summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp9595
1 files changed, 9595 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
new file mode 100644
index 000000000000..6b0245dfd380
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -0,0 +1,9595 @@
+//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the SelectionDAG class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "SDNodeDbgValue.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/RuntimeLibcalls.h"
+#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstdlib>
+#include <limits>
+#include <set>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+/// makeVTList - Return an instance of the SDVTList struct initialized with the
+/// specified members.
+static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
+ SDVTList Res = {VTs, NumVTs};
+ return Res;
+}
+
+// Default null implementations of the callbacks.
+void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
+void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
+void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
+
+void SelectionDAG::DAGNodeDeletedListener::anchor() {}
+
+#define DEBUG_TYPE "selectiondag"
+
+static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
+ cl::Hidden, cl::init(true),
+ cl::desc("Gang up loads and stores generated by inlining of memcpy"));
+
+static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
+ cl::desc("Number limit for gluing ld/st of memcpy."),
+ cl::Hidden, cl::init(0));
+
+static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
+ LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
+}
+
+//===----------------------------------------------------------------------===//
+// ConstantFPSDNode Class
+//===----------------------------------------------------------------------===//
+
+/// isExactlyValue - We don't rely on operator== working on double values, as
+/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+/// As such, this method can be used to do an exact bit-for-bit comparison of
+/// two floating point values.
+bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
+ return getValueAPF().bitwiseIsEqual(V);
+}
+
+bool ConstantFPSDNode::isValueValidForType(EVT VT,
+ const APFloat& Val) {
+ assert(VT.isFloatingPoint() && "Can only convert between FP types");
+
+ // convert modifies in place, so make a copy.
+ APFloat Val2 = APFloat(Val);
+ bool losesInfo;
+ (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
+ APFloat::rmNearestTiesToEven,
+ &losesInfo);
+ return !losesInfo;
+}
+
+//===----------------------------------------------------------------------===//
+// ISD Namespace
+//===----------------------------------------------------------------------===//
+
+bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
+ auto *BV = dyn_cast<BuildVectorSDNode>(N);
+ if (!BV)
+ return false;
+
+ APInt SplatUndef;
+ unsigned SplatBitSize;
+ bool HasUndefs;
+ unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
+ return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
+ EltSize) &&
+ EltSize == SplatBitSize;
+}
+
+// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
+// specializations of the more general isConstantSplatVector()?
+
+bool ISD::isBuildVectorAllOnes(const SDNode *N) {
+ // Look through a bit convert.
+ while (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0).getNode();
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
+
+ unsigned i = 0, e = N->getNumOperands();
+
+ // Skip over all of the undef values.
+ while (i != e && N->getOperand(i).isUndef())
+ ++i;
+
+ // Do not accept an all-undef vector.
+ if (i == e) return false;
+
+ // Do not accept build_vectors that aren't all constants or which have non-~0
+ // elements. We have to be a bit careful here, as the type of the constant
+ // may not be the same as the type of the vector elements due to type
+ // legalization (the elements are promoted to a legal type for the target and
+ // a vector of a type may be legal when the base element type is not).
+ // We only want to check enough bits to cover the vector elements, because
+ // we care if the resultant vector is all ones, not whether the individual
+ // constants are.
+ SDValue NotZero = N->getOperand(i);
+ unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
+ if (CN->getAPIntValue().countTrailingOnes() < EltSize)
+ return false;
+ } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
+ if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
+ return false;
+ } else
+ return false;
+
+ // Okay, we have at least one ~0 value, check to see if the rest match or are
+ // undefs. Even with the above element type twiddling, this should be OK, as
+ // the same type legalization should have applied to all the elements.
+ for (++i; i != e; ++i)
+ if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
+ return false;
+ return true;
+}
+
+bool ISD::isBuildVectorAllZeros(const SDNode *N) {
+ // Look through a bit convert.
+ while (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0).getNode();
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
+
+ bool IsAllUndef = true;
+ for (const SDValue &Op : N->op_values()) {
+ if (Op.isUndef())
+ continue;
+ IsAllUndef = false;
+ // Do not accept build_vectors that aren't all constants or which have non-0
+ // elements. We have to be a bit careful here, as the type of the constant
+ // may not be the same as the type of the vector elements due to type
+ // legalization (the elements are promoted to a legal type for the target
+ // and a vector of a type may be legal when the base element type is not).
+ // We only want to check enough bits to cover the vector elements, because
+ // we care if the resultant vector is all zeros, not whether the individual
+ // constants are.
+ unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
+ if (CN->getAPIntValue().countTrailingZeros() < EltSize)
+ return false;
+ } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
+ if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
+ return false;
+ } else
+ return false;
+ }
+
+ // Do not accept an all-undef vector.
+ if (IsAllUndef)
+ return false;
+ return true;
+}
+
+bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ for (const SDValue &Op : N->op_values()) {
+ if (Op.isUndef())
+ continue;
+ if (!isa<ConstantSDNode>(Op))
+ return false;
+ }
+ return true;
+}
+
+bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ for (const SDValue &Op : N->op_values()) {
+ if (Op.isUndef())
+ continue;
+ if (!isa<ConstantFPSDNode>(Op))
+ return false;
+ }
+ return true;
+}
+
+bool ISD::allOperandsUndef(const SDNode *N) {
+ // Return false if the node has no operands.
+ // This is "logically inconsistent" with the definition of "all" but
+ // is probably the desired behavior.
+ if (N->getNumOperands() == 0)
+ return false;
+ return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
+}
+
+bool ISD::matchUnaryPredicate(SDValue Op,
+ std::function<bool(ConstantSDNode *)> Match,
+ bool AllowUndefs) {
+ // FIXME: Add support for scalar UNDEF cases?
+ if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
+ return Match(Cst);
+
+ // FIXME: Add support for vector UNDEF cases?
+ if (ISD::BUILD_VECTOR != Op.getOpcode())
+ return false;
+
+ EVT SVT = Op.getValueType().getScalarType();
+ for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
+ if (AllowUndefs && Op.getOperand(i).isUndef()) {
+ if (!Match(nullptr))
+ return false;
+ continue;
+ }
+
+ auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
+ if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
+ return false;
+ }
+ return true;
+}
+
+bool ISD::matchBinaryPredicate(
+ SDValue LHS, SDValue RHS,
+ std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
+ bool AllowUndefs, bool AllowTypeMismatch) {
+ if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
+ return false;
+
+ // TODO: Add support for scalar UNDEF cases?
+ if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
+ if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
+ return Match(LHSCst, RHSCst);
+
+ // TODO: Add support for vector UNDEF cases?
+ if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
+ ISD::BUILD_VECTOR != RHS.getOpcode())
+ return false;
+
+ EVT SVT = LHS.getValueType().getScalarType();
+ for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
+ SDValue LHSOp = LHS.getOperand(i);
+ SDValue RHSOp = RHS.getOperand(i);
+ bool LHSUndef = AllowUndefs && LHSOp.isUndef();
+ bool RHSUndef = AllowUndefs && RHSOp.isUndef();
+ auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
+ auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
+ if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
+ return false;
+ if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
+ LHSOp.getValueType() != RHSOp.getValueType()))
+ return false;
+ if (!Match(LHSCst, RHSCst))
+ return false;
+ }
+ return true;
+}
+
+ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
+ switch (ExtType) {
+ case ISD::EXTLOAD:
+ return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
+ case ISD::SEXTLOAD:
+ return ISD::SIGN_EXTEND;
+ case ISD::ZEXTLOAD:
+ return ISD::ZERO_EXTEND;
+ default:
+ break;
+ }
+
+ llvm_unreachable("Invalid LoadExtType");
+}
+
+ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
+ // To perform this operation, we just need to swap the L and G bits of the
+ // operation.
+ unsigned OldL = (Operation >> 2) & 1;
+ unsigned OldG = (Operation >> 1) & 1;
+ return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
+ (OldL << 1) | // New G bit
+ (OldG << 2)); // New L bit.
+}
+
+ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
+ unsigned Operation = Op;
+ if (isInteger)
+ Operation ^= 7; // Flip L, G, E bits, but not U.
+ else
+ Operation ^= 15; // Flip all of the condition bits.
+
+ if (Operation > ISD::SETTRUE2)
+ Operation &= ~8; // Don't let N and U bits get set.
+
+ return ISD::CondCode(Operation);
+}
+
+/// For an integer comparison, return 1 if the comparison is a signed operation
+/// and 2 if the result is an unsigned comparison. Return zero if the operation
+/// does not depend on the sign of the input (setne and seteq).
+static int isSignedOp(ISD::CondCode Opcode) {
+ switch (Opcode) {
+ default: llvm_unreachable("Illegal integer setcc operation!");
+ case ISD::SETEQ:
+ case ISD::SETNE: return 0;
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETGT:
+ case ISD::SETGE: return 1;
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ case ISD::SETUGE: return 2;
+ }
+}
+
+ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
+ bool IsInteger) {
+ if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
+ // Cannot fold a signed integer setcc with an unsigned integer setcc.
+ return ISD::SETCC_INVALID;
+
+ unsigned Op = Op1 | Op2; // Combine all of the condition bits.
+
+ // If the N and U bits get set, then the resultant comparison DOES suddenly
+ // care about orderedness, and it is true when ordered.
+ if (Op > ISD::SETTRUE2)
+ Op &= ~16; // Clear the U bit if the N bit is set.
+
+ // Canonicalize illegal integer setcc's.
+ if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
+ Op = ISD::SETNE;
+
+ return ISD::CondCode(Op);
+}
+
+ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
+ bool IsInteger) {
+ if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
+ // Cannot fold a signed setcc with an unsigned setcc.
+ return ISD::SETCC_INVALID;
+
+ // Combine all of the condition bits.
+ ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
+
+ // Canonicalize illegal integer setcc's.
+ if (IsInteger) {
+ switch (Result) {
+ default: break;
+ case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
+ case ISD::SETOEQ: // SETEQ & SETU[LG]E
+ case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
+ case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
+ case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
+ }
+ }
+
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// SDNode Profile Support
+//===----------------------------------------------------------------------===//
+
+/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
+static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
+ ID.AddInteger(OpC);
+}
+
+/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
+/// solely with their pointer.
