector UNDEF cases? + if (ISD::BUILD_VECTOR != Op.getOpcode()) + return false; + + EVT SVT = Op.getValueType().getScalarType(); + for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { + if (AllowUndefs && Op.getOperand(i).isUndef()) { + if (!Match(nullptr)) + return false; + continue; + } + + auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); + if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) + return false; + } + return true; +} + +bool ISD::matchBinaryPredicate( + SDValue LHS, SDValue RHS, + std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, + bool AllowUndefs, bool AllowTypeMismatch) { + if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) + return false; + + // TODO: Add support for scalar UNDEF cases? + if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) + if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) + return Match(LHSCst, RHSCst); + + // TODO: Add support for vector UNDEF cases? + if (ISD::BUILD_VECTOR != LHS.getOpcode() || + ISD::BUILD_VECTOR != RHS.getOpcode()) + return false; + + EVT SVT = LHS.getValueType().getScalarType(); + for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { + SDValue LHSOp = LHS.getOperand(i); + SDValue RHSOp = RHS.getOperand(i); + bool LHSUndef = AllowUndefs && LHSOp.isUndef(); + bool RHSUndef = AllowUndefs && RHSOp.isUndef(); + auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); + auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); + if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) + return false; + if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || + LHSOp.getValueType() != RHSOp.getValueType())) + return false; + if (!Match(LHSCst, RHSCst)) + return false; + } + return true; +} + +ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { + switch (ExtType) { + case ISD::EXTLOAD: + return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; + case ISD::SEXTLOAD: + return ISD::SIGN_EXTEND; + case ISD::ZEXTLOAD: + return ISD::ZERO_EXTEND; + default: + break; + } + + llvm_unreachable("Invalid LoadExtType"); +} + +ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { + // To perform this operation, we just need to swap the L and G bits of the + // operation. + unsigned OldL = (Operation >> 2) & 1; + unsigned OldG = (Operation >> 1) & 1; + return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits + (OldL << 1) | // New G bit + (OldG << 2)); // New L bit. +} + +ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { + unsigned Operation = Op; + if (isInteger) + Operation ^= 7; // Flip L, G, E bits, but not U. + else + Operation ^= 15; // Flip all of the condition bits. + + if (Operation > ISD::SETTRUE2) + Operation &= ~8; // Don't let N and U bits get set. + + return ISD::CondCode(Operation); +} + +/// For an integer comparison, return 1 if the comparison is a signed operation +/// and 2 if the result is an unsigned comparison. Return zero if the operation +/// does not depend on the sign of the input (setne and seteq). +static int isSignedOp(ISD::CondCode Opcode) { + switch (Opcode) { + default: llvm_unreachable("Illegal integer setcc operation!"); + case ISD::SETEQ: + case ISD::SETNE: return 0; + case ISD::SETLT: + case ISD::SETLE: + case ISD::SETGT: + case ISD::SETGE: return 1; + case ISD::SETULT: + case ISD::SETULE: + case ISD::SETUGT: + case ISD::SETUGE: return 2; + } +} + +ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, + bool IsInteger) { + if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) + // Cannot fold a signed integer setcc with an unsigned integer setcc. + return ISD::SETCC_INVALID; + + unsigned Op = Op1 | Op2; // Combine all of the condition bits. + + // If the N and U bits get set, then the resultant comparison DOES suddenly + // care about orderedness, and it is true when ordered. + if (Op > ISD::SETTRUE2) + Op &= ~16; // Clear the U bit if the N bit is set. + + // Canonicalize illegal integer setcc's. + if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT + Op = ISD::SETNE; + + return ISD::CondCode(Op); +} + +ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, + bool IsInteger) { + if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) + // Cannot fold a signed setcc with an unsigned setcc. + return ISD::SETCC_INVALID; + + // Combine all of the condition bits. + ISD::CondCode Result = ISD::CondCode(Op1 & Op2); + + // Canonicalize illegal integer setcc's. + if (IsInteger) { + switch (Result) { + default: break; + case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT + case ISD::SETOEQ: // SETEQ & SETU[LG]E + case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE + case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE + case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE + } + } + + return Result; +} + +//===----------------------------------------------------------------------===// +// SDNode Profile Support +//===----------------------------------------------------------------------===// + +/// AddNodeIDOpcode - Add the node opcode to the NodeID data. +static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { + ID.AddInteger(OpC); +} + +/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them +/// solely with their pointer. +static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { + ID.AddPointer(VTList.VTs); +} + +/// AddNodeIDOperands - Various routines for adding operands to the NodeID data. +static void AddNodeIDOperands(FoldingSetNodeID &ID, + ArrayRef<SDValue> Ops) { + for (auto& Op : Ops) { + ID.AddPointer(Op.getNode()); + ID.AddInteger(Op.getResNo()); + } +} + +/// AddNodeIDOperands - Various routines for adding operands to the NodeID data. +static void AddNodeIDOperands(FoldingSetNodeID &ID, + ArrayRef<SDUse> Ops) { + for (auto& Op : Ops) { + ID.AddPointer(Op.getNode()); + ID.AddInteger(Op.getResNo()); + } +} + +static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, + SDVTList VTList, ArrayRef<SDValue> OpList) { + AddNodeIDOpcode(ID, OpC); + AddNodeIDValueTypes(ID, VTList); + AddNodeIDOperands(ID, OpList); +} + +/// If this is an SDNode with special info, add this info to the NodeID data. +static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { + switch (N->getOpcode()) { + case ISD::TargetExternalSymbol: + case ISD::ExternalSymbol: + case ISD::MCSymbol: + llvm_unreachable("Should only be used on nodes with operands"); + default: break; // Normal nodes don't need extra info. + case ISD::TargetConstant: + case ISD::Constant: { + const ConstantSDNode *C = cast<ConstantSDNode>(N); + ID.AddPointer(C->getConstantIntValue()); + ID.AddBoolean(C->isOpaque()); + break; + } + case ISD::TargetConstantFP: + case ISD::ConstantFP: + ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); + break; + case ISD::TargetGlobalAddress: + case ISD::GlobalAddress: + case ISD::TargetGlobalTLSAddress: + case ISD::GlobalTLSAddress: { + const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); + ID.AddPointer(GA->getGlobal()); + ID.AddInteger(GA->getOffset()); + ID.AddInteger(GA->getTargetFlags()); + break; + } + case ISD::BasicBlock: + ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); + break; + case ISD::Register: + ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); + break; + case ISD::RegisterMask: + ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); + break; + case ISD::SRCVALUE: + ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); + break; + case ISD::FrameIndex: + case ISD::TargetFrameIndex: + ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); + break; + case ISD::LIFETIME_START: + case ISD::LIFETIME_END: + if (cast<LifetimeSDNode>(N)->hasOffset()) { + ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); + ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); + } + break; + case ISD::JumpTable: + case ISD::TargetJumpTable: + ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); + ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); + break; + case ISD::ConstantPool: + case ISD::TargetConstantPool: { + const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); + ID.AddInteger(CP->getAlignment()); + ID.AddInteger(CP->getOffset()); + if (CP->isMachineConstantPoolEntry()) + CP->getMachineCPVal()->addSelectionDAGCSEId(ID); + else + ID.AddPointer(CP->getConstVal()); + ID.AddInteger(CP->getTargetFlags()); + break; + } + case ISD::TargetIndex: { + const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); + ID.AddInteger(TI->getIndex()); + ID.AddInteger(TI->getOffset()); + ID.AddInteger(TI->getTargetFlags()); + break; + } + case ISD::LOAD: { + const LoadSDNode *LD = cast<LoadSDNode>(N); + ID.AddInteger(LD->getMemoryVT().getRawBits()); + ID.AddInteger(LD->getRawSubclassData()); + ID.AddInteger(LD->getPointerInfo().getAddrSpace()); + break; + } + case ISD::STORE: { + const StoreSDNode *ST = cast<StoreSDNode>(N); + ID.AddInteger(ST->getMemoryVT().getRawBits()); + ID.AddInteger(ST->getRawSubclassData()); + ID.AddInteger(ST->getPointerInfo().getAddrSpace()); + break; + } + case ISD::MLOAD: { + const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); + ID.AddInteger(MLD->getMemoryVT().getRawBits()); + ID.AddInteger(MLD->getRawSubclassData()); + ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); + break; + } + case ISD::MSTORE: { + const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); + ID.AddInteger(MST->getMemoryVT().getRawBits()); + ID.AddInteger(MST->getRawSubclassData()); + ID.AddInteger(MST->getPointerInfo().getAddrSpace()); + break; + } + case ISD::MGATHER: { + const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); + ID.AddInteger(MG->getMemoryVT().getRawBits()); + ID.AddInteger(MG->getRawSubclassData()); + ID.AddInteger(MG->getPointerInfo().getAddrSpace()); + break; + } + case ISD::MSCATTER: { + const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); + ID.AddInteger(MS->getMemoryVT().getRawBits()); + ID.AddInteger(MS->getRawSubclassData()); + ID.AddInteger(MS->getPointerInfo().getAddrSpace()); + break; + } + case ISD::ATOMIC_CMP_SWAP: + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_CLR: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: + case ISD::ATOMIC_LOAD: + case ISD::ATOMIC_STORE: { + const AtomicSDNode *AT = cast<AtomicSDNode>(N); + ID.AddInteger(AT->getMemoryVT().getRawBits()); + ID.AddInteger(AT->getRawSubclassData()); + ID.AddInteger(AT->getPointerInfo().getAddrSpace()); + break; + } + case ISD::PREFETCH: { + const MemSDNode *PF = cast<MemSDNode>(N); + ID.AddInteger(PF->getPointerInfo().getAddrSpace()); + break; + } + case ISD::VECTOR_SHUFFLE: { + const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); + for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); + i != e; ++i) + ID.AddInteger(SVN->getMaskElt(i)); + break; + } + case ISD::TargetBlockAddress: + case ISD::BlockAddress: { + const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); + ID.AddPointer(BA->getBlockAddress()); + ID.AddInteger(BA->getOffset()); + ID.AddInteger(BA->getTargetFlags()); + break; + } + } // end switch (N->getOpcode()) + + // Target specific memory nodes could also have address spaces to check. + if (N->isTargetMemoryOpcode()) + ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); +} + +/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID +/// data. +static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { + AddNodeIDOpcode(ID, N->getOpcode()); + // Add the return value info. + AddNodeIDValueTypes(ID, N->getVTList()); + // Add the operand info. + AddNodeIDOperands(ID, N->ops()); + + // Handle SDNode leafs with special info. + AddNodeIDCustom(ID, N); +} + +//===----------------------------------------------------------------------===// +// SelectionDAG Class +//===----------------------------------------------------------------------===// + +/// doNotCSE - Return true if CSE should not be performed for this node. +static bool doNotCSE(SDNode *N) { + if (N->getValueType(0) == MVT::Glue) + return true; // Never CSE anything that produces a flag. + + switch (N->getOpcode()) { + default: break; + case ISD::HANDLENODE: + case ISD::EH_LABEL: + return true; // Never CSE these nodes. + } + + // Check that remaining values produced are not flags. + for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) + if (N->getValueType(i) == MVT::Glue) + return true; // Never CSE anything that produces a flag. + + return false; +} + +/// RemoveDeadNodes - This method deletes all unreachable nodes in the +/// SelectionDAG. +void SelectionDAG::RemoveDeadNodes() { + // Create a dummy node (which is not added to allnodes), that adds a reference + // to the root node, preventing it from being deleted. + HandleSDNode Dummy(getRoot()); + + SmallVector<SDNode*, 128> DeadNodes; + + // Add all obviously-dead nodes to the DeadNodes worklist. + for (SDNode &Node : allnodes()) + if (Node.use_empty()) + DeadNodes.push_back(&Node); + + RemoveDeadNodes(DeadNodes); + + // If the root changed (e.g. it was a dead load, update the root). + setRoot(Dummy.getValue()); +} + +/// RemoveDeadNodes - This method deletes the unreachable nodes in the +/// given list, and any nodes that become unreachable as a result. +void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { + + // Process the worklist, deleting the nodes and adding their uses to the + // worklist. + while (!DeadNodes.empty()) { + SDNode *N = DeadNodes.pop_back_val(); + // Skip to next node if we've already managed to delete the node. This could + // happen if replacing a node causes a node previously added to the node to + // be deleted. + if (N->getOpcode() == ISD::DELETED_NODE) + continue; + + for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) + DUL->NodeDeleted(N, nullptr); + + // Take the node out of the appropriate CSE map. + RemoveNodeFromCSEMaps(N); + + // Next, brutally remove the operand list. This is safe to do, as there are + // no cycles in the graph. + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { + SDUse &Use = *I++; + SDNode *Operand = Use.getNode(); + Use.set(SDValue()); + + // Now that we removed this operand, see if there are no uses of it left. + if (Operand->use_empty()) + DeadNodes.push_back(Operand); + } + + DeallocateNode(N); + } +} + +void SelectionDAG::RemoveDeadNode(SDNode *N){ + SmallVector<SDNode*, 16> DeadNodes(1, N); + + // Create a dummy node that adds a reference to the root node, preventing + // it from being deleted. (This matters if the root is an operand of the + // dead node.) + HandleSDNode Dummy(getRoot()); + + RemoveDeadNodes(DeadNodes); +} + +void SelectionDAG::DeleteNode(SDNode *N) { + // First take this out of the appropriate CSE map. + RemoveNodeFromCSEMaps(N); + + // Finally, remove uses due to operands of this node, remove from the + // AllNodes list, and delete the node. + DeleteNodeNotInCSEMaps(N); +} + +void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { + assert(N->getIterator() != AllNodes.begin() && + "Cannot delete the entry node!"); + assert(N->use_empty() && "Cannot delete a node that is not dead!"); + + // Drop all of the operands and decrement used node's use counts. + N->DropOperands(); + + DeallocateNode(N); +} + +void SDDbgInfo::erase(const SDNode *Node) { + DbgValMapType::iterator I = DbgValMap.find(Node); + if (I == DbgValMap.end()) + return; + for (auto &Val: I->second) + Val->setIsInvalidated(); + DbgValMap.erase(I); +} + +void SelectionDAG::DeallocateNode(SDNode *N) { + // If we have operands, deallocate them. + removeOperands(N); + + NodeAllocator.Deallocate(AllNodes.remove(N)); + + // Set the opcode to DELETED_NODE to help catch bugs when node + // memory is reallocated. + // FIXME: There are places in SDag that have grown a dependency on the opcode + // value in the released node. + __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); + N->NodeType = ISD::DELETED_NODE; + + // If any of the SDDbgValue nodes refer to this SDNode, invalidate + // them and forget about that node. + DbgInfo->erase(N); +} + +#ifndef NDEBUG +/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. +static void VerifySDNode(SDNode *N) { + switch (N->getOpcode()) { + default: + break; + case ISD::BUILD_PAIR: { + EVT VT = N->getValueType(0); + assert(N->getNumValues() == 1 && "Too many results!"); + assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && + "Wrong return type!"); + assert(N->getNumOperands() == 2 && "Wrong number of operands!"); + assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && + "Mismatched operand types!"); + assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && + "Wrong operand type!"); + assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && + "Wrong return type size"); + break; + } + case ISD::BUILD_VECTOR: { + assert(N->getNumValues() == 1 && "Too many results!"); + assert(N->getValueType(0).isVector() && "Wrong return type!"); + assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && + "Wrong number of operands!"); + EVT EltVT = N->getValueType(0).getVectorElementType(); + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { + assert((I->getValueType() == EltVT || + (EltVT.isInteger() && I->getValueType().isInteger() && + EltVT.bitsLE(I->getValueType()))) && + "Wrong operand type!"); + assert(I->getValueType() == N->getOperand(0).getValueType() && + "Operands must all have the same type"); + } + break; + } + } +} +#endif // NDEBUG + +/// Insert a newly allocated node into the DAG. +/// +/// Handles insertion into the all nodes list and CSE map, as well as +/// verification and other common operations when a new node is allocated. +void SelectionDAG::InsertNode(SDNode *N) { + AllNodes.push_back(N); +#ifndef NDEBUG + N->PersistentId = NextPersistentId++; + VerifySDNode(N); +#endif + for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) + DUL->NodeInserted(N); +} + +/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that +/// correspond to it. This is useful when we're about to delete or repurpose +/// the node. We don't want future request for structurally identical nodes +/// to return N anymore. +bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { + bool Erased = false; + switch (N->getOpcode()) { + case ISD::HANDLENODE: return false; // noop. + case ISD::CONDCODE: + assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && + "Cond code doesn't exist!"); + Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; + CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; + break; + case ISD::ExternalSymbol: + Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); + break; + case ISD::TargetExternalSymbol: { + ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); + Erased = TargetExternalSymbols.erase( + std::pair<std::string,unsigned char>(ESN->getSymbol(), + ESN->getTargetFlags())); + break; + } + case ISD::MCSymbol: { + auto *MCSN = cast<MCSymbolSDNode>(N); + Erased = MCSymbols.erase(MCSN->getMCSymbol()); + break; + } + case ISD::VALUETYPE: { + EVT VT = cast<VTSDNode>(N)->getVT(); + if (VT.isExtended()) { + Erased = ExtendedValueTypeNodes.erase(VT); + } else { + Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; + ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; + } + break; + } + default: + // Remove it from the CSE Map. + assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); + assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); + Erased = CSEMap.RemoveNode(N); + break; + } +#ifndef NDEBUG + // Verify that the node was actually in one of the CSE maps, unless it has a + // flag result (which cannot be CSE'd) or is one of the special cases that are + // not subject to CSE. + if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && + !N->isMachineOpcode() && !doNotCSE(N)) { + N->dump(this); + dbgs() << "\n"; + llvm_unreachable("Node is not in map!"); + } +#endif + return Erased; +} + +/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE +/// maps and modified in place. Add it back to the CSE maps, unless an identical +/// node already exists, in which case transfer all its users to the existing +/// node. This transfer can potentially trigger recursive merging. +void +SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { + // For node types that aren't CSE'd, just act as if no identical node + // already exists. + if (!doNotCSE(N)) { + SDNode *Existing = CSEMap.GetOrInsertNode(N); + if (Existing != N) { + // If there was already an existing matching node, use ReplaceAllUsesWith + // to replace the dead one with the existing one. This can cause + // recursive merging of other unrelated nodes down the line. + ReplaceAllUsesWith(N, Existing); + + // N is now dead. Inform the listeners and delete it. + for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) + DUL->NodeDeleted(N, Existing); + DeleteNodeNotInCSEMaps(N); + return; + } + } + + // If the node doesn't already exist, we updated it. Inform listeners. + for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) + DUL->NodeUpdated(N); +} + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, + void *&InsertPos) { + if (doNotCSE(N)) + return nullptr; + + SDValue Ops[] = { Op }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); + AddNodeIDCustom(ID, N); + SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); + if (Node) + Node->intersectFlagsWith(N->getFlags()); + return Node; +} + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, + SDValue Op1, SDValue Op2, + void *&InsertPos) { + if (doNotCSE(N)) + return nullptr; + + SDValue Ops[] = { Op1, Op2 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); + AddNodeIDCustom(ID, N); + SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); + if (Node) + Node->intersectFlagsWith(N->getFlags()); + return Node; +} + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, + void *&InsertPos) { + if (doNotCSE(N)) + return nullptr; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); + AddNodeIDCustom(ID, N); + SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); + if (Node) + Node->intersectFlagsWith(N->getFlags()); + return Node; +} + +unsigned SelectionDAG::getEVTAlignment(EVT VT) const { + Type *Ty = VT == MVT::iPTR ? + PointerType::get(Type::getInt8Ty(*getContext()), 0) : + VT.getTypeForEVT(*getContext()); + + return getDataLayout().getABITypeAlignment(Ty); +} + +// EntryNode could meaningfully have debug info if we can find it... +SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) + : TM(tm), OptLevel(OL), + EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), + Root(getEntryNode()) { + InsertNode(&EntryNode); + DbgInfo = new SDDbgInfo(); +} + +void SelectionDAG::init(MachineFunction &NewMF, + OptimizationRemarkEmitter &NewORE, + Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, + LegacyDivergenceAnalysis * Divergence) { + MF = &NewMF; + SDAGISelPass = PassPtr; + ORE = &NewORE; + TLI = getSubtarget().getTargetLowering(); + TSI = getSubtarget().getSelectionDAGInfo(); + LibInfo = LibraryInfo; + Context = &MF->getFunction().getContext(); + DA = Divergence; +} + +SelectionDAG::~SelectionDAG() { + assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); + allnodes_clear(); + OperandRecycler.clear(OperandAllocator); + delete DbgInfo; +} + +void SelectionDAG::allnodes_clear() { + assert(&*AllNodes.begin() == &EntryNode); + AllNodes.remove(AllNodes.begin()); + while (!AllNodes.empty()) + DeallocateNode(&AllNodes.front()); +#ifndef NDEBUG + NextPersistentId = 0; +#endif +} + +SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, + void *&InsertPos) { + SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); + if (N) { + switch (N->getOpcode()) { + default: break; + case ISD::Constant: + case ISD::ConstantFP: + llvm_unreachable("Querying for Constant and ConstantFP nodes requires " + "debug location. Use another overload."); + } + } + return N; +} + +SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, + const SDLoc &DL, void *&InsertPos) { + SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); + if (N) { + switch (N->getOpcode()) { + case ISD::Constant: + case ISD::ConstantFP: + // Erase debug location from the node if the node is used at several + // different places. Do not propagate one location to all uses as it + // will cause a worse single stepping debugging experience. + if (N->getDebugLoc() != DL.getDebugLoc()) + N->setDebugLoc(DebugLoc()); + break; + default: + // When the node's point of use is located earlier in the instruction + // sequence than its prior point of use, update its debug info to the + // earlier location. + if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) + N->setDebugLoc(DL.getDebugLoc()); + break; + } + } + return N; +} + +void SelectionDAG::clear() { + allnodes_clear(); + OperandRecycler.clear(OperandAllocator); + OperandAllocator.Reset(); + CSEMap.clear(); + + ExtendedValueTypeNodes.clear(); + ExternalSymbols.clear(); + TargetExternalSymbols.clear(); + MCSymbols.clear(); + SDCallSiteDbgInfo.clear(); + std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), + static_cast<CondCodeSDNode*>(nullptr)); + std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), + static_cast<SDNode*>(nullptr)); + + EntryNode.UseList = nullptr; + InsertNode(&EntryNode); + Root = getEntryNode(); + DbgInfo->clear(); +} + +SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { + return VT.bitsGT(Op.getValueType()) + ? getNode(ISD::FP_EXTEND, DL, VT, Op) + : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); +} + +SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { + return VT.bitsGT(Op.getValueType()) ? + getNode(ISD::ANY_EXTEND, DL, VT, Op) : + getNode(ISD::TRUNCATE, DL, VT, Op); +} + +SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { + return VT.bitsGT(Op.getValueType()) ? + getNode(ISD::SIGN_EXTEND, DL, VT, Op) : + getNode(ISD::TRUNCATE, DL, VT, Op); +} + +SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { + return VT.bitsGT(Op.getValueType()) ? + getNode(ISD::ZERO_EXTEND, DL, VT, Op) : + getNode(ISD::TRUNCATE, DL, VT, Op); +} + +SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, + EVT OpVT) { + if (VT.bitsLE(Op.getValueType())) + return getNode(ISD::TRUNCATE, SL, VT, Op); + + TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); + return getNode(TLI->getExtendForContent(BType), SL, VT, Op); +} + +SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { + assert(!VT.isVector() && + "getZeroExtendInReg should use the vector element type instead of " + "the vector type!"); + if (Op.getValueType().getScalarType() == VT) return Op; + unsigned BitWidth = Op.getScalarValueSizeInBits(); + APInt Imm = APInt::getLowBitsSet(BitWidth, + VT.getSizeInBits()); + return getNode(ISD::AND, DL, Op.getValueType(), Op, + getConstant(Imm, DL, Op.getValueType())); +} + +SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { + // Only unsigned pointer semantics are supported right now. In the future this + // might delegate to TLI to check pointer signedness. + return getZExtOrTrunc(Op, DL, VT); +} + +SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { + // Only unsigned pointer semantics are supported right now. In the future this + // might delegate to TLI to check pointer signedness. + return getZeroExtendInReg(Op, DL, VT); +} + +/// getNOT - Create a bitwise NOT operation as (XOR Val, -1). +SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { + EVT EltVT = VT.getScalarType(); + SDValue NegOne = + getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); + return getNode(ISD::XOR, DL, VT, Val, NegOne); +} + +SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { + SDValue TrueValue = getBoolConstant(true, DL, VT, VT); + return getNode(ISD::XOR, DL, VT, Val, TrueValue); +} + +SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, + EVT OpVT) { + if (!V) + return getConstant(0, DL, VT); + + switch (TLI->getBooleanContents(OpVT)) { + case TargetLowering::ZeroOrOneBooleanContent: + case TargetLowering::UndefinedBooleanContent: + return getConstant(1, DL, VT); + case TargetLowering::ZeroOrNegativeOneBooleanContent: + return getAllOnesConstant(DL, VT); + } + llvm_unreachable("Unexpected boolean content enum!"); +} + +SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, + bool isT, bool isO) { + EVT EltVT = VT.getScalarType(); + assert((EltVT.getSizeInBits() >= 64 || + (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && + "getConstant with a uint64_t value that doesn't fit in the type!"); + return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); +} + +SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, + bool isT, bool isO) { + return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); +} + +SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, + EVT VT, bool isT, bool isO) { + assert(VT.isInteger() && "Cannot create FP integer constant!"); + + EVT EltVT = VT.getScalarType(); + const ConstantInt *Elt = &Val; + + // In some cases the vector type is legal but the element type is illegal and + // needs to be promoted, for example v8i8 on ARM. In this case, promote the + // inserted value (the type does not need to match the vector element type). + // Any extra bits introduced will be truncated away. + if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == + TargetLowering::TypePromoteInteger) { + EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); + APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); + Elt = ConstantInt::get(*getContext(), NewVal); + } + // In other cases the element type is illegal and needs to be expanded, for + // example v2i64 on MIPS32. In this case, find the nearest legal type, split + // the value into n parts and use a vector type with n-times the elements. + // Then bitcast to the type requested. + // Legalizing constants too early makes the DAGCombiner's job harder so we + // only legalize if the DAG tells us we must produce legal types. + else if (NewNodesMustHaveLegalTypes && VT.isVector() && + TLI->getTypeAction(*getContext(), EltVT) == + TargetLowering::TypeExpandInteger) { + const APInt &NewVal = Elt->getValue(); + EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); + unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); + unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; + EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); + + // Check the temporary vector is the correct size. If this fails then + // getTypeToTransformTo() probably returned a type whose size (in bits) + // isn't a power-of-2 factor of the requested type size. + assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); + + SmallVector<SDValue, 2> EltParts; + for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { + EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) + .zextOrTrunc(ViaEltSizeInBits), DL, + ViaEltVT, isT, isO)); + } + + // EltParts is currently in little endian order. If we actually want + // big-endian order then reverse it now. + if (getDataLayout().isBigEndian()) + std::reverse(EltParts.begin(), EltParts.end()); + + // The elements must be reversed when the element order is different + // to the endianness of the elements (because the BITCAST is itself a + // vector shuffle in this situation). However, we do not need any code to + // perform this reversal because getConstant() is producing a vector + // splat. + // This situation occurs in MIPS MSA. + + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) + Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); + + SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); + return V; + } + + assert(Elt->getBitWidth() == EltVT.getSizeInBits() && + "APInt size does not match type size!"); + unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(EltVT), None); + ID.AddPointer(Elt); + ID.AddBoolean(isO); + void *IP = nullptr; + SDNode *N = nullptr; + if ((N = FindNodeOrInsertPos(ID, DL, IP))) + if (!VT.isVector()) + return SDValue(N, 0); + + if (!N) { + N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); + CSEMap.InsertNode(N, IP); + InsertNode(N); + NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); + } + + SDValue Result(N, 0); + if (VT.isVector()) + Result = getSplatBuildVector(VT, DL, Result); + + return Result; +} + +SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, + bool isTarget) { + return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); +} + +SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, + const SDLoc &DL, bool LegalTypes) { + EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); + return getConstant(Val, DL, ShiftVT); +} + +SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, + bool isTarget) { + return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); +} + +SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, + EVT VT, bool isTarget) { + assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); + + EVT EltVT = VT.getScalarType(); + + // Do the map lookup using the actual bit pattern for the floating point + // value, so that we don't have problems with 0.0 comparing equal to -0.0, and + // we don't have issues with SNANs. + unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(EltVT), None); + ID.AddPointer(&V); + void *IP = nullptr; + SDNode *N = nullptr; + if ((N = FindNodeOrInsertPos(ID, DL, IP))) + if (!VT.isVector()) + return SDValue(N, 0); + + if (!N) { + N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); + CSEMap.InsertNode(N, IP); + InsertNode(N); + } + + SDValue Result(N, 0); + if (VT.isVector()) + Result = getSplatBuildVector(VT, DL, Result); + NewSDValueDbgMsg(Result, "Creating fp constant: ", this); + return Result; +} + +SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, + bool isTarget) { + EVT EltVT = VT.getScalarType(); + if (EltVT == MVT::f32) + return getConstantFP(APFloat((float)Val), DL, VT, isTarget); + else if (EltVT == MVT::f64) + return getConstantFP(APFloat(Val), DL, VT, isTarget); + else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || + EltVT == MVT::f16) { + bool Ignored; + APFloat APF = APFloat(Val); + APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, + &Ignored); + return getConstantFP(APF, DL, VT, isTarget); + } else + llvm_unreachable("Unsupported type in getConstantFP"); +} + +SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, + EVT VT, int64_t Offset, bool isTargetGA, + unsigned char TargetFlags) { + assert((TargetFlags == 0 || isTargetGA) && + "Cannot set target flags on target-independent globals"); + + // Truncate (with sign-extension) the offset value to the pointer size. + unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); + if (BitWidth < 64) + Offset = SignExtend64(Offset, BitWidth); + + unsigned Opc; + if (GV->isThreadLocal()) + Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; + else + Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddPointer(GV); + ID.AddInteger(Offset); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<GlobalAddressSDNode>( + Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { + unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddInteger(FI); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, + unsigned char TargetFlags) { + assert((TargetFlags == 0 || isTarget) && + "Cannot set target flags on target-independent jump tables"); + unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddInteger(JTI); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, + unsigned Alignment, int Offset, + bool isTarget, + unsigned char TargetFlags) { + assert((TargetFlags == 0 || isTarget) && + "Cannot set target flags on target-independent globals"); + if (Alignment == 0) + Alignment = MF->getFunction().hasOptSize() + ? getDataLayout().getABITypeAlignment(C->getType()) + : getDataLayout().getPrefTypeAlignment(C->getType()); + unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddInteger(Alignment); + ID.AddInteger(Offset); + ID.AddPointer(C); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, + TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, + unsigned