+static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
+ ID.AddPointer(VTList.VTs);
+}
+
+/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
+static void AddNodeIDOperands(FoldingSetNodeID &ID,
+ ArrayRef<SDValue> Ops) {
+ for (auto& Op : Ops) {
+ ID.AddPointer(Op.getNode());
+ ID.AddInteger(Op.getResNo());
+ }
+}
+
+/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
+static void AddNodeIDOperands(FoldingSetNodeID &ID,
+ ArrayRef<SDUse> Ops) {
+ for (auto& Op : Ops) {
+ ID.AddPointer(Op.getNode());
+ ID.AddInteger(Op.getResNo());
+ }
+}
+
+static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
+ SDVTList VTList, ArrayRef<SDValue> OpList) {
+ AddNodeIDOpcode(ID, OpC);
+ AddNodeIDValueTypes(ID, VTList);
+ AddNodeIDOperands(ID, OpList);
+}
+
+/// If this is an SDNode with special info, add this info to the NodeID data.
+static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
+ switch (N->getOpcode()) {
+ case ISD::TargetExternalSymbol:
+ case ISD::ExternalSymbol:
+ case ISD::MCSymbol:
+ llvm_unreachable("Should only be used on nodes with operands");
+ default: break; // Normal nodes don't need extra info.
+ case ISD::TargetConstant:
+ case ISD::Constant: {
+ const ConstantSDNode *C = cast<ConstantSDNode>(N);
+ ID.AddPointer(C->getConstantIntValue());
+ ID.AddBoolean(C->isOpaque());
+ break;
+ }
+ case ISD::TargetConstantFP:
+ case ISD::ConstantFP:
+ ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
+ break;
+ case ISD::TargetGlobalAddress:
+ case ISD::GlobalAddress:
+ case ISD::TargetGlobalTLSAddress:
+ case ISD::GlobalTLSAddress: {
+ const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
+ ID.AddPointer(GA->getGlobal());
+ ID.AddInteger(GA->getOffset());
+ ID.AddInteger(GA->getTargetFlags());
+ break;
+ }
+ case ISD::BasicBlock:
+ ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
+ break;
+ case ISD::Register:
+ ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
+ break;
+ case ISD::RegisterMask:
+ ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
+ break;
+ case ISD::SRCVALUE:
+ ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
+ break;
+ case ISD::FrameIndex:
+ case ISD::TargetFrameIndex:
+ ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
+ break;
+ case ISD::LIFETIME_START:
+ case ISD::LIFETIME_END:
+ if (cast<LifetimeSDNode>(N)->hasOffset()) {
+ ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
+ ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
+ }
+ break;
+ case ISD::JumpTable:
+ case ISD::TargetJumpTable:
+ ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
+ ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
+ break;
+ case ISD::ConstantPool:
+ case ISD::TargetConstantPool: {
+ const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
+ ID.AddInteger(CP->getAlignment());
+ ID.AddInteger(CP->getOffset());
+ if (CP->isMachineConstantPoolEntry())
+ CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
+ else
+ ID.AddPointer(CP->getConstVal());
+ ID.AddInteger(CP->getTargetFlags());
+ break;
+ }
+ case ISD::TargetIndex: {
+ const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
+ ID.AddInteger(TI->getIndex());
+ ID.AddInteger(TI->getOffset());
+ ID.AddInteger(TI->getTargetFlags());
+ break;
+ }
+ case ISD::LOAD: {
+ const LoadSDNode *LD = cast<LoadSDNode>(N);
+ ID.AddInteger(LD->getMemoryVT().getRawBits());
+ ID.AddInteger(LD->getRawSubclassData());
+ ID.AddInteger(LD->getPointerInfo().getAddrSpace());
+ break;
+ }
+ case ISD::STORE: {
+ const StoreSDNode *ST = cast<StoreSDNode>(N);
+ ID.AddInteger(ST->getMemoryVT().getRawBits());
+ ID.AddInteger(ST->getRawSubclassData());
+ ID.AddInteger(ST->getPointerInfo().getAddrSpace());
+ break;
+ }
+ case ISD::MLOAD: {
+ const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
+ ID.AddInteger(MLD->getMemoryVT().getRawBits());
+ ID.AddInteger(MLD->getRawSubclassData());
+ ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
+ break;
+ }
+ case ISD::MSTORE: {
+ const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
+ ID.AddInteger(MST->getMemoryVT().getRawBits());
+ ID.AddInteger(MST->getRawSubclassData());
+ ID.AddInteger(MST->getPointerInfo().getAddrSpace());
+ break;
+ }
+ case ISD::MGATHER: {
+ const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
+ ID.AddInteger(MG->getMemoryVT().getRawBits());
+ ID.AddInteger(MG->getRawSubclassData());
+ ID.AddInteger(MG->getPointerInfo().getAddrSpace());
+ break;
+ }
+ case ISD::MSCATTER: {
+ const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
+ ID.AddInteger(MS->getMemoryVT().getRawBits());
+ ID.AddInteger(MS->getRawSubclassData());
+ ID.AddInteger(MS->getPointerInfo().getAddrSpace());
+ break;
+ }
+ case ISD::ATOMIC_CMP_SWAP:
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_CLR:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX:
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE: {
+ const AtomicSDNode *AT = cast<AtomicSDNode>(N);
+ ID.AddInteger(AT->getMemoryVT().getRawBits());
+ ID.AddInteger(AT->getRawSubclassData());
+ ID.AddInteger(AT->getPointerInfo().getAddrSpace());
+ break;
+ }
+ case ISD::PREFETCH: {
+ const MemSDNode *PF = cast<MemSDNode>(N);
+ ID.AddInteger(PF->getPointerInfo().getAddrSpace());
+ break;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+ for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
+ i != e; ++i)
+ ID.AddInteger(SVN->getMaskElt(i));
+ break;
+ }
+ case ISD::TargetBlockAddress:
+ case ISD::BlockAddress: {
+ const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
+ ID.AddPointer(BA->getBlockAddress());
+ ID.AddInteger(BA->getOffset());
+ ID.AddInteger(BA->getTargetFlags());
+ break;
+ }
+ } // end switch (N->getOpcode())
+
+ // Target specific memory nodes could also have address spaces to check.
+ if (N->isTargetMemoryOpcode())
+ ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
+}
+
+/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
+/// data.
+static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
+ AddNodeIDOpcode(ID, N->getOpcode());
+ // Add the return value info.
+ AddNodeIDValueTypes(ID, N->getVTList());
+ // Add the operand info.
+ AddNodeIDOperands(ID, N->ops());
+
+ // Handle SDNode leafs with special info.
+ AddNodeIDCustom(ID, N);
+}
+
+//===----------------------------------------------------------------------===//
+// SelectionDAG Class
+//===----------------------------------------------------------------------===//
+
+/// doNotCSE - Return true if CSE should not be performed for this node.
+static bool doNotCSE(SDNode *N) {
+ if (N->getValueType(0) == MVT::Glue)
+ return true; // Never CSE anything that produces a flag.
+
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::HANDLENODE:
+ case ISD::EH_LABEL:
+ return true; // Never CSE these nodes.
+ }
+
+ // Check that remaining values produced are not flags.
+ for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
+ if (N->getValueType(i) == MVT::Glue)
+ return true; // Never CSE anything that produces a flag.
+
+ return false;
+}
+
+/// RemoveDeadNodes - This method deletes all unreachable nodes in the
+/// SelectionDAG.
+void SelectionDAG::RemoveDeadNodes() {
+ // Create a dummy node (which is not added to allnodes), that adds a reference
+ // to the root node, preventing it from being deleted.
+ HandleSDNode Dummy(getRoot());
+
+ SmallVector<SDNode*, 128> DeadNodes;
+
+ // Add all obviously-dead nodes to the DeadNodes worklist.
+ for (SDNode &Node : allnodes())
+ if (Node.use_empty())
+ DeadNodes.push_back(&Node);
+
+ RemoveDeadNodes(DeadNodes);
+
+ // If the root changed (e.g. it was a dead load, update the root).
+ setRoot(Dummy.getValue());
+}
+
+/// RemoveDeadNodes - This method deletes the unreachable nodes in the
+/// given list, and any nodes that become unreachable as a result.
+void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
+
+ // Process the worklist, deleting the nodes and adding their uses to the
+ // worklist.
+ while (!DeadNodes.empty()) {
+ SDNode *N = DeadNodes.pop_back_val();
+ // Skip to next node if we've already managed to delete the node. This could
+ // happen if replacing a node causes a node previously added to the node to
+ // be deleted.
+ if (N->getOpcode() == ISD::DELETED_NODE)
+ continue;
+
+ for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
+ DUL->NodeDeleted(N, nullptr);
+
+ // Take the node out of the appropriate CSE map.
+ RemoveNodeFromCSEMaps(N);
+
+ // Next, brutally remove the operand list. This is safe to do, as there are
+ // no cycles in the graph.
+ for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
+ SDUse &Use = *I++;
+ SDNode *Operand = Use.getNode();
+ Use.set(SDValue());
+
+ // Now that we removed this operand, see if there are no uses of it left.
+ if (Operand->use_empty())
+ DeadNodes.push_back(Operand);
+ }
+
+ DeallocateNode(N);
+ }
+}
+
+void SelectionDAG::RemoveDeadNode(SDNode *N){
+ SmallVector<SDNode*, 16> DeadNodes(1, N);
+
+ // Create a dummy node that adds a reference to the root node, preventing
+ // it from being deleted. (This matters if the root is an operand of the
+ // dead node.)
+ HandleSDNode Dummy(getRoot());
+
+ RemoveDeadNodes(DeadNodes);
+}
+
+void SelectionDAG::DeleteNode(SDNode *N) {
+ // First take this out of the appropriate CSE map.
+ RemoveNodeFromCSEMaps(N);
+
+ // Finally, remove uses due to operands of this node, remove from the
+ // AllNodes list, and delete the node.
+ DeleteNodeNotInCSEMaps(N);
+}
+
+void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
+ assert(N->getIterator() != AllNodes.begin() &&
+ "Cannot delete the entry node!");
+ assert(N->use_empty() && "Cannot delete a node that is not dead!");
+
+ // Drop all of the operands and decrement used node's use counts.
+ N->DropOperands();
+
+ DeallocateNode(N);
+}
+
+void SDDbgInfo::erase(const SDNode *Node) {
+ DbgValMapType::iterator I = DbgValMap.find(Node);
+ if (I == DbgValMap.end())
+ return;
+ for (auto &Val: I->second)
+ Val->setIsInvalidated();
+ DbgValMap.erase(I);
+}
+
+void SelectionDAG::DeallocateNode(SDNode *N) {
+ // If we have operands, deallocate them.
+ removeOperands(N);
+
+ NodeAllocator.Deallocate(AllNodes.remove(N));
+
+ // Set the opcode to DELETED_NODE to help catch bugs when node
+ // memory is reallocated.
+ // FIXME: There are places in SDag that have grown a dependency on the opcode
+ // value in the released node.
+ __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
+ N->NodeType = ISD::DELETED_NODE;
+
+ // If any of the SDDbgValue nodes refer to this SDNode, invalidate
+ // them and forget about that node.
+ DbgInfo->erase(N);
+}
+
+#ifndef NDEBUG
+/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
+static void VerifySDNode(SDNode *N) {
+ switch (N->getOpcode()) {
+ default:
+ break;
+ case ISD::BUILD_PAIR: {
+ EVT VT = N->getValueType(0);
+ assert(N->getNumValues() == 1 && "Too many results!");
+ assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
+ "Wrong return type!");
+ assert(N->getNumOperands() == 2 && "Wrong number of operands!");
+ assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
+ "Mismatched operand types!");
+ assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
+ "Wrong operand type!");
+ assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
+ "Wrong return type size");
+ break;
+ }
+ case ISD::BUILD_VECTOR: {
+ assert(N->getNumValues() == 1 && "Too many results!");
+ assert(N->getValueType(0).isVector() && "Wrong return type!");
+ assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
+ "Wrong number of operands!");
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
+ assert((I->getValueType() == EltVT ||
+ (EltVT.isInteger() && I->getValueType().isInteger() &&
+ EltVT.bitsLE(I->getValueType()))) &&
+ "Wrong operand type!");
+ assert(I->getValueType() == N->getOperand(0).getValueType() &&
+ "Operands must all have the same type");
+ }
+ break;
+ }
+ }
+}
+#endif // NDEBUG
+
+/// Insert a newly allocated node into the DAG.
+///
+/// Handles insertion into the all nodes list and CSE map, as well as
+/// verification and other common operations when a new node is allocated.
+void SelectionDAG::InsertNode(SDNode *N) {
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ N->PersistentId = NextPersistentId++;
+ VerifySDNode(N);
+#endif
+ for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
+ DUL->NodeInserted(N);
+}
+
+/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
+/// correspond to it. This is useful when we're about to delete or repurpose
+/// the node. We don't want future request for structurally identical nodes
+/// to return N anymore.
+bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
+ bool Erased = false;
+ switch (N->getOpcode()) {
+ case ISD::HANDLENODE: return false; // noop.
+ case ISD::CONDCODE:
+ assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
+ "Cond code doesn't exist!");
+ Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
+ CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
+ break;
+ case ISD::ExternalSymbol:
+ Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
+ break;
+ case ISD::TargetExternalSymbol: {
+ ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
+ Erased = TargetExternalSymbols.erase(
+ std::pair<std::string,unsigned char>(ESN->getSymbol(),
+ ESN->getTargetFlags()));
+ break;
+ }
+ case ISD::MCSymbol: {
+ auto *MCSN = cast<MCSymbolSDNode>(N);
+ Erased = MCSymbols.erase(MCSN->getMCSymbol());
+ break;
+ }
+ case ISD::VALUETYPE: {
+ EVT VT = cast<VTSDNode>(N)->getVT();
+ if (VT.isExtended()) {
+ Erased = ExtendedValueTypeNodes.erase(VT);
+ } else {
+ Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
+ ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
+ }
+ break;
+ }
+ default:
+ // Remove it from the CSE Map.
+ assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
+ assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
+ Erased = CSEMap.RemoveNode(N);
+ break;
+ }
+#ifndef NDEBUG
+ // Verify that the node was actually in one of the CSE maps, unless it has a
+ // flag result (which cannot be CSE'd) or is one of the special cases that are
+ // not subject to CSE.
+ if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
+ !N->isMachineOpcode() && !doNotCSE(N)) {
+ N->dump(this);
+ dbgs() << "\n";
+ llvm_unreachable("Node is not in map!");
+ }
+#endif
+ return Erased;
+}
+
+/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
+/// maps and modified in place. Add it back to the CSE maps, unless an identical
+/// node already exists, in which case transfer all its users to the existing
+/// node. This transfer can potentially trigger recursive merging.
+void
+SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
+ // For node types that aren't CSE'd, just act as if no identical node
+ // already exists.
+ if (!doNotCSE(N)) {
+ SDNode *Existing = CSEMap.GetOrInsertNode(N);
+ if (Existing != N) {
+ // If there was already an existing matching node, use ReplaceAllUsesWith
+ // to replace the dead one with the existing one. This can cause
+ // recursive merging of other unrelated nodes down the line.
+ ReplaceAllUsesWith(N, Existing);
+
+ // N is now dead. Inform the listeners and delete it.
+ for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
+ DUL->NodeDeleted(N, Existing);
+ DeleteNodeNotInCSEMaps(N);
+ return;
+ }
+ }
+
+ // If the node doesn't already exist, we updated it. Inform listeners.
+ for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
+ DUL->NodeUpdated(N);
+}
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified. If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take. If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
+ void *&InsertPos) {
+ if (doNotCSE(N))
+ return nullptr;
+
+ SDValue Ops[] = { Op };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
+ AddNodeIDCustom(ID, N);
+ SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
+ if (Node)
+ Node->intersectFlagsWith(N->getFlags());
+ return Node;
+}
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified. If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take. If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
+ SDValue Op1, SDValue Op2,
+ void *&InsertPos) {
+ if (doNotCSE(N))
+ return nullptr;
+
+ SDValue Ops[] = { Op1, Op2 };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
+ AddNodeIDCustom(ID, N);
+ SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
+ if (Node)
+ Node->intersectFlagsWith(N->getFlags());
+ return Node;
+}
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified. If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take. If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
+ void *&InsertPos) {
+ if (doNotCSE(N))
+ return nullptr;
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
+ AddNodeIDCustom(ID, N);
+ SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
+ if (Node)
+ Node->intersectFlagsWith(N->getFlags());
+ return Node;
+}
+
+unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
+ Type *Ty = VT == MVT::iPTR ?
+ PointerType::get(Type::getInt8Ty(*getContext()), 0) :
+ VT.getTypeForEVT(*getContext());
+
+ return getDataLayout().getABITypeAlignment(Ty);
+}
+
+// EntryNode could meaningfully have debug info if we can find it...
+SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
+ : TM(tm), OptLevel(OL),
+ EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
+ Root(getEntryNode()) {
+ InsertNode(&EntryNode);
+ DbgInfo = new SDDbgInfo();
+}
+
+void SelectionDAG::init(MachineFunction &NewMF,
+ OptimizationRemarkEmitter &NewORE,
+ Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
+ LegacyDivergenceAnalysis * Divergence) {
+ MF = &NewMF;
+ SDAGISelPass = PassPtr;
+ ORE = &NewORE;
+ TLI = getSubtarget().getTargetLowering();
+ TSI = getSubtarget().getSelectionDAGInfo();
+ LibInfo = LibraryInfo;
+ Context = &MF->getFunction().getContext();
+ DA = Divergence;
+}
+
+SelectionDAG::~SelectionDAG() {
+ assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
+ allnodes_clear();
+ OperandRecycler.clear(OperandAllocator);
+ delete DbgInfo;
+}
+
+void SelectionDAG::allnodes_clear() {
+ assert(&*AllNodes.begin() == &EntryNode);
+ AllNodes.remove(AllNodes.begin());
+ while (!AllNodes.empty())
+ DeallocateNode(&AllNodes.front());
+#ifndef NDEBUG
+ NextPersistentId = 0;
+#endif
+}
+
+SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
+ void *&InsertPos) {
+ SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+ if (N) {
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::Constant:
+ case ISD::ConstantFP:
+ llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
+ "debug location. Use another overload.");
+ }
+ }
+ return N;
+}
+
+SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
+ const SDLoc &DL, void *&InsertPos) {
+ SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+ if (N) {
+ switch (N->getOpcode()) {
+ case ISD::Constant:
+ case ISD::ConstantFP:
+ // Erase debug location from the node if the node is used at several
+ // different places. Do not propagate one location to all uses as it
+ // will cause a worse single stepping debugging experience.
+ if (N->getDebugLoc() != DL.getDebugLoc())
+ N->setDebugLoc(DebugLoc());
+ break;
+ default:
+ // When the node's point of use is located earlier in the instruction
+ // sequence than its prior point of use, update its debug info to the
+ // earlier location.
+ if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
+ N->setDebugLoc(DL.getDebugLoc());
+ break;
+ }
+ }
+ return N;
+}
+
+void SelectionDAG::clear() {
+ allnodes_clear();
+ OperandRecycler.clear(OperandAllocator);
+ OperandAllocator.Reset();
+ CSEMap.clear();
+
+ ExtendedValueTypeNodes.clear();
+ ExternalSymbols.clear();
+ TargetExternalSymbols.clear();
+ MCSymbols.clear();
+ SDCallSiteDbgInfo.clear();
+ std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
+ static_cast<CondCodeSDNode*>(nullptr));
+ std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
+ static_cast<SDNode*>(nullptr));
+
+ EntryNode.UseList = nullptr;
+ InsertNode(&EntryNode);
+ Root = getEntryNode();
+ DbgInfo->clear();
+}
+
+SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
+ return VT.bitsGT(Op.getValueType())
+ ? getNode(ISD::FP_EXTEND, DL, VT, Op)
+ : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
+}
+
+SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
+ return VT.bitsGT(Op.getValueType()) ?
+ getNode(ISD::ANY_EXTEND, DL, VT, Op) :
+ getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
+ return VT.bitsGT(Op.getValueType()) ?
+ getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
+ getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
+ return VT.bitsGT(Op.getValueType()) ?
+ getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
+ getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
+ EVT OpVT) {
+ if (VT.bitsLE(Op.getValueType()))
+ return getNode(ISD::TRUNCATE, SL, VT, Op);
+
+ TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
+ return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
+}
+
+SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
+ assert(!VT.isVector() &&
+ "getZeroExtendInReg should use the vector element type instead of "
+ "the vector type!");
+ if (Op.getValueType().getScalarType() == VT) return Op;
+ unsigned BitWidth = Op.getScalarValueSizeInBits();
+ APInt Imm = APInt::getLowBitsSet(BitWidth,
+ VT.getSizeInBits());
+ return getNode(ISD::AND, DL, Op.getValueType(), Op,
+ getConstant(Imm, DL, Op.getValueType()));
+}
+
+SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
+ // Only unsigned pointer semantics are supported right now. In the future this
+ // might delegate to TLI to check pointer signedness.