Alignment, int Offset, + bool isTarget, + unsigned char TargetFlags) { + assert((TargetFlags == 0 || isTarget) && + "Cannot set target flags on target-independent globals"); + if (Alignment == 0) + Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); + unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddInteger(Alignment); + ID.AddInteger(Offset); + C->addSelectionDAGCSEId(ID); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, + TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, + unsigned char TargetFlags) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); + ID.AddInteger(Index); + ID.AddInteger(Offset); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); + ID.AddPointer(MBB); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<BasicBlockSDNode>(MBB); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getValueType(EVT VT) { + if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= + ValueTypeNodes.size()) + ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); + + SDNode *&N = VT.isExtended() ? + ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; + + if (N) return SDValue(N, 0); + N = newSDNode<VTSDNode>(VT); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { + SDNode *&N = ExternalSymbols[Sym]; + if (N) return SDValue(N, 0); + N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { + SDNode *&N = MCSymbols[Sym]; + if (N) + return SDValue(N, 0); + N = newSDNode<MCSymbolSDNode>(Sym, VT); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, + unsigned char TargetFlags) { + SDNode *&N = + TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, + TargetFlags)]; + if (N) return SDValue(N, 0); + N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { + if ((unsigned)Cond >= CondCodeNodes.size()) + CondCodeNodes.resize(Cond+1); + + if (!CondCodeNodes[Cond]) { + auto *N = newSDNode<CondCodeSDNode>(Cond); + CondCodeNodes[Cond] = N; + InsertNode(N); + } + + return SDValue(CondCodeNodes[Cond], 0); +} + +/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that +/// point at N1 to point at N2 and indices that point at N2 to point at N1. +static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { + std::swap(N1, N2); + ShuffleVectorSDNode::commuteMask(M); +} + +SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, + SDValue N2, ArrayRef<int> Mask) { + assert(VT.getVectorNumElements() == Mask.size() && + "Must have the same number of vector elements as mask elements!"); + assert(VT == N1.getValueType() && VT == N2.getValueType() && + "Invalid VECTOR_SHUFFLE"); + + // Canonicalize shuffle undef, undef -> undef + if (N1.isUndef() && N2.isUndef()) + return getUNDEF(VT); + + // Validate that all indices in Mask are within the range of the elements + // input to the shuffle. + int NElts = Mask.size(); + assert(llvm::all_of(Mask, + [&](int M) { return M < (NElts * 2) && M >= -1; }) && + "Index out of range"); + + // Copy the mask so we can do any needed cleanup. + SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); + + // Canonicalize shuffle v, v -> v, undef + if (N1 == N2) { + N2 = getUNDEF(VT); + for (int i = 0; i != NElts; ++i) + if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; + } + + // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. + if (N1.isUndef()) + commuteShuffle(N1, N2, MaskVec); + + if (TLI->hasVectorBlend()) { + // If shuffling a splat, try to blend the splat instead. We do this here so + // that even when this arises during lowering we don't have to re-handle it. + auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { + BitVector UndefElements; + SDValue Splat = BV->getSplatValue(&UndefElements); + if (!Splat) + return; + + for (int i = 0; i < NElts; ++i) { + if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) + continue; + + // If this input comes from undef, mark it as such. + if (UndefElements[MaskVec[i] - Offset]) { + MaskVec[i] = -1; + continue; + } + + // If we can blend a non-undef lane, use that instead. + if (!UndefElements[i]) + MaskVec[i] = i + Offset; + } + }; + if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) + BlendSplat(N1BV, 0); + if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) + BlendSplat(N2BV, NElts); + } + + // Canonicalize all index into lhs, -> shuffle lhs, undef + // Canonicalize all index into rhs, -> shuffle rhs, undef + bool AllLHS = true, AllRHS = true; + bool N2Undef = N2.isUndef(); + for (int i = 0; i != NElts; ++i) { + if (MaskVec[i] >= NElts) { + if (N2Undef) + MaskVec[i] = -1; + else + AllLHS = false; + } else if (MaskVec[i] >= 0) { + AllRHS = false; + } + } + if (AllLHS && AllRHS) + return getUNDEF(VT); + if (AllLHS && !N2Undef) + N2 = getUNDEF(VT); + if (AllRHS) { + N1 = getUNDEF(VT); + commuteShuffle(N1, N2, MaskVec); + } + // Reset our undef status after accounting for the mask. + N2Undef = N2.isUndef(); + // Re-check whether both sides ended up undef. + if (N1.isUndef() && N2Undef) + return getUNDEF(VT); + + // If Identity shuffle return that node. + bool Identity = true, AllSame = true; + for (int i = 0; i != NElts; ++i) { + if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; + if (MaskVec[i] != MaskVec[0]) AllSame = false; + } + if (Identity && NElts) + return N1; + + // Shuffling a constant splat doesn't change the result. + if (N2Undef) { + SDValue V = N1; + + // Look through any bitcasts. We check that these don't change the number + // (and size) of elements and just changes their types. + while (V.getOpcode() == ISD::BITCAST) + V = V->getOperand(0); + + // A splat should always show up as a build vector node. + if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { + BitVector UndefElements; + SDValue Splat = BV->getSplatValue(&UndefElements); + // If this is a splat of an undef, shuffling it is also undef. + if (Splat && Splat.isUndef()) + return getUNDEF(VT); + + bool SameNumElts = + V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); + + // We only have a splat which can skip shuffles if there is a splatted + // value and no undef lanes rearranged by the shuffle. + if (Splat && UndefElements.none()) { + // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the + // number of elements match or the value splatted is a zero constant. + if (SameNumElts) + return N1; + if (auto *C = dyn_cast<ConstantSDNode>(Splat)) + if (C->isNullValue()) + return N1; + } + + // If the shuffle itself creates a splat, build the vector directly. + if (AllSame && SameNumElts) { + EVT BuildVT = BV->getValueType(0); + const SDValue &Splatted = BV->getOperand(MaskVec[0]); + SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); + + // We may have jumped through bitcasts, so the type of the + // BUILD_VECTOR may not match the type of the shuffle. + if (BuildVT != VT) + NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); + return NewBV; + } + } + } + + FoldingSetNodeID ID; + SDValue Ops[2] = { N1, N2 }; + AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); + for (int i = 0; i != NElts; ++i) + ID.AddInteger(MaskVec[i]); + + void* IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) + return SDValue(E, 0); + + // Allocate the mask array for the node out of the BumpPtrAllocator, since + // SDNode doesn't have access to it. This memory will be "leaked" when + // the node is deallocated, but recovered when the NodeAllocator is released. + int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); + llvm::copy(MaskVec, MaskAlloc); + + auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), + dl.getDebugLoc(), MaskAlloc); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V = SDValue(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { + EVT VT = SV.getValueType(0); + SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); + ShuffleVectorSDNode::commuteMask(MaskVec); + + SDValue Op0 = SV.getOperand(0); + SDValue Op1 = SV.getOperand(1); + return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); +} + +SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); + ID.AddInteger(RegNo); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<RegisterSDNode>(RegNo, VT); + N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); + ID.AddPointer(RegMask); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<RegisterMaskSDNode>(RegMask); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, + MCSymbol *Label) { + return getLabelNode(ISD::EH_LABEL, dl, Root, Label); +} + +SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, + SDValue Root, MCSymbol *Label) { + FoldingSetNodeID ID; + SDValue Ops[] = { Root }; + AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); + ID.AddPointer(Label); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = + newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, + int64_t Offset, + bool isTarget, + unsigned char TargetFlags) { + unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddPointer(BA); + ID.AddInteger(Offset); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getSrcValue(const Value *V) { + assert((!V || V->getType()->isPointerTy()) && + "SrcValue is not a pointer?"); + + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); + ID.AddPointer(V); + + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<SrcValueSDNode>(V); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getMDNode(const MDNode *MD) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); + ID.AddPointer(MD); + + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<MDNodeSDNode>(MD); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { + if (VT == V.getValueType()) + return V; + + return getNode(ISD::BITCAST, SDLoc(V), VT, V); +} + +SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, + unsigned SrcAS, unsigned DestAS) { + SDValue Ops[] = {Ptr}; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); + ID.AddInteger(SrcAS); + ID.AddInteger(DestAS); + + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), + VT, SrcAS, DestAS); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +/// getShiftAmountOperand - Return the specified value casted to +/// the target's desired shift amount type. +SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { + EVT OpTy = Op.getValueType(); + EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); + if (OpTy == ShTy || OpTy.isVector()) return Op; + + return getZExtOrTrunc(Op, SDLoc(Op), ShTy); +} + +SDValue SelectionDAG::expandVAArg(SDNode *Node) { + SDLoc dl(Node); + const TargetLowering &TLI = getTargetLoweringInfo(); + const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); + EVT VT = Node->getValueType(0); + SDValue Tmp1 = Node->getOperand(0); + SDValue Tmp2 = Node->getOperand(1); + unsigned Align = Node->getConstantOperandVal(3); + + SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, + Tmp2, MachinePointerInfo(V)); + SDValue VAList = VAListLoad; + + if (Align > TLI.getMinStackArgumentAlignment()) { + assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); + + VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, + getConstant(Align - 1, dl, VAList.getValueType())); + + VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, + getConstant(-(int64_t)Align, dl, VAList.getValueType())); + } + + // Increment the pointer, VAList, to the next vaarg + Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, + getConstant(getDataLayout().getTypeAllocSize( + VT.getTypeForEVT(*getContext())), + dl, VAList.getValueType())); + // Store the incremented VAList to the legalized pointer + Tmp1 = + getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); + // Load the actual argument out of the pointer VAList + return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); +} + +SDValue SelectionDAG::expandVACopy(SDNode *Node) { + SDLoc dl(Node); + const TargetLowering &TLI = getTargetLoweringInfo(); + // This defaults to loading a pointer from the input and storing it to the + // output, returning the chain. + const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); + const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); + SDValue Tmp1 = + getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), + Node->getOperand(2), MachinePointerInfo(VS)); + return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), + MachinePointerInfo(VD)); +} + +SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { + MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); + unsigned ByteSize = VT.getStoreSize(); + Type *Ty = VT.getTypeForEVT(*getContext()); + unsigned StackAlign = + std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); + + int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); + return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); +} + +SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { + unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); + Type *Ty1 = VT1.getTypeForEVT(*getContext()); + Type *Ty2 = VT2.getTypeForEVT(*getContext()); + const DataLayout &DL = getDataLayout(); + unsigned Align = + std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); + + MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); + int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); + return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); +} + +SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, + ISD::CondCode Cond, const SDLoc &dl) { + EVT OpVT = N1.getValueType(); + + // These setcc operations always fold. + switch (Cond) { + default: break; + case ISD::SETFALSE: + case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); + case ISD::SETTRUE: + case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); + + case ISD::SETOEQ: + case ISD::SETOGT: + case ISD::SETOGE: + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETONE: + case ISD::SETO: + case ISD::SETUO: + case ISD::SETUEQ: + case ISD::SETUNE: + assert(!OpVT.isInteger() && "Illegal setcc for integer!"); + break; + } + + if (OpVT.isInteger()) { + // For EQ and NE, we can always pick a value for the undef to make the + // predicate pass or fail, so we can return undef. + // Matches behavior in llvm::ConstantFoldCompareInstruction. + // icmp eq/ne X, undef -> undef. + if ((N1.isUndef() || N2.isUndef()) && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) + return getUNDEF(VT); + + // If both operands are undef, we can return undef for int comparison. + // icmp undef, undef -> undef. + if (N1.isUndef() && N2.isUndef()) + return getUNDEF(VT); + + // icmp X, X -> true/false + // icmp X, undef -> true/false because undef could be X. + if (N1 == N2) + return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); + } + + if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { + const APInt &C2 = N2C->getAPIntValue(); + if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { + const APInt &C1 = N1C->getAPIntValue(); + + switch (Cond) { + default: llvm_unreachable("Unknown integer setcc!"); + case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); + case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); + case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); + case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); + case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); + case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); + case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); + case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); + case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); + case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); + } + } + } + + auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); + auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); + + if (N1CFP && N2CFP) { + APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); + switch (Cond) { + default: break; + case ISD::SETEQ: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + LLVM_FALLTHROUGH; + case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, + OpVT); + case ISD::SETNE: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + LLVM_FALLTHROUGH; + case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpLessThan, dl, VT, + OpVT); + case ISD::SETLT: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + LLVM_FALLTHROUGH; + case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, + OpVT); + case ISD::SETGT: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + LLVM_FALLTHROUGH; + case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, + VT, OpVT); + case ISD::SETLE: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + LLVM_FALLTHROUGH; + case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || + R==APFloat::cmpEqual, dl, VT, + OpVT); + case ISD::SETGE: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + LLVM_FALLTHROUGH; + case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpEqual, dl, VT, OpVT); + case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, + OpVT); + case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, + OpVT); + case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || + R==APFloat::cmpEqual, dl, VT, + OpVT); + case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, + OpVT); + case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || + R==APFloat::cmpLessThan, dl, VT, + OpVT); + case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpUnordered, dl, VT, + OpVT); + case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, + VT, OpVT); + case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, + OpVT); + } + } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { + // Ensure that the constant occurs on the RHS. + ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); + if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) + return SDValue(); + return getSetCC(dl, VT, N2, N1, SwappedCond); + } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || + (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { + // If an operand is known to be a nan (or undef that could be a nan), we can + // fold it. + // Choosing NaN for the undef will always make unordered comparison succeed + // and ordered comparison fails. + // Matches behavior in llvm::ConstantFoldCompareInstruction. + switch (ISD::getUnorderedFlavor(Cond)) { + default: + llvm_unreachable("Unknown flavor!"); + case 0: // Known false. + return getBoolConstant(false, dl, VT, OpVT); + case 1: // Known true. + return getBoolConstant(true, dl, VT, OpVT); + case 2: // Undefined. + return getUNDEF(VT); + } + } + + // Could not fold it. + return SDValue(); +} + +/// See if the specified operand can be simplified with the knowledge that only +/// the bits specified by DemandedBits are used. +/// TODO: really we should be making this into the DAG equivalent of +/// SimplifyMultipleUseDemandedBits and not generate any new nodes. +SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { + EVT VT = V.getValueType(); + APInt DemandedElts = VT.isVector() + ? APInt::getAllOnesValue(VT.getVectorNumElements()) + : APInt(1, 1); + return GetDemandedBits(V, DemandedBits, DemandedElts); +} + +/// See if the specified operand can be simplified with the knowledge that only +/// the bits specified by DemandedBits are used in the elements specified by +/// DemandedElts. +/// TODO: really we should be making this into the DAG equivalent of +/// SimplifyMultipleUseDemandedBits and not generate any new nodes. +SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, + const APInt &DemandedElts) { + switch (V.getOpcode()) { + default: + break; + case ISD::Constant: { + auto *CV = cast<ConstantSDNode>(V.getNode()); + assert(CV && "Const value should be ConstSDNode."); + const APInt &CVal = CV->getAPIntValue(); + APInt NewVal = CVal & DemandedBits; + if (NewVal != CVal) + return getConstant(NewVal, SDLoc(V), V.getValueType()); + break; + } + case ISD::OR: + case ISD::XOR: + // If the LHS or RHS don't contribute bits to the or, drop them. + if (MaskedValueIsZero(V.getOperand(0), DemandedBits)) + return V.getOperand(1); + if (MaskedValueIsZero(V.getOperand(1), DemandedBits)) + return V.getOperand(0); + break; + case ISD::SRL: + // Only look at single-use SRLs. + if (!V.getNode()->hasOneUse()) + break; + if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { + // See if we can recursively simplify the LHS. + unsigned Amt = RHSC->getZExtValue(); + + // Watch out for shift count overflow though. + if (Amt >= DemandedBits.getBitWidth()) + break; + APInt SrcDemandedBits = DemandedBits << Amt; + if (SDValue SimplifyLHS = + GetDemandedBits(V.getOperand(0), SrcDemandedBits)) + return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, + V.getOperand(1)); + } + break; + case ISD::AND: { + // X & -1 -> X (ignoring bits which aren't demanded). + // Also handle the case where masked out bits in X are known to be zero. + if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { + const APInt &AndVal = RHSC->getAPIntValue(); + if (DemandedBits.isSubsetOf(AndVal) || + DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | + AndVal)) + return V.getOperand(0); + } + break; + } + case ISD::ANY_EXTEND: { + SDValue Src = V.getOperand(0); + unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); + // Being conservative here - only peek through if we only demand bits in the + // non-extended source (even though the extended bits are technically + // undef). + if (DemandedBits.getActiveBits() > SrcBitWidth) + break; + APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); + if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) + return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); + break; + } + case ISD::SIGN_EXTEND_INREG: + EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT(); + unsigned ExVTBits = ExVT.getScalarSizeInBits(); + + // If none of the extended bits are demanded, eliminate the sextinreg. + if (DemandedBits.getActiveBits() <= ExVTBits) + return V.getOperand(0); + + break; + } + return SDValue(); +} + +/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We +/// use this predicate to simplify operations downstream. +bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { + unsigned BitWidth = Op.getScalarValueSizeInBits(); + return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); +} + +/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use +/// this predicate to simplify operations downstream. Mask is known to be zero +/// for bits that V cannot have. +bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, + unsigned Depth) const { + EVT VT = V.getValueType(); + APInt DemandedElts = VT.isVector() + ? APInt::getAllOnesValue(VT.getVectorNumElements()) + : APInt(1, 1); + return MaskedValueIsZero(V, Mask, DemandedElts, Depth); +} + +/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in +/// DemandedElts. We use this predicate to simplify operations downstream. +/// Mask is known to be zero for bits that V cannot have. +bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, + const APInt &DemandedElts, + unsigned Depth) const { + return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); +} + +/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. +bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, + unsigned Depth) const { + return Mask.isSubsetOf(computeKnownBits(V, Depth).One); +} + +/// isSplatValue - Return true if the vector V has the same value +/// across all DemandedElts. +bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, + APInt &UndefElts) { + if (!DemandedElts) + return false; // No demanded elts, better to assume we don't know anything. + + EVT VT = V.getValueType(); + assert(VT.isVector() && "Vector type expected"); + + unsigned NumElts = VT.getVectorNumElements(); + assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); + UndefElts = APInt::getNullValue(NumElts); + + switch (V.getOpcode()) { + case ISD::BUILD_VECTOR: { + SDValue Scl; + for (unsigned i = 0; i != NumElts; ++i) { + SDValue Op = V.getOperand(i); + if (Op.isUndef()) { + UndefElts.setBit(i); + continue; + } + if (!DemandedElts[i]) + continue; + if (Scl && Scl != Op) + return false; + Scl = Op; + } + return true; + } + case ISD::VECTOR_SHUFFLE: { + // Check if this is a shuffle node doing a splat. + // TODO: Do we need to handle shuffle(splat, undef, mask)? + int SplatIndex = -1; + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); + for (int i = 0; i != (int)NumElts; ++i) { + int M = Mask[i]; + if (M < 0) { + UndefElts.setBit(i); + continue; + } + if (!DemandedElts[i]) + continue; + if (0 <= SplatIndex && SplatIndex != M) + return false; + SplatIndex = M; + } + return true; + } + case ISD::EXTRACT_SUBVECTOR: { + SDValue Src = V.getOperand(0); + ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { + // Offset the demanded elts by the subvector index. + uint64_t Idx = SubIdx->getZExtValue(); + APInt UndefSrcElts; + APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); + if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { + UndefElts = UndefSrcElts.extractBits(NumElts, Idx); + return true; + } + } + break; + } + case ISD::ADD: + case ISD::SUB: + case ISD::AND: { + APInt UndefLHS, UndefRHS; + SDValue LHS = V.getOperand(0); + SDValue RHS = V.getOperand(1); + if (isSplatValue(LHS, DemandedElts, UndefLHS) && + isSplatValue(RHS, DemandedElts, UndefRHS)) { + UndefElts = UndefLHS | UndefRHS; + return true; + } + break; + } + } + + return false; +} + +/// Helper wrapper to main isSplatValue function. +bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { + EVT VT = V.getValueType(); + assert(VT.isVector() && "Vector type expected"); + unsigned NumElts = VT.getVectorNumElements(); + + APInt UndefElts; + APInt DemandedElts = APInt::getAllOnesValue(NumElts); + return isSplatValue(V, DemandedElts, UndefElts) && + (AllowUndefs || !UndefElts); +} + +SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { + V = peekThroughExtractSubvectors(V); + + EVT VT = V.getValueType(); + unsigned Opcode = V.getOpcode(); + switch (Opcode) { + default: { + APInt UndefElts; + APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); + if (isSplatValue(V, DemandedElts, UndefElts)) { + // Handle case where all demanded elements are UNDEF. + if (DemandedElts.isSubsetOf(UndefElts)) { + SplatIdx = 0; + return getUNDEF(VT); + } + SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); + return V; + } + break; + } + case ISD::VECTOR_SHUFFLE: { + // Check if this is a shuffle node doing a splat. + // TODO - remove this and rely purely on SelectionDAG::isSplatValue, + // getTargetVShiftNode currently struggles without the splat source. + auto *SVN = cast<ShuffleVectorSDNode>(V); + if (!SVN->isSplat()) + break; + int Idx = SVN->getSplatIndex(); + int NumElts = V.getValueType().getVectorNumElements(); + SplatIdx = Idx % NumElts; + return V.getOperand(Idx / NumElts); + } + } + + return SDValue(); +} + +SDValue SelectionDAG::getSplatValue(SDValue V) { + int SplatIdx; + if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) + return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), + SrcVector.getValueType().getScalarType(), SrcVector, + getIntPtrConstant(SplatIdx, SDLoc(V))); + return SDValue(); +} + +/// If a SHL/SRA/SRL node has a constant or splat constant shift amount that +/// is less than the element bit-width of the shift node, return it. +static const APInt *getValidShiftAmountConstant(SDValue V) { + if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { + // Shifting more than the bitwidth is not valid. + const APInt &ShAmt = SA->getAPIntValue(); + if (ShAmt.ult(V.getScalarValueSizeInBits())) + return &ShAmt; + } + return nullptr; +} + +/// Determine which bits of Op are known to be either zero or one and return +/// them in Known. For vectors, the known bits are those that are shared by +/// every vector element. +KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { + EVT VT = Op.getValueType(); + APInt DemandedElts = VT.isVector() + ? APInt::getAllOnesValue(VT.getVectorNumElements()) + : APInt(1, 1); + return computeKnownBits(Op, DemandedElts, Depth); +} + +/// Determine which bits of Op are known to be either zero or one and return +/// them in Known. The DemandedElts argument allows us to only collect the known +/// bits that are shared by the requested vector elements. +KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, + unsigned Depth) const { + unsigned BitWidth = Op.getScalarValueSizeInBits(); + + KnownBits Known(BitWidth); // Don't know anything. + + if (auto *C = dyn_cast<ConstantSDNode>(Op)) { + // We know all of the bits for a constant! + Known.One = C->getAPIntValue(); + Known.Zero = ~Known.One; + return Known; + } + if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { + // We know all of the bits for a constant fp! + Known.One = C->getValueAPF().bitcastToAPInt(); + Known.Zero = ~Known.One; + return Known; + } + + if (Depth == 6) + return Known; // Limit search depth. + + KnownBits Known2; + unsigned NumElts = DemandedElts.getBitWidth(); + assert((!Op.getValueType().isVector() || + NumElts == Op.getValueType().getVectorNumElements()) && + "Unexpected vector size"); + + if (!DemandedElts) + return Known; // No demanded elts, better to assume we don't know anything. + + unsigned Opcode = Op.getOpcode(); + switch (Opcode) { + case ISD::BUILD_VECTOR: + // Collect the known bits that are shared by every demanded vector element. + Known.Zero.setAllBits(); Known.One.setAllBits(); + for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { + if (!DemandedElts[i]) + continue; + + SDValue SrcOp = Op.getOperand(i); + Known2 = computeKnownBits(SrcOp, Depth + 1); + + // BUILD_VECTOR can implicitly truncate sources, we must handle this. + if (SrcOp.getValueSizeInBits() != BitWidth) { + assert(SrcOp.getValueSizeInBits() > BitWidth && + "Expected BUILD_VECTOR implicit truncation"); + Known2 = Known2.trunc(BitWidth); + } + + // Known bits are the values that are shared by every demanded element. + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + } + break; + case ISD::VECTOR_SHUFFLE: { + // Collect the known bits that are shared by every vector element referenced + // by the shuffle. + APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); + Known.Zero.setAllBits(); Known.One.setAllBits(); + const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); + assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); + for (unsigned i = 0; i != NumElts; ++i) { + if (!DemandedElts[i]) + continue; + + int M = SVN->getMaskElt(i); + if (M < 0) { + // For UNDEF elements, we don't know anything about the common state of + // the shuffle result. + Known.resetAll(); + DemandedLHS.clearAllBits(); + DemandedRHS.clearAllBits(); + break; + } + + if ((unsigned)M < NumElts) + DemandedLHS.setBit((unsigned)M % NumElts); + else + DemandedRHS.setBit((unsigned)M % NumElts); + } + // Known bits are the values that are shared by every demanded element. + if (!!DemandedLHS) { + SDValue LHS = Op.getOperand(0); + Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + if (!!DemandedRHS) { + SDValue RHS = Op.getOperand(1); + Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + break; + } + case ISD::CONCAT_VECTORS: { + // Split DemandedElts and test each of the demanded subvectors. + Known.Zero.setAllBits(); Known.One.setAllBits(); + EVT SubVectorVT = Op.getOperand(0).getValueType(); + unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); + unsigned NumSubVectors = Op.getNumOperands(); + for (unsigned i = 0; i != NumSubVectors; ++i) { + APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); + DemandedSub = DemandedSub.trunc(NumSubVectorElts); + if (!!DemandedSub) { + SDValue Sub = Op.getOperand(i); + Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + } + break; + } + case ISD::INSERT_SUBVECTOR: { + // If we know the element index, demand any elements from the subvector and + // the remainder from the src its inserted into, otherwise demand them all. + SDValue Src = Op.getOperand(0); + SDValue Sub = Op.getOperand(1); + ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); + if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { + Known.One.setAllBits(); + Known.Zero.setAllBits(); + uint64_t Idx = SubIdx->getZExtValue(); + APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); + if (!!DemandedSubElts) { + Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); + if (Known.isUnknown()) + break; // early-out. + } + APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); + APInt DemandedSrcElts = DemandedElts & ~SubMask; + if (!!DemandedSrcElts) { + Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + } else { + Known = computeKnownBits(Sub, Depth + 1); + if (Known.isUnknown()) + break; // early-out. + Known2 = computeKnownBits(Src, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + break; + } + case ISD::EXTRACT_SUBVECTOR: { + // If we know the element index, just demand that subvector elements, + // otherwise demand them all. + SDValue Src = Op.getOperand(0); + ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { + // Offset the demanded elts by the subvector index. + uint64_t Idx = SubIdx->getZExtValue(); + APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); + Known = computeKnownBits(Src, DemandedSrc, Depth + 1); + } else { + Known = computeKnownBits(Src, Depth + 1); + } + break; + } + case ISD::SCALAR_TO_VECTOR: { + // We know about scalar_to_vector as much as we know about it source, + // which becomes the first element of otherwise unknown vector. + if (DemandedElts != 1) + break; + + SDValue N0 = Op.getOperand(0); + Known = computeKnownBits(N0, Depth + 1); + if (N0.getValueSizeInBits() != BitWidth) + Known = Known.trunc(BitWidth); + + break; + } + case ISD::BITCAST: { + SDValue N0 = Op.getOperand(0); + EVT SubVT = N0.getValueType(); + unsigned SubBitWidth = SubVT.getScalarSizeInBits(); + + // Ignore bitcasts from unsupported types. + if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) + break; + + // Fast handling of 'identity' bitcasts. + if (BitWidth == SubBitWidth) { + Known = computeKnownBits(N0, DemandedElts, Depth + 1); + break; + } + + bool IsLE = getDataLayout().isLittleEndian(); + + // Bitcast 'small element' vector to 'large element' scalar/vector. + if ((BitWidth % SubBitWidth) == 0) { + assert(N0.getValueType().isVector() && "Expected bitcast from vector"); + + // Collect known bits for the (larger) output by collecting the known + // bits from each set of sub elements and shift these into place. + // We need to separately call computeKnownBits for each set of + // sub elements as the knownbits for each is likely to be different. + unsigned SubScale = BitWidth / SubBitWidth; + APInt SubDemandedElts(NumElts * SubScale, 0); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) + SubDemandedElts.setBit(i * SubScale); + + for (unsigned i = 0; i != SubScale; ++i) { + Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), + Depth + 1); + unsigned Shifts = IsLE ? i : SubScale - 1 - i; + Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); + Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); + } + } + + // Bitcast 'large element' scalar/vector to 'small element' vector. + if ((SubBitWidth % BitWidth) == 0) { + assert(Op.getValueType().isVector() && "Expected bitcast to vector"); + + // Collect known bits for the (smaller) output by collecting the known + // bits from the overlapping larger input elements and extracting the + // sub sections we actually care about. + unsigned SubScale = SubBitWidth / BitWidth; + APInt SubDemandedElts(NumElts / SubScale, 0); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) + SubDemandedElts.setBit(i / SubScale); + + Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); + + Known.Zero.setAllBits(); Known.One.setAllBits(); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) { + unsigned Shifts = IsLE ? i : NumElts - 1 - i; + unsigned Offset = (Shifts % SubScale) * BitWidth; + Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); + Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + } + } + break; + } + case ISD::AND: + // If either the LHS or the RHS are Zero, the result is zero. + Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + + // Output known-1 bits are only known if set in both the LHS & RHS. + Known.One &= Known2.One; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + Known.Zero |= Known2.Zero; + break; + case ISD::OR: + Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + + // Output known-0 bits are only known if clear in both the LHS & RHS. + Known.Zero &= Known2.Zero; + // Output known-1 are known to be set if set in either the LHS | RHS. + Known.One |= Known2.One; + break; + case ISD::XOR: { + Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); + Known.Zero = KnownZeroOut; + break; + } + case ISD::MUL: { + Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + + // If low bits are zero in either operand, output low known-0 bits. + // Also compute a conservative estimate for high known-0 bits. + // More trickiness is possible, but this is sufficient for the + // interesting case of alignment computation. + unsigned TrailZ = Known.countMinTrailingZeros() + + Known2.countMinTrailingZeros(); + unsigned LeadZ = std::max(Known.countMinLeadingZeros() + + Known2.countMinLeadingZeros(), + BitWidth) - BitWidth; + + Known.resetAll(); + Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); + Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); + break; + } + case ISD::UDIV: { + // For the purposes of computing leading zeros we can conservatively + // treat a udiv as a logical right shift by the power of 2 known to + // be less than the denominator. + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + unsigned LeadZ = Known2.countMinLeadingZeros(); + + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); + if (RHSMaxLeadingZeros != BitWidth) + LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); + + Known.Zero.setHighBits(LeadZ); + break; + } + case ISD::SELECT: + case ISD::VSELECT: + Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); + + // Only known if known in both the LHS and RHS. + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + break; + case ISD::SELECT_CC: + Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); + + // Only known if known in both the LHS and RHS. + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + break; + case ISD::SMULO: + case ISD::UMULO: + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: + if (Op.getResNo() != 1) + break; + // The boolean result conforms to getBooleanContents. + // If we know the result of a setcc has the top bits zero, use this info. + // We know that we have an integer-based boolean since these operations + // are only available for integer. + if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + Known.Zero.setBitsFrom(1); + break; + case ISD::SETCC: + // If we know the result of a setcc has the top bits zero, use this info. + if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + Known.Zero.setBitsFrom(1); + break; + case ISD::SHL: + if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + unsigned Shift = ShAmt->getZExtValue(); + Known.Zero <<= Shift; + Known.One <<= Shift; + // Low bits are known zero. + Known.Zero.setLowBits(Shift); + } + break; + case ISD::SRL: + if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + unsigned Shift = ShAmt->getZExtValue(); + Known.Zero.lshrInPlace(Shift); + Known.One.lshrInPlace(Shift); + // High bits are known zero. + Known.Zero.setHighBits(Shift); + } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { + // If the shift amount is a vector of constants see if we can bound + // the number of upper zero bits. + unsigned ShiftAmountMin = BitWidth; + for (unsigned i = 0; i != BV->getNumOperands(); ++i) { + if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { + const APInt &ShAmt = C->getAPIntValue(); + if (ShAmt.ult(BitWidth)) { + ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, + ShAmt.getZExtValue()); + continue; + } + } + // Don't know anything. + ShiftAmountMin = 0; + break; + } + + Known.Zero.setHighBits(ShiftAmountMin); + } + break; + case ISD::SRA: + if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + unsigned Shift = ShAmt->getZExtValue(); + // Sign extend known zero/one bit (else is unknown). + Known.Zero.ashrInPlace(Shift); + Known.One.ashrInPlace(Shift); + } + break; + case ISD::FSHL: + case ISD::FSHR: + if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { + unsigned Amt = C->getAPIntValue().urem(BitWidth); + + // For fshl, 0-shift returns the 1st arg. + // For fshr, 0-shift returns the 2nd arg. + if (Amt == 0) { + Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), + DemandedElts, Depth + 1); + break; + } + + // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) + // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + if (Opcode == ISD::FSHL) { + Known.One <<= Amt; + Known.Zero <<= Amt; + Known2.One.lshrInPlace(BitWidth - Amt); + Known2.Zero.lshrInPlace(BitWidth - Amt); + } else { + Known.One <<= BitWidth - Amt; + Known.Zero <<= BitWidth - Amt; + Known2.One.lshrInPlace(Amt); + Known2.Zero.lshrInPlace(Amt); + } + Known.One |= Known2.One; + Known.Zero |= Known2.Zero; + } + break; + case ISD::SIGN_EXTEND_INREG: { + EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + unsigned EBits = EVT.getScalarSizeInBits(); + + // Sign extension. Compute the demanded bits in the result that are not + // present in the input. + APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); + + APInt InSignMask = APInt::getSignMask(EBits); + APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); + + // If the sign extended bits are demanded, we know that the sign + // bit is demanded. + InSignMask = InSignMask.zext(BitWidth); + if (NewBits.getBoolValue()) + InputDemandedBits |= InSignMask; + + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known.One &= InputDemandedBits; + Known.Zero &= InputDemandedBits; + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear + Known.Zero |= NewBits; + Known.One &= ~NewBits; + } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set + Known.One |= NewBits; + Known.Zero &= ~NewBits; + } else { // Input sign bit unknown + Known.Zero &= ~NewBits; + Known.One &= ~NewBits; + } + break; + } + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: { + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + // If we have a known 1, its position is our upper bound. + unsigned PossibleTZ = Known2.countMaxTrailingZeros(); + unsigned LowBits = Log2_32(PossibleTZ) + 1; + Known.Zero.setBitsFrom(LowBits); + break; + } + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: { + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + // If we have a known 1, its position is our upper bound. + unsigned PossibleLZ = Known2.countMaxLeadingZeros(); + unsigned LowBits = Log2_32(PossibleLZ) + 1; + Known.Zero.setBitsFrom(LowBits); + break; + } + case ISD::CTPOP: { + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + // If we know some of the bits are zero, they can't be one. + unsigned PossibleOnes = Known2.countMaxPopulation(); + Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); + break; + } + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(Op); + const Constant *Cst = TLI->getTargetConstantFromLoad(LD); + if (ISD::isNON_EXTLoad(LD) && Cst) { + // Determine any common known bits from the loaded constant pool value. + Type *CstTy = Cst->getType(); + if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { + // If its a vector splat, then we can (quickly) reuse the scalar path. + // NOTE: We assume all elements match and none are UNDEF. + if (CstTy->isVectorTy()) { + if (const Constant *Splat = Cst->getSplatValue()) { + Cst = Splat; + CstTy = Cst->getType(); + } + } + // TODO - do we need to handle different bitwidths? + if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { + // Iterate across all vector elements finding common known bits. + Known.One.setAllBits(); + Known.Zero.setAllBits(); + for (unsigned i = 0; i != NumElts; ++i) { + if (!DemandedElts[i]) + continue; + if (Constant *Elt = Cst->getAggregateElement(i)) { + if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { + const APInt &Value = CInt->getValue(); + Known.One &= Value; + Known.Zero &= ~Value; + continue; + } + if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { + APInt Value = CFP->getValueAPF().bitcastToAPInt(); + Known.One &= Value; + Known.Zero &= ~Value; + continue; + } + } + Known.One.clearAllBits(); + Known.Zero.clearAllBits(); + break; + } + } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { + if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { + const APInt &Value = CInt->getValue(); + Known.One = Value; + Known.Zero = ~Value; + } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { + APInt Value = CFP->getValueAPF().bitcastToAPInt(); + Known.One = Value; + Known.Zero = ~Value; + } + } + } + } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { + // If this is a ZEXTLoad and we are looking at the loaded value. + EVT VT = LD->getMemoryVT(); + unsigned MemBits = VT.getScalarSizeInBits(); + Known.Zero.setBitsFrom(MemBits); + } else if (const MDNode *Ranges = LD->getRanges()) { + if (LD->getExtensionType() == ISD::NON_EXTLOAD) + computeKnownBitsFromRangeMetadata(*Ranges, Known); + } + break; + } + case ISD::ZERO_EXTEND_VECTOR_INREG: { + EVT InVT = Op.getOperand(0).getValueType(); + APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); + Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); + Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); + break; + } + case ISD::ZERO_EXTEND: { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); + break; + } + case ISD::SIGN_EXTEND_VECTOR_INREG: { + EVT InVT = Op.getOperand(0).getValueType(); + APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); + Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); + // If the sign bit is known to be zero or one, then sext will extend + // it to the top bits, else it will just zext. + Known = Known.sext(BitWidth); + break; + } + case ISD::SIGN_EXTEND: { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + // If the sign bit is known to be zero or one, then sext will extend + // it to the top bits, else it will just zext. + Known = Known.sext(BitWidth); + break; + } + case ISD::ANY_EXTEND: { + Known = computeKnownBits(Op.getOperand(0), Depth+1); + Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); + break; + } + case ISD::TRUNCATE: { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known = Known.trunc(BitWidth); + break; + } + case ISD::AssertZext: { + EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); + Known = computeKnownBits(Op.getOperand(0), Depth+1); + Known.Zero |= (~InMask); + Known.One &= (~Known.Zero); + break; + } + case ISD::FGETSIGN: + // All bits are zero except the low bit. + Known.Zero.setBitsFrom(1); + break; + case ISD::USUBO: + case ISD::SSUBO: + if (Op.getResNo() == 1) { + // If we know the result of a setcc has the top bits zero, use this info. + if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + Known.Zero.setBitsFrom(1); + break; + } + LLVM_FALLTHROUGH; + case ISD::SUB: + case ISD::SUBC: { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, + Known, Known2); + break; + } + case ISD::UADDO: + case ISD::SADDO: + case ISD::ADDCARRY: + if (Op.getResNo() == 1) { + // If we know the result of a setcc has the top bits zero, use this info. + if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + Known.Zero.setBitsFrom(1); + break; + } + LLVM_FALLTHROUGH; + case ISD::ADD: + case ISD::ADDC: + case ISD::ADDE: { + assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); + + // With ADDE and ADDCARRY, a carry bit may be added in. + KnownBits Carry(1); + if (Opcode == ISD::ADDE) + // Can't track carry from glue, set carry to unknown. + Carry.resetAll(); + else if (Opcode == ISD::ADDCARRY) + // TODO: Compute known bits for the carry operand. Not sure if it is worth + // the trouble (how often will we find a known carry bit). And I haven't + // tested this very much yet, but something like this might work: + // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); + // Carry = Carry.zextOrTrunc(1, false); + Carry.resetAll(); + else + Carry.setAllZero(); + + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + Known = KnownBits::computeForAddCarry(Known, Known2, Carry); + break; + } + case ISD::SREM: + if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { + const APInt &RA = Rem->getAPIntValue().abs(); + if (RA.isPowerOf2()) { + APInt LowBits = RA - 1; + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + + // The low bits of the first operand are unchanged by the srem. + Known.Zero = Known2.Zero & LowBits; + Known.One = Known2.One & LowBits; + + // If the first operand is non-negative or has all low bits zero, then + // the upper bits are all zero. + if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) + Known.Zero |= ~LowBits; + + // If the first operand is negative and not all low bits are zero, then + // the upper bits are all one. + if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) + Known.One |= ~LowBits; + assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); + } + } + break; + case ISD::UREM: { + if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { + const APInt &RA = Rem->getAPIntValue(); + if (RA.isPowerOf2()) { + APInt LowBits = (RA - 1); + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + + // The upper bits are all zero, the lower ones are unchanged. + Known.Zero = Known2.Zero | ~LowBits; + Known.One = Known2.One & LowBits; + break; + } + } + + // Since the result is less than or equal to either operand, any leading + // zero bits in either operand must also exist in the result. + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + + uint32_t Leaders = + std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); + Known.resetAll(); + Known.Zero.setHighBits(Leaders); + break; + } + case ISD::EXTRACT_ELEMENT: { + Known = computeKnownBits(Op.getOperand(0), Depth+1); + const unsigned Index = Op.getConstantOperandVal(1); + const unsigned EltBitWidth = Op.getValueSizeInBits(); + + // Remove low part of known bits mask + Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); + Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); + + // Remove high part of known bit mask + Known = Known.trunc(EltBitWidth); + break; + } + case ISD::EXTRACT_VECTOR_ELT: { + SDValue InVec = Op.getOperand(0); + SDValue EltNo = Op.getOperand(1); + EVT VecVT = InVec.getValueType(); + const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); + const unsigned NumSrcElts = VecVT.getVectorNumElements(); + // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know + // anything about the extended bits. + if (BitWidth > EltBitWidth) + Known = Known.trunc(EltBitWidth); + ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); + if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { + // If we know the element index, just demand that vector element. + unsigned Idx = ConstEltNo->getZExtValue(); + APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); + Known = computeKnownBits(InVec, DemandedElt, Depth + 1); + } else { + // Unknown element index, so ignore DemandedElts and demand them all. + Known = computeKnownBits(InVec, Depth + 1); + } + if (BitWidth > EltBitWidth) + Known = Known.zext(BitWidth, false /* => any extend */); + break; + } + case ISD::INSERT_VECTOR_ELT: { + SDValue InVec = Op.getOperand(0); + SDValue InVal = Op.getOperand(1); + SDValue EltNo = Op.getOperand(2); + + ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); + if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { + // If we know the element index, split the demand between the + // source vector and the inserted element. + Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); + unsigned EltIdx = CEltNo->getZExtValue(); + + // If we demand the inserted element then add its common known bits. + if (DemandedElts[EltIdx]) { + Known2 = computeKnownBits(InVal, Depth + 1); + Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); + Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); + } + + // If we demand the source vector then add its common known bits, ensuring + // that we don't demand the inserted element. + APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); + if (!!VectorElts) { + Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + } else { + // Unknown element index, so ignore DemandedElts and demand them all. + Known = computeKnownBits(InVec, Depth + 1); + Known2 = computeKnownBits(InVal, Depth + 1); + Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); + Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); + } + break; + } + case ISD::BITREVERSE: { + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known.Zero = Known2.Zero.reverseBits(); + Known.One = Known2.One.reverseBits(); + break; + } + case ISD::BSWAP: { + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known.Zero = Known2.Zero.byteSwap(); + Known.One = Known2.One.byteSwap(); + break; + } + case ISD::ABS: { + Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + + // If the source's MSB is zero then we know the rest of the bits already. + if (Known2.isNonNegative()) { + Known.Zero = Known2.Zero; + Known.One = Known2.One; + break; + } + + // We only know that the absolute values's MSB will be zero iff there is + // a set bit that isn't the sign bit (otherwise it could be INT_MIN). + Known2.One.clearSignBit(); + if (Known2.One.getBoolValue()) { + Known.Zero = APInt::getSignMask(BitWidth); + break; + } + break; + } + case ISD::UMIN: { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + + // UMIN - we know that the result will have the maximum of the + // known zero leading bits of the inputs. + unsigned LeadZero = Known.countMinLeadingZeros(); + LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); + + Known.Zero &= Known2.Zero; + Known.One &= Known2.One; + Known.Zero.setHighBits(LeadZero); + break; + } + case ISD::UMAX: { + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + + // UMAX - we know that the result will have the maximum of the + // known one leading bits of the inputs. + unsigned LeadOne = Known.countMinLeadingOnes(); + LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); + + Known.Zero &= Known2.Zero; + Known.One &= Known2.One; + Known.One.setHighBits(LeadOne); + break; + } + case ISD::SMIN: + case ISD::SMAX: { + // If we have a clamp pattern, we know that the number of sign bits will be + // the minimum of the clamp min/max range. + bool IsMax = (Opcode == ISD::SMAX); + ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; + if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) + if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) + CstHigh = + isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); + if (CstLow && CstHigh) { + if (!IsMax) + std::swap(CstLow, CstHigh); + + const APInt &ValueLow = CstLow->getAPIntValue(); + const APInt &ValueHigh = CstHigh->getAPIntValue(); + if (ValueLow.sle(ValueHigh)) { + unsigned LowSignBits = ValueLow.getNumSignBits(); + unsigned HighSignBits = ValueHigh.getNumSignBits(); + unsigned MinSignBits = std::min(LowSignBits, HighSignBits); + if (ValueLow.isNegative() && ValueHigh.isNegative()) { + Known.One.setHighBits(MinSignBits); + break; + } + if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { + Known.Zero.setHighBits(MinSignBits); + break; + } + } + } + + // Fallback - just get the shared known bits of the operands. + Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + if (Known.isUnknown()) break; // Early-out + Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + Known.Zero &= Known2.Zero; + Known.One &= Known2.One; + break; + } + case ISD::FrameIndex: + case ISD::TargetFrameIndex: + TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); + break; + + default: + if (Opcode < ISD::BUILTIN_OP_END) + break; + LLVM_FALLTHROUGH; + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_VOID: + // Allow the target to implement this method for its nodes. + TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); + break; + } + + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + return Known; +} + +SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, + SDValue N1) const { + // X + 0 never overflow + if (isNullConstant(N1)) + return OFK_Never; + + KnownBits N1Known = computeKnownBits(N1); + if (N1Known.Zero.getBoolValue()) { + KnownBits N0Known = computeKnownBits(N0); + + bool overflow; + (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); + if (!overflow) + return OFK_Never; + } + + // mulhi + 1 never overflow + if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && + (~N1Known.Zero & 0x01) == ~N1Known.Zero) + return OFK_Never; + + if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { + KnownBits N0Known = computeKnownBits(N0); + + if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) + return OFK_Never; + } + + return OFK_Sometime; +} + +bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { + EVT OpVT = Val.getValueType(); + unsigned BitWidth = OpVT.getScalarSizeInBits(); + + // Is the constant a known power of 2? + if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) + return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); + + // A left-shift of a constant one will have exactly one bit set because + // shifting the bit off the end is undefined. + if (Val.getOpcode() == ISD::SHL) { + auto *C = isConstOrConstSplat(Val.getOperand(0)); + if (C && C->getAPIntValue() == 1) + return true; + } + + // Similarly, a logical right-shift of a constant sign-bit will have exactly + // one bit set. + if (Val.getOpcode() == ISD::SRL) { + auto *C = isConstOrConstSplat(Val.getOperand(0)); + if (C && C->getAPIntValue().isSignMask()) + return true; + } + + // Are all operands of a build vector constant powers of two? + if (Val.getOpcode() == ISD::BUILD_VECTOR) + if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) + return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); + return false; + })) + return true; + + // More could be done here, though the above checks are enough + // to handle some common cases. + + // Fall back to computeKnownBits to catch other known cases. + KnownBits Known = computeKnownBits(Val); + return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); +} + +unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { + EVT VT = Op.getValueType(); + APInt DemandedElts = VT.isVector() + ? APInt::getAllOnesValue(VT.getVectorNumElements()) + : APInt(1, 1); + return ComputeNumSignBits(Op, DemandedElts, Depth); +} + +unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, + unsigned Depth) const { + EVT VT = Op.getValueType(); + assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); + unsigned VTBits = VT.getScalarSizeInBits(); + unsigned NumElts = DemandedElts.getBitWidth(); + unsigned Tmp, Tmp2; + unsigned FirstAnswer = 1; + + if (auto *C = dyn_cast<ConstantSDNode>(Op)) { + const APInt &Val = C->getAPIntValue(); + return Val.getNumSignBits(); + } + + if (Depth == 6) + return 1; // Limit search depth. + + if (!DemandedElts) + return 1; // No demanded elts, better to assume we don't know anything. + + unsigned Opcode = Op.getOpcode(); + switch (Opcode) { + default: break; + case ISD::AssertSext: + Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); + return VTBits-Tmp+1; + case ISD::AssertZext: + Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); + return VTBits-Tmp; + + case ISD::BUILD_VECTOR: + Tmp = VTBits; + for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { + if (!DemandedElts[i]) + continue; + + SDValue SrcOp = Op.getOperand(i); + Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); + + // BUILD_VECTOR can implicitly truncate sources, we must handle this. + if (SrcOp.getValueSizeInBits() != VTBits) { + assert(SrcOp.getValueSizeInBits() > VTBits && + "Expected BUILD_VECTOR implicit truncation"); + unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; + Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); + } + Tmp = std::min(Tmp, Tmp2); + } + return Tmp; + + case ISD::VECTOR_SHUFFLE: { + // Collect the minimum number of sign bits that are shared by every vector + // element referenced by the shuffle. + APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); + const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); + assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); + for (unsigned i = 0; i != NumElts; ++i) { + int M = SVN->getMaskElt(i); + if (!DemandedElts[i]) + continue; + // For UNDEF elements, we don't know anything about the common state of + // the shuffle result. + if (M < 0) + return 1; + if ((unsigned)M < NumElts) + DemandedLHS.setBit((unsigned)M % NumElts); + else + DemandedRHS.setBit((unsigned)M % NumElts); + } + Tmp = std::numeric_limits<unsigned>::max(); + if (!!DemandedLHS) + Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); + if (!!DemandedRHS) { + Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); + Tmp = std::min(Tmp, Tmp2); + } + // If we don't know anything, early out and try computeKnownBits fall-back. + if (Tmp == 1) + break; + assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); + return Tmp; + } + + case ISD::BITCAST: { + SDValue N0 = Op.getOperand(0); + EVT SrcVT = N0.getValueType(); + unsigned SrcBits = SrcVT.getScalarSizeInBits(); + + // Ignore bitcasts from unsupported types.. + if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) + break; + + // Fast handling of 'identity' bitcasts. + if (VTBits == SrcBits) + return ComputeNumSignBits(N0, DemandedElts, Depth + 1); + + bool IsLE = getDataLayout().isLittleEndian(); + + // Bitcast 'large element' scalar/vector to 'small element' vector. + if ((SrcBits % VTBits) == 0) { + assert(VT.isVector() && "Expected bitcast to vector"); + + unsigned Scale = SrcBits / VTBits; + APInt SrcDemandedElts(NumElts / Scale, 0); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) + SrcDemandedElts.setBit(i / Scale); + + // Fast case - sign splat can be simply split across the small elements. + Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); + if (Tmp == SrcBits) + return VTBits; + + // Slow case - determine how far the sign extends into each sub-element. + Tmp2 = VTBits; + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) { + unsigned SubOffset = i % Scale; + SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); + SubOffset = SubOffset * VTBits; + if (Tmp <= SubOffset) + return 1; + Tmp2 = std::min(Tmp2, Tmp - SubOffset); + } + return Tmp2; + } + break; + } + + case ISD::SIGN_EXTEND: + Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); + return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; + case ISD::SIGN_EXTEND_INREG: + // Max of the input and what this extends. + Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); + Tmp = VTBits-Tmp+1; + Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); + return std::max(Tmp, Tmp2); + case ISD::SIGN_EXTEND_VECTOR_INREG: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); + Tmp = VTBits - SrcVT.getScalarSizeInBits(); + return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; + } + + case ISD::SRA: + Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); + // SRA X, C -> adds C sign bits. + if (ConstantSDNode *C = + isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { + APInt ShiftVal = C->getAPIntValue(); + ShiftVal += Tmp; + Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); + } + return Tmp; + case ISD::SHL: + if (ConstantSDNode *C = + isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { + // shl destroys sign bits. + Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); + if (C->getAPIntValue().uge(VTBits) || // Bad shift. + C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. + return Tmp - C->getZExtValue(); + } + break; + case ISD::AND: + case ISD::OR: + case ISD::XOR: // NOT is handled here. + // Logical binary ops preserve the number of sign bits at the worst. + Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); + if (Tmp != 1) { + Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); + FirstAnswer = std::min(Tmp, Tmp2); + // We computed what we know about the sign bits as our first + // answer. Now proceed to the generic code that uses + // computeKnownBits, and pick whichever answer is better. + } + break; + + case ISD::SELECT: + case ISD::VSELECT: + Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); + if (Tmp == 1) return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); + return std::min(Tmp, Tmp2); + case ISD::SELECT_CC: + Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); + if (Tmp == 1) return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); + return std::min(Tmp, Tmp2); + + case ISD::SMIN: + case ISD::SMAX: { + // If we have a clamp pattern, we know that the number of sign bits will be + // the minimum of the clamp min/max range. + bool IsMax = (Opcode == ISD::SMAX); + ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; + if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) + if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) + CstHigh = + isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); + if (CstLow && CstHigh) { + if (!IsMax) + std::swap(CstLow, CstHigh); + if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { + Tmp = CstLow->getAPIntValue().getNumSignBits(); + Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); + return std::min(Tmp, Tmp2); + } + } + + // Fallback - just get the minimum number of sign bits of the operands. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); + if (Tmp == 1) + return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); + return std::min(Tmp, Tmp2); + } + case ISD::UMIN: + case ISD::UMAX: + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); + if (Tmp == 1) + return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); + return std::min(Tmp, Tmp2); + case ISD::SADDO: + case ISD::UADDO: + case ISD::SSUBO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: + if (Op.getResNo() != 1) + break; + // The boolean result conforms to getBooleanContents. Fall through. + // If setcc returns 0/-1, all bits are sign bits. + // We know that we have an integer-based boolean since these operations + // are only available for integer. + if (TLI->getBooleanContents(VT.isVector(), false) == + TargetLowering::ZeroOrNegativeOneBooleanContent) + return VTBits; + break; + case ISD::SETCC: + // If setcc returns 0/-1, all bits are sign bits. + if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == + TargetLowering::ZeroOrNegativeOneBooleanContent) + return VTBits; + break; + case ISD::ROTL: + case ISD::ROTR: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned RotAmt = C->getAPIntValue().urem(VTBits); + + // Handle rotate right by N like a rotate left by 32-N. + if (Opcode == ISD::ROTR) + RotAmt = (VTBits - RotAmt) % VTBits; + + // If we aren't rotating out all of the known-in sign bits, return the + // number that are left. This handles rotl(sext(x), 1) for example. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); + } + break; + case ISD::ADD: + case ISD::ADDC: + // Add can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + + // Special case decrementing a value (ADD X, -1): + if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) + if (CRHS->isAllOnesValue()) { + KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); + + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((Known.Zero | 1).isAllOnesValue()) + return VTBits; + + // If we are subtracting one from a positive number, there is no carry + // out of the result. + if (Known.isNonNegative()) + return Tmp; + } + + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + if (Tmp2 == 1) return 1; + return std::min(Tmp, Tmp2)-1; + + case ISD::SUB: + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + if (Tmp2 == 1) return 1; + + // Handle NEG. + if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) + if (CLHS->isNullValue()) { + KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((Known.Zero | 1).isAllOnesValue()) + return VTBits; + + // If the input is known to be positive (the sign bit is known clear), + // the output of the NEG has the same number of sign bits as the input. + if (Known.isNonNegative()) + return Tmp2; + + // Otherwise, we treat this like a SUB. + } + + // Sub can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + return std::min(Tmp, Tmp2)-1; + case ISD::TRUNCATE: { + // Check if the sign bits of source go down as far as the truncated value. + unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); + unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); + if (NumSrcSignBits > (NumSrcBits - VTBits)) + return NumSrcSignBits - (NumSrcBits - VTBits); + break; + } + case ISD::EXTRACT_ELEMENT: { + const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); + const int BitWidth = Op.getValueSizeInBits(); + const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; + + // Get reverse index (starting from 1), Op1 value indexes elements from + // little end. Sign starts at big end. + const int rIndex = Items - 1 - Op.getConstantOperandVal(1); + + // If the sign portion ends in our element the subtraction gives correct + // result. Otherwise it gives either negative or > bitwidth result + return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); + } + case ISD::INSERT_VECTOR_ELT: { + SDValue InVec = Op.getOperand(0); + SDValue InVal = Op.getOperand(1); + SDValue EltNo = Op.getOperand(2); + + ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); + if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { + // If we know the element index, split the demand between the + // source vector and the inserted element. + unsigned EltIdx = CEltNo->getZExtValue(); + + // If we demand the inserted element then get its sign bits. + Tmp = std::numeric_limits<unsigned>::max(); + if (DemandedElts[EltIdx]) { + // TODO - handle implicit truncation of inserted elements. + if (InVal.getScalarValueSizeInBits() != VTBits) + break; + Tmp = ComputeNumSignBits(InVal, Depth + 1); + } + + // If we demand the source vector then get its sign bits, and determine + // the minimum. + APInt VectorElts = DemandedElts; + VectorElts.clearBit(EltIdx); + if (!!VectorElts) { + Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); + Tmp = std::min(Tmp, Tmp2); + } + } else { + // Unknown element index, so ignore DemandedElts and demand them all. + Tmp = ComputeNumSignBits(InVec, Depth + 1); + Tmp2 = ComputeNumSignBits(InVal, Depth + 1); + Tmp = std::min(Tmp, Tmp2); + } + assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); + return Tmp; + } + case ISD::EXTRACT_VECTOR_ELT: { + SDValue InVec = Op.getOperand(0); + SDValue EltNo = Op.getOperand(1); + EVT VecVT = InVec.getValueType(); + const unsigned BitWidth = Op.getValueSizeInBits(); + const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); + const unsigned NumSrcElts = VecVT.getVectorNumElements(); + + // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know + // anything about sign bits. But if the sizes match we can derive knowledge + // about sign bits from the vector operand. + if (BitWidth != EltBitWidth) + break; + + // If we know the element index, just demand that vector element, else for + // an unknown element index, ignore DemandedElts and demand them all. + APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); + ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); + if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) + DemandedSrcElts = + APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); + + return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); + } + case ISD::EXTRACT_SUBVECTOR: { + // If we know the element index, just demand that subvector elements, + // otherwise demand them all. + SDValue Src = Op.getOperand(0); + ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { + // Offset the demanded elts by the subvector index. + uint64_t Idx = SubIdx->getZExtValue(); + APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); + return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); + } + return ComputeNumSignBits(Src, Depth + 1); + } + case ISD::CONCAT_VECTORS: { + // Determine the minimum number of sign bits across all demanded + // elts of the input vectors. Early out if the result is already 1. + Tmp = std::numeric_limits<unsigned>::max(); + EVT SubVectorVT = Op.getOperand(0).getValueType(); + unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); + unsigned NumSubVectors = Op.getNumOperands(); + for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { + APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); + DemandedSub = DemandedSub.trunc(NumSubVectorElts); + if (!DemandedSub) + continue; + Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); + Tmp = std::min(Tmp, Tmp2); + } + assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); + return Tmp; + } + case ISD::INSERT_SUBVECTOR: { + // If we know the element index, demand any elements from the subvector and + // the remainder from the src its inserted into, otherwise demand them all. + SDValue Src = Op.getOperand(0); + SDValue Sub = Op.getOperand(1); + auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); + if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { + Tmp = std::numeric_limits<unsigned>::max(); + uint64_t Idx = SubIdx->getZExtValue(); + APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); + if (!!DemandedSubElts) { + Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); + if (Tmp == 1) return 1; // early-out + } + APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); + APInt DemandedSrcElts = DemandedElts & ~SubMask; + if (!!DemandedSrcElts) { + Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); + Tmp = std::min(Tmp, Tmp2); + } + assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); + return Tmp; + } + + // Not able to determine the index so just assume worst case. + Tmp = ComputeNumSignBits(Sub, Depth + 1); + if (Tmp == 1) return 1; // early-out + Tmp2 = ComputeNumSignBits(Src, Depth + 1); + Tmp = std::min(Tmp, Tmp2); + assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); + return Tmp; + } + } + + // If we are looking at the loaded value of the SDNode. + if (Op.getResNo() == 0) { + // Handle LOADX separately here. EXTLOAD case will fallthrough. + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { + unsigned ExtType = LD->getExtensionType(); + switch (ExtType) { + default: break; + case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. + Tmp = LD->getMemoryVT().getScalarSizeInBits(); + return VTBits - Tmp + 1; + case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. + Tmp = LD->getMemoryVT().getScalarSizeInBits(); + return VTBits - Tmp; + case ISD::NON_EXTLOAD: + if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { + // We only need to handle vectors - computeKnownBits should handle + // scalar cases. + Type *CstTy = Cst->getType(); + if (CstTy->isVectorTy() && + (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { + Tmp = VTBits; + for (unsigned i = 0; i != NumElts; ++i) { + if (!DemandedElts[i]) + continue; + if (Constant *Elt = Cst->getAggregateElement(i)) { + if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { + const APInt &Value = CInt->getValue(); + Tmp = std::min(Tmp, Value.getNumSignBits()); + continue; + } + if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { + APInt Value = CFP->getValueAPF().bitcastToAPInt(); + Tmp = std::min(Tmp, Value.getNumSignBits()); + continue; + } + } + // Unknown type. Conservatively assume no bits match sign bit. + return 1; + } + return Tmp; + } + } + break; + } + } + } + + // Allow the target to implement this method for its nodes. + if (Opcode >= ISD::BUILTIN_OP_END || + Opcode == ISD::INTRINSIC_WO_CHAIN || + Opcode == ISD::INTRINSIC_W_CHAIN || + Opcode == ISD::INTRINSIC_VOID) { + unsigned NumBits = + TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); + if (NumBits > 1) + FirstAnswer = std::max(FirstAnswer, NumBits); + } + + // Finally, if we can prove that the top bits of the result are 0's or 1's, + // use this information. + KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); + + APInt Mask; + if (Known.isNonNegative()) { // sign bit is 0 + Mask = Known.Zero; + } else if (Known.isNegative()) { // sign bit is 1; + Mask = Known.One; + } else { + // Nothing known. + return FirstAnswer; + } + + // Okay, we know that the sign bit in Mask is set. Use CLZ to determine + // the number of identical bits in the top of the input value. + Mask = ~Mask; + Mask <<= Mask.getBitWidth()-VTBits; + // Return # leading zeros. We use 'min' here in case Val was zero before + // shifting. We don't want to return '64' as for an i32 "0". + return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); +} + +bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { + if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || + !isa<ConstantSDNode>(Op.getOperand(1))) + return false; + + if (Op.getOpcode() == ISD::OR && + !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) + return false; + + return true; +} + +bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { + // If we're told that NaNs won't happen, assume they won't. + if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) + return true; + + if (Depth == 6) + return false; // Limit search depth. + + // TODO: Handle vectors. + // If the value is a constant, we can obviously see if it is a NaN or not. + if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { + return !C->getValueAPF().isNaN() || + (SNaN && !C->getValueAPF().isSignaling()); + } + + unsigned Opcode = Op.getOpcode(); + switch (Opcode) { + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + case ISD::FSIN: + case ISD::FCOS: { + if (SNaN) + return true; + // TODO: Need isKnownNeverInfinity + return false; + } + case ISD::FCANONICALIZE: + case ISD::FEXP: + case ISD::FEXP2: + case ISD::FTRUNC: + case ISD::FFLOOR: + case ISD::FCEIL: + case ISD::FROUND: + case ISD::FRINT: + case ISD::FNEARBYINT: { + if (SNaN) + return true; + return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); + } + case ISD::FABS: + case ISD::FNEG: + case ISD::FCOPYSIGN: { + return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); + } + case ISD::SELECT: + return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && + isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); + case ISD::FP_EXTEND: + case ISD::FP_ROUND: { + if (SNaN) + return true; + return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); + } + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + return true; + case ISD::FMA: + case ISD::FMAD: { + if (SNaN) + return true; + return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && + isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && + isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); + } + case ISD::FSQRT: // Need is known positive + case ISD::FLOG: + case ISD::FLOG2: + case ISD::FLOG10: + case ISD::FPOWI: + case ISD::FPOW: { + if (SNaN) + return true; + // TODO: Refine on operand + return false; + } + case ISD::FMINNUM: + case ISD::FMAXNUM: { + // Only one needs to be known not-nan, since it will be returned if the + // other ends up being one. + return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || + isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); + } + case ISD::FMINNUM_IEEE: + case ISD::FMAXNUM_IEEE: { + if (SNaN) + return true; + // This can return a NaN if either operand is an sNaN, or if both operands + // are NaN. + return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && + isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || + (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && + isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); + } + case ISD::FMINIMUM: + case ISD::FMAXIMUM: { + // TODO: Does this quiet or return the origina NaN as-is? + return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && + isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); + } + case ISD::EXTRACT_VECTOR_ELT: { + return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); + } + default: + if (Opcode >= ISD::BUILTIN_OP_END || + Opcode == ISD::INTRINSIC_WO_CHAIN || + Opcode == ISD::INTRINSIC_W_CHAIN || + Opcode == ISD::INTRINSIC_VOID) { + return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); + } + + return false; + } +} + +bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { + assert(Op.getValueType().isFloatingPoint() && + "Floating point type expected"); + + // If the value is a constant, we can obviously see if it is a zero or not. + // TODO: Add BuildVector support. + if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) + return !C->isZero(); + return false; +} + +bool SelectionDAG::isKnownNeverZero(SDValue Op) const { + assert(!Op.getValueType().isFloatingPoint() && + "Floating point types unsupported - use isKnownNeverZeroFloat"); + + // If the value is a constant, we can obviously see if it is a zero or not. + if (ISD::matchUnaryPredicate( + Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) + return true; + + // TODO: Recognize more cases here. + switch (Op.getOpcode()) { + default: break; + case ISD::OR: + if (isKnownNeverZero(Op.getOperand(1)) || + isKnownNeverZero(Op.getOperand(0))) + return true; + break; + } + + return false; +} + +bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { + // Check the obvious case. + if (A == B) return true; + + // For for negative and positive zero. + if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) + if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) + if (CA->isZero() && CB->isZero()) return true; + + // Otherwise they may not be equal. + return false; +} + +// FIXME: unify with llvm::haveNoCommonBitsSet. +// FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) +bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { + assert(A.getValueType() == B.getValueType() && + "Values must have the same type"); + return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); +} + +static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, + ArrayRef<SDValue> Ops, + SelectionDAG &DAG) { + int NumOps = Ops.size(); + assert(NumOps != 0 && "Can't build an empty vector!"); + assert(VT.getVectorNumElements() == (unsigned)NumOps && + "Incorrect element count in BUILD_VECTOR!"); + + // BUILD_VECTOR of UNDEFs is UNDEF. + if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) + return DAG.getUNDEF(VT); + + // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. + SDValue IdentitySrc; + bool IsIdentity = true; + for (int i = 0; i != NumOps; ++i) { + if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || + Ops[i].getOperand(0).getValueType() != VT || + (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || + !isa<ConstantSDNode>(Ops[i].getOperand(1)) || + cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { + IsIdentity = false; + break; + } + IdentitySrc = Ops[i].getOperand(0); + } + if (IsIdentity) + return IdentitySrc; + + return SDValue(); +} + +/// Try to simplify vector concatenation to an input value, undef, or build +/// vector. +static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, + ArrayRef<SDValue> Ops, + SelectionDAG &DAG) { + assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); + assert(llvm::all_of(Ops, + [Ops](SDValue Op) { + return Ops[0].getValueType() == Op.getValueType(); + }) && + "Concatenation of vectors with inconsistent value types!"); + assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == + VT.getVectorNumElements() && + "Incorrect element count in vector concatenation!"); + + if (Ops.size() == 1) + return Ops[0]; + + // Concat of UNDEFs is UNDEF. + if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) + return DAG.getUNDEF(VT); + + // Scan the operands and look for extract operations from a single source + // that correspond to insertion at the same location via this concatenation: + // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... + SDValue IdentitySrc; + bool IsIdentity = true; + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { + SDValue Op = Ops[i]; + unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); + if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || + Op.getOperand(0).getValueType() != VT || + (IdentitySrc && Op.getOperand(0) != IdentitySrc) || + !isa<ConstantSDNode>(Op.getOperand(1)) || + Op.getConstantOperandVal(1) != IdentityIndex) { + IsIdentity = false; + break; + } + assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && + "Unexpected identity source vector for concat of extracts"); + IdentitySrc = Op.getOperand(0); + } + if (IsIdentity) { + assert(IdentitySrc && "Failed to set source vector of extracts"); + return IdentitySrc; + } + + // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be + // simplified to one big BUILD_VECTOR. + // FIXME: Add support for SCALAR_TO_VECTOR as well. + EVT SVT = VT.getScalarType(); + SmallVector<SDValue, 16> Elts; + for (SDValue Op : Ops) { + EVT OpVT = Op.getValueType(); + if (Op.isUndef()) + Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); + else if (Op.getOpcode() == ISD::BUILD_VECTOR) + Elts.append(Op->op_begin(), Op->op_end()); + else + return SDValue(); + } + + // BUILD_VECTOR requires all inputs to be of the same type, find the + // maximum type and extend them all. + for (SDValue Op : Elts) + SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); + + if (SVT.bitsGT(VT.getScalarType())) + for (SDValue &Op : Elts) + Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) + ? DAG.getZExtOrTrunc(Op, DL, SVT) + : DAG.getSExtOrTrunc(Op, DL, SVT); + + SDValue V = DAG.getBuildVector(VT, DL, Elts); + NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); + return V; +} + +/// Gets or creates the specified node. +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, getVTList(VT), None); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), + getVTList(VT)); + CSEMap.InsertNode(N, IP); + + InsertNode(N); + SDValue V = SDValue(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, + SDValue Operand, const SDNodeFlags Flags) { + // Constant fold unary operations with an integer constant operand. Even + // opaque constant will be folded, because the folding of unary operations + // doesn't create new constants with different values. Nevertheless, the + // opaque flag is preserved during folding to prevent future folding with + // other constants. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { + const APInt &Val = C->getAPIntValue(); + switch (Opcode) { + default: break; + case ISD::SIGN_EXTEND: + return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, + C->isTargetOpcode(), C->isOpaque()); + case ISD::TRUNCATE: + if (C->isOpaque()) + break; + LLVM_FALLTHROUGH; + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: + return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, + C->isTargetOpcode(), C->isOpaque()); + case ISD::UINT_TO_FP: + case ISD::SINT_TO_FP: { + APFloat apf(EVTToAPFloatSemantics(VT), + APInt::getNullValue(VT.getSizeInBits())); + (void)apf.convertFromAPInt(Val, + Opcode==ISD::SINT_TO_FP, + APFloat::rmNearestTiesToEven); + return getConstantFP(apf, DL, VT); + } + case ISD::BITCAST: + if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) + return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); + if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) + return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); + if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) + return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); + if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) + return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); + break; + case ISD::ABS: + return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::BITREVERSE: + return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::BSWAP: + return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::CTPOP: + return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::FP16_TO_FP: { + bool Ignored; + APFloat FPV(APFloat::IEEEhalf(), + (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); + + // This can return overflow, underflow, or inexact; we don't care. + // FIXME need to be more flexible about rounding mode. + (void)FPV.convert(EVTToAPFloatSemantics(VT), + APFloat::rmNearestTiesToEven, &Ignored); + return getConstantFP(FPV, DL, VT); + } + } + } + + // Constant fold unary operations with a floating point constant operand. + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { + APFloat V = C->getValueAPF(); // make copy + switch (Opcode) { + case ISD::FNEG: + V.changeSign(); + return getConstantFP(V, DL, VT); + case ISD::FABS: + V.clearSign(); + return getConstantFP(V, DL, VT); + case ISD::FCEIL: { + APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); + if (fs == APFloat::opOK || fs == APFloat::opInexact) + return getConstantFP(V, DL, VT); + break; + } + case ISD::FTRUNC: { + APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); + if (fs == APFloat::opOK || fs == APFloat::opInexact) + return getConstantFP(V, DL, VT); + break; + } + case ISD::FFLOOR: { + APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); + if (fs == APFloat::opOK || fs == APFloat::opInexact) + return getConstantFP(V, DL, VT); + break; + } + case ISD::FP_EXTEND: { + bool ignored; + // This can return overflow, underflow, or inexact; we don't care. + // FIXME need to be more flexible about rounding mode. + (void)V.convert(EVTToAPFloatSemantics(VT), + APFloat::rmNearestTiesToEven, &ignored); + return getConstantFP(V, DL, VT); + } + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: { + bool ignored; + APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); + // FIXME need to be more flexible about rounding mode. + APFloat::opStatus s = + V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); + if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual + break; + return getConstant(IntVal, DL, VT); + } + case ISD::BITCAST: + if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) + return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); + else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) + return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); + else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) + return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); + break; + case ISD::FP_TO_FP16: { + bool Ignored; + // This can return overflow, underflow, or inexact; we don't care. + // FIXME need to be more flexible about rounding mode. + (void)V.convert(APFloat::IEEEhalf(), + APFloat::rmNearestTiesToEven, &Ignored); + return getConstant(V.bitcastToAPInt(), DL, VT); + } + } + } + + // Constant fold unary operations with a vector integer or float operand. + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { + if (BV->isConstant()) { + switch (Opcode) { + default: + // FIXME: Entirely reasonable to perform folding of other unary + // operations here as the need arises. + break; + case ISD::FNEG: + case ISD::FABS: + case ISD::FCEIL: + case ISD::FTRUNC: + case ISD::FFLOOR: + case ISD::FP_EXTEND: + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + case ISD::TRUNCATE: + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::SIGN_EXTEND: + case ISD::UINT_TO_FP: + case ISD::SINT_TO_FP: + case ISD::ABS: + case ISD::BITREVERSE: + case ISD::BSWAP: + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + case ISD::CTPOP: { + SDValue Ops = { Operand }; + if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) + return Fold; + } + } + } + } + + unsigned OpOpcode = Operand.getNode()->getOpcode(); + switch (Opcode) { + case ISD::TokenFactor: + case ISD::MERGE_VALUES: + case ISD::CONCAT_VECTORS: + return Operand; // Factor, merge or concat of one node? No need. + case ISD::BUILD_VECTOR: { + // Attempt to simplify BUILD_VECTOR. + SDValue Ops[] = {Operand}; + if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) + return V; + break; + } + case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); + case ISD::FP_EXTEND: + assert(VT.isFloatingPoint() && + Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); + if (Operand.getValueType() == VT) return Operand; // noop conversion. + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + assert(Operand.getValueType().bitsLT(VT) && + "Invalid fpext node, dst < src!"); + if (Operand.isUndef()) + return getUNDEF(VT); + break; + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + if (Operand.isUndef()) + return getUNDEF(VT); + break; + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + // [us]itofp(undef) = 0, because the result value is bounded. + if (Operand.isUndef()) + return getConstantFP(0.0, DL, VT); + break; + case ISD::SIGN_EXTEND: + assert(VT.isInteger() && Operand.getValueType().isInteger() && + "Invalid SIGN_EXTEND!"); + assert(VT.isVector() == Operand.getValueType().isVector() && + "SIGN_EXTEND result type type should be vector iff the operand " + "type is vector!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + assert(Operand.getValueType().bitsLT(VT) && + "Invalid sext node, dst < src!"); + if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) + return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); + else if (OpOpcode == ISD::UNDEF) + // sext(undef) = 0, because the top bits will all be the same. + return getConstant(0, DL, VT); + break; + case ISD::ZERO_EXTEND: + assert(VT.isInteger() && Operand.getValueType().isInteger() && + "Invalid ZERO_EXTEND!"); + assert(VT.isVector() == Operand.getValueType().isVector() && + "ZERO_EXTEND result type type should be vector iff the operand " + "type is vector!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + assert(Operand.getValueType().bitsLT(VT) && + "Invalid zext node, dst < src!"); + if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) + return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); + else if (OpOpcode == ISD::UNDEF) + // zext(undef) = 0, because the top bits will be zero. + return getConstant(0, DL, VT); + break; + case ISD::ANY_EXTEND: + assert(VT.isInteger() && Operand.getValueType().isInteger() && + "Invalid ANY_EXTEND!"); + assert(VT.isVector() == Operand.getValueType().isVector() && + "ANY_EXTEND result type type should be vector iff the operand " + "type is vector!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + assert(Operand.getValueType().bitsLT(VT) && + "Invalid anyext node, dst < src!"); + + if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || + OpOpcode == ISD::ANY_EXTEND) + // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) + return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); + else if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + + // (ext (trunc x)) -> x + if (OpOpcode == ISD::TRUNCATE) { + SDValue OpOp = Operand.getOperand(0); + if (OpOp.getValueType() == VT) { + transferDbgValues(Operand, OpOp); + return OpOp; + } + } + break; + case ISD::TRUNCATE: + assert(VT.isInteger() && Operand.getValueType().isInteger() && + "Invalid TRUNCATE!"); + assert(VT.isVector() == Operand.getValueType().isVector() && + "TRUNCATE result type type should be vector iff the operand " + "type is vector!"); + if (Operand.getValueType() == VT) return Operand; // noop truncate + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + assert(Operand.getValueType().bitsGT(VT) && + "Invalid truncate node, src < dst!"); + if (OpOpcode == ISD::TRUNCATE) + return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); + if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || + OpOpcode == ISD::ANY_EXTEND) { + // If the source is smaller than the dest, we still need an extend. + if (Operand.getOperand(0).getValueType().getScalarType() + .bitsLT(VT.getScalarType())) + return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); + if (Operand.getOperand(0).getValueType().bitsGT(VT)) + return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); + return Operand.getOperand(0); + } + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::ANY_EXTEND_VECTOR_INREG: + case ISD::ZERO_EXTEND_VECTOR_INREG: + case ISD::SIGN_EXTEND_VECTOR_INREG: + assert(VT.isVector() && "This DAG node is restricted to vector types."); + assert(Operand.getValueType().bitsLE(VT) && + "The input must be the same size or smaller than the result."); + assert(VT.getVectorNumElements() < + Operand.getValueType().getVectorNumElements() && + "The destination vector type must have fewer lanes than the input."); + break; + case ISD::ABS: + assert(VT.isInteger() && VT == Operand.getValueType() && + "Invalid ABS!"); + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::BSWAP: + assert(VT.isInteger() && VT == Operand.getValueType() && + "Invalid BSWAP!"); + assert((VT.getScalarSizeInBits() % 16 == 0) && + "BSWAP types must be a multiple of 16 bits!"); + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::BITREVERSE: + assert(VT.isInteger() && VT == Operand.getValueType() && + "Invalid BITREVERSE!"); + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::BITCAST: + // Basic sanity checking. + assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && + "Cannot BITCAST between types of different sizes!"); + if (VT == Operand.getValueType()) return Operand; // noop conversion. + if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) + return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::SCALAR_TO_VECTOR: + assert(VT.isVector() && !Operand.getValueType().isVector() && + (VT.getVectorElementType() == Operand.getValueType() || + (VT.getVectorElementType().isInteger() && + Operand.getValueType().isInteger() && + VT.getVectorElementType().bitsLE(Operand.getValueType()))) && + "Illegal SCALAR_TO_VECTOR node!"); + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. + if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && + isa<ConstantSDNode>(Operand.getOperand(1)) && + Operand.getConstantOperandVal(1) == 0 && + Operand.getOperand(0).getValueType() == VT) + return Operand.getOperand(0); + break; + case ISD::FNEG: + // Negation of an unknown bag of bits is still completely undefined. + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + + // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 + if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) && + OpOpcode == ISD::FSUB) + return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), + Operand.getOperand(0), Flags); + if (OpOpcode == ISD::FNEG) // --X -> X + return Operand.getOperand(0); + break; + case ISD::FABS: + if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) + return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); + break; + } + + SDNode *N; + SDVTList VTs = getVTList(VT); + SDValue Ops[] = {Operand}; + if (VT != MVT::Glue) { // Don't CSE flag producing nodes + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { + E->intersectFlagsWith(Flags); + return SDValue(E, 0); + } + + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + N->setFlags(Flags); + createOperands(N, Ops); + CSEMap.InsertNode(N, IP); + } else { + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + createOperands(N, Ops); + } + + InsertNode(N); + SDValue V = SDValue(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, + const APInt &C2) { + switch (Opcode) { + case ISD::ADD: return std::make_pair(C1 + C2, true); + case ISD::SUB: return std::make_pair(C1 - C2, true); + case ISD::MUL: return std::make_pair(C1 * C2, true); + case ISD::AND: return std::make_pair(C1 & C2, true); + case ISD::OR: return std::make_pair(C1 | C2, true); + case ISD::XOR: return std::make_pair(C1 ^ C2, true); + case ISD::SHL: return std::make_pair(C1 << C2, true); + case ISD::SRL: return std::make_pair(C1.lshr(C2), true); + case ISD::SRA: return std::make_pair(C1.ashr(C2), true); + case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); + case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); + case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); + case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); + case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); + case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); + case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); + case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); + case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); + case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); + case ISD::UDIV: + if (!C2.getBoolValue()) + break; + return std::make_pair(C1.udiv(C2), true); + case ISD::UREM: + if (!C2.getBoolValue()) + break; + return std::make_pair(C1.urem(C2), true); + case ISD::SDIV: + if (!C2.getBoolValue()) + break; + return std::make_pair(C1.sdiv(C2), true); + case ISD::SREM: + if (!C2.getBoolValue()) + break; + return std::make_pair(C1.srem(C2), true); + } + return std::make_pair(APInt(1, 0), false); +} + +SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, + EVT VT, const ConstantSDNode *C1, + const ConstantSDNode *C2) { + if (C1->isOpaque() || C2->isOpaque()) + return SDValue(); + + std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), + C2->getAPIntValue()); + if (!Folded.second) + return SDValue(); + return getConstant(Folded.first, DL, VT); +} + +SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, + const GlobalAddressSDNode *GA, + const SDNode *N2) { + if (GA->getOpcode() != ISD::GlobalAddress) + return SDValue(); + if (!TLI->isOffsetFoldingLegal(GA)) + return SDValue(); + auto *C2 = dyn_cast<ConstantSDNode>(N2); + if (!C2) + return SDValue(); + int64_t Offset = C2->getSExtValue(); + switch (Opcode) { + case ISD::ADD: break; + case ISD::SUB: Offset = -uint64_t(Offset); break; + default: return SDValue(); + } + return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, + GA->getOffset() + uint64_t(Offset)); +} + +bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { + switch (Opcode) { + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: { + // If a divisor is zero/undef or any element of a divisor vector is + // zero/undef, the whole op is undef. + assert(Ops.size() == 2 && "Div/rem should have 2 operands"); + SDValue Divisor = Ops[1]; + if (Divisor.isUndef() || isNullConstant(Divisor)) + return true; + + return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && + llvm::any_of(Divisor->op_values(), + [](SDValue V) { return V.isUndef() || + isNullConstant(V); }); + // TODO: Handle signed overflow. + } + // TODO: Handle oversized shifts. + default: + return false; + } +} + +SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, + EVT VT, SDNode *N1, SDNode *N2) { + // If the opcode is a target-specific ISD node, there's nothing we can + // do here and the operand rules may not line up with the below, so + // bail early. + if (Opcode >= ISD::BUILTIN_OP_END) + return SDValue(); + + if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) + return getUNDEF(VT); + + // Handle the case of two scalars. + if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { + if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { + SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); + assert((!Folded || !VT.isVector()) && + "Can't fold vectors ops with scalar operands"); + return Folded; + } + } + + // fold (add Sym, c) -> Sym+c + if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) + return FoldSymbolOffset(Opcode, VT, GA, N2); + if (TLI->isCommutativeBinOp(Opcode)) + if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) + return FoldSymbolOffset(Opcode, VT, GA, N1); + + // For vectors, extract each constant element and fold them individually. + // Either input may be an undef value. + auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); + if (!BV1 && !N1->isUndef()) + return SDValue(); + auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); + if (!BV2 && !N2->isUndef()) + return SDValue(); + // If both operands are undef, that's handled the same way as scalars. + if (!BV1 && !BV2) + return SDValue(); + + assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && + "Vector binop with different number of elements in operands?"); + + EVT SVT = VT.getScalarType(); + EVT LegalSVT = SVT; + if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { + LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); + if (LegalSVT.bitsLT(SVT)) + return SDValue(); + } + SmallVector<SDValue, 4> Outputs; + unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); + for (unsigned I = 0; I != NumOps; ++I) { + SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); + SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); + if (SVT.isInteger()) { + if (V1->getValueType(0).bitsGT(SVT)) + V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); + if (V2->getValueType(0).bitsGT(SVT)) + V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); + } + + if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) + return SDValue(); + + // Fold one vector element. + SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); + if (LegalSVT != SVT) + ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); + + // Scalar folding only succeeded if the result is a constant or UNDEF. + if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && + ScalarResult.getOpcode() != ISD::ConstantFP) + return SDValue(); + Outputs.push_back(ScalarResult); + } + + assert(VT.getVectorNumElements() == Outputs.size() && + "Vector size mismatch!"); + + // We may have a vector type but a scalar result. Create a splat. + Outputs.resize(VT.getVectorNumElements(), Outputs.back()); + + // Build a big vector out of the scalar elements we generated. + return getBuildVector(VT, SDLoc(), Outputs); +} + +// TODO: Merge with FoldConstantArithmetic +SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, + const SDLoc &DL, EVT VT, + ArrayRef<SDValue> Ops, + const SDNodeFlags Flags) { + // If the opcode is a target-specific ISD node, there's nothing we can + // do here and the operand rules may not line up with the below, so + // bail early. + if (Opcode >= ISD::BUILTIN_OP_END) + return SDValue(); + + if (isUndef(Opcode, Ops)) + return getUNDEF(VT); + + // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? + if (!VT.isVector()) + return SDValue(); + + unsigned NumElts = VT.getVectorNumElements(); + + auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { + return !Op.getValueType().isVector() || + Op.getValueType().getVectorNumElements() == NumElts; + }; + + auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { + BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); + return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || + (BV && BV->isConstant()); + }; + + // All operands must be vector types with the same number of elements as + // the result type and must be either UNDEF or a build vector of constant + // or UNDEF scalars. + if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || + !llvm::all_of(Ops, IsScalarOrSameVectorSize)) + return SDValue(); + + // If we are comparing vectors, then the result needs to be a i1 boolean + // that is then sign-extended back to the legal result type. + EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); + + // Find legal integer scalar type for constant promotion and + // ensure that its scalar size is at least as large as source. + EVT LegalSVT = VT.getScalarType(); + if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { + LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); + if (LegalSVT.bitsLT(VT.getScalarType())) + return SDValue(); + } + + // Constant fold each scalar lane separately. + SmallVector<SDValue, 4> ScalarResults; + for (unsigned i = 0; i != NumElts; i++) { + SmallVector<SDValue, 4> ScalarOps; + for (SDValue Op : Ops) { + EVT InSVT = Op.getValueType().getScalarType(); + BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); + if (!InBV) { + // We've checked that this is UNDEF or a constant of some kind. + if (Op.isUndef()) + ScalarOps.push_back(getUNDEF(InSVT)); + else + ScalarOps.push_back(Op); + continue; + } + + SDValue ScalarOp = InBV->getOperand(i); + EVT ScalarVT = ScalarOp.getValueType(); + + // Build vector (integer) scalar operands may need implicit + // truncation - do this before constant folding. + if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) + ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); + + ScalarOps.push_back(ScalarOp); + } + + // Constant fold the scalar operands. + SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); + + // Legalize the (integer) scalar constant if necessary. + if (LegalSVT != SVT) + ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); + + // Scalar folding only succeeded if the result is a constant or UNDEF. + if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && + ScalarResult.getOpcode() != ISD::ConstantFP) + return SDValue(); + ScalarResults.push_back(ScalarResult); + } + + SDValue V = getBuildVector(VT, DL, ScalarResults); + NewSDValueDbgMsg(V, "New node fold constant vector: ", this); + return V; +} + +SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, + EVT VT, SDValue N1, SDValue N2) { + // TODO: We don't do any constant folding for strict FP opcodes here, but we + // should. That will require dealing with a potentially non-default + // rounding mode, checking the "opStatus" return value from the APFloat + // math calculations, and possibly other variations. + auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); + auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); + if (N1CFP && N2CFP) { + APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); + switch (Opcode) { + case ISD::FADD: + C1.add(C2, APFloat::rmNearestTiesToEven); + return getConstantFP(C1, DL, VT); + case ISD::FSUB: + C1.subtract(C2, APFloat::rmNearestTiesToEven); + return getConstantFP(C1, DL, VT); + case ISD::FMUL: + C1.multiply(C2, APFloat::rmNearestTiesToEven); + return getConstantFP(C1, DL, VT); + case ISD::FDIV: + C1.divide(C2, APFloat::rmNearestTiesToEven); + return getConstantFP(C1, DL, VT); + case ISD::FREM: + C1.mod(C2); + return getConstantFP(C1, DL, VT); + case ISD::FCOPYSIGN: + C1.copySign(C2); + return getConstantFP(C1, DL, VT); + default: break; + } + } + if (N1CFP && Opcode == ISD::FP_ROUND) { + APFloat C1 = N1CFP->getValueAPF(); // make copy + bool Unused; + // This can return overflow, underflow, or inexact; we don't care. + // FIXME need to be more flexible about rounding mode. + (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, + &Unused); + return getConstantFP(C1, DL, VT); + } + + switch (Opcode) { + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + // If both operands are undef, the result is undef. If 1 operand is undef, + // the result is NaN. This should match the behavior of the IR optimizer. + if (N1.isUndef() && N2.isUndef()) + return getUNDEF(VT); + if (N1.isUndef() || N2.isUndef()) + return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); + } + return SDValue(); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, + SDValue N1, SDValue N2, const SDNodeFlags Flags) { + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); + ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); + ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); + + // Canonicalize constant to RHS if commutative. + if (TLI->isCommutativeBinOp(Opcode)) { + if (N1C && !N2C) { + std::swap(N1C, N2C); + std::swap(N1, N2); + } else if (N1CFP && !N2CFP) { + std::swap(N1CFP, N2CFP); + std::swap(N1, N2); + } + } + + switch (Opcode) { + default: break; + case ISD::TokenFactor: + assert(VT == MVT::Other && N1.getValueType() == MVT::Other && + N2.getValueType() == MVT::Other && "Invalid token factor!"); + // Fold trivial token factors. + if (N1.getOpcode() == ISD::EntryToken) return N2; + if (N2.getOpcode() == ISD::EntryToken) return N1; + if (N1 == N2) return N1; + break; + case ISD::BUILD_VECTOR: { + // Attempt to simplify BUILD_VECTOR. + SDValue Ops[] = {N1, N2}; + if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) + return V; + break; + } + case ISD::CONCAT_VECTORS: { + SDValue Ops[] = {N1, N2}; + if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) + return V; + break; + } + case ISD::AND: + assert(VT.isInteger() && "This operator does not apply to FP types!"); + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's + // worth handling here. + if (N2C && N2C->isNullValue()) + return N2; + if (N2C && N2C->isAllOnesValue()) // X & -1 -> X + return N1; + break; + case ISD::OR: + case ISD::XOR: + case ISD::ADD: + case ISD::SUB: + assert(VT.isInteger() && "This operator does not apply to FP types!"); + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so + // it's worth handling here. + if (N2C && N2C->isNullValue()) + return N1; + break; + case ISD::UDIV: + case ISD::UREM: + case ISD::MULHU: + case ISD::MULHS: + case ISD::MUL: + case ISD::SDIV: + case ISD::SREM: + case ISD::SMIN: + case ISD::SMAX: + case ISD::UMIN: + case ISD::UMAX: + case ISD::SADDSAT: + case ISD::SSUBSAT: + case ISD::UADDSAT: + case ISD::USUBSAT: + assert(VT.isInteger() && "This operator does not apply to FP types!"); + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + break; + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) + return V; + break; + case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. + assert(N1.getValueType() == VT && + N1.getValueType().isFloatingPoint() && + N2.getValueType().isFloatingPoint() && + "Invalid FCOPYSIGN!"); + break; + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + if (SDValue V = simplifyShift(N1, N2)) + return V; + LLVM_FALLTHROUGH; + case ISD::ROTL: + case ISD::ROTR: + assert(VT == N1.getValueType() && + "Shift operators return type must be the same as their first arg"); + assert(VT.isInteger() && N2.getValueType().isInteger() && + "Shifts only work on integers"); + assert((!VT.isVector() || VT == N2.getValueType()) && + "Vector shift amounts must be in the same as their first arg"); + // Verify that the shift amount VT is big enough to hold valid shift + // amounts. This catches things like trying to shift an i1024 value by an + // i8, which is easy to fall into in generic code that uses + // TLI.getShiftAmount(). + assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && + "Invalid use of small shift amount with oversized value!"); + + // Always fold shifts of i1 values so the code generator doesn't need to + // handle them. Since we know the size of the shift has to be less than the + // size of the value, the shift/rotate count is guaranteed to be zero. + if (VT == MVT::i1) + return N1; + if (N2C && N2C->isNullValue()) + return N1; + break; + case ISD::FP_ROUND_INREG: { + EVT EVT = cast<VTSDNode>(N2)->getVT(); + assert(VT == N1.getValueType() && "Not an inreg round!"); + assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && + "Cannot FP_ROUND_INREG integer types"); + assert(EVT.isVector() == VT.isVector() && + "FP_ROUND_INREG type should be vector iff the operand " + "type is vector!"); + assert((!EVT.isVector() || + EVT.getVectorNumElements() == VT.getVectorNumElements()) && + "Vector element counts must match in FP_ROUND_INREG"); + assert(EVT.bitsLE(VT) && "Not rounding down!"); + (void)EVT; + if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. + break; + } + case ISD::FP_ROUND: + assert(VT.isFloatingPoint() && + N1.getValueType().isFloatingPoint() && + VT.bitsLE(N1.getValueType()) && + N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && + "Invalid FP_ROUND!"); + if (N1.getValueType() == VT) return N1; // noop conversion. + break; + case ISD::AssertSext: + case ISD::AssertZext: { + EVT EVT = cast<VTSDNode>(N2)->getVT(); + assert(VT == N1.getValueType() && "Not an inreg extend!"); + assert(VT.isInteger() && EVT.isInteger() && + "Cannot *_EXTEND_INREG FP types"); + assert(!EVT.isVector() && + "AssertSExt/AssertZExt type should be the vector element type " + "rather than the vector type!"); + assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); + if (VT.getScalarType() == EVT) return N1; // noop assertion. + break; + } + case ISD::SIGN_EXTEND_INREG: { + EVT EVT = cast<VTSDNode>(N2)->getVT(); + assert(VT == N1.getValueType() && "Not an inreg extend!"); + assert(VT.isInteger() && EVT.isInteger() && + "Cannot *_EXTEND_INREG FP types"); + assert(EVT.isVector() == VT.isVector() && + "SIGN_EXTEND_INREG type should be vector iff the operand " + "type is vector!"); + assert((!EVT.isVector() || + EVT.getVectorNumElements() == VT.getVectorNumElements()) && + "Vector element counts must match in SIGN_EXTEND_INREG"); + assert(EVT.bitsLE(VT) && "Not extending!"); + if (EVT == VT) return N1; // Not actually extending + + auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { + unsigned FromBits = EVT.getScalarSizeInBits(); + Val <<= Val.getBitWidth() - FromBits; + Val.ashrInPlace(Val.getBitWidth() - FromBits); + return getConstant(Val, DL, ConstantVT); + }; + + if (N1C) { + const APInt &Val = N1C->getAPIntValue(); + return SignExtendInReg(Val, VT); + } + if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { + SmallVector<SDValue, 8> Ops; + llvm::EVT OpVT = N1.getOperand(0).getValueType(); + for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { + SDValue Op = N1.getOperand(i); + if (Op.isUndef()) { + Ops.push_back(getUNDEF(OpVT)); + continue; + } + ConstantSDNode *C = cast<ConstantSDNode>(Op); + APInt Val = C->getAPIntValue(); + Ops.push_back(SignExtendInReg(Val, OpVT)); + } + return getBuildVector(VT, DL, Ops); + } + break; + } + case ISD::EXTRACT_VECTOR_ELT: + assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && + "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ + element type of the vector."); + + // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. + if (N1.isUndef()) + return getUNDEF(VT); + + // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF + if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) + return getUNDEF(VT); + + // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is + // expanding copies of large vectors from registers. + if (N2C && + N1.getOpcode() == ISD::CONCAT_VECTORS && + N1.getNumOperands() > 0) { + unsigned Factor = + N1.getOperand(0).getValueType().getVectorNumElements(); + return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, + N1.getOperand(N2C->getZExtValue() / Factor), + getConstant(N2C->getZExtValue() % Factor, DL, + N2.getValueType())); + } + + // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is + // expanding large vector constants. + if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { + SDValue Elt = N1.getOperand(N2C->getZExtValue()); + + if (VT != Elt.getValueType()) + // If the vector element type is not legal, the BUILD_VECTOR operands + // are promoted and implicitly truncated, and the result implicitly + // extended. Make that explicit here. + Elt = getAnyExtOrTrunc(Elt, DL, VT); + + return Elt; + } + + // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector + // operations are lowered to scalars. + if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { + // If the indices are the same, return the inserted element else + // if the indices are known different, extract the element from + // the original vector. + SDValue N1Op2 = N1.getOperand(2); + ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); + + if (N1Op2C && N2C) { + if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { + if (VT == N1.getOperand(1).getValueType()) + return N1.getOperand(1); + else + return getSExtOrTrunc(N1.getOperand(1), DL, VT); + } + + return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); + } + } + + // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed + // when vector types are scalarized and v1iX is legal. + // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) + if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && + N1.getValueType().getVectorNumElements() == 1) { + return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), + N1.getOperand(1)); + } + break; + case ISD::EXTRACT_ELEMENT: + assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); + assert(!N1.getValueType().isVector() && !VT.isVector() && + (N1.getValueType().isInteger() == VT.isInteger()) && + N1.getValueType() != VT && + "Wrong types for EXTRACT_ELEMENT!"); + + // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding + // 64-bit integers into 32-bit parts. Instead of building the extract of + // the BUILD_PAIR, only to have legalize rip it apart, just do it now. + if (N1.getOpcode() == ISD::BUILD_PAIR) + return N1.getOperand(N2C->getZExtValue()); + + // EXTRACT_ELEMENT of a constant int is also very common. + if (N1C) { + unsigned ElementSize = VT.getSizeInBits(); + unsigned Shift = ElementSize * N2C->getZExtValue(); + APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); + return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); + } + break; + case ISD::EXTRACT_SUBVECTOR: + if (VT.isSimple() && N1.getValueType().isSimple()) { + assert(VT.isVector() && N1.getValueType().isVector() && + "Extract subvector VTs must be a vectors!"); + assert(VT.getVectorElementType() == + N1.getValueType().getVectorElementType() && + "Extract subvector VTs must have the same element type!"); + assert(VT.getSimpleVT() <= N1.getSimpleValueType() && + "Extract subvector must be from larger vector to smaller vector!"); + + if (N2C) { + assert((VT.getVectorNumElements() + N2C->getZExtValue() + <= N1.getValueType().getVectorNumElements()) + && "Extract subvector overflow!"); + } + + // Trivial extraction. + if (VT.getSimpleVT() == N1.getSimpleValueType()) + return N1; + + // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. + if (N1.isUndef()) + return getUNDEF(VT); + + // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of + // the concat have the same type as the extract. + if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && + N1.getNumOperands() > 0 && + VT == N1.getOperand(0).getValueType()) { + unsigned Factor = VT.getVectorNumElements(); + return N1.getOperand(N2C->getZExtValue() / Factor); + } + + // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created + // during shuffle legalization. + if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && + VT == N1.getOperand(1).getValueType()) + return N1.getOperand(1); + } + break; + } + + // Perform trivial constant folding. + if (SDValue SV = + FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) + return SV; + + if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) + return V; + + // Canonicalize an UNDEF to the RHS, even over a constant. + if (N1.isUndef()) { + if (TLI->isCommutativeBinOp(Opcode)) { + std::swap(N1, N2); + } else { + switch (Opcode) { + case ISD::FP_ROUND_INREG: + case ISD::SIGN_EXTEND_INREG: + case ISD::SUB: + return getUNDEF(VT); // fold op(undef, arg2) -> undef + case ISD::UDIV: + case ISD::SDIV: + case ISD::UREM: + case ISD::SREM: + case ISD::SSUBSAT: + case ISD::USUBSAT: + return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 + } + } + } + + // Fold a bunch of operators when the RHS is undef. + if (N2.isUndef()) { + switch (Opcode) { + case ISD::XOR: + if (N1.isUndef()) + // Handle undef ^ undef -> 0 special case. This is a common + // idiom (misuse). + return getConstant(0, DL, VT); + LLVM_FALLTHROUGH; + case ISD::ADD: + case ISD::SUB: + case ISD::UDIV: + case ISD::SDIV: + case ISD::UREM: + case ISD::SREM: + return getUNDEF(VT); // fold op(arg1, undef) -> undef + case ISD::MUL: + case ISD::AND: + case ISD::SSUBSAT: + case ISD::USUBSAT: + return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 + case ISD::OR: + case ISD::SADDSAT: + case ISD::UADDSAT: + return getAllOnesConstant(DL, VT); + } + } + + // Memoize this node if possible. + SDNode *N; + SDVTList VTs = getVTList(VT); + SDValue Ops[] = {N1, N2}; + if (VT != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { + E->intersectFlagsWith(Flags); + return SDValue(E, 0); + } + + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + N->setFlags(Flags); + createOperands(N, Ops); + CSEMap.InsertNode(N, IP); + } else { + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + createOperands(N, Ops); + } + + InsertNode(N); + SDValue V = SDValue(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, + SDValue N1, SDValue N2, SDValue N3, + const SDNodeFlags Flags) { + // Perform various simplifications. + switch (Opcode) { + case ISD::FMA: { + assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); + assert(N1.getValueType() == VT && N2.getValueType() == VT && + N3.getValueType() == VT && "FMA types must match!"); + ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); + ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); + ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); + if (N1CFP && N2CFP && N3CFP) { + APFloat V1 = N1CFP->getValueAPF(); + const APFloat &V2 = N2CFP->getValueAPF(); + const APFloat &V3 = N3CFP->getValueAPF(); + V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); + return getConstantFP(V1, DL, VT); + } + break; + } + case ISD::BUILD_VECTOR: { + // Attempt to simplify BUILD_VECTOR. + SDValue Ops[] = {N1, N2, N3}; + if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) + return V; + break; + } + case ISD::CONCAT_VECTORS: { + SDValue Ops[] = {N1, N2, N3}; + if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) + return V; + break; + } + case ISD::SETCC: { + assert(VT.isInteger() && "SETCC result type must be an integer!"); + assert(N1.getValueType() == N2.getValueType() && + "SETCC operands must have the same type!"); + assert(VT.isVector() == N1.getValueType().isVector() && + "SETCC type should be vector iff the operand type is vector!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && + "SETCC vector element counts must match!"); + // Use FoldSetCC to simplify SETCC's. + if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) + return V; + // Vector constant folding. + SDValue Ops[] = {N1, N2, N3}; + if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { + NewSDValueDbgMsg(V, "New node vector constant folding: ", this); + return V; + } + break; + } + case ISD::SELECT: + case ISD::VSELECT: + if (SDValue V = simplifySelect(N1, N2, N3)) + return V; + break; + case ISD::VECTOR_SHUFFLE: + llvm_unreachable("should use getVectorShuffle constructor!"); + case ISD::INSERT_VECTOR_ELT: { + ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); + // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF + if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) + return getUNDEF(VT); + break; + } + case ISD::INSERT_SUBVECTOR: { + // Inserting undef into undef is still undef. + if (N1.isUndef() && N2.isUndef()) + return getUNDEF(VT); + SDValue Index = N3; + if (VT.isSimple() && N1.getValueType().isSimple() + && N2.getValueType().isSimple()) { + assert(VT.isVector() && N1.getValueType().isVector() && + N2.getValueType().isVector() && + "Insert subvector VTs must be a vectors"); + assert(VT == N1.getValueType() && + "Dest and insert subvector source types must match!"); + assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && + "Insert subvector must be from smaller vector to larger vector!"); + if (isa<ConstantSDNode>(Index)) { + assert((N2.getValueType().getVectorNumElements() + + cast<ConstantSDNode>(Index)->getZExtValue() + <= VT.getVectorNumElements()) + && "Insert subvector overflow!"); + } + + // Trivial insertion. + if (VT.getSimpleVT() == N2.getSimpleValueType()) + return N2; + + // If this is an insert of an extracted vector into an undef vector, we + // can just use the input to the extract. + if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && + N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) + return N2.getOperand(0); + } + break; + } + case ISD::BITCAST: + // Fold bit_convert nodes from a type to themselves. + if (N1.getValueType() == VT) + return N1; + break; + } + + // Memoize node if it doesn't produce a flag. + SDNode *N; + SDVTList VTs = getVTList(VT); + SDValue Ops[] = {N1, N2, N3}; + if (VT != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { + E->intersectFlagsWith(Flags); + return SDValue(E, 0); + } + + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + N->setFlags(Flags); + createOperands(N, Ops); + CSEMap.InsertNode(N, IP); + } else { + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + createOperands(N, Ops); + } + + InsertNode(N); + SDValue V = SDValue(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, + SDValue N1, SDValue N2, SDValue N3, SDValue N4) { + SDValue Ops[] = { N1, N2, N3, N4 }; + return getNode(Opcode, DL, VT, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, + SDValue N1, SDValue N2, SDValue N3, SDValue N4, + SDValue N5) { + SDValue Ops[] = { N1, N2, N3, N4, N5 }; + return getNode(Opcode, DL, VT, Ops); +} + +/// getStackArgumentTokenFactor - Compute a TokenFactor to force all +/// the incoming stack arguments to be loaded from the stack. +SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { + SmallVector<SDValue, 8> ArgChains; + + // Include the original chain at the beginning of the list. When this is + // used by target LowerCall hooks, this helps legalize find the + // CALLSEQ_BEGIN node. + ArgChains.push_back(Chain); + + // Add a chain value for each stack argument. + for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), + UE = getEntryNode().getNode()->use_end(); U != UE; ++U) + if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) + if (FI->getIndex() < 0) + ArgChains.push_back(SDValue(L, 1)); + + // Build a tokenfactor for all the chains. + return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); +} + +/// getMemsetValue - Vectorized representation of the memset value +/// operand. +static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, + const SDLoc &dl) { + assert(!Value.isUndef()); + + unsigned NumBits = VT.getScalarSizeInBits(); + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { + assert(C->getAPIntValue().getBitWidth() == 8); + APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); + if (VT.isInteger()) { + bool IsOpaque = VT.getSizeInBits() > 64 || + !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); + return DAG.getConstant(Val, dl, VT, false, IsOpaque); + } + return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, + VT); + } + + assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); + EVT IntVT = VT.getScalarType(); + if (!IntVT.isInteger()) + IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); + + Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); + if (NumBits > 8) { + // Use a multiplication with 0x010101... to extend the input to the + // required length. + APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); + Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, + DAG.getConstant(Magic, dl, IntVT)); + } + + if (VT != Value.getValueType() && !VT.isInteger()) + Value = DAG.getBitcast(VT.getScalarType(), Value); + if (VT != Value.getValueType()) + Value = DAG.getSplatBuildVector(VT, dl, Value); + + return Value; +} + +/// getMemsetStringVal - Similar to getMemsetValue. Except this is only +/// used when a memcpy is turned into a memset when the source is a constant +/// string ptr. +static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, + const TargetLowering &TLI, + const ConstantDataArraySlice &Slice) { + // Handle vector with all elements zero. + if (Slice.Array == nullptr) { + if (VT.isInteger()) + return DAG.getConstant(0, dl, VT); + else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) + return DAG.getConstantFP(0.0, dl, VT); + else if (VT.isVector()) { + unsigned NumElts = VT.getVectorNumElements(); + MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; + return DAG.getNode(ISD::BITCAST, dl, VT, + DAG.getConstant(0, dl, + EVT::getVectorVT(*DAG.getContext(), + EltVT, NumElts))); + } else + llvm_unreachable("Expected type!"); + } + + assert(!VT.isVector() && "Can't handle vector type here!"); + unsigned NumVTBits = VT.getSizeInBits(); + unsigned NumVTBytes = NumVTBits / 8; + unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); + + APInt Val(NumVTBits, 0); + if (DAG.getDataLayout().isLittleEndian()) { + for (unsigned i = 0; i != NumBytes; ++i) + Val |= (uint64_t)(unsigned char)Slice[i] << i*8; + } else { + for (unsigned i = 0; i != NumBytes; ++i) + Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; + } + + // If the "cost" of materializing the integer immediate is less than the cost + // of a load, then it is cost effective to turn the load into the immediate. + Type *Ty = VT.getTypeForEVT(*DAG.getContext()); + if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) + return DAG.getConstant(Val, dl, VT); + return SDValue(nullptr, 0); +} + +SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, + const SDLoc &DL) { + EVT VT = Base.getValueType(); + return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); +} + +/// Returns true if memcpy source is constant data. +static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { + uint64_t SrcDelta = 0; + GlobalAddressSDNode *G = nullptr; + if (Src.getOpcode() == ISD::GlobalAddress) + G = cast<GlobalAddressSDNode>(Src); + else if (Src.getOpcode() == ISD::ADD && + Src.getOperand(0).getOpcode() == ISD::GlobalAddress && + Src.getOperand(1).getOpcode() == ISD::Constant) { + G = cast<GlobalAddressSDNode>(Src.getOperand(0)); + SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); + } + if (!G) + return false; + + return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, + SrcDelta + G->getOffset()); +} + +static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { + // On Darwin, -Os means optimize for size without hurting performance, so + // only really optimize for size when -Oz (MinSize) is used. + if (MF.getTarget().getTargetTriple().isOSDarwin()) + return MF.getFunction().hasMinSize(); + return MF.getFunction().hasOptSize(); +} + +static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, + SmallVector<SDValue, 32> &OutChains, unsigned From, + unsigned To, SmallVector<SDValue, 16> &OutLoadChains, + SmallVector<SDValue, 16> &OutStoreChains) { + assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); + assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); + SmallVector<SDValue, 16> GluedLoadChains; + for (unsigned i = From; i < To; ++i) { + OutChains.push_back(OutLoadChains[i]); + GluedLoadChains.push_back(OutLoadChains[i]); + } + + // Chain for all loads. + SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + GluedLoadChains); + + for (unsigned i = From; i < To; ++i) { + StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); + SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), + ST->getBasePtr(), ST->getMemoryVT(), + ST->getMemOperand()); + OutChains.push_back(NewStore); + } +} + +static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, + SDValue Chain, SDValue Dst, SDValue Src, + uint64_t Size, unsigned Align, + bool isVol, bool AlwaysInline, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + // Turn a memcpy of undef to nop. + // FIXME: We need to honor volatile even is Src is undef. + if (Src.isUndef()) + return Chain; + + // Expand memcpy to a series of load and store ops if the size operand falls + // below a certain threshold. + // TODO: In the AlwaysInline case, if the size is big then generate a loop + // rather than maybe a humongous number of loads and stores. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + const DataLayout &DL = DAG.getDataLayout(); + LLVMContext &C = *DAG.getContext(); + std::vector<EVT> MemOps; + bool DstAlignCanChange = false; + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + bool OptSize = shouldLowerMemFuncForSize(MF); + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); + if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) + DstAlignCanChange = true; + unsigned SrcAlign = DAG.InferPtrAlignment(Src); + if (Align > SrcAlign) + SrcAlign = Align; + ConstantDataArraySlice Slice; + bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); + bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; + unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); + + if (!TLI.findOptimalMemOpLowering( + MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), + (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, + /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, + /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), + SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) + return SDValue(); + + if (DstAlignCanChange) { + Type *Ty = MemOps[0].getTypeForEVT(C); + unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); + + // Don't promote to an alignment that would require dynamic stack + // realignment. + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + if (!TRI->needsStackRealignment(MF)) + while (NewAlign > Align && + DL.exceedsNaturalStackAlignment(NewAlign)) + NewAlign /= 2; + + if (NewAlign > Align) { + // Give the stack frame object a larger alignment if needed. + if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) + MFI.setObjectAlignment(FI->getIndex(), NewAlign); + Align = NewAlign; + } + } + + MachineMemOperand::Flags MMOFlags = + isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; + SmallVector<SDValue, 16> OutLoadChains; + SmallVector<SDValue, 16> OutStoreChains; + SmallVector<SDValue, 32> OutChains; + unsigned NumMemOps = MemOps.size(); + uint64_t SrcOff = 0, DstOff = 0; + for (unsigned i = 0; i != NumMemOps; ++i) { + EVT VT = MemOps[i]; + unsigned VTSize = VT.getSizeInBits() / 8; + SDValue Value, Store; + + if (VTSize > Size) { + // Issuing an unaligned load / store pair that overlaps with the previous + // pair. Adjust the offset accordingly. + assert(i == NumMemOps-1 && i != 0); + SrcOff -= VTSize - Size; + DstOff -= VTSize - Size; + } + + if (CopyFromConstant && + (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { + // It's unlikely a store of a vector immediate can be done in a single + // instruction. It would require a load from a constantpool first. + // We only handle zero vectors here. + // FIXME: Handle other cases where store of vector immediate is done in + // a single instruction. + ConstantDataArraySlice SubSlice; + if (SrcOff < Slice.Length) { + SubSlice = Slice; + SubSlice.move(SrcOff); + } else { + // This is an out-of-bounds access and hence UB. Pretend we read zero. + SubSlice.Array = nullptr; + SubSlice.Offset = 0; + SubSlice.Length = VTSize; + } + Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); + if (Value.getNode()) { + Store = DAG.getStore(Chain, dl, Value, + DAG.getMemBasePlusOffset(Dst, DstOff, dl), + DstPtrInfo.getWithOffset(DstOff), Align, + MMOFlags); + OutChains.push_back(Store); + } + } + + if (!Store.getNode()) { + // The type might not be legal for the target. This should only happen + // if the type is smaller than a legal type, as on PPC, so the right + // thing to do is generate a LoadExt/StoreTrunc pair. These simplify + // to Load/Store if NVT==VT. + // FIXME does the case above also need this? + EVT NVT = TLI.getTypeToTransformTo(C, VT); + assert(NVT.bitsGE(VT)); + + bool isDereferenceable = + SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); + MachineMemOperand::Flags SrcMMOFlags = MMOFlags; + if (isDereferenceable) + SrcMMOFlags |= MachineMemOperand::MODereferenceable; + + Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, + DAG.getMemBasePlusOffset(Src, SrcOff, dl), + SrcPtrInfo.getWithOffset(SrcOff), VT, + MinAlign(SrcAlign, SrcOff), SrcMMOFlags); + OutLoadChains.push_back(Value.getValue(1)); + + Store = DAG.getTruncStore( + Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), + DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); + OutStoreChains.push_back(Store); + } + SrcOff += VTSize; + DstOff += VTSize; + Size -= VTSize; + } + + unsigned GluedLdStLimit = MaxLdStGlue == 0 ? + TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; + unsigned NumLdStInMemcpy = OutStoreChains.size(); + + if (NumLdStInMemcpy) { + // It may be that memcpy might be converted to memset if it's memcpy + // of constants. In such a case, we won't have loads and stores, but + // just stores. In the absence of loads, there is nothing to gang up. + if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { + // If target does not care, just leave as it. + for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { + OutChains.push_back(OutLoadChains[i]); + OutChains.push_back(OutStoreChains[i]); + } + } else { + // Ld/St less than/equal limit set by target. + if (NumLdStInMemcpy <= GluedLdStLimit) { + chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, + NumLdStInMemcpy, OutLoadChains, + OutStoreChains); + } else { + unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; + unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; + unsigned GlueIter = 0; + + for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { + unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; + unsigned IndexTo = NumLdStInMemcpy - GlueIter; + + chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, + OutLoadChains, OutStoreChains); + GlueIter += GluedLdStLimit; + } + + // Residual ld/st. + if (RemainingLdStInMemcpy) { + chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, + RemainingLdStInMemcpy, OutLoadChains, + OutStoreChains); + } + } + } + } + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); +} + +static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, + SDValue Chain, SDValue Dst, SDValue Src, + uint64_t Size, unsigned Align, + bool isVol, bool AlwaysInline, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + // Turn a memmove of undef to nop. + // FIXME: We need to honor volatile even is Src is undef. + if (Src.isUndef()) + return Chain; + + // Expand memmove to a series of load and store ops if the size operand falls + // below a certain threshold. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + const DataLayout &DL = DAG.getDataLayout(); + LLVMContext &C = *DAG.getContext(); + std::vector<EVT> MemOps; + bool DstAlignCanChange = false; + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + bool OptSize = shouldLowerMemFuncForSize(MF); + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); + if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) + DstAlignCanChange = true; + unsigned SrcAlign = DAG.InferPtrAlignment(Src); + if (Align > SrcAlign) + SrcAlign = Align; + unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); + // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in + // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the + // correct code. + bool AllowOverlap = false; + if (!TLI.findOptimalMemOpLowering( + MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, + /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, + AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), + MF.getFunction().getAttributes())) + return SDValue(); + + if (DstAlignCanChange) { + Type *Ty = MemOps[0].getTypeForEVT(C); + unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); + if (NewAlign > Align) { + // Give the stack frame object a larger alignment if needed. + if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) + MFI.setObjectAlignment(FI->getIndex(), NewAlign); + Align = NewAlign; + } + } + + MachineMemOperand::Flags MMOFlags = + isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; + uint64_t SrcOff = 0, DstOff = 0; + SmallVector<SDValue, 8> LoadValues; + SmallVector<SDValue, 8> LoadChains; + SmallVector<SDValue, 8> OutChains; + unsigned NumMemOps = MemOps.size(); + for (unsigned i = 0; i < NumMemOps; i++) { + EVT VT = MemOps[i]; + unsigned VTSize = VT.getSizeInBits() / 8; + SDValue Value; + + bool isDereferenceable = + SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); + MachineMemOperand::Flags SrcMMOFlags = MMOFlags; + if (isDereferenceable) + SrcMMOFlags |= MachineMemOperand::MODereferenceable; + + Value = + DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), + SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); + LoadValues.push_back(Value); + LoadChains.push_back(Value.getValue(1)); + SrcOff += VTSize; + } + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); + OutChains.clear(); + for (unsigned i = 0; i < NumMemOps; i++) { + EVT VT = MemOps[i]; + unsigned VTSize = VT.getSizeInBits() / 8; + SDValue Store; + + Store = DAG.getStore(Chain, dl, LoadValues[i], + DAG.getMemBasePlusOffset(Dst, DstOff, dl), + DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); + OutChains.push_back(Store); + DstOff += VTSize; + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); +} + +/// Lower the call to 'memset' intrinsic function into a series of store +/// operations. +/// +/// \param DAG Selection DAG where lowered code is placed. +/// \param dl Link to corresponding IR location. +/// \param Chain Control flow dependency. +/// \param Dst Pointer to destination memory location. +/// \param Src Value of byte to write into the memory. +/// \param Size Number of bytes to write. +/// \param Align Alignment of the destination in bytes. +/// \param isVol True if destination is volatile. +/// \param DstPtrInfo IR information on the memory pointer. +/// \returns New head in the control flow, if lowering was successful, empty +/// SDValue otherwise. +/// +/// The function tries to replace 'llvm.memset' intrinsic with several store +/// operations and value calculation code. This is usually profitable for small +/// memory size. +static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, + SDValue Chain, SDValue Dst, SDValue Src, + uint64_t Size, unsigned Align, bool isVol, + MachinePointerInfo DstPtrInfo) { + // Turn a memset of undef to nop. + // FIXME: We need to honor volatile even is Src is undef. + if (Src.isUndef()) + return Chain; + + // Expand memset to a series of load/store ops if the size operand + // falls below a certain threshold. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + std::vector<EVT> MemOps; + bool DstAlignCanChange = false; + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + bool OptSize = shouldLowerMemFuncForSize(MF); + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); + if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) + DstAlignCanChange = true; + bool IsZeroVal = + isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); + if (!TLI.findOptimalMemOpLowering( + MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, + (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, + /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, + /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, + MF.getFunction().getAttributes())) + return SDValue(); + + if (DstAlignCanChange) { + Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); + unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); + if (NewAlign > Align) { + // Give the stack frame object a larger alignment if needed. + if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) + MFI.setObjectAlignment(FI->getIndex(), NewAlign); + Align = NewAlign; + } + } + + SmallVector<SDValue, 8> OutChains; + uint64_t DstOff = 0; + unsigned NumMemOps = MemOps.size(); + + // Find the largest store and generate the bit pattern for it. + EVT LargestVT = MemOps[0]; + for (unsigned i = 1; i < NumMemOps; i++) + if (MemOps[i].bitsGT(LargestVT)) + LargestVT = MemOps[i]; + SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); + + for (unsigned i = 0; i < NumMemOps; i++) { + EVT VT = MemOps[i]; + unsigned VTSize = VT.getSizeInBits() / 8; + if (VTSize > Size) { + // Issuing an unaligned load / store pair that overlaps with the previous + // pair. Adjust the offset accordingly. + assert(i == NumMemOps-1 && i != 0); + DstOff -= VTSize - Size; + } + + // If this store is smaller than the largest store see whether we can get + // the smaller value for free with a truncate. + SDValue Value = MemSetValue; + if (VT.bitsLT(LargestVT)) { + if (!LargestVT.isVector() && !VT.isVector() && + TLI.isTruncateFree(LargestVT, VT)) + Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); + else + Value = getMemsetValue(Src, VT, DAG, dl); + } + assert(Value.getValueType() == VT && "Value with wrong type."); + SDValue Store = DAG.getStore( + Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), + DstPtrInfo.getWithOffset(DstOff), Align, + isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); + OutChains.push_back(Store); + DstOff += VT.getSizeInBits() / 8; + Size -= VTSize; + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); +} + +static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, + unsigned AS) { + // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all + // pointer operands can be losslessly bitcasted to pointers of address space 0 + if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { + report_fatal_error("cannot lower memory intrinsic in address space " + + Twine(AS)); + } +} + +SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, + SDValue Src, SDValue Size, unsigned Align, + bool isVol, bool AlwaysInline, bool isTailCall, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); + + // Check to see if we should lower the memcpy to loads and stores first. + // For cases within the target-specified limits, this is the best choice. + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + if (ConstantSize) { + // Memcpy with size zero? Just return the original chain. + if (ConstantSize->isNullValue()) + return Chain; + + SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, + ConstantSize->getZExtValue(),Align, + isVol, false, DstPtrInfo, SrcPtrInfo); + if (Result.getNode()) + return Result; + } + + // Then check to see if we should lower the memcpy with target-specific + // code. If the target chooses to do this, this is the next best. + if (TSI) { + SDValue Result = TSI->EmitTargetCodeForMemcpy( + *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, + DstPtrInfo, SrcPtrInfo); + if (Result.getNode()) + return Result; + } + + // If we really need inline code and the target declined to provide it, + // use a (potentially long) sequence of loads and stores. + if (AlwaysInline) { + assert(ConstantSize && "AlwaysInline requires a constant size!"); + return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, + ConstantSize->getZExtValue(), Align, isVol, + true, DstPtrInfo, SrcPtrInfo); + } + + checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); + checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); + + // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc + // memcpy is not guaranteed to be safe. libc memcpys aren't required to + // respect volatile, so they may do things like read or write memory + // beyond the given memory regions. But fixing this isn't easy, and most + // people don't care. + + // Emit a library call. + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Ty = Type::getInt8PtrTy(*getContext()); + Entry.Node = Dst; Args.push_back(Entry); + Entry.Node = Src; Args.push_back(Entry); + + Entry.Ty = getDataLayout().getIntPtrType(*getContext()); + Entry.Node = Size; Args.push_back(Entry); + // FIXME: pass in SDLoc + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl) + .setChain(Chain) + .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), + Dst.getValueType().getTypeForEVT(*getContext()), + getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), + TLI->getPointerTy(getDataLayout())), + std::move(Args)) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, + SDValue Dst, unsigned DstAlign, + SDValue Src, unsigned SrcAlign, + SDValue Size, Type *SizeTy, + unsigned ElemSz, bool isTailCall, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + // Emit a library call. + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Ty = getDataLayout().getIntPtrType(*getContext()); + Entry.Node = Dst; + Args.push_back(Entry); + + Entry.Node = Src; + Args.push_back(Entry); + + Entry.Ty = SizeTy; + Entry.Node = Size; + Args.push_back(Entry); + + RTLIB::Libcall LibraryCall = + RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); + if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) + report_fatal_error("Unsupported element size"); + + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl) + .setChain(Chain) + .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), + Type::getVoidTy(*getContext()), + getExternalSymbol(TLI->getLibcallName(LibraryCall), + TLI->getPointerTy(getDataLayout())), + std::move(Args)) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, + SDValue Src, SDValue Size, unsigned Align, + bool isVol, bool isTailCall, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); + + // Check to see if we should lower the memmove to loads and stores first. + // For cases within the target-specified limits, this is the best choice. + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + if (ConstantSize) { + // Memmove with size zero? Just return the original chain. + if (ConstantSize->isNullValue()) + return Chain; + + SDValue Result = + getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, + ConstantSize->getZExtValue(), Align, isVol, + false, DstPtrInfo, SrcPtrInfo); + if (Result.getNode()) + return Result; + } + + // Then check to see if we should lower the memmove with target-specific + // code. If the target chooses to do this, this is the next best. + if (TSI) { + SDValue Result = TSI->EmitTargetCodeForMemmove( + *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); + if (Result.getNode()) + return Result; + } + + checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); + checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); + + // FIXME: If the memmove is volatile, lowering it to plain libc memmove may + // not be safe. See memcpy above for more details. + + // Emit a library call. + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Ty = Type::getInt8PtrTy(*getContext()); + Entry.Node = Dst; Args.push_back(Entry); + Entry.Node = Src; Args.push_back(Entry); + + Entry.Ty = getDataLayout().getIntPtrType(*getContext()); + Entry.Node = Size; Args.push_back(Entry); + // FIXME: pass in SDLoc + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl) + .setChain(Chain) + .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), + Dst.getValueType().getTypeForEVT(*getContext()), + getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), + TLI->getPointerTy(getDataLayout())), + std::move(Args)) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, + SDValue Dst, unsigned DstAlign, + SDValue Src, unsigned SrcAlign, + SDValue Size, Type *SizeTy, + unsigned ElemSz, bool isTailCall, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + // Emit a library call. + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Ty = getDataLayout().getIntPtrType(*getContext()); + Entry.Node = Dst; + Args.push_back(Entry); + + Entry.Node = Src; + Args.push_back(Entry); + + Entry.Ty = SizeTy; + Entry.Node = Size; + Args.push_back(Entry); + + RTLIB::Libcall LibraryCall = + RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); + if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) + report_fatal_error("Unsupported element size"); + + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl) + .setChain(Chain) + .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), + Type::getVoidTy(*getContext()), + getExternalSymbol(TLI->getLibcallName(LibraryCall), + TLI->getPointerTy(getDataLayout())), + std::move(Args)) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, + SDValue Src, SDValue Size, unsigned Align, + bool isVol, bool isTailCall, + MachinePointerInfo DstPtrInfo) { + assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); + + // Check to see if we should lower the memset to stores first. + // For cases within the target-specified limits, this is the best choice. + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + if (ConstantSize) { + // Memset with size zero? Just return the original chain. + if (ConstantSize->isNullValue()) + return Chain; + + SDValue Result = + getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), + Align, isVol, DstPtrInfo); + + if (Result.getNode()) + return Result; + } + + // Then check to see if we should lower the memset with target-specific + // code. If the target chooses to do this, this is the next best. + if (TSI) { + SDValue Result = TSI->EmitTargetCodeForMemset( + *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); + if (Result.getNode()) + return Result; + } + + checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); + + // Emit a library call. + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); + Args.push_back(Entry); + Entry.Node = Src; + Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); + Args.push_back(Entry); + Entry.Node = Size; + Entry.Ty = getDataLayout().getIntPtrType(*getContext()); + Args.push_back(Entry); + + // FIXME: pass in SDLoc + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl) + .setChain(Chain) + .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), + Dst.getValueType().getTypeForEVT(*getContext()), + getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), + TLI->getPointerTy(getDataLayout())), + std::move(Args)) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, + SDValue Dst, unsigned DstAlign, + SDValue Value, SDValue Size, Type *SizeTy, + unsigned ElemSz, bool isTailCall, + MachinePointerInfo DstPtrInfo) { + // Emit a library call. + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Ty = getDataLayout().getIntPtrType(*getContext()); + Entry.Node = Dst; + Args.push_back(Entry); + + Entry.Ty = Type::getInt8Ty(*getContext()); + Entry.Node = Value; + Args.push_back(Entry); + + Entry.Ty = SizeTy; + Entry.Node = Size; + Args.push_back(Entry); + + RTLIB::Libcall LibraryCall = + RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); + if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) + report_fatal_error("Unsupported element size"); + + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl) + .setChain(Chain) + .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), + Type::getVoidTy(*getContext()), + getExternalSymbol(TLI->getLibcallName(LibraryCall), + TLI->getPointerTy(getDataLayout())), + std::move(Args)) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, + SDVTList VTList, ArrayRef<SDValue> Ops, + MachineMemOperand *MMO) { + FoldingSetNodeID ID; + ID.AddInteger(MemVT.getRawBits()); + AddNodeIDNode(ID, Opcode, VTList, Ops); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void* IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<AtomicSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + + auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), + VTList, MemVT, MMO); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, + EVT MemVT, SDVTList VTs, SDValue Chain, + SDValue Ptr, SDValue Cmp, SDValue Swp, + MachineMemOperand *MMO) { + assert(Opcode == ISD::ATOMIC_CMP_SWAP || + Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); + assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); + + SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; + return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); +} + +SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, + SDValue Chain, SDValue Ptr, SDValue Val, + MachineMemOperand *MMO) { + assert((Opcode == ISD::ATOMIC_LOAD_ADD || + Opcode == ISD::ATOMIC_LOAD_SUB || + Opcode == ISD::ATOMIC_LOAD_AND || + Opcode == ISD::ATOMIC_LOAD_CLR || + Opcode == ISD::ATOMIC_LOAD_OR || + Opcode == ISD::ATOMIC_LOAD_XOR || + Opcode == ISD::ATOMIC_LOAD_NAND || + Opcode == ISD::ATOMIC_LOAD_MIN || + Opcode == ISD::ATOMIC_LOAD_MAX || + Opcode == ISD::ATOMIC_LOAD_UMIN || + Opcode == ISD::ATOMIC_LOAD_UMAX || + Opcode == ISD::ATOMIC_LOAD_FADD || + Opcode == ISD::ATOMIC_LOAD_FSUB || + Opcode == ISD::ATOMIC_SWAP || + Opcode == ISD::ATOMIC_STORE) && + "Invalid Atomic Op"); + + EVT VT = Val.getValueType(); + + SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : + getVTList(VT, MVT::Other); + SDValue Ops[] = {Chain, Ptr, Val}; + return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); +} + +SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, + EVT VT, SDValue Chain, SDValue Ptr, + MachineMemOperand *MMO) { + assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); + + SDVTList VTs = getVTList(VT, MVT::Other); + SDValue Ops[] = {Chain, Ptr}; + return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); +} + +/// getMergeValues - Create a MERGE_VALUES node from the given operands. +SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { + if (Ops.size() == 1) + return Ops[0]; + + SmallVector<EVT, 4> VTs; + VTs.reserve(Ops.size()); + for (unsigned i = 0; i < Ops.size(); ++i) + VTs.push_back(Ops[i].getValueType()); + return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); +} + +SDValue SelectionDAG::getMemIntrinsicNode( + unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, + EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, + MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) { + if (Align == 0) // Ensure that codegen never sees alignment 0 + Align = getEVTAlignment(MemVT); + + if (!Size) + Size = MemVT.getStoreSize(); + + MachineFunction &MF = getMachineFunction(); + MachineMemOperand *MMO = + MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); + + return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); +} + +SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, + SDVTList VTList, + ArrayRef<SDValue> Ops, EVT MemVT, + MachineMemOperand *MMO) { + assert((Opcode == ISD::INTRINSIC_VOID || + Opcode == ISD::INTRINSIC_W_CHAIN || + Opcode == ISD::PREFETCH || + Opcode == ISD::LIFETIME_START || + Opcode == ISD::LIFETIME_END || + ((int)Opcode <= std::numeric_limits<int>::max() && + (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && + "Opcode is not a memory-accessing opcode!"); + + // Memoize the node unless it returns a flag. + MemIntrinsicSDNode *N; + if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTList, Ops); + ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( + Opcode, dl.getIROrder(), VTList, MemVT, MMO)); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + + N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), + VTList, MemVT, MMO); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + } else { + N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), + VTList, MemVT, MMO); + createOperands(N, Ops); + } + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, + SDValue Chain, int FrameIndex, + int64_t Size, int64_t Offset) { + const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; + const auto VTs = getVTList(MVT::Other); + SDValue Ops[2] = { + Chain, + getFrameIndex(FrameIndex, + getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), + true)}; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops); + ID.AddInteger(FrameIndex); + ID.AddInteger(Size); + ID.AddInteger(Offset); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) + return SDValue(E, 0); + + LifetimeSDNode *N = newSDNode<LifetimeSDNode>( + Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); + createOperands(N, Ops); + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a +/// MachinePointerInfo record from it. This is particularly useful because the +/// code generator has many cases where it doesn't bother passing in a +/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". +static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, + SelectionDAG &DAG, SDValue Ptr, + int64_t Offset = 0) { + // If this is FI+Offset, we can model it. + if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) + return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), + FI->getIndex(), Offset); + + // If this is (FI+Offset1)+Offset2, we can model it. + if (Ptr.getOpcode() != ISD::ADD || + !isa<ConstantSDNode>(Ptr.getOperand(1)) || + !isa<FrameIndexSDNode>(Ptr.getOperand(0))) + return Info; + + int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); + return MachinePointerInfo::getFixedStack( + DAG.getMachineFunction(), FI, + Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); +} + +/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a +/// MachinePointerInfo record from it. This is particularly useful because the +/// code generator has many cases where it doesn't bother passing in a +/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". +static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, + SelectionDAG &DAG, SDValue Ptr, + SDValue OffsetOp) { + // If the 'Offset' value isn't a constant, we can't handle this. + if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) + return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); + if (OffsetOp.isUndef()) + return InferPointerInfo(Info, DAG, Ptr); + return Info; +} + +SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, + EVT VT, const SDLoc &dl, SDValue Chain, + SDValue Ptr, SDValue Offset, + MachinePointerInfo PtrInfo, EVT MemVT, + unsigned Alignment, + MachineMemOperand::Flags MMOFlags, + const AAMDNodes &AAInfo, const MDNode *Ranges) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = getEVTAlignment(MemVT); + + MMOFlags |= MachineMemOperand::MOLoad; + assert((MMOFlags & MachineMemOperand::MOStore) == 0); + // If we don't have a PtrInfo, infer the trivial frame index case to simplify + // clients. + if (PtrInfo.V.isNull()) + PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); + + MachineFunction &MF = getMachineFunction(); + MachineMemOperand *MMO = MF.getMachineMemOperand( + PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); + return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); +} + +SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, + EVT VT, const SDLoc &dl, SDValue Chain, + SDValue Ptr, SDValue Offset, EVT MemVT, + MachineMemOperand *MMO) { + if (VT == MemVT) { + ExtType = ISD::NON_EXTLOAD; + } else if (ExtType == ISD::NON_EXTLOAD) { + assert(VT == MemVT && "Non-extending load from different memory type!"); + } else { + // Extending load. + assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && + "Should only be an extending load, not truncating!"); + assert(VT.isInteger() == MemVT.isInteger() && + "Cannot convert from FP to Int or Int -> FP!"); + assert(VT.isVector() == MemVT.isVector() && + "Cannot use an ext load to convert to or from a vector!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == MemVT.getVectorNumElements()) && + "Cannot use an ext load to change the number of vector elements!"); + } + + bool Indexed = AM != ISD::UNINDEXED; + assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); + + SDVTList VTs = Indexed ? + getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); + SDValue Ops[] = { Chain, Ptr, Offset }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); + ID.AddInteger(MemVT.getRawBits()); + ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( + dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<LoadSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, + ExtType, MemVT, MMO); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, + SDValue Ptr, MachinePointerInfo PtrInfo, + unsigned Alignment, + MachineMemOperand::Flags MMOFlags, + const AAMDNodes &AAInfo, const MDNode *Ranges) { + SDValue Undef = getUNDEF(Ptr.getValueType()); + return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, + PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); +} + +SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, + SDValue Ptr, MachineMemOperand *MMO) { + SDValue Undef = getUNDEF(Ptr.getValueType()); + return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, + VT, MMO); +} + +SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, + EVT VT, SDValue Chain, SDValue Ptr, + MachinePointerInfo PtrInfo, EVT MemVT, + unsigned Alignment, + MachineMemOperand::Flags MMOFlags, + const AAMDNodes &AAInfo) { + SDValue Undef = getUNDEF(Ptr.getValueType()); + return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, + MemVT, Alignment, MMOFlags, AAInfo); +} + +SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, + EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, + MachineMemOperand *MMO) { + SDValue Undef = getUNDEF(Ptr.getValueType()); + return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, + MemVT, MMO); +} + +SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, + SDValue Base, SDValue Offset, + ISD::MemIndexedMode AM) { + LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); + assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); + // Don't propagate the invariant or dereferenceable flags. + auto MMOFlags = + LD->getMemOperand()->getFlags() & + ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); + return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, + LD->getChain(), Base, Offset, LD->getPointerInfo(), + LD->getMemoryVT(), LD->getAlignment(), MMOFlags, + LD->getAAInfo()); +} + +SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, + SDValue Ptr, MachinePointerInfo PtrInfo, + unsigned Alignment, + MachineMemOperand::Flags MMOFlags, + const AAMDNodes &AAInfo) { + assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = getEVTAlignment(Val.getValueType()); + + MMOFlags |= MachineMemOperand::MOStore; + assert((MMOFlags & MachineMemOperand::MOLoad) == 0); + + if (PtrInfo.V.isNull()) + PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); + + MachineFunction &MF = getMachineFunction(); + MachineMemOperand *MMO = MF.getMachineMemOperand( + PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); + return getStore(Chain, dl, Val, Ptr, MMO); +} + +SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, + SDValue Ptr, MachineMemOperand *MMO) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + EVT VT = Val.getValueType(); + SDVTList VTs = getVTList(MVT::Other); + SDValue Undef = getUNDEF(Ptr.getValueType()); + SDValue Ops[] = { Chain, Val, Ptr, Undef }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( + dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<StoreSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, + ISD::UNINDEXED, false, VT, MMO); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, + SDValue Ptr, MachinePointerInfo PtrInfo, + EVT SVT, unsigned Alignment, + MachineMemOperand::Flags MMOFlags, + const AAMDNodes &AAInfo) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = getEVTAlignment(SVT); + + MMOFlags |= MachineMemOperand::MOStore; + assert((MMOFlags & MachineMemOperand::MOLoad) == 0); + + if (PtrInfo.V.isNull()) + PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); + + MachineFunction &MF = getMachineFunction(); + MachineMemOperand *MMO = MF.getMachineMemOperand( + PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); + return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); +} + +SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, + SDValue Ptr, EVT SVT, + MachineMemOperand *MMO) { + EVT VT = Val.getValueType(); + + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + if (VT == SVT) + return getStore(Chain, dl, Val, Ptr, MMO); + + assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && + "Should only be a truncating store, not extending!"); + assert(VT.isInteger() == SVT.isInteger() && + "Can't do FP-INT conversion!"); + assert(VT.isVector() == SVT.isVector() && + "Cannot use trunc store to convert to or from a vector!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == SVT.getVectorNumElements()) && + "Cannot use trunc store to change the number of vector elements!"); + + SDVTList VTs = getVTList(MVT::Other); + SDValue Undef = getUNDEF(Ptr.getValueType()); + SDValue Ops[] = { Chain, Val, Ptr, Undef }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops); + ID.AddInteger(SVT.getRawBits()); + ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( + dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<StoreSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, + ISD::UNINDEXED, true, SVT, MMO); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, + SDValue Base, SDValue Offset, + ISD::MemIndexedMode AM) { + StoreSDNode *ST = cast<StoreSDNode>(OrigStore); + assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); + SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); + SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops); + ID.AddInteger(ST->getMemoryVT().getRawBits()); + ID.AddInteger(ST->getRawSubclassData()); + ID.AddInteger(ST->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) + return SDValue(E, 0); + + auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, + ST->isTruncatingStore(), ST->getMemoryVT(), + ST->getMemOperand()); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, + SDValue Ptr, SDValue Mask, SDValue PassThru, + EVT MemVT, MachineMemOperand *MMO, + ISD::LoadExtType ExtTy, bool isExpanding) { + SDVTList VTs = getVTList(VT, MVT::Other); + SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); + ID.AddInteger(MemVT.getRawBits()); + ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( + dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, + ExtTy, isExpanding, MemVT, MMO); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, + SDValue Val, SDValue Ptr, SDValue Mask, + EVT MemVT, MachineMemOperand *MMO, + bool IsTruncating, bool IsCompressing) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + SDVTList VTs = getVTList(MVT::Other); + SDValue Ops[] = { Chain, Val, Ptr, Mask }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); + ID.AddInteger(MemVT.getRawBits()); + ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( + dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, + IsTruncating, IsCompressing, MemVT, MMO); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, + ArrayRef<SDValue> Ops, + MachineMemOperand *MMO) { + assert(Ops.size() == 6 && "Incompatible number of operands"); + + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( + dl.getIROrder(), VTs, VT, MMO)); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + + auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), + VTs, VT, MMO); + createOperands(N, Ops); + + assert(N->getPassThru().getValueType() == N->getValueType(0) && + "Incompatible type of the PassThru value in MaskedGatherSDNode"); + assert(N->getMask().getValueType().getVectorNumElements() == + N->getValueType(0).getVectorNumElements() && + "Vector width mismatch between mask and data"); + assert(N->getIndex().getValueType().getVectorNumElements() >= + N->getValueType(0).getVectorNumElements() && + "Vector width mismatch between index and data"); + assert(isa<ConstantSDNode>(N->getScale()) && + cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && + "Scale should be a constant power of 2"); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, + ArrayRef<SDValue> Ops, + MachineMemOperand *MMO) { + assert(Ops.size() == 6 && "Incompatible number of operands"); + + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( + dl.getIROrder(), VTs, VT, MMO)); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { + cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), + VTs, VT, MMO); + createOperands(N, Ops); + + assert(N->getMask().getValueType().getVectorNumElements() == + N->getValue().getValueType().getVectorNumElements() && + "Vector width mismatch between mask and data"); + assert(N->getIndex().getValueType().getVectorNumElements() >= + N->getValue().getValueType().getVectorNumElements() && + "Vector width mismatch between index and data"); + assert(isa<ConstantSDNode>(N->getScale()) && + cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && + "Scale should be a constant power of 2"); + + CSEMap.InsertNode(N, IP); + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { + // select undef, T, F --> T (if T is a constant), otherwise F + // select, ?, undef, F --> F + // select, ?, T, undef --> T + if (Cond.isUndef()) + return isConstantValueOfAnyType(T) ? T : F; + if (T.isUndef()) + return F; + if (F.isUndef()) + return T; + + // select true, T, F --> T + // select false, T, F --> F + if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) + return CondC->isNullValue() ? F : T; + + // TODO: This should simplify VSELECT with constant condition using something + // like this (but check boolean contents to be complete?): + // if (ISD::isBuildVectorAllOnes(Cond.getNode())) + // return T; + // if (ISD::isBuildVectorAllZeros(Cond.getNode())) + // return F; + + // select ?, T, T --> T + if (T == F) + return T; + + return SDValue(); +} + +SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { + // shift undef, Y --> 0 (can always assume that the undef value is 0) + if (X.isUndef()) + return getConstant(0, SDLoc(X.getNode()), X.getValueType()); + // shift X, undef --> undef (because it may shift by the bitwidth) + if (Y.isUndef()) + return getUNDEF(X.getValueType()); + + // shift 0, Y --> 0 + // shift X, 0 --> X + if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) + return X; + + // shift X, C >= bitwidth(X) --> undef + // All vector elements must be too big (or undef) to avoid partial undefs. + auto isShiftTooBig = [X](ConstantSDNode *Val) { + return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); + }; + if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) + return getUNDEF(X.getValueType()); + + return SDValue(); +} + +// TODO: Use fast-math-flags to enable more simplifications. +SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { + ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); + if (!YC) + return SDValue(); + + // X + -0.0 --> X + if (Opcode == ISD::FADD) + if (YC->getValueAPF().isNegZero()) + return X; + + // X - +0.0 --> X + if (Opcode == ISD::FSUB) + if (YC->getValueAPF().isPosZero()) + return X; + + // X * 1.0 --> X + // X / 1.0 --> X + if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) + if (YC->getValueAPF().isExactlyValue(1.0)) + return X; + + return SDValue(); +} + +SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, + SDValue Ptr, SDValue SV, unsigned Align) { + SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; + return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, + ArrayRef<SDUse> Ops) { + switch (Ops.size()) { + case 0: return getNode(Opcode, DL, VT); + case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); + case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); + case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); + default: break; + } + + // Copy from an SDUse array into an SDValue array for use with + // the regular getNode logic. + SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); + return getNode(Opcode, DL, VT, NewOps); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, + ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { + unsigned NumOps = Ops.size(); + switch (NumOps) { + case 0: return getNode(Opcode, DL, VT); + case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); + case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); + case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); + default: break; + } + + switch (Opcode) { + default: break; + case ISD::BUILD_VECTOR: + // Attempt to simplify BUILD_VECTOR. + if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) + return V; + break; + case ISD::CONCAT_VECTORS: + if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) + return V; + break; + case ISD::SELECT_CC: + assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); + assert(Ops[0].getValueType() == Ops[1].getValueType() && + "LHS and RHS of condition must have same type!"); + assert(Ops[2].getValueType() == Ops[3].getValueType() && + "True and False arms of SelectCC must have same type!"); + assert(Ops[2].getValueType() == VT && + "select_cc node must be of same type as true and false value!"); + break; + case ISD::BR_CC: + assert(NumOps == 5 && "BR_CC takes 5 operands!"); + assert(Ops[2].getValueType() == Ops[3].getValueType() && + "LHS/RHS of comparison should match types!"); + break; + } + + // Memoize nodes. + SDNode *N; + SDVTList VTs = getVTList(VT); + + if (VT != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops); + void *IP = nullptr; + + if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) + return SDValue(E, 0); + + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + createOperands(N, Ops); + + CSEMap.InsertNode(N, IP); + } else { + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + createOperands(N, Ops); + } + + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, + ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { + return getNode(Opcode, DL, getVTList(ResultTys), Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, + ArrayRef<SDValue> Ops) { + if (VTList.NumVTs == 1) + return getNode(Opcode, DL, VTList.VTs[0], Ops); + +#if 0 + switch (Opcode) { + // FIXME: figure out how to safely handle things like + // int foo(int x) { return 1 << (x & 255); } + // int bar() { return foo(256); } + case ISD::SRA_PARTS: + case ISD::SRL_PARTS: + case ISD::SHL_PARTS: + if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && + cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) + return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); + else if (N3.getOpcode() == ISD::AND) + if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { + // If the and is only masking out bits that cannot effect the shift, + // eliminate the and. + unsigned NumBits = VT.getScalarSizeInBits()*2; + if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) + return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); + } + break; + } +#endif + + // Memoize the node unless it returns a flag. + SDNode *N; + if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTList, Ops); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) + return SDValue(E, 0); + + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); + createOperands(N, Ops); + CSEMap.InsertNode(N, IP); + } else { + N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); + createOperands(N, Ops); + } + InsertNode(N); + SDValue V(N, 0); + NewSDValueDbgMsg(V, "Creating new node: ", this); + return V; +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, + SDVTList VTList) { + return getNode(Opcode, DL, VTList, None); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, + SDValue N1) { + SDValue Ops[] = { N1 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, + SDValue N1, SDValue N2) { + SDValue Ops[] = { N1, N2 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, + SDValue N1, SDValue N2, SDValue N3) { + SDValue Ops[] = { N1, N2, N3 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, + SDValue N1, SDValue N2, SDValue N3, SDValue N4) { + SDValue Ops[] = { N1, N2, N3, N4 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, + SDValue N1, SDValue N2, SDValue N3, SDValue N4, + SDValue N5) { + SDValue Ops[] = { N1, N2, N3, N4, N5 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDVTList SelectionDAG::getVTList(EVT VT) { + return makeVTList(SDNode::getValueTypeList(VT), 1); +} + +SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { + FoldingSetNodeID ID; + ID.AddInteger(2U); + ID.AddInteger(VT1.getRawBits()); + ID.AddInteger(VT2.getRawBits()); + + void *IP = nullptr; + SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); + if (!Result) { + EVT *Array = Allocator.Allocate<EVT>(2); + Array[0] = VT1; + Array[1] = VT2; + Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); + VTListMap.InsertNode(Result, IP); + } + return Result->getSDVTList(); +} + +SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { + FoldingSetNodeID ID; + ID.AddInteger(3U); + ID.AddInteger(VT1.getRawBits()); + ID.AddInteger(VT2.getRawBits()); + ID.AddInteger(VT3.getRawBits()); + + void *IP = nullptr; + SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); + if (!Result) { + EVT *Array = Allocator.Allocate<EVT>(3); + Array[0] = VT1; + Array[1] = VT2; + Array[2] = VT3; + Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); + VTListMap.InsertNode(Result, IP); + } + return Result->getSDVTList(); +} + +SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { + FoldingSetNodeID ID; + ID.AddInteger(4U); + ID.AddInteger(VT1.getRawBits()); + ID.AddInteger(VT2.getRawBits()); + ID.AddInteger(VT3.getRawBits()); + ID.AddInteger(VT4.getRawBits()); + + void *IP = nullptr; + SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); + if (!Result) { + EVT *Array = Allocator.Allocate<EVT>(4); + Array[0] = VT1; + Array[1] = VT2; + Array[2] = VT3; + Array[3] = VT4; + Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); + VTListMap.InsertNode(Result, IP); + } + return Result->getSDVTList(); +} + +SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { + unsigned NumVTs = VTs.size(); + FoldingSetNodeID ID; + ID.AddInteger(NumVTs); + for (unsigned index = 0; index < NumVTs; index++) { + ID.AddInteger(VTs[index].getRawBits()); + } + + void *IP = nullptr; + SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); + if (!Result) { + EVT *Array = Allocator.Allocate<EVT>(NumVTs); + llvm::copy(VTs, Array); + Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); + VTListMap.InsertNode(Result, IP); + } + return Result->getSDVTList(); +} + + +/// UpdateNodeOperands - *Mutate* the specified node in-place to have the +/// specified operands. If the resultant node already exists in the DAG, +/// this does not modify the specified node, instead it returns the node that +/// already exists. If the resultant node does not exist in the DAG, the +/// input node is returned. As a degenerate case, if you specify the same +/// input operands as the node already has, the input node is returned. +SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { + assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); + + // Check to see if there is no change. + if (Op == N->getOperand(0)) return N; + + // See if the modified node already exists. + void *InsertPos = nullptr; + if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) + return Existing; + + // Nope it doesn't. Remove the node from its current place in the maps. + if (InsertPos) + if (!RemoveNodeFromCSEMaps(N)) + InsertPos = nullptr; + + // Now we update the operands. + N->OperandList[0].set(Op); + + updateDivergence(N); + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return N; +} + +SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { + assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); + + // Check to see if there is no change. + if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) + return N; // No operands changed, just return the input node. + + // See if the modified node already exists. + void *InsertPos = nullptr; + if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) + return Existing; + + // Nope it doesn't. Remove the node from its current place in the maps. + if (InsertPos) + if (!RemoveNodeFromCSEMaps(N)) + InsertPos = nullptr; + + // Now we update the operands. + if (N->OperandList[0] != Op1) + N->OperandList[0].set(Op1); + if (N->OperandList[1] != Op2) + N->OperandList[1].set(Op2); + + updateDivergence(N); + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return N; +} + +SDNode *SelectionDAG:: +UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { + SDValue Ops[] = { Op1, Op2, Op3 }; + return UpdateNodeOperands(N, Ops); +} + +SDNode *SelectionDAG:: +UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, + SDValue Op3, SDValue Op4) { + SDValue Ops[] = { Op1, Op2, Op3, Op4 }; + return UpdateNodeOperands(N, Ops); +} + +SDNode *SelectionDAG:: +UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, + SDValue Op3, SDValue Op4, SDValue Op5) { + SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; + return UpdateNodeOperands(N, Ops); +} + +SDNode *SelectionDAG:: +UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { + unsigned NumOps = Ops.size(); + assert(N->getNumOperands() == NumOps && + "Update with wrong number of operands"); + + // If no operands changed just return the input node. + if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) + return N; + + // See if the modified node already exists. + void *InsertPos = nullptr; + if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) + return Existing; + + // Nope it doesn't. Remove the node from its current place in the maps. + if (InsertPos) + if (!RemoveNodeFromCSEMaps(N)) + InsertPos = nullptr; + + // Now we update the operands. + for (unsigned i = 0; i != NumOps; ++i) + if (N->OperandList[i] != Ops[i]) + N->OperandList[i].set(Ops[i]); + + updateDivergence(N); + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return N; +} + +/// DropOperands - Release the operands and set this node to have +/// zero operands. +void SDNode::DropOperands() { + // Unlike the code in MorphNodeTo that does this, we don't need to + // watch for dead nodes here. + for (op_iterator I = op_begin(), E = op_end(); I != E; ) { + SDUse &Use = *I++; + Use.set(SDValue()); + } +} + +void SelectionDAG::setNodeMemRefs(MachineSDNode *N, + ArrayRef<MachineMemOperand *> NewMemRefs) { + if (NewMemRefs.empty()) { + N->clearMemRefs(); + return; + } + + // Check if we can avoid allocating by storing a single reference directly. + if (NewMemRefs.size() == 1) { + N->MemRefs = NewMemRefs[0]; + N->NumMemRefs = 1; + return; + } + + MachineMemOperand **MemRefsBuffer = + Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); + llvm::copy(NewMemRefs, MemRefsBuffer); + N->MemRefs = MemRefsBuffer; + N->NumMemRefs = static_cast<int>(NewMemRefs.size()); +} + +/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a +/// machine opcode. +/// +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT) { + SDVTList VTs = getVTList(VT); + return SelectNodeTo(N, MachineOpc, VTs, None); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT, SDValue Op1) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT, SDValue Op1, + SDValue Op2) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1, Op2 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT, SDValue Op1, + SDValue Op2, SDValue Op3) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1, Op2, Op3 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT, ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT); + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2); + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2) { + SDVTList VTs = getVTList(VT1, VT2); + return SelectNodeTo(N, MachineOpc, VTs, None); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, EVT VT3, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, + SDValue Op1, SDValue Op2) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1, Op2 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + SDVTList VTs,ArrayRef<SDValue> Ops) { + SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); + // Reset the NodeID to -1. + New->setNodeId(-1); + if (New != N) { + ReplaceAllUsesWith(N, New); + RemoveDeadNode(N); + } + return New; +} + +/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away +/// the line number information on the merged node since it is not possible to +/// preserve the information that operation is associated with multiple lines. +/// This will make the debugger working better at -O0, were there is a higher +/// probability having other instructions associated with that line. +/// +/// For IROrder, we keep the smaller of the two +SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { + DebugLoc NLoc = N->getDebugLoc(); + if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { + N->setDebugLoc(DebugLoc()); + } + unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); + N->setIROrder(Order); + return N; +} + +/// MorphNodeTo - This *mutates* the specified node to have the specified +/// return type, opcode, and operands. +/// +/// Note that MorphNodeTo returns the resultant node. If there is already a +/// node of the specified opcode and operands, it returns that node instead of +/// the current one. Note that the SDLoc need not be the same. +/// +/// Using MorphNodeTo is faster than creating a new node and swapping it in +/// with ReplaceAllUsesWith both because it often avoids allocating a new +/// node, and because it doesn't require CSE recalculation for any of +/// the node's users. +/// +/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. +/// As a consequence it isn't appropriate to use from within the DAG combiner or +/// the legalizer which maintain worklists that would need to be updated when +/// deleting things. +SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, + SDVTList VTs, ArrayRef<SDValue> Ops) { + // If an identical node already exists, use it. + void *IP = nullptr; + if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, VTs, Ops); + if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) + return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); + } + + if (!RemoveNodeFromCSEMaps(N)) + IP = nullptr; + + // Start the morphing. + N->NodeType = Opc; + N->ValueList = VTs.VTs; + N->NumValues = VTs.NumVTs; + + // Clear the operands list, updating used nodes to remove this from their + // use list. Keep track of any operands that become dead as a result. + SmallPtrSet<SDNode*, 16> DeadNodeSet; + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { + SDUse &Use = *I++; + SDNode *Used = Use.getNode(); + Use.set(SDValue()); + if (Used->use_empty()) + DeadNodeSet.insert(Used); + } + + // For MachineNode, initialize the memory references information. + if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) + MN->clearMemRefs(); + + // Swap for an appropriately sized array from the recycler. + removeOperands(N); + createOperands(N, Ops); + + // Delete any nodes that are still dead after adding the uses for the + // new operands. + if (!DeadNodeSet.empty()) { + SmallVector<SDNode *, 16> DeadNodes; + for (SDNode *N : DeadNodeSet) + if (N->use_empty()) + DeadNodes.push_back(N); + RemoveDeadNodes(DeadNodes); + } + + if (IP) + CSEMap.InsertNode(N, IP); // Memoize the new node. + return N; +} + +SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { + unsigned OrigOpc = Node->getOpcode(); + unsigned NewOpc; + switch (OrigOpc) { + default: + llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); + case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; + case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; + case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; + case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; + case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; + case ISD::STRICT_FMA: NewOpc = ISD::FMA; break; + case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; break; + case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; + case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; + case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; break; + case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; break; + case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; break; + case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; break; + case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; break; + case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; break; + case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; break; + case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; break; + case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break; + case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; + case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; + case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; break; + case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; break; + case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; break; + case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; break; + case ISD::STRICT_FP_ROUND: NewOpc = ISD::FP_ROUND; break; + case ISD::STRICT_FP_EXTEND: NewOpc = ISD::FP_EXTEND; break; + } + + assert(Node->getNumValues() == 2 && "Unexpected number of results!"); + + // We're taking this node out of the chain, so we need to re-link things. + SDValue InputChain = Node->getOperand(0); + SDValue OutputChain = SDValue(Node, 1); + ReplaceAllUsesOfValueWith(OutputChain, InputChain); + + SmallVector<SDValue, 3> Ops; + for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) + Ops.push_back(Node->getOperand(i)); + + SDVTList VTs = getVTList(Node->getValueType(0)); + SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); + + // MorphNodeTo can operate in two ways: if an existing node with the + // specified operands exists, it can just return it. Otherwise, it + // updates the node in place to have the requested operands. + if (Res == Node) { + // If we updated the node in place, reset the node ID. To the isel, + // this should be just like a newly allocated machine node. + Res->setNodeId(-1); + } else { + ReplaceAllUsesWith(Node, Res); + RemoveDeadNode(Node); + } + + return Res; +} + +/// getMachineNode - These are used for target selectors to create a new node +/// with specified return type(s), MachineInstr opcode, and operands. +/// +/// Note that getMachineNode returns the resultant node. If there is already a +/// node of the specified opcode and operands, it returns that node instead of +/// the current one. +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT) { + SDVTList VTs = getVTList(VT); + return getMachineNode(Opcode, dl, VTs, None); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT, SDValue Op1) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT, SDValue Op1, SDValue Op2) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1, Op2 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT, SDValue Op1, SDValue Op2, + SDValue Op3) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1, Op2, Op3 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT, ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT1, EVT VT2, SDValue Op1, + SDValue Op2) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1, Op2 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT1, EVT VT2, SDValue Op1, + SDValue Op2, SDValue Op3) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1, Op2, Op3 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT1, EVT VT2, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT1, EVT VT2, EVT VT3, + SDValue Op1, SDValue Op2) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + SDValue Ops[] = { Op1, Op2 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT1, EVT VT2, EVT VT3, + SDValue Op1, SDValue Op2, + SDValue Op3) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + SDValue Ops[] = { Op1, Op2, Op3 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + EVT VT1, EVT VT2, EVT VT3, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, + ArrayRef<EVT> ResultTys, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(ResultTys); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, + SDVTList VTs, + ArrayRef<SDValue> Ops) { + bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; + MachineSDNode *N; + void *IP = nullptr; + + if (DoCSE) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ~Opcode, VTs, Ops); + IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { + return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); + } + } + + // Allocate a new MachineSDNode. + N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); + createOperands(N, Ops); + + if (DoCSE) + CSEMap.InsertNode(N, IP); + + InsertNode(N); + return N; +} + +/// getTargetExtractSubreg - A convenience function for creating +/// TargetOpcode::EXTRACT_SUBREG nodes. +SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, + SDValue Operand) { + SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); + SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, + VT, Operand, SRIdxVal); + return SDValue(Subreg, 0); +} + +/// getTargetInsertSubreg - A convenience function for creating +/// TargetOpcode::INSERT_SUBREG nodes. +SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, + SDValue Operand, SDValue Subreg) { + SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); + SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, + VT, Operand, Subreg, SRIdxVal); + return SDValue(Result, 0); +} + +/// getNodeIfExists - Get the specified node if it's already available, or +/// else return NULL. +SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, + ArrayRef<SDValue> Ops, + const SDNodeFlags Flags) { + if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTList, Ops); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { + E->intersectFlagsWith(Flags); + return E; + } + } + return nullptr; +} + +/// getDbgValue - Creates a SDDbgValue node. +/// +/// SDNode +SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, + SDNode *N, unsigned R, bool IsIndirect, + const DebugLoc &DL, unsigned O) { + assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + return new (DbgInfo->getAlloc()) + SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); +} + +/// Constant +SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, + DIExpression *Expr, + const Value *C, + const DebugLoc &DL, unsigned O) { + assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); +} + +/// FrameIndex +SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, + DIExpression *Expr, unsigned FI, + bool IsIndirect, + const DebugLoc &DL, + unsigned O) { + assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + return new (DbgInfo->getAlloc()) + SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); +} + +/// VReg +SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, + DIExpression *Expr, + unsigned VReg, bool IsIndirect, + const DebugLoc &DL, unsigned O) { + assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + return new (DbgInfo->getAlloc()) + SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); +} + +void SelectionDAG::transferDbgValues(SDValue From, SDValue To, + unsigned OffsetInBits, unsigned SizeInBits, + bool InvalidateDbg) { + SDNode *FromNode = From.getNode(); + SDNode *ToNode = To.getNode(); + assert(FromNode && ToNode && "Can't modify dbg values"); + + // PR35338 + // TODO: assert(From != To && "Redundant dbg value transfer"); + // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); + if (From == To || FromNode == ToNode) + return; + + if (!FromNode->getHasDebugValue()) + return; + + SmallVector<SDDbgValue *, 2> ClonedDVs; + for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { + if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) + continue; + + // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); + + // Just transfer the dbg value attached to From. + if (Dbg->getResNo() != From.getResNo()) + continue; + + DIVariable *Var = Dbg->getVariable(); + auto *Expr = Dbg->getExpression(); + // If a fragment is requested, update the expression. + if (SizeInBits) { + // When splitting a larger (e.g., sign-extended) value whose + // lower bits are described with an SDDbgValue, do not attempt + // to transfer the SDDbgValue to the upper bits. + if (auto FI = Expr->getFragmentInfo()) + if (OffsetInBits + SizeInBits > FI->SizeInBits) + continue; + auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, + SizeInBits); + if (!Fragment) + continue; + Expr = *Fragment; + } + // Clone the SDDbgValue and move it to To. + SDDbgValue *Clone = + getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), + Dbg->getDebugLoc(), Dbg->getOrder()); + ClonedDVs.push_back(Clone); + + if (InvalidateDbg) { + // Invalidate value and indicate the SDDbgValue should not be emitted. + Dbg->setIsInvalidated(); + Dbg->setIsEmitted(); + } + } + + for (SDDbgValue *Dbg : ClonedDVs) + AddDbgValue(Dbg, ToNode, false); +} + +void SelectionDAG::salvageDebugInfo(SDNode &N) { + if (!N.getHasDebugValue()) + return; + + SmallVector<SDDbgValue *, 2> ClonedDVs; + for (auto DV : GetDbgValues(&N)) { + if (DV->isInvalidated()) + continue; + switch (N.getOpcode()) { + default: + break; + case ISD::ADD: + SDValue N0 = N.getOperand(0); + SDValue N1 = N.getOperand(1); + if (!isConstantIntBuildVectorOrConstantInt(N0) && + isConstantIntBuildVectorOrConstantInt(N1)) { + uint64_t Offset = N.getConstantOperandVal(1); + // Rewrite an ADD constant node into a DIExpression. Since we are + // performing arithmetic to compute the variable's *value* in the + // DIExpression, we need to mark the expression with a + // DW_OP_stack_value. + auto *DIExpr = DV->getExpression(); + DIExpr = + DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); + SDDbgValue *Clone = + getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), + DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); + ClonedDVs.push_back(Clone); + DV->setIsInvalidated(); + DV->setIsEmitted(); + LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; + N0.getNode()->dumprFull(this); + dbgs() << " into " << *DIExpr << '\n'); + } + } + } + + for (SDDbgValue *Dbg : ClonedDVs) + AddDbgValue(Dbg, Dbg->getSDNode(), false); +} + +/// Creates a SDDbgLabel node. +SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, + const DebugLoc &DL, unsigned O) { + assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); +} + +namespace { + +/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node +/// pointed to by a use iterator is deleted, increment the use iterator +/// so that it doesn't dangle. +/// +class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { + SDNode::use_iterator &UI; + SDNode::use_iterator &UE; + + void NodeDeleted(SDNode *N, SDNode *E) override { + // Increment the iterator as needed. + while (UI != UE && N == *UI) + ++UI; + } + +public: + RAUWUpdateListener(SelectionDAG &d, + SDNode::use_iterator &ui, + SDNode::use_iterator &ue) + : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} +}; + +} // end anonymous namespace + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version assumes From has a single result value. +/// +void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { + SDNode *From = FromN.getNode(); + assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && + "Cannot replace with this method!"); + assert(From != To.getNode() && "Cannot replace uses of with self"); + + // Preserve Debug Values + transferDbgValues(FromN, To); + + // Iterate over all the existing uses of From. New uses will be added + // to the beginning of the use list, which we avoid visiting. + // This specifically avoids visiting uses of From that arise while the + // replacement is happening, because any such uses would be the result + // of CSE: If an existing node looks like From after one of its operands + // is replaced by To, we don't want to replace of all its users with To + // too. See PR3018 for more info. + SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); + RAUWUpdateListener Listener(*this, UI, UE); + while (UI != UE) { + SDNode *User = *UI; + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // A user can appear in a use list multiple times, and when this + // happens the uses are usually next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + SDUse &Use = UI.getUse(); + ++UI; + Use.set(To); + if (To->isDivergent() != From->isDivergent()) + updateDivergence(User); + } while (UI != UE && *UI == User); + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } + + // If we just RAUW'd the root, take note. + if (FromN == getRoot()) + setRoot(To); +} + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version assumes that for each value of From, there is a +/// corresponding value in To in the same position with the same type. +/// +void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { +#ifndef NDEBUG + for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) + assert((!From->hasAnyUseOfValue(i) || + From->getValueType(i) == To->getValueType(i)) && + "Cannot use this version of ReplaceAllUsesWith!"); +#endif + + // Handle the trivial case. + if (From == To) + return; + + // Preserve Debug Info. Only do this if there's a use. + for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) + if (From->hasAnyUseOfValue(i)) { + assert((i < To->getNumValues()) && "Invalid To location"); + transferDbgValues(SDValue(From, i), SDValue(To, i)); + } + + // Iterate over just the existing users of From. See the comments in + // the ReplaceAllUsesWith above. + SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); + RAUWUpdateListener Listener(*this, UI, UE); + while (UI != UE) { + SDNode *User = *UI; + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // A user can appear in a use list multiple times, and when this + // happens the uses are usually next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + SDUse &Use = UI.getUse(); + ++UI; + Use.setNode(To); + if (To->isDivergent() != From->isDivergent()) + updateDivergence(User); + } while (UI != UE && *UI == User); + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } + + // If we just RAUW'd the root, take note. + if (From == getRoot().getNode()) + setRoot(SDValue(To, getRoot().getResNo())); +} + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version can replace From with any result values. To must match the +/// number and types of values returned by From. +void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { + if (From->getNumValues() == 1) // Handle the simple case efficiently. + return ReplaceAllUsesWith(SDValue(From, 0), To[0]); + + // Preserve Debug Info. + for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) + transferDbgValues(SDValue(From, i), To[i]); + + // Iterate over just the existing users of From. See the comments in + // the ReplaceAllUsesWith above. + SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); + RAUWUpdateListener Listener(*this, UI, UE); + while (UI != UE) { + SDNode *User = *UI; + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // A user can appear in a use list multiple times, and when this happens the + // uses are usually next to each other in the list. To help reduce the + // number of CSE and divergence recomputations, process all the uses of this + // user that we can find this way. + bool To_IsDivergent = false; + do { + SDUse &Use = UI.getUse(); + const SDValue &ToOp = To[Use.getResNo()]; + ++UI; + Use.set(ToOp); + To_IsDivergent |= ToOp->isDivergent(); + } while (UI != UE && *UI == User); + + if (To_IsDivergent != From->isDivergent()) + updateDivergence(User); + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } + + // If we just RAUW'd the root, take note. + if (From == getRoot().getNode()) + setRoot(SDValue(To[getRoot().getResNo()])); +} + +/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving +/// uses of other values produced by From.getNode() alone. The Deleted +/// vector is handled the same way as for ReplaceAllUsesWith. +void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ + // Handle the really simple, really trivial case efficiently. + if (From == To) return; + + // Handle the simple, trivial, case efficiently. + if (From.getNode()->getNumValues() == 1) { + ReplaceAllUsesWith(From, To); + return; + } + + // Preserve Debug Info. + transferDbgValues(From, To); + + // Iterate over just the existing users of From. See the comments in + // the ReplaceAllUsesWith above. + SDNode::use_iterator UI = From.getNode()->use_begin(), + UE = From.getNode()->use_end(); + RAUWUpdateListener Listener(*this, UI, UE); + while (UI != UE) { + SDNode *User = *UI; + bool UserRemovedFromCSEMaps = false; + + // A user can appear in a use list multiple times, and when this + // happens the uses are usually next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + SDUse &Use = UI.getUse(); + + // Skip uses of different values from the same node. + if (Use.getResNo() != From.getResNo()) { + ++UI; + continue; + } + + // If this node hasn't been modified yet, it's still in the CSE maps, + // so remove its old self from the CSE maps. + if (!UserRemovedFromCSEMaps) { + RemoveNodeFromCSEMaps(User); + UserRemovedFromCSEMaps = true; + } + + ++UI; + Use.set(To); + if (To->isDivergent() != From->isDivergent()) + updateDivergence(User); + } while (UI != UE && *UI == User); + // We are iterating over all uses of the From node, so if a use + // doesn't use the specific value, no changes are made. + if (!UserRemovedFromCSEMaps) + continue; + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } + + // If we just RAUW'd the root, take note. + if (From == getRoot()) + setRoot(To); +} + +namespace { + + /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith + /// to record information about a use. + struct UseMemo { + SDNode *User; + unsigned Index; + SDUse *Use; + }; + + /// operator< - Sort Memos by User. + bool operator<(const UseMemo &L, const UseMemo &R) { + return (intptr_t)L.User < (intptr_t)R.User; + } + +} // end anonymous namespace + +void SelectionDAG::updateDivergence(SDNode * N) +{ + if (TLI->isSDNodeAlwaysUniform(N)) + return; + bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); + for (auto &Op : N->ops()) { + if (Op.Val.getValueType() != MVT::Other) + IsDivergent |= Op.getNode()->isDivergent(); + } + if (N->SDNodeBits.IsDivergent != IsDivergent) { + N->SDNodeBits.IsDivergent = IsDivergent; + for (auto U : N->uses()) { + updateDivergence(U); + } + } +} + +void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { + DenseMap<SDNode *, unsigned> Degree; + Order.reserve(AllNodes.size()); + for (auto &N : allnodes()) { + unsigned NOps = N.getNumOperands(); + Degree[&N] = NOps; + if (0 == NOps) + Order.push_back(&N); + } + for (size_t I = 0; I != Order.size(); ++I) { + SDNode *N = Order[I]; + for (auto U : N->uses()) { + unsigned &UnsortedOps = Degree[U]; + if (0 == --UnsortedOps) + Order.push_back(U); + } + } +} + +#ifndef NDEBUG +void SelectionDAG::VerifyDAGDiverence() { + std::vector<SDNode *> TopoOrder; + CreateTopologicalOrder(TopoOrder); + const TargetLowering &TLI = getTargetLoweringInfo(); + DenseMap<const SDNode *, bool> DivergenceMap; + for (auto &N : allnodes()) { + DivergenceMap[&N] = false; + } + for (auto N : TopoOrder) { + bool IsDivergent = DivergenceMap[N]; + bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); + for (auto &Op : N->ops()) { + if (Op.Val.getValueType() != MVT::Other) + IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; + } + if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { + DivergenceMap[N] = true; + } + } + for (auto &N : allnodes()) { + (void)N; + assert(DivergenceMap[&N] == N.isDivergent() && + "Divergence bit inconsistency detected\n"); + } +} +#endif + +/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving +/// uses of other values produced by From.getNode() alone. The same value +/// may appear in both the From and To list. The Deleted vector is +/// handled the same way as for ReplaceAllUsesWith. +void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, + const SDValue *To, + unsigned Num){ + // Handle the simple, trivial case efficiently. + if (Num == 1) + return ReplaceAllUsesOfValueWith(*From, *To); + + transferDbgValues(*From, *To); + + // Read up all the uses and make records of them. This helps + // processing