+ return getZExtOrTrunc(Op, DL, VT);
+}
+
+SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
+ // Only unsigned pointer semantics are supported right now. In the future this
+ // might delegate to TLI to check pointer signedness.
+ return getZeroExtendInReg(Op, DL, VT);
+}
+
+/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
+SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
+ EVT EltVT = VT.getScalarType();
+ SDValue NegOne =
+ getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
+ return getNode(ISD::XOR, DL, VT, Val, NegOne);
+}
+
+SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
+ SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
+ return getNode(ISD::XOR, DL, VT, Val, TrueValue);
+}
+
+SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
+ EVT OpVT) {
+ if (!V)
+ return getConstant(0, DL, VT);
+
+ switch (TLI->getBooleanContents(OpVT)) {
+ case TargetLowering::ZeroOrOneBooleanContent:
+ case TargetLowering::UndefinedBooleanContent:
+ return getConstant(1, DL, VT);
+ case TargetLowering::ZeroOrNegativeOneBooleanContent:
+ return getAllOnesConstant(DL, VT);
+ }
+ llvm_unreachable("Unexpected boolean content enum!");
+}
+
+SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
+ bool isT, bool isO) {
+ EVT EltVT = VT.getScalarType();
+ assert((EltVT.getSizeInBits() >= 64 ||
+ (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
+ "getConstant with a uint64_t value that doesn't fit in the type!");
+ return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
+}
+
+SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
+ bool isT, bool isO) {
+ return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
+}
+
+SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
+ EVT VT, bool isT, bool isO) {
+ assert(VT.isInteger() && "Cannot create FP integer constant!");
+
+ EVT EltVT = VT.getScalarType();
+ const ConstantInt *Elt = &Val;
+
+ // In some cases the vector type is legal but the element type is illegal and
+ // needs to be promoted, for example v8i8 on ARM. In this case, promote the
+ // inserted value (the type does not need to match the vector element type).
+ // Any extra bits introduced will be truncated away.
+ if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
+ TargetLowering::TypePromoteInteger) {
+ EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
+ APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
+ Elt = ConstantInt::get(*getContext(), NewVal);
+ }
+ // In other cases the element type is illegal and needs to be expanded, for
+ // example v2i64 on MIPS32. In this case, find the nearest legal type, split
+ // the value into n parts and use a vector type with n-times the elements.
+ // Then bitcast to the type requested.
+ // Legalizing constants too early makes the DAGCombiner's job harder so we
+ // only legalize if the DAG tells us we must produce legal types.
+ else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
+ TLI->getTypeAction(*getContext(), EltVT) ==
+ TargetLowering::TypeExpandInteger) {
+ const APInt &NewVal = Elt->getValue();
+ EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
+ unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
+ unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
+ EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
+
+ // Check the temporary vector is the correct size. If this fails then
+ // getTypeToTransformTo() probably returned a type whose size (in bits)
+ // isn't a power-of-2 factor of the requested type size.
+ assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SmallVector<SDValue, 2> EltParts;
+ for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
+ EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
+ .zextOrTrunc(ViaEltSizeInBits), DL,
+ ViaEltVT, isT, isO));
+ }
+
+ // EltParts is currently in little endian order. If we actually want
+ // big-endian order then reverse it now.
+ if (getDataLayout().isBigEndian())
+ std::reverse(EltParts.begin(), EltParts.end());
+
+ // The elements must be reversed when the element order is different
+ // to the endianness of the elements (because the BITCAST is itself a
+ // vector shuffle in this situation). However, we do not need any code to
+ // perform this reversal because getConstant() is producing a vector
+ // splat.
+ // This situation occurs in MIPS MSA.
+
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
+ Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
+
+ SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
+ return V;
+ }
+
+ assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
+ "APInt size does not match type size!");
+ unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
+ ID.AddPointer(Elt);
+ ID.AddBoolean(isO);
+ void *IP = nullptr;
+ SDNode *N = nullptr;
+ if ((N = FindNodeOrInsertPos(ID, DL, IP)))
+ if (!VT.isVector())
+ return SDValue(N, 0);
+
+ if (!N) {
+ N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
+ }
+
+ SDValue Result(N, 0);
+ if (VT.isVector())
+ Result = getSplatBuildVector(VT, DL, Result);
+
+ return Result;
+}
+
+SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
+ bool isTarget) {
+ return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
+}
+
+SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
+ const SDLoc &DL, bool LegalTypes) {
+ EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
+ return getConstant(Val, DL, ShiftVT);
+}
+
+SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
+ bool isTarget) {
+ return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
+}
+
+SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
+ EVT VT, bool isTarget) {
+ assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
+
+ EVT EltVT = VT.getScalarType();
+
+ // Do the map lookup using the actual bit pattern for the floating point
+ // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
+ // we don't have issues with SNANs.
+ unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
+ ID.AddPointer(&V);
+ void *IP = nullptr;
+ SDNode *N = nullptr;
+ if ((N = FindNodeOrInsertPos(ID, DL, IP)))
+ if (!VT.isVector())
+ return SDValue(N, 0);
+
+ if (!N) {
+ N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ }
+
+ SDValue Result(N, 0);
+ if (VT.isVector())
+ Result = getSplatBuildVector(VT, DL, Result);
+ NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
+ return Result;
+}
+
+SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
+ bool isTarget) {
+ EVT EltVT = VT.getScalarType();
+ if (EltVT == MVT::f32)
+ return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
+ else if (EltVT == MVT::f64)
+ return getConstantFP(APFloat(Val), DL, VT, isTarget);
+ else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
+ EltVT == MVT::f16) {
+ bool Ignored;
+ APFloat APF = APFloat(Val);
+ APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
+ &Ignored);
+ return getConstantFP(APF, DL, VT, isTarget);
+ } else
+ llvm_unreachable("Unsupported type in getConstantFP");
+}
+
+SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
+ EVT VT, int64_t Offset, bool isTargetGA,
+ unsigned char TargetFlags) {
+ assert((TargetFlags == 0 || isTargetGA) &&
+ "Cannot set target flags on target-independent globals");
+
+ // Truncate (with sign-extension) the offset value to the pointer size.
+ unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
+ if (BitWidth < 64)
+ Offset = SignExtend64(Offset, BitWidth);
+
+ unsigned Opc;
+ if (GV->isThreadLocal())
+ Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
+ else
+ Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), None);
+ ID.AddPointer(GV);
+ ID.AddInteger(Offset);
+ ID.AddInteger(TargetFlags);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<GlobalAddressSDNode>(
+ Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
+ unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), None);
+ ID.AddInteger(FI);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
+ unsigned char TargetFlags) {
+ assert((TargetFlags == 0 || isTarget) &&
+ "Cannot set target flags on target-independent jump tables");
+ unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), None);
+ ID.AddInteger(JTI);
+ ID.AddInteger(TargetFlags);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
+ unsigned Alignment, int Offset,
+ bool isTarget,
+ unsigned char TargetFlags) {
+ assert((TargetFlags == 0 || isTarget) &&
+ "Cannot set target flags on target-independent globals");
+ if (Alignment == 0)
+ Alignment = MF->getFunction().hasOptSize()
+ ? getDataLayout().getABITypeAlignment(C->getType())
+ : getDataLayout().getPrefTypeAlignment(C->getType());
+ unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), None);
+ ID.AddInteger(Alignment);
+ ID.AddInteger(Offset);
+ ID.AddPointer(C);
+ ID.AddInteger(TargetFlags);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
+ TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
+ unsigned Alignment, int Offset,
+ bool isTarget,
+ unsigned char TargetFlags) {
+ assert((TargetFlags == 0 || isTarget) &&
+ "Cannot set target flags on target-independent globals");
+ if (Alignment == 0)
+ Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
+ unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), None);
+ ID.AddInteger(Alignment);
+ ID.AddInteger(Offset);
+ C->addSelectionDAGCSEId(ID);
+ ID.AddInteger(TargetFlags);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
+ TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
+ unsigned char TargetFlags) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
+ ID.AddInteger(Index);
+ ID.AddInteger(Offset);
+ ID.AddInteger(TargetFlags);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
+ ID.AddPointer(MBB);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<BasicBlockSDNode>(MBB);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getValueType(EVT VT) {
+ if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
+ ValueTypeNodes.size())
+ ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
+
+ SDNode *&N = VT.isExtended() ?
+ ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
+
+ if (N) return SDValue(N, 0);
+ N = newSDNode<VTSDNode>(VT);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
+ SDNode *&N = ExternalSymbols[Sym];
+ if (N) return SDValue(N, 0);
+ N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
+ SDNode *&N = MCSymbols[Sym];
+ if (N)
+ return SDValue(N, 0);
+ N = newSDNode<MCSymbolSDNode>(Sym, VT);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
+ unsigned char TargetFlags) {
+ SDNode *&N =
+ TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
+ TargetFlags)];
+ if (N) return SDValue(N, 0);
+ N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
+ if ((unsigned)Cond >= CondCodeNodes.size())
+ CondCodeNodes.resize(Cond+1);
+
+ if (!CondCodeNodes[Cond]) {
+ auto *N = newSDNode<CondCodeSDNode>(Cond);
+ CondCodeNodes[Cond] = N;
+ InsertNode(N);
+ }
+
+ return SDValue(CondCodeNodes[Cond], 0);
+}
+
+/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
+/// point at N1 to point at N2 and indices that point at N2 to point at N1.
+static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
+ std::swap(N1, N2);
+ ShuffleVectorSDNode::commuteMask(M);
+}
+
+SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
+ SDValue N2, ArrayRef<int> Mask) {
+ assert(VT.getVectorNumElements() == Mask.size() &&
+ "Must have the same number of vector elements as mask elements!");
+ assert(VT == N1.getValueType() && VT == N2.getValueType() &&
+ "Invalid VECTOR_SHUFFLE");
+
+ // Canonicalize shuffle undef, undef -> undef
+ if (N1.isUndef() && N2.isUndef())
+ return getUNDEF(VT);
+
+ // Validate that all indices in Mask are within the range of the elements
+ // input to the shuffle.
+ int NElts = Mask.size();
+ assert(llvm::all_of(Mask,
+ [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
+ "Index out of range");
+
+ // Copy the mask so we can do any needed cleanup.
+ SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
+
+ // Canonicalize shuffle v, v -> v, undef
+ if (N1 == N2) {
+ N2 = getUNDEF(VT);
+ for (int i = 0; i != NElts; ++i)
+ if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
+ }
+
+ // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
+ if (N1.isUndef())
+ commuteShuffle(N1, N2, MaskVec);
+
+ if (TLI->hasVectorBlend()) {
+ // If shuffling a splat, try to blend the splat instead. We do this here so
+ // that even when this arises during lowering we don't have to re-handle it.
+ auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
+ BitVector UndefElements;
+ SDValue Splat = BV->getSplatValue(&UndefElements);
+ if (!Splat)
+ return;
+
+ for (int i = 0; i < NElts; ++i) {
+ if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
+ continue;
+
+ // If this input comes from undef, mark it as such.
+ if (UndefElements[MaskVec[i] - Offset]) {
+ MaskVec[i] = -1;
+ continue;
+ }
+
+ // If we can blend a non-undef lane, use that instead.
+ if (!UndefElements[i])
+ MaskVec[i] = i + Offset;
+ }
+ };
+ if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
+ BlendSplat(N1BV, 0);
+ if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
+ BlendSplat(N2BV, NElts);
+ }
+
+ // Canonicalize all index into lhs, -> shuffle lhs, undef
+ // Canonicalize all index into rhs, -> shuffle rhs, undef
+ bool AllLHS = true, AllRHS = true;
+ bool N2Undef = N2.isUndef();
+ for (int i = 0; i != NElts; ++i) {
+ if (MaskVec[i] >= NElts) {
+ if (N2Undef)
+ MaskVec[i] = -1;
+ else
+ AllLHS = false;
+ } else if (MaskVec[i] >= 0) {
+ AllRHS = false;
+ }
+ }
+ if (AllLHS && AllRHS)
+ return getUNDEF(VT);
+ if (AllLHS && !N2Undef)
+ N2 = getUNDEF(VT);
+ if (AllRHS) {
+ N1 = getUNDEF(VT);
+ commuteShuffle(N1, N2, MaskVec);
+ }
+ // Reset our undef status after accounting for the mask.
+ N2Undef = N2.isUndef();
+ // Re-check whether both sides ended up undef.
+ if (N1.isUndef() && N2Undef)
+ return getUNDEF(VT);
+
+ // If Identity shuffle return that node.
+ bool Identity = true, AllSame = true;
+ for (int i = 0; i != NElts; ++i) {
+ if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
+ if (MaskVec[i] != MaskVec[0]) AllSame = false;
+ }
+ if (Identity && NElts)
+ return N1;
+
+ // Shuffling a constant splat doesn't change the result.
+ if (N2Undef) {
+ SDValue V = N1;
+
+ // Look through any bitcasts. We check that these don't change the number
+ // (and size) of elements and just changes their types.
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V->getOperand(0);
+
+ // A splat should always show up as a build vector node.
+ if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
+ BitVector UndefElements;
+ SDValue Splat = BV->getSplatValue(&UndefElements);
+ // If this is a splat of an undef, shuffling it is also undef.
+ if (Splat && Splat.isUndef())
+ return getUNDEF(VT);
+
+ bool SameNumElts =
+ V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
+
+ // We only have a splat which can skip shuffles if there is a splatted
+ // value and no undef lanes rearranged by the shuffle.
+ if (Splat && UndefElements.none()) {
+ // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
+ // number of elements match or the value splatted is a zero constant.
+ if (SameNumElts)
+ return N1;
+ if (auto *C = dyn_cast<ConstantSDNode>(Splat))
+ if (C->isNullValue())
+ return N1;
+ }
+
+ // If the shuffle itself creates a splat, build the vector directly.
+ if (AllSame && SameNumElts) {
+ EVT BuildVT = BV->getValueType(0);
+ const SDValue &Splatted = BV->getOperand(MaskVec[0]);
+ SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
+
+ // We may have jumped through bitcasts, so the type of the
+ // BUILD_VECTOR may not match the type of the shuffle.
+ if (BuildVT != VT)
+ NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
+ return NewBV;
+ }
+ }
+ }
+
+ FoldingSetNodeID ID;
+ SDValue Ops[2] = { N1, N2 };
+ AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
+ for (int i = 0; i != NElts; ++i)
+ ID.AddInteger(MaskVec[i]);
+
+ void* IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
+ return SDValue(E, 0);
+
+ // Allocate the mask array for the node out of the BumpPtrAllocator, since
+ // SDNode doesn't have access to it. This memory will be "leaked" when
+ // the node is deallocated, but recovered when the NodeAllocator is released.
+ int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
+ llvm::copy(MaskVec, MaskAlloc);
+
+ auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
+ dl.getDebugLoc(), MaskAlloc);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V = SDValue(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
+ EVT VT = SV.getValueType(0);
+ SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
+ ShuffleVectorSDNode::commuteMask(MaskVec);
+
+ SDValue Op0 = SV.getOperand(0);
+ SDValue Op1 = SV.getOperand(1);
+ return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
+}
+
+SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
+ ID.AddInteger(RegNo);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
+ N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
+ ID.AddPointer(RegMask);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
+ MCSymbol *Label) {
+ return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
+}
+
+SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
+ SDValue Root, MCSymbol *Label) {
+ FoldingSetNodeID ID;
+ SDValue Ops[] = { Root };
+ AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
+ ID.AddPointer(Label);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N =
+ newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
+ int64_t Offset,
+ bool isTarget,
+ unsigned char TargetFlags) {
+ unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), None);
+ ID.AddPointer(BA);
+ ID.AddInteger(Offset);
+ ID.AddInteger(TargetFlags);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getSrcValue(const Value *V) {
+ assert((!V || V->getType()->isPointerTy()) &&
+ "SrcValue is not a pointer?");
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
+ ID.AddPointer(V);
+
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<SrcValueSDNode>(V);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getMDNode(const MDNode *MD) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
+ ID.AddPointer(MD);
+
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<MDNodeSDNode>(MD);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
+ if (VT == V.getValueType())
+ return V;
+
+ return getNode(ISD::BITCAST, SDLoc(V), VT, V);
+}
+
+SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
+ unsigned SrcAS, unsigned DestAS) {
+ SDValue Ops[] = {Ptr};
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
+ ID.AddInteger(SrcAS);
+ ID.AddInteger(DestAS);
+
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
+ VT, SrcAS, DestAS);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+/// getShiftAmountOperand - Return the specified value casted to
+/// the target's desired shift amount type.
+SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
+ EVT OpTy = Op.getValueType();
+ EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
+ if (OpTy == ShTy || OpTy.isVector()) return Op;
+
+ return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
+}
+
+SDValue SelectionDAG::expandVAArg(SDNode *Node) {
+ SDLoc dl(Node);
+ const TargetLowering &TLI = getTargetLoweringInfo();
+ const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ EVT VT = Node->getValueType(0);
+ SDValue Tmp1 = Node->getOperand(0);
+ SDValue Tmp2 = Node->getOperand(1);
+ unsigned Align = Node->getConstantOperandVal(3);
+
+ SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
+ Tmp2, MachinePointerInfo(V));
+ SDValue VAList = VAListLoad;
+
+ if (Align > TLI.getMinStackArgumentAlignment()) {
+ assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
+
+ VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
+ getConstant(Align - 1, dl, VAList.getValueType()));
+
+ VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
+ getConstant(-(int64_t)Align, dl, VAList.getValueType()));
+ }
+
+ // Increment the pointer, VAList, to the next vaarg
+ Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
+ getConstant(getDataLayout().getTypeAllocSize(
+ VT.getTypeForEVT(*getContext())),
+ dl, VAList.getValueType()));
+ // Store the incremented VAList to the legalized pointer
+ Tmp1 =
+ getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
+ // Load the actual argument out of the pointer VAList
+ return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
+}
+
+SDValue SelectionDAG::expandVACopy(SDNode *Node) {
+ SDLoc dl(Node);
+ const TargetLowering &TLI = getTargetLoweringInfo();
+ // This defaults to loading a pointer from the input and storing it to the
+ // output, returning the chain.
+ const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
+ const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
+ SDValue Tmp1 =
+ getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
+ Node->getOperand(2), MachinePointerInfo(VS));
+ return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
+ MachinePointerInfo(VD));
+}
+
+SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
+ MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
+ unsigned ByteSize = VT.getStoreSize();
+ Type *Ty = VT.getTypeForEVT(*getContext());
+ unsigned StackAlign =
+ std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
+
+ int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
+ return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
+}
+
+SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
+ unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
+ Type *Ty1 = VT1.getTypeForEVT(*getContext());
+ Type *Ty2 = VT2.getTypeForEVT(*getContext());
+ const DataLayout &DL = getDataLayout();
+ unsigned Align =
+ std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
+
+ MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
+ int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
+ return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
+}
+
+SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
+ ISD::CondCode Cond, const SDLoc &dl) {
+ EVT OpVT = N1.getValueType();
+
+ // These setcc operations always fold.
+ switch (Cond) {
+ default: break;
+ case ISD::SETFALSE:
+ case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
+ case ISD::SETTRUE:
+ case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
+
+ case ISD::SETOEQ:
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETONE:
+ case ISD::SETO:
+ case ISD::SETUO:
+ case ISD::SETUEQ:
+ case ISD::SETUNE:
+ assert(!OpVT.isInteger() && "Illegal setcc for integer!");
+ break;
+ }
+
+ if (OpVT.isInteger()) {
+ // For EQ and NE, we can always pick a value for the undef to make the
+ // predicate pass or fail, so we can return undef.
+ // Matches behavior in llvm::ConstantFoldCompareInstruction.
+ // icmp eq/ne X, undef -> undef.
+ if ((N1.isUndef() || N2.isUndef()) &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE))
+ return getUNDEF(VT);
+
+ // If both operands are undef, we can return undef for int comparison.
+ // icmp undef, undef -> undef.
+ if (N1.isUndef() && N2.isUndef())
+ return getUNDEF(VT);
+
+ // icmp X, X -> true/false
+ // icmp X, undef -> true/false because undef could be X.