new uses that are introduced during the + // replacement process. + SmallVector<UseMemo, 4> Uses; + for (unsigned i = 0; i != Num; ++i) { + unsigned FromResNo = From[i].getResNo(); + SDNode *FromNode = From[i].getNode(); + for (SDNode::use_iterator UI = FromNode->use_begin(), + E = FromNode->use_end(); UI != E; ++UI) { + SDUse &Use = UI.getUse(); + if (Use.getResNo() == FromResNo) { + UseMemo Memo = { *UI, i, &Use }; + Uses.push_back(Memo); + } + } + } + + // Sort the uses, so that all the uses from a given User are together. + llvm::sort(Uses); + + for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); + UseIndex != UseIndexEnd; ) { + // We know that this user uses some value of From. If it is the right + // value, update it. + SDNode *User = Uses[UseIndex].User; + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // The Uses array is sorted, so all the uses for a given User + // are next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + unsigned i = Uses[UseIndex].Index; + SDUse &Use = *Uses[UseIndex].Use; + ++UseIndex; + + Use.set(To[i]); + } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } +} + +/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG +/// based on their topological order. It returns the maximum id and a vector +/// of the SDNodes* in assigned order by reference. +unsigned SelectionDAG::AssignTopologicalOrder() { + unsigned DAGSize = 0; + + // SortedPos tracks the progress of the algorithm. Nodes before it are + // sorted, nodes after it are unsorted. When the algorithm completes + // it is at the end of the list. + allnodes_iterator SortedPos = allnodes_begin(); + + // Visit all the nodes. Move nodes with no operands to the front of + // the list immediately. Annotate nodes that do have operands with their + // operand count. Before we do this, the Node Id fields of the nodes + // may contain arbitrary values. After, the Node Id fields for nodes + // before SortedPos will contain the topological sort index, and the + // Node Id fields for nodes At SortedPos and after will contain the + // count of outstanding operands. + for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { + SDNode *N = &*I++; + checkForCycles(N, this); + unsigned Degree = N->getNumOperands(); + if (Degree == 0) { + // A node with no uses, add it to the result array immediately. + N->setNodeId(DAGSize++); + allnodes_iterator Q(N); + if (Q != SortedPos) + SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); + assert(SortedPos != AllNodes.end() && "Overran node list"); + ++SortedPos; + } else { + // Temporarily use the Node Id as scratch space for the degree count. + N->setNodeId(Degree); + } + } + + // Visit all the nodes. As we iterate, move nodes into sorted order, + // such that by the time the end is reached all nodes will be sorted. + for (SDNode &Node : allnodes()) { + SDNode *N = &Node; + checkForCycles(N, this); + // N is in sorted position, so all its uses have one less operand + // that needs to be sorted. + for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); + UI != UE; ++UI) { + SDNode *P = *UI; + unsigned Degree = P->getNodeId(); + assert(Degree != 0 && "Invalid node degree"); + --Degree; + if (Degree == 0) { + // All of P's operands are sorted, so P may sorted now. + P->setNodeId(DAGSize++); + if (P->getIterator() != SortedPos) + SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); + assert(SortedPos != AllNodes.end() && "Overran node list"); + ++SortedPos; + } else { + // Update P's outstanding operand count. + P->setNodeId(Degree); + } + } + if (Node.getIterator() == SortedPos) { +#ifndef NDEBUG + allnodes_iterator I(N); + SDNode *S = &*++I; + dbgs() << "Overran sorted position:\n"; + S->dumprFull(this); dbgs() << "\n"; + dbgs() << "Checking if this is due to cycles\n"; + checkForCycles(this, true); +#endif + llvm_unreachable(nullptr); + } + } + + assert(SortedPos == AllNodes.end() && + "Topological sort incomplete!"); + assert(AllNodes.front().getOpcode() == ISD::EntryToken && + "First node in topological sort is not the entry token!"); + assert(AllNodes.front().getNodeId() == 0 && + "First node in topological sort has non-zero id!"); + assert(AllNodes.front().getNumOperands() == 0 && + "First node in topological sort has operands!"); + assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && + "Last node in topologic sort has unexpected id!"); + assert(AllNodes.back().use_empty() && + "Last node in topologic sort has users!"); + assert(DAGSize == allnodes_size() && "Node count mismatch!"); + return DAGSize; +} + +/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the +/// value is produced by SD. +void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { + if (SD) { + assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); + SD->setHasDebugValue(true); + } + DbgInfo->add(DB, SD, isParameter); +} + +void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { + DbgInfo->add(DB); +} + +SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, + SDValue NewMemOp) { + assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); + // The new memory operation must have the same position as the old load in + // terms of memory dependency. Create a TokenFactor for the old load and new + // memory operation and update uses of the old load's output chain to use that + // TokenFactor. + SDValue OldChain = SDValue(OldLoad, 1); + SDValue NewChain = SDValue(NewMemOp.getNode(), 1); + if (!OldLoad->hasAnyUseOfValue(1)) + return NewChain; + + SDValue TokenFactor = + getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); + ReplaceAllUsesOfValueWith(OldChain, TokenFactor); + UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); + return TokenFactor; +} + +SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, + Function **OutFunction) { + assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); + + auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); + auto *Module = MF->getFunction().getParent(); + auto *Function = Module->getFunction(Symbol); + + if (OutFunction != nullptr) + *OutFunction = Function; + + if (Function != nullptr) { + auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); + return getGlobalAddress(Function, SDLoc(Op), PtrTy); + } + + std::string ErrorStr; + raw_string_ostream ErrorFormatter(ErrorStr); + + ErrorFormatter << "Undefined external symbol "; + ErrorFormatter << '"' << Symbol << '"'; + ErrorFormatter.flush(); + + report_fatal_error(ErrorStr); +} + +//===----------------------------------------------------------------------===// +// SDNode Class +//===----------------------------------------------------------------------===// + +bool llvm::isNullConstant(SDValue V) { + ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); + return Const != nullptr && Const->isNullValue(); +} + +bool llvm::isNullFPConstant(SDValue V) { + ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); + return Const != nullptr && Const->isZero() && !Const->isNegative(); +} + +bool llvm::isAllOnesConstant(SDValue V) { + ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); + return Const != nullptr && Const->isAllOnesValue(); +} + +bool llvm::isOneConstant(SDValue V) { + ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); + return Const != nullptr && Const->isOne(); +} + +SDValue llvm::peekThroughBitcasts(SDValue V) { + while (V.getOpcode() == ISD::BITCAST) + V = V.getOperand(0); + return V; +} + +SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { + while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) + V = V.getOperand(0); + return V; +} + +SDValue llvm::peekThroughExtractSubvectors(SDValue V) { + while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) + V = V.getOperand(0); + return V; +} + +bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { + if (V.getOpcode() != ISD::XOR) + return false; + V = peekThroughBitcasts(V.getOperand(1)); + unsigned NumBits = V.getScalarValueSizeInBits(); + ConstantSDNode *C = + isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); + return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); +} + +ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, + bool AllowTruncation) { + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) + return CN; + + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { + BitVector UndefElements; + ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); + + // BuildVectors can truncate their operands. Ignore that case here unless + // AllowTruncation is set. + if (CN && (UndefElements.none() || AllowUndefs)) { + EVT CVT = CN->getValueType(0); + EVT NSVT = N.getValueType().getScalarType(); + assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); + if (AllowTruncation || (CVT == NSVT)) + return CN; + } + } + + return nullptr; +} + +ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, + bool AllowUndefs, + bool AllowTruncation) { + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) + return CN; + + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { + BitVector UndefElements; + ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); + + // BuildVectors can truncate their operands. Ignore that case here unless + // AllowTruncation is set. + if (CN && (UndefElements.none() || AllowUndefs)) { + EVT CVT = CN->getValueType(0); + EVT NSVT = N.getValueType().getScalarType(); + assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); + if (AllowTruncation || (CVT == NSVT)) + return CN; + } + } + + return nullptr; +} + +ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { + if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) + return CN; + + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { + BitVector UndefElements; + ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); + if (CN && (UndefElements.none() || AllowUndefs)) + return CN; + } + + return nullptr; +} + +ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, + const APInt &DemandedElts, + bool AllowUndefs) { + if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) + return CN; + + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { + BitVector UndefElements; + ConstantFPSDNode *CN = + BV->getConstantFPSplatNode(DemandedElts, &UndefElements); + if (CN && (UndefElements.none() || AllowUndefs)) + return CN; + } + + return nullptr; +} + +bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { + // TODO: may want to use peekThroughBitcast() here. + ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); + return C && C->isNullValue(); +} + +bool llvm::isOneOrOneSplat(SDValue N) { + // TODO: may want to use peekThroughBitcast() here. + unsigned BitWidth = N.getScalarValueSizeInBits(); + ConstantSDNode *C = isConstOrConstSplat(N); + return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; +} + +bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { + N = peekThroughBitcasts(N); + unsigned BitWidth = N.getScalarValueSizeInBits(); + ConstantSDNode *C = isConstOrConstSplat(N); + return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; +} + +HandleSDNode::~HandleSDNode() { + DropOperands(); +} + +GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, + const DebugLoc &DL, + const GlobalValue *GA, EVT VT, + int64_t o, unsigned char TF) + : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { + TheGlobal = GA; +} + +AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, + EVT VT, unsigned SrcAS, + unsigned DestAS) + : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), + SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} + +MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, + SDVTList VTs, EVT memvt, MachineMemOperand *mmo) + : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { + MemSDNodeBits.IsVolatile = MMO->isVolatile(); + MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); + MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); + MemSDNodeBits.IsInvariant = MMO->isInvariant(); + + // We check here that the size of the memory operand fits within the size of + // the MMO. This is because the MMO might indicate only a possible address + // range instead of specifying the affected memory addresses precisely. + assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); +} + +/// Profile - Gather unique data for the node. +/// +void SDNode::Profile(FoldingSetNodeID &ID) const { + AddNodeIDNode(ID, this); +} + +namespace { + + struct EVTArray { + std::vector<EVT> VTs; + + EVTArray() { + VTs.reserve(MVT::LAST_VALUETYPE); + for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) + VTs.push_back(MVT((MVT::SimpleValueType)i)); + } + }; + +} // end anonymous namespace + +static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; +static ManagedStatic<EVTArray> SimpleVTArray; +static ManagedStatic<sys::SmartMutex<true>> VTMutex; + +/// getValueTypeList - Return a pointer to the specified value type. +/// +const EVT *SDNode::getValueTypeList(EVT VT) { + if (VT.isExtended()) { + sys::SmartScopedLock<true> Lock(*VTMutex); + return &(*EVTs->insert(VT).first); + } else { + assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && + "Value type out of range!"); + return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; + } +} + +/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the +/// indicated value. This method ignores uses of other values defined by this +/// operation. +bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { + assert(Value < getNumValues() && "Bad value!"); + + // TODO: Only iterate over uses of a given value of the node + for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { + if (UI.getUse().getResNo() == Value) { + if (NUses == 0) + return false; + --NUses; + } + } + + // Found exactly the right number of uses? + return NUses == 0; +} + +/// hasAnyUseOfValue - Return true if there are any use of the indicated +/// value. This method ignores uses of other values defined by this operation. +bool SDNode::hasAnyUseOfValue(unsigned Value) const { + assert(Value < getNumValues() && "Bad value!"); + + for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) + if (UI.getUse().getResNo() == Value) + return true; + + return false; +} + +/// isOnlyUserOf - Return true if this node is the only use of N. +bool SDNode::isOnlyUserOf(const SDNode *N) const { + bool Seen = false; + for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { + SDNode *User = *I; + if (User == this) + Seen = true; + else + return false; + } + + return Seen; +} + +/// Return true if the only users of N are contained in Nodes. +bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { + bool Seen = false; + for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { + SDNode *User = *I; + if (llvm::any_of(Nodes, + [&User](const SDNode *Node) { return User == Node; })) + Seen = true; + else + return false; + } + + return Seen; +} + +/// isOperand - Return true if this node is an operand of N. +bool SDValue::isOperandOf(const SDNode *N) const { + return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); +} + +bool SDNode::isOperandOf(const SDNode *N) const { + return any_of(N->op_values(), + [this](SDValue Op) { return this == Op.getNode(); }); +} + +/// reachesChainWithoutSideEffects - Return true if this operand (which must +/// be a chain) reaches the specified operand without crossing any +/// side-effecting instructions on any chain path. In practice, this looks +/// through token factors and non-volatile loads. In order to remain efficient, +/// this only looks a couple of nodes in, it does not do an exhaustive search. +/// +/// Note that we only need to examine chains when we're searching for +/// side-effects; SelectionDAG requires that all side-effects are represented +/// by chains, even if another operand would force a specific ordering. This +/// constraint is necessary to allow transformations like splitting loads. +bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, + unsigned Depth) const { + if (*this == Dest) return true; + + // Don't search too deeply, we just want to be able to see through + // TokenFactor's etc. + if (Depth == 0) return false; + + // If this is a token factor, all inputs to the TF happen in parallel. + if (getOpcode() == ISD::TokenFactor) { + // First, try a shallow search. + if (is_contained((*this)->ops(), Dest)) { + // We found the chain we want as an operand of this TokenFactor. + // Essentially, we reach the chain without side-effects if we could + // serialize the TokenFactor into a simple chain of operations with + // Dest as the last operation. This is automatically true if the + // chain has one use: there are no other ordering constraints. + // If the chain has more than one use, we give up: some other + // use of Dest might force a side-effect between Dest and the current + // node. + if (Dest.hasOneUse()) + return true; + } + // Next, try a deep search: check whether every operand of the TokenFactor + // reaches Dest. + return llvm::all_of((*this)->ops(), [=](SDValue Op) { + return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); + }); + } + + // Loads don't have side effects, look through them. + if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { + if (!Ld->isVolatile()) + return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); + } + return false; +} + +bool SDNode::hasPredecessor(const SDNode *N) const { + SmallPtrSet<const SDNode *, 32> Visited; + SmallVector<const SDNode *, 16> Worklist; + Worklist.push_back(this); + return hasPredecessorHelper(N, Visited, Worklist); +} + +void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { + this->Flags.intersectWith(Flags); +} + +SDValue +SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, + ArrayRef<ISD::NodeType> CandidateBinOps) { + // The pattern must end in an extract from index 0. + if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || + !isNullConstant(Extract->getOperand(1))) + return SDValue(); + + SDValue Op = Extract->getOperand(0); + unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); + + // Match against one of the candidate binary ops. + if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { + return Op.getOpcode() == unsigned(BinOp); + })) + return SDValue(); + + // At each stage, we're looking for something that looks like: + // %s = shufflevector <8 x i32> %op, <8 x i32> undef, + // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, + // i32 undef, i32 undef, i32 undef, i32 undef> + // %a = binop <8 x i32> %op, %s + // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, + // we expect something like: + // <4,5,6,7,u,u,u,u> + // <2,3,u,u,u,u,u,u> + // <1,u,u,u,u,u,u,u> + unsigned CandidateBinOp = Op.getOpcode(); + for (unsigned i = 0; i < Stages; ++i) { + if (Op.getOpcode() != CandidateBinOp) + return SDValue(); + + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); + if (Shuffle) { + Op = Op1; + } else { + Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); + Op = Op0; + } + + // The first operand of the shuffle should be the same as the other operand + // of the binop. + if (!Shuffle || Shuffle->getOperand(0) != Op) + return SDValue(); + + // Verify the shuffle has the expected (at this stage of the pyramid) mask. + for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index) + if (Shuffle->getMaskElt(Index) != MaskEnd + Index) + return SDValue(); + } + + BinOp = (ISD::NodeType)CandidateBinOp; + return Op; +} + +SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { + assert(N->getNumValues() == 1 && + "Can't unroll a vector with multiple results!"); + + EVT VT = N->getValueType(0); + unsigned NE = VT.getVectorNumElements(); + EVT EltVT = VT.getVectorElementType(); + SDLoc dl(N); + + SmallVector<SDValue, 8> Scalars; + SmallVector<SDValue, 4> Operands(N->getNumOperands()); + + // If ResNE is 0, fully unroll the vector op. + if (ResNE == 0) + ResNE = NE; + else if (NE > ResNE) + NE = ResNE; + + unsigned i; + for (i= 0; i != NE; ++i) { + for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { + SDValue Operand = N->getOperand(j); + EVT OperandVT = Operand.getValueType(); + if (OperandVT.isVector()) { + // A vector operand; extract a single element. + EVT OperandEltVT = OperandVT.getVectorElementType(); + Operands[j] = + getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, + getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); + } else { + // A scalar operand; just use it as is. + Operands[j] = Operand; + } + } + + switch (N->getOpcode()) { + default: { + Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, + N->getFlags())); + break; + } + case ISD::VSELECT: + Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); + break; + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + case ISD::ROTL: + case ISD::ROTR: + Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], + getShiftAmountOperand(Operands[0].getValueType(), + Operands[1]))); + break; + case ISD::SIGN_EXTEND_INREG: + case ISD::FP_ROUND_INREG: { + EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); + Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, + Operands[0], + getValueType(ExtVT))); + } + } + } + + for (; i < ResNE; ++i) + Scalars.push_back(getUNDEF(EltVT)); + + EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); + return getBuildVector(VecVT, dl, Scalars); +} + +std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( + SDNode *N, unsigned ResNE) { + unsigned Opcode = N->getOpcode(); + assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || + Opcode == ISD::USUBO || Opcode == ISD::SSUBO || + Opcode == ISD::UMULO || Opcode == ISD::SMULO) && + "Expected an overflow opcode"); + + EVT ResVT = N->getValueType(0); + EVT OvVT = N->getValueType(1); + EVT ResEltVT = ResVT.getVectorElementType(); + EVT OvEltVT = OvVT.getVectorElementType(); + SDLoc dl(N); + + // If ResNE is 0, fully unroll the vector op. + unsigned NE = ResVT.getVectorNumElements(); + if (ResNE == 0) + ResNE = NE; + else if (NE > ResNE) + NE = ResNE; + + SmallVector<SDValue, 8> LHSScalars; + SmallVector<SDValue, 8> RHSScalars; + ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); + ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); + + EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); + SDVTList VTs = getVTList(ResEltVT, SVT); + SmallVector<SDValue, 8> ResScalars; + SmallVector<SDValue, 8> OvScalars; + for (unsigned i = 0; i < NE; ++i) { + SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); + SDValue Ov = + getSelect(dl, OvEltVT, Res.getValue(1), + getBoolConstant(true, dl, OvEltVT, ResVT), + getConstant(0, dl, OvEltVT)); + + ResScalars.push_back(Res); + OvScalars.push_back(Ov); + } + + ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); + OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); + + EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); + EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); + return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), + getBuildVector(NewOvVT, dl, OvScalars)); +} + +bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, + LoadSDNode *Base, + unsigned Bytes, + int Dist) const { + if (LD->isVolatile() || Base->isVolatile()) + return false; + if (LD->isIndexed() || Base->isIndexed()) + return false; + if (LD->getChain() != Base->getChain()) + return false; + EVT VT = LD->getValueType(0); + if (VT.getSizeInBits() / 8 != Bytes) + return false; + + auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); + auto LocDecomp = BaseIndexOffset::match(LD, *this); + + int64_t Offset = 0; + if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) + return (Dist * Bytes == Offset); + return false; +} + +/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if +/// it cannot be inferred. +unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { + // If this is a GlobalAddress + cst, return the alignment. + const GlobalValue *GV; + int64_t GVOffset = 0; + if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { + unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); + KnownBits Known(IdxWidth); + llvm::computeKnownBits(GV, Known, getDataLayout()); + unsigned AlignBits = Known.countMinTrailingZeros(); + unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; + if (Align) + return MinAlign(Align, GVOffset); + } + + // If this is a direct reference to a stack slot, use information about the + // stack slot's alignment. + int FrameIdx = INT_MIN; + int64_t FrameOffset = 0; + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { + FrameIdx = FI->getIndex(); + } else if (isBaseWithConstantOffset(Ptr) && + isa<FrameIndexSDNode>(Ptr.getOperand(0))) { + // Handle FI+Cst + FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); + FrameOffset = Ptr.getConstantOperandVal(1); + } + + if (FrameIdx != INT_MIN) { + const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); + unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), + FrameOffset); + return FIInfoAlign; + } + + return 0; +} + +/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type +/// which is split (or expanded) into two not necessarily identical pieces. +std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { + // Currently all types are split in half. + EVT LoVT, HiVT; + if (!VT.isVector()) + LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); + else + LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); + + return std::make_pair(LoVT, HiVT); +} + +/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the +/// low/high part. +std::pair<SDValue, SDValue> +SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, + const EVT &HiVT) { + assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= + N.getValueType().getVectorNumElements() && + "More vector elements requested than available!"); + SDValue Lo, Hi; + Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, + getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); + Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, + getConstant(LoVT.getVectorNumElements(), DL, + TLI->getVectorIdxTy(getDataLayout()))); + return std::make_pair(Lo, Hi); +} + +/// Widen the vector up to the next power of two using INSERT_SUBVECTOR. +SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { + EVT VT = N.getValueType(); + EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), + NextPowerOf2(VT.getVectorNumElements())); + return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, + getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); +} + +void SelectionDAG::ExtractVectorElements(SDValue Op, + SmallVectorImpl<SDValue> &Args, + unsigned Start, unsigned Count) { + EVT VT = Op.getValueType(); + if (Count == 0) + Count = VT.getVectorNumElements(); + + EVT EltVT = VT.getVectorElementType(); + EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); + SDLoc SL(Op); + for (unsigned i = Start, e = Start + Count; i != e; ++i) { + Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, + Op, getConstant(i, SL, IdxTy))); + } +} + +// getAddressSpace - Return the address space this GlobalAddress belongs to. +unsigned GlobalAddressSDNode::getAddressSpace() const { + return getGlobal()->getType()->getAddressSpace(); +} + +Type *ConstantPoolSDNode::getType() const { + if (isMachineConstantPoolEntry()) + return Val.MachineCPVal->getType(); + return Val.ConstVal->getType(); +} + +bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, + unsigned &SplatBitSize, + bool &HasAnyUndefs, + unsigned MinSplatBits, + bool IsBigEndian) const { + EVT VT = getValueType(0); + assert(VT.isVector() && "Expected a vector type"); + unsigned VecWidth = VT.getSizeInBits(); + if (MinSplatBits > VecWidth) + return false; + + // FIXME: The widths are based on this node's type, but build vectors can + // truncate their operands. + SplatValue = APInt(VecWidth, 0); + SplatUndef = APInt(VecWidth, 0); + + // Get the bits. Bits with undefined values (when the corresponding element + // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared + // in SplatValue. If any of the values are not constant, give up and return + // false. + unsigned int NumOps = getNumOperands(); + assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); + unsigned EltWidth = VT.getScalarSizeInBits(); + + for (unsigned j = 0; j < NumOps; ++j) { + unsigned i = IsBigEndian ? NumOps - 1 - j : j; + SDValue OpVal = getOperand(i); + unsigned BitPos = j * EltWidth; + + if (OpVal.isUndef()) + SplatUndef.setBits(BitPos, BitPos + EltWidth); + else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) + SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); + else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) + SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); + else + return false; + } + + // The build_vector is all constants or undefs. Find the smallest element + // size that splats the vector. + HasAnyUndefs = (SplatUndef != 0); + + // FIXME: This does not work for vectors with elements less than 8 bits. + while (VecWidth > 8) { + unsigned HalfSize = VecWidth / 2; + APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); + APInt LowValue = SplatValue.trunc(HalfSize); + APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); + APInt LowUndef = SplatUndef.trunc(HalfSize); + + // If the two halves do not match (ignoring undef bits), stop here. + if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || + MinSplatBits > HalfSize) + break; + + SplatValue = HighValue | LowValue; + SplatUndef = HighUndef & LowUndef; + + VecWidth = HalfSize; + } + + SplatBitSize = VecWidth; + return true; +} + +SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, + BitVector *UndefElements) const { + if (UndefElements) { + UndefElements->clear(); + UndefElements->resize(getNumOperands()); + } + assert(getNumOperands() == DemandedElts.getBitWidth() && + "Unexpected vector size"); + if (!DemandedElts) + return SDValue(); + SDValue Splatted; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + if (!DemandedElts[i]) + continue; + SDValue Op = getOperand(i); + if (Op.isUndef()) { + if (UndefElements) + (*UndefElements)[i] = true; + } else if (!Splatted) { + Splatted = Op; + } else if (Splatted != Op) { + return SDValue(); + } + } + + if (!Splatted) { + unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); + assert(getOperand(FirstDemandedIdx).isUndef() && + "Can only have a splat without a constant for all undefs."); + return getOperand(FirstDemandedIdx); + } + + return Splatted; +} + +SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { + APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); + return getSplatValue(DemandedElts, UndefElements); +} + +ConstantSDNode * +BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, + BitVector *UndefElements) const { + return dyn_cast_or_null<ConstantSDNode>( + getSplatValue(DemandedElts, UndefElements)); +} + +ConstantSDNode * +BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { + return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); +} + +ConstantFPSDNode * +BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, + BitVector *UndefElements) const { + return dyn_cast_or_null<ConstantFPSDNode>( + getSplatValue(DemandedElts, UndefElements)); +} + +ConstantFPSDNode * +BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { + return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); +} + +int32_t +BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, + uint32_t BitWidth) const { + if (ConstantFPSDNode *CN = + dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { + bool IsExact; + APSInt IntVal(BitWidth); + const APFloat &APF = CN->getValueAPF(); + if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != + APFloat::opOK || + !IsExact) + return -1; + + return IntVal.exactLogBase2(); + } + return -1; +} + +bool BuildVectorSDNode::isConstant() const { + for (const SDValue &Op : op_values()) { + unsigned Opc = Op.getOpcode(); + if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) + return false; + } + return true; +} + +bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { + // Find the first non-undef value in the shuffle mask. + unsigned i, e; + for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) + /* search */; + + // If all elements are undefined, this shuffle can be considered a splat + // (although it should eventually get simplified away completely). + if (i == e) + return true; + + // Make sure all remaining elements are either undef or the same as the first + // non-undef value. + for (int Idx = Mask[i]; i != e; ++i) + if (Mask[i] >= 0 && Mask[i] != Idx) + return false; + return true; +} + +// Returns the SDNode if it is a constant integer BuildVector +// or constant integer. +SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { + if (isa<ConstantSDNode>(N)) + return N.getNode(); + if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) + return N.getNode(); + // Treat a GlobalAddress supporting constant offset folding as a + // constant integer. + if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) + if (GA->getOpcode() == ISD::GlobalAddress && + TLI->isOffsetFoldingLegal(GA)) + return GA; + return nullptr; +} + +SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { + if (isa<ConstantFPSDNode>(N)) + return N.getNode(); + + if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) + return N.getNode(); + + return nullptr; +} + +void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { + assert(!Node->OperandList && "Node already has operands"); + assert(SDNode::getMaxNumOperands() >= Vals.size() && + "too many operands to fit into SDNode"); + SDUse *Ops = OperandRecycler.allocate( + ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); + + bool IsDivergent = false; + for (unsigned I = 0; I != Vals.size(); ++I) { + Ops[I].setUser(Node); + Ops[I].setInitial(Vals[I]); + if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. + IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); + } + Node->NumOperands = Vals.size(); + Node->OperandList = Ops; + IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); + if (!TLI->isSDNodeAlwaysUniform(Node)) + Node->SDNodeBits.IsDivergent = IsDivergent; + checkForCycles(Node); +} + +SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, + SmallVectorImpl<SDValue> &Vals) { + size_t Limit = SDNode::getMaxNumOperands(); + while (Vals.size() > Limit) { + unsigned SliceIdx = Vals.size() - Limit; + auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); + SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); + Vals.erase(Vals.begin() + SliceIdx, Vals.end()); + Vals.emplace_back(NewTF); + } + return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); +} + +#ifndef NDEBUG +static void checkForCyclesHelper(const SDNode *N, + SmallPtrSetImpl<const SDNode*> &Visited, + SmallPtrSetImpl<const SDNode*> &Checked, + const llvm::SelectionDAG *DAG) { + // If this node has already been checked, don't check it again. + if (Checked.count(N)) + return; + + // If a node has already been visited on this depth-first walk, reject it as + // a cycle. + if (!Visited.insert(N).second) { + errs() << "Detected cycle in SelectionDAG\n"; + dbgs() << "Offending node:\n"; + N->dumprFull(DAG); dbgs() << "\n"; + abort(); + } + + for (const SDValue &Op : N->op_values()) + checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); + + Checked.insert(N); + Visited.erase(N); +} +#endif + +void llvm::checkForCycles(const llvm::SDNode *N, + const llvm::SelectionDAG *DAG, + bool force) { +#ifndef NDEBUG + bool check = force; +#ifdef EXPENSIVE_CHECKS + check = true; +#endif // EXPENSIVE_CHECKS + if (check) { + assert(N && "Checking nonexistent SDNode"); + SmallPtrSet<const SDNode*, 32> visited; + SmallPtrSet<const SDNode*, 32> checked; + checkForCyclesHelper(N, visited, checked, DAG); + } +#endif // !NDEBUG +} + +void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { + checkForCycles(DAG->getRoot().getNode(), DAG, force); +} |