+ if (N1 == N2)
+ return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
+ }
+
+ if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
+ const APInt &C2 = N2C->getAPIntValue();
+ if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ switch (Cond) {
+ default: llvm_unreachable("Unknown integer setcc!");
+ case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT);
+ case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT);
+ case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
+ case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
+ case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
+ case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
+ case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
+ case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
+ case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
+ case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
+ }
+ }
+ }
+
+ auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
+
+ if (N1CFP && N2CFP) {
+ APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
+ switch (Cond) {
+ default: break;
+ case ISD::SETEQ: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
+ OpVT);
+ case ISD::SETNE: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ LLVM_FALLTHROUGH;
+ case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpLessThan, dl, VT,
+ OpVT);
+ case ISD::SETLT: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
+ OpVT);
+ case ISD::SETGT: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
+ VT, OpVT);
+ case ISD::SETLE: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
+ R==APFloat::cmpEqual, dl, VT,
+ OpVT);
+ case ISD::SETGE: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpEqual, dl, VT, OpVT);
+ case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
+ OpVT);
+ case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
+ OpVT);
+ case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
+ R==APFloat::cmpEqual, dl, VT,
+ OpVT);
+ case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
+ OpVT);
+ case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
+ R==APFloat::cmpLessThan, dl, VT,
+ OpVT);
+ case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpUnordered, dl, VT,
+ OpVT);
+ case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
+ VT, OpVT);
+ case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
+ OpVT);
+ }
+ } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
+ // Ensure that the constant occurs on the RHS.
+ ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
+ if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
+ return SDValue();
+ return getSetCC(dl, VT, N2, N1, SwappedCond);
+ } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
+ (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
+ // If an operand is known to be a nan (or undef that could be a nan), we can
+ // fold it.
+ // Choosing NaN for the undef will always make unordered comparison succeed
+ // and ordered comparison fails.
+ // Matches behavior in llvm::ConstantFoldCompareInstruction.
+ switch (ISD::getUnorderedFlavor(Cond)) {
+ default:
+ llvm_unreachable("Unknown flavor!");
+ case 0: // Known false.
+ return getBoolConstant(false, dl, VT, OpVT);
+ case 1: // Known true.
+ return getBoolConstant(true, dl, VT, OpVT);
+ case 2: // Undefined.
+ return getUNDEF(VT);
+ }
+ }
+
+ // Could not fold it.
+ return SDValue();
+}
+
+/// See if the specified operand can be simplified with the knowledge that only
+/// the bits specified by DemandedBits are used.
+/// TODO: really we should be making this into the DAG equivalent of
+/// SimplifyMultipleUseDemandedBits and not generate any new nodes.
+SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
+ EVT VT = V.getValueType();
+ APInt DemandedElts = VT.isVector()
+ ? APInt::getAllOnesValue(VT.getVectorNumElements())
+ : APInt(1, 1);
+ return GetDemandedBits(V, DemandedBits, DemandedElts);
+}
+
+/// See if the specified operand can be simplified with the knowledge that only
+/// the bits specified by DemandedBits are used in the elements specified by
+/// DemandedElts.
+/// TODO: really we should be making this into the DAG equivalent of
+/// SimplifyMultipleUseDemandedBits and not generate any new nodes.
+SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
+ const APInt &DemandedElts) {
+ switch (V.getOpcode()) {
+ default:
+ break;
+ case ISD::Constant: {
+ auto *CV = cast<ConstantSDNode>(V.getNode());
+ assert(CV && "Const value should be ConstSDNode.");
+ const APInt &CVal = CV->getAPIntValue();
+ APInt NewVal = CVal & DemandedBits;
+ if (NewVal != CVal)
+ return getConstant(NewVal, SDLoc(V), V.getValueType());
+ break;
+ }
+ case ISD::OR:
+ case ISD::XOR:
+ // If the LHS or RHS don't contribute bits to the or, drop them.
+ if (MaskedValueIsZero(V.getOperand(0), DemandedBits))
+ return V.getOperand(1);
+ if (MaskedValueIsZero(V.getOperand(1), DemandedBits))
+ return V.getOperand(0);
+ break;
+ case ISD::SRL:
+ // Only look at single-use SRLs.
+ if (!V.getNode()->hasOneUse())
+ break;
+ if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
+ // See if we can recursively simplify the LHS.
+ unsigned Amt = RHSC->getZExtValue();
+
+ // Watch out for shift count overflow though.
+ if (Amt >= DemandedBits.getBitWidth())
+ break;
+ APInt SrcDemandedBits = DemandedBits << Amt;
+ if (SDValue SimplifyLHS =
+ GetDemandedBits(V.getOperand(0), SrcDemandedBits))
+ return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
+ V.getOperand(1));
+ }
+ break;
+ case ISD::AND: {
+ // X & -1 -> X (ignoring bits which aren't demanded).
+ // Also handle the case where masked out bits in X are known to be zero.
+ if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
+ const APInt &AndVal = RHSC->getAPIntValue();
+ if (DemandedBits.isSubsetOf(AndVal) ||
+ DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
+ AndVal))
+ return V.getOperand(0);
+ }
+ break;
+ }
+ case ISD::ANY_EXTEND: {
+ SDValue Src = V.getOperand(0);
+ unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
+ // Being conservative here - only peek through if we only demand bits in the
+ // non-extended source (even though the extended bits are technically
+ // undef).
+ if (DemandedBits.getActiveBits() > SrcBitWidth)
+ break;
+ APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
+ if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
+ return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
+ break;
+ }
+ case ISD::SIGN_EXTEND_INREG:
+ EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
+ unsigned ExVTBits = ExVT.getScalarSizeInBits();
+
+ // If none of the extended bits are demanded, eliminate the sextinreg.
+ if (DemandedBits.getActiveBits() <= ExVTBits)
+ return V.getOperand(0);
+
+ break;
+ }
+ return SDValue();
+}
+
+/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
+/// use this predicate to simplify operations downstream.
+bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
+ unsigned BitWidth = Op.getScalarValueSizeInBits();
+ return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
+}
+
+/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
+/// this predicate to simplify operations downstream. Mask is known to be zero
+/// for bits that V cannot have.
+bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
+ unsigned Depth) const {
+ EVT VT = V.getValueType();
+ APInt DemandedElts = VT.isVector()
+ ? APInt::getAllOnesValue(VT.getVectorNumElements())
+ : APInt(1, 1);
+ return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
+}
+
+/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
+/// DemandedElts. We use this predicate to simplify operations downstream.
+/// Mask is known to be zero for bits that V cannot have.
+bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
+ const APInt &DemandedElts,
+ unsigned Depth) const {
+ return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
+}
+
+/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
+bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
+ unsigned Depth) const {
+ return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
+}
+
+/// isSplatValue - Return true if the vector V has the same value
+/// across all DemandedElts.
+bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
+ APInt &UndefElts) {
+ if (!DemandedElts)
+ return false; // No demanded elts, better to assume we don't know anything.
+
+ EVT VT = V.getValueType();
+ assert(VT.isVector() && "Vector type expected");
+
+ unsigned NumElts = VT.getVectorNumElements();
+ assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
+ UndefElts = APInt::getNullValue(NumElts);
+
+ switch (V.getOpcode()) {
+ case ISD::BUILD_VECTOR: {
+ SDValue Scl;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ SDValue Op = V.getOperand(i);
+ if (Op.isUndef()) {
+ UndefElts.setBit(i);
+ continue;
+ }
+ if (!DemandedElts[i])
+ continue;
+ if (Scl && Scl != Op)
+ return false;
+ Scl = Op;
+ }
+ return true;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ // Check if this is a shuffle node doing a splat.
+ // TODO: Do we need to handle shuffle(splat, undef, mask)?
+ int SplatIndex = -1;
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
+ for (int i = 0; i != (int)NumElts; ++i) {
+ int M = Mask[i];
+ if (M < 0) {
+ UndefElts.setBit(i);
+ continue;
+ }
+ if (!DemandedElts[i])
+ continue;
+ if (0 <= SplatIndex && SplatIndex != M)
+ return false;
+ SplatIndex = M;
+ }
+ return true;
+ }
+ case ISD::EXTRACT_SUBVECTOR: {
+ SDValue Src = V.getOperand(0);
+ ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
+ // Offset the demanded elts by the subvector index.
+ uint64_t Idx = SubIdx->getZExtValue();
+ APInt UndefSrcElts;
+ APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
+ if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
+ UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
+ return true;
+ }
+ }
+ break;
+ }
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::AND: {
+ APInt UndefLHS, UndefRHS;
+ SDValue LHS = V.getOperand(0);
+ SDValue RHS = V.getOperand(1);
+ if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
+ isSplatValue(RHS, DemandedElts, UndefRHS)) {
+ UndefElts = UndefLHS | UndefRHS;
+ return true;
+ }
+ break;
+ }
+ }
+
+ return false;
+}
+
+/// Helper wrapper to main isSplatValue function.
+bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
+ EVT VT = V.getValueType();
+ assert(VT.isVector() && "Vector type expected");
+ unsigned NumElts = VT.getVectorNumElements();
+
+ APInt UndefElts;
+ APInt DemandedElts = APInt::getAllOnesValue(NumElts);
+ return isSplatValue(V, DemandedElts, UndefElts) &&
+ (AllowUndefs || !UndefElts);
+}
+
+SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
+ V = peekThroughExtractSubvectors(V);
+
+ EVT VT = V.getValueType();
+ unsigned Opcode = V.getOpcode();
+ switch (Opcode) {
+ default: {
+ APInt UndefElts;
+ APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
+ if (isSplatValue(V, DemandedElts, UndefElts)) {
+ // Handle case where all demanded elements are UNDEF.
+ if (DemandedElts.isSubsetOf(UndefElts)) {
+ SplatIdx = 0;
+ return getUNDEF(VT);
+ }
+ SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
+ return V;
+ }
+ break;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ // Check if this is a shuffle node doing a splat.
+ // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
+ // getTargetVShiftNode currently struggles without the splat source.
+ auto *SVN = cast<ShuffleVectorSDNode>(V);
+ if (!SVN->isSplat())
+ break;
+ int Idx = SVN->getSplatIndex();
+ int NumElts = V.getValueType().getVectorNumElements();
+ SplatIdx = Idx % NumElts;
+ return V.getOperand(Idx / NumElts);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SelectionDAG::getSplatValue(SDValue V) {
+ int SplatIdx;
+ if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
+ return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
+ SrcVector.getValueType().getScalarType(), SrcVector,
+ getIntPtrConstant(SplatIdx, SDLoc(V)));
+ return SDValue();
+}
+
+/// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
+/// is less than the element bit-width of the shift node, return it.
+static const APInt *getValidShiftAmountConstant(SDValue V) {
+ if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
+ // Shifting more than the bitwidth is not valid.
+ const APInt &ShAmt = SA->getAPIntValue();
+ if (ShAmt.ult(V.getScalarValueSizeInBits()))
+ return &ShAmt;
+ }
+ return nullptr;
+}
+
+/// Determine which bits of Op are known to be either zero or one and return
+/// them in Known. For vectors, the known bits are those that are shared by
+/// every vector element.
+KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
+ EVT VT = Op.getValueType();
+ APInt DemandedElts = VT.isVector()
+ ? APInt::getAllOnesValue(VT.getVectorNumElements())
+ : APInt(1, 1);
+ return computeKnownBits(Op, DemandedElts, Depth);
+}
+
+/// Determine which bits of Op are known to be either zero or one and return
+/// them in Known. The DemandedElts argument allows us to only collect the known
+/// bits that are shared by the requested vector elements.
+KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
+ unsigned Depth) const {
+ unsigned BitWidth = Op.getScalarValueSizeInBits();
+
+ KnownBits Known(BitWidth); // Don't know anything.
+
+ if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
+ // We know all of the bits for a constant!
+ Known.One = C->getAPIntValue();
+ Known.Zero = ~Known.One;
+ return Known;
+ }
+ if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
+ // We know all of the bits for a constant fp!
+ Known.One = C->getValueAPF().bitcastToAPInt();
+ Known.Zero = ~Known.One;
+ return Known;
+ }
+
+ if (Depth == 6)
+ return Known; // Limit search depth.
+
+ KnownBits Known2;
+ unsigned NumElts = DemandedElts.getBitWidth();
+ assert((!Op.getValueType().isVector() ||
+ NumElts == Op.getValueType().getVectorNumElements()) &&
+ "Unexpected vector size");
+
+ if (!DemandedElts)
+ return Known; // No demanded elts, better to assume we don't know anything.
+
+ unsigned Opcode = Op.getOpcode();
+ switch (Opcode) {
+ case ISD::BUILD_VECTOR:
+ // Collect the known bits that are shared by every demanded vector element.
+ Known.Zero.setAllBits(); Known.One.setAllBits();
+ for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
+ if (!DemandedElts[i])
+ continue;
+
+ SDValue SrcOp = Op.getOperand(i);
+ Known2 = computeKnownBits(SrcOp, Depth + 1);
+
+ // BUILD_VECTOR can implicitly truncate sources, we must handle this.
+ if (SrcOp.getValueSizeInBits() != BitWidth) {
+ assert(SrcOp.getValueSizeInBits() > BitWidth &&
+ "Expected BUILD_VECTOR implicit truncation");
+ Known2 = Known2.trunc(BitWidth);
+ }
+
+ // Known bits are the values that are shared by every demanded element.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ }
+ break;
+ case ISD::VECTOR_SHUFFLE: {
+ // Collect the known bits that are shared by every vector element referenced
+ // by the shuffle.
+ APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
+ Known.Zero.setAllBits(); Known.One.setAllBits();
+ const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
+ assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (!DemandedElts[i])
+ continue;
+
+ int M = SVN->getMaskElt(i);
+ if (M < 0) {
+ // For UNDEF elements, we don't know anything about the common state of
+ // the shuffle result.
+ Known.resetAll();
+ DemandedLHS.clearAllBits();
+ DemandedRHS.clearAllBits();
+ break;
+ }
+
+ if ((unsigned)M < NumElts)
+ DemandedLHS.setBit((unsigned)M % NumElts);
+ else
+ DemandedRHS.setBit((unsigned)M % NumElts);
+ }
+ // Known bits are the values that are shared by every demanded element.
+ if (!!DemandedLHS) {
+ SDValue LHS = Op.getOperand(0);
+ Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ if (!!DemandedRHS) {
+ SDValue RHS = Op.getOperand(1);
+ Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ break;
+ }
+ case ISD::CONCAT_VECTORS: {
+ // Split DemandedElts and test each of the demanded subvectors.
+ Known.Zero.setAllBits(); Known.One.setAllBits();
+ EVT SubVectorVT = Op.getOperand(0).getValueType();
+ unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
+ unsigned NumSubVectors = Op.getNumOperands();
+ for (unsigned i = 0; i != NumSubVectors; ++i) {
+ APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
+ DemandedSub = DemandedSub.trunc(NumSubVectorElts);
+ if (!!DemandedSub) {
+ SDValue Sub = Op.getOperand(i);
+ Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ }
+ break;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ // If we know the element index, demand any elements from the subvector and
+ // the remainder from the src its inserted into, otherwise demand them all.
+ SDValue Src = Op.getOperand(0);
+ SDValue Sub = Op.getOperand(1);
+ ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
+ if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
+ Known.One.setAllBits();
+ Known.Zero.setAllBits();
+ uint64_t Idx = SubIdx->getZExtValue();
+ APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
+ if (!!DemandedSubElts) {
+ Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
+ if (Known.isUnknown())
+ break; // early-out.
+ }
+ APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
+ APInt DemandedSrcElts = DemandedElts & ~SubMask;
+ if (!!DemandedSrcElts) {
+ Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ } else {
+ Known = computeKnownBits(Sub, Depth + 1);
+ if (Known.isUnknown())
+ break; // early-out.
+ Known2 = computeKnownBits(Src, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ break;
+ }
+ case ISD::EXTRACT_SUBVECTOR: {
+ // If we know the element index, just demand that subvector elements,
+ // otherwise demand them all.
+ SDValue Src = Op.getOperand(0);
+ ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
+ // Offset the demanded elts by the subvector index.
+ uint64_t Idx = SubIdx->getZExtValue();
+ APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
+ Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
+ } else {
+ Known = computeKnownBits(Src, Depth + 1);
+ }
+ break;
+ }
+ case ISD::SCALAR_TO_VECTOR: {
+ // We know about scalar_to_vector as much as we know about it source,
+ // which becomes the first element of otherwise unknown vector.
+ if (DemandedElts != 1)
+ break;
+
+ SDValue N0 = Op.getOperand(0);
+ Known = computeKnownBits(N0, Depth + 1);
+ if (N0.getValueSizeInBits() != BitWidth)
+ Known = Known.trunc(BitWidth);
+
+ break;
+ }
+ case ISD::BITCAST: {
+ SDValue N0 = Op.getOperand(0);
+ EVT SubVT = N0.getValueType();
+ unsigned SubBitWidth = SubVT.getScalarSizeInBits();
+
+ // Ignore bitcasts from unsupported types.
+ if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
+ break;
+
+ // Fast handling of 'identity' bitcasts.
+ if (BitWidth == SubBitWidth) {
+ Known = computeKnownBits(N0, DemandedElts, Depth + 1);
+ break;
+ }
+
+ bool IsLE = getDataLayout().isLittleEndian();
+
+ // Bitcast 'small element' vector to 'large element' scalar/vector.
+ if ((BitWidth % SubBitWidth) == 0) {
+ assert(N0.getValueType().isVector() && "Expected bitcast from vector");
+
+ // Collect known bits for the (larger) output by collecting the known
+ // bits from each set of sub elements and shift these into place.
+ // We need to separately call computeKnownBits for each set of
+ // sub elements as the knownbits for each is likely to be different.
+ unsigned SubScale = BitWidth / SubBitWidth;
+ APInt SubDemandedElts(NumElts * SubScale, 0);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i])
+ SubDemandedElts.setBit(i * SubScale);
+
+ for (unsigned i = 0; i != SubScale; ++i) {
+ Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
+ Depth + 1);
+ unsigned Shifts = IsLE ? i : SubScale - 1 - i;
+ Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
+ Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
+ }
+ }
+
+ // Bitcast 'large element' scalar/vector to 'small element' vector.
+ if ((SubBitWidth % BitWidth) == 0) {
+ assert(Op.getValueType().isVector() && "Expected bitcast to vector");
+
+ // Collect known bits for the (smaller) output by collecting the known
+ // bits from the overlapping larger input elements and extracting the
+ // sub sections we actually care about.
+ unsigned SubScale = SubBitWidth / BitWidth;
+ APInt SubDemandedElts(NumElts / SubScale, 0);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i])
+ SubDemandedElts.setBit(i / SubScale);
+
+ Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
+
+ Known.Zero.setAllBits(); Known.One.setAllBits();
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i]) {
+ unsigned Shifts = IsLE ? i : NumElts - 1 - i;
+ unsigned Offset = (Shifts % SubScale) * BitWidth;
+ Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
+ Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ }
+ }
+ break;
+ }
+ case ISD::AND:
+ // If either the LHS or the RHS are Zero, the result is zero.
+ Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ Known.One &= Known2.One;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ Known.Zero |= Known2.Zero;
+ break;
+ case ISD::OR:
+ Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ Known.Zero &= Known2.Zero;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ Known.One |= Known2.One;
+ break;
+ case ISD::XOR: {
+ Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
+ Known.Zero = KnownZeroOut;
+ break;
+ }
+ case ISD::MUL: {
+ Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+
+ // If low bits are zero in either operand, output low known-0 bits.
+ // Also compute a conservative estimate for high known-0 bits.
+ // More trickiness is possible, but this is sufficient for the
+ // interesting case of alignment computation.
+ unsigned TrailZ = Known.countMinTrailingZeros() +
+ Known2.countMinTrailingZeros();
+ unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
+ Known2.countMinLeadingZeros(),
+ BitWidth) - BitWidth;
+
+ Known.resetAll();
+ Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
+ Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
+ break;
+ }
+ case ISD::UDIV: {
+ // For the purposes of computing leading zeros we can conservatively
+ // treat a udiv as a logical right shift by the power of 2 known to
+ // be less than the denominator.
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ unsigned LeadZ = Known2.countMinLeadingZeros();
+
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
+ if (RHSMaxLeadingZeros != BitWidth)
+ LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
+
+ Known.Zero.setHighBits(LeadZ);
+ break;
+ }
+ case ISD::SELECT:
+ case ISD::VSELECT:
+ Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
+
+ // Only known if known in both the LHS and RHS.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ break;
+ case ISD::SELECT_CC:
+ Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
+
+ // Only known if known in both the LHS and RHS.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ break;
+ case ISD::SMULO:
+ case ISD::UMULO:
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
+ if (Op.getResNo() != 1)
+ break;
+ // The boolean result conforms to getBooleanContents.
+ // If we know the result of a setcc has the top bits zero, use this info.
+ // We know that we have an integer-based boolean since these operations
+ // are only available for integer.
+ if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
+ TargetLowering::ZeroOrOneBooleanContent &&
+ BitWidth > 1)
+ Known.Zero.setBitsFrom(1);
+ break;
+ case ISD::SETCC:
+ // If we know the result of a setcc has the top bits zero, use this info.
+ if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
+ TargetLowering::ZeroOrOneBooleanContent &&
+ BitWidth > 1)
+ Known.Zero.setBitsFrom(1);
+ break;
+ case ISD::SHL:
+ if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ unsigned Shift = ShAmt->getZExtValue();
+ Known.Zero <<= Shift;
+ Known.One <<= Shift;
+ // Low bits are known zero.
+ Known.Zero.setLowBits(Shift);
+ }
+ break;
+ case ISD::SRL:
+ if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ unsigned Shift = ShAmt->getZExtValue();
+ Known.Zero.lshrInPlace(Shift);
+ Known.One.lshrInPlace(Shift);
+ // High bits are known zero.
+ Known.Zero.setHighBits(Shift);
+ } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
+ // If the shift amount is a vector of constants see if we can bound
+ // the number of upper zero bits.
+ unsigned ShiftAmountMin = BitWidth;
+ for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
+ if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
+ const APInt &ShAmt = C->getAPIntValue();
+ if (ShAmt.ult(BitWidth)) {
+ ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
+ ShAmt.getZExtValue());
+ continue;
+ }
+ }
+ // Don't know anything.
+ ShiftAmountMin = 0;
+ break;
+ }
+
+ Known.Zero.setHighBits(ShiftAmountMin);
+ }
+ break;
+ case ISD::SRA:
+ if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ unsigned Shift = ShAmt->getZExtValue();
+ // Sign extend known zero/one bit (else is unknown).
+ Known.Zero.ashrInPlace(Shift);
+ Known.One.ashrInPlace(Shift);
+ }
+ break;
+ case ISD::FSHL:
+ case ISD::FSHR:
+ if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
+ unsigned Amt = C->getAPIntValue().urem(BitWidth);
+
+ // For fshl, 0-shift returns the 1st arg.
+ // For fshr, 0-shift returns the 2nd arg.
+ if (Amt == 0) {
+ Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
+ DemandedElts, Depth + 1);
+ break;
+ }
+
+ // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
+ // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ if (Opcode == ISD::FSHL) {
+ Known.One <<= Amt;
+ Known.Zero <<= Amt;
+ Known2.One.lshrInPlace(BitWidth - Amt);
+ Known2.Zero.lshrInPlace(BitWidth - Amt);
+ } else {
+ Known.One <<= BitWidth - Amt;
+ Known.Zero <<= BitWidth - Amt;
+ Known2.One.lshrInPlace(Amt);
+ Known2.Zero.lshrInPlace(Amt);
+ }
+ Known.One |= Known2.One;
+ Known.Zero |= Known2.Zero;
+ }
+ break;
+ case ISD::SIGN_EXTEND_INREG: {
+ EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ unsigned EBits = EVT.getScalarSizeInBits();
+
+ // Sign extension. Compute the demanded bits in the result that are not
+ // present in the input.
+ APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
+
+ APInt InSignMask = APInt::getSignMask(EBits);
+ APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
+
+ // If the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ InSignMask = InSignMask.zext(BitWidth);
+ if (NewBits.getBoolValue())
+ InputDemandedBits |= InSignMask;
+
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known.One &= InputDemandedBits;
+ Known.Zero &= InputDemandedBits;
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+ if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear
+ Known.Zero |= NewBits;
+ Known.One &= ~NewBits;
+ } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set
+ Known.One |= NewBits;
+ Known.Zero &= ~NewBits;
+ } else { // Input sign bit unknown
+ Known.Zero &= ~NewBits;
+ Known.One &= ~NewBits;
+ }
+ break;
+ }
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF: {
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ // If we have a known 1, its position is our upper bound.
+ unsigned PossibleTZ = Known2.countMaxTrailingZeros();
+ unsigned LowBits = Log2_32(PossibleTZ) + 1;
+ Known.Zero.setBitsFrom(LowBits);
+ break;
+ }
+ case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF: {
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ // If we have a known 1, its position is our upper bound.
+ unsigned PossibleLZ = Known2.countMaxLeadingZeros();
+ unsigned LowBits = Log2_32(PossibleLZ) + 1;
+ Known.Zero.setBitsFrom(LowBits);
+ break;
+ }
+ case ISD::CTPOP: {
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ // If we know some of the bits are zero, they can't be one.
+ unsigned PossibleOnes = Known2.countMaxPopulation();
+ Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
+ break;
+ }
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
+ if (ISD::isNON_EXTLoad(LD) && Cst) {
+ // Determine any common known bits from the loaded constant pool value.
+ Type *CstTy = Cst->getType();
+ if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
+ // If its a vector splat, then we can (quickly) reuse the scalar path.
+ // NOTE: We assume all elements match and none are UNDEF.
+ if (CstTy->isVectorTy()) {
+ if (const Constant *Splat = Cst->getSplatValue()) {
+ Cst = Splat;
+ CstTy = Cst->getType();
+ }
+ }
+ // TODO - do we need to handle different bitwidths?
+ if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
+ // Iterate across all vector elements finding common known bits.
+ Known.One.setAllBits();
+ Known.Zero.setAllBits();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ if (Constant *Elt = Cst->getAggregateElement(i)) {
+ if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
+ const APInt &Value = CInt->getValue();
+ Known.One &= Value;
+ Known.Zero &= ~Value;
+ continue;
+ }
+ if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
+ APInt Value = CFP->getValueAPF().bitcastToAPInt();
+ Known.One &= Value;
+ Known.Zero &= ~Value;
+ continue;
+ }
+ }
+ Known.One.clearAllBits();
+ Known.Zero.clearAllBits();
+ break;
+ }
+ } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
+ if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
+ const APInt &Value = CInt->getValue();
+ Known.One = Value;
+ Known.Zero = ~Value;
+ } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
+ APInt Value = CFP->getValueAPF().bitcastToAPInt();
+ Known.One = Value;
+ Known.Zero = ~Value;
+ }
+ }
+ }
+ } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
+ // If this is a ZEXTLoad and we are looking at the loaded value.
+ EVT VT = LD->getMemoryVT();
+ unsigned MemBits = VT.getScalarSizeInBits();
+ Known.Zero.setBitsFrom(MemBits);
+ } else if (const MDNode *Ranges = LD->getRanges()) {
+ if (LD->getExtensionType() == ISD::NON_EXTLOAD)
+ computeKnownBitsFromRangeMetadata(*Ranges, Known);
+ }
+ break;
+ }
+ case ISD::ZERO_EXTEND_VECTOR_INREG: {
+ EVT InVT = Op.getOperand(0).getValueType();
+ APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
+ Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
+ Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
+ break;
+ }
+ case ISD::ZERO_EXTEND: {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
+ break;
+ }
+ case ISD::SIGN_EXTEND_VECTOR_INREG: {
+ EVT InVT = Op.getOperand(0).getValueType();
+ APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
+ Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
+ // If the sign bit is known to be zero or one, then sext will extend
+ // it to the top bits, else it will just zext.
+ Known = Known.sext(BitWidth);
+ break;
+ }
+ case ISD::SIGN_EXTEND: {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ // If the sign bit is known to be zero or one, then sext will extend
+ // it to the top bits, else it will just zext.
+ Known = Known.sext(BitWidth);
+ break;
+ }
+ case ISD::ANY_EXTEND: {
+ Known = computeKnownBits(Op.getOperand(0), Depth+1);
+ Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
+ break;
+ }
+ case ISD::TRUNCATE: {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known = Known.trunc(BitWidth);
+ break;
+ }
+ case ISD::AssertZext: {
+ EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
+ Known = computeKnownBits(Op.getOperand(0), Depth+1);
+ Known.Zero |= (~InMask);
+ Known.One &= (~Known.Zero);
+ break;
+ }
+ case ISD::FGETSIGN:
+ // All bits are zero except the low bit.
+ Known.Zero.setBitsFrom(1);
+ break;
+ case ISD::USUBO:
+ case ISD::SSUBO:
+ if (Op.getResNo() == 1) {
+ // If we know the result of a setcc has the top bits zero, use this info.
+ if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
+ TargetLowering::ZeroOrOneBooleanContent &&
+ BitWidth > 1)
+ Known.Zero.setBitsFrom(1);
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ case ISD::SUB:
+ case ISD::SUBC: {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
+ Known, Known2);
+ break;
+ }
+ case ISD::UADDO:
+ case ISD::SADDO:
+ case ISD::ADDCARRY:
+ if (Op.getResNo() == 1) {
+ // If we know the result of a setcc has the top bits zero, use this info.
+ if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
+ TargetLowering::ZeroOrOneBooleanContent &&
+ BitWidth > 1)
+ Known.Zero.setBitsFrom(1);
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ case ISD::ADD:
+ case ISD::ADDC:
+ case ISD::ADDE: {
+ assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
+
+ // With ADDE and ADDCARRY, a carry bit may be added in.
+ KnownBits Carry(1);
+ if (Opcode == ISD::ADDE)
+ // Can't track carry from glue, set carry to unknown.
+ Carry.resetAll();
+ else if (Opcode == ISD::ADDCARRY)
+ // TODO: Compute known bits for the carry operand. Not sure if it is worth
+ // the trouble (how often will we find a known carry bit). And I haven't
+ // tested this very much yet, but something like this might work:
+ // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
+ // Carry = Carry.zextOrTrunc(1, false);
+ Carry.resetAll();
+ else
+ Carry.setAllZero();
+
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
+ break;
+ }
+ case ISD::SREM:
+ if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
+ const APInt &RA = Rem->getAPIntValue().abs();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = RA - 1;
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+
+ // The low bits of the first operand are unchanged by the srem.
+ Known.Zero = Known2.Zero & LowBits;
+ Known.One = Known2.One & LowBits;
+
+ // If the first operand is non-negative or has all low bits zero, then
+ // the upper bits are all zero.
+ if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
+ Known.Zero |= ~LowBits;
+
+ // If the first operand is negative and not all low bits are zero, then
+ // the upper bits are all one.
+ if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
+ Known.One |= ~LowBits;
+ assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
+ }
+ }
+ break;
+ case ISD::UREM: {
+ if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
+ const APInt &RA = Rem->getAPIntValue();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = (RA - 1);
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+
+ // The upper bits are all zero, the lower ones are unchanged.
+ Known.Zero = Known2.Zero | ~LowBits;
+ Known.One = Known2.One & LowBits;
+ break;
+ }
+ }
+
+ // Since the result is less than or equal to either operand, any leading
+ // zero bits in either operand must also exist in the result.
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+
+ uint32_t Leaders =
+ std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
+ Known.resetAll();
+ Known.Zero.setHighBits(Leaders);
+ break;
+ }
+ case ISD::EXTRACT_ELEMENT: {
+ Known = computeKnownBits(Op.getOperand(0), Depth+1);
+ const unsigned Index = Op.getConstantOperandVal(1);
+ const unsigned EltBitWidth = Op.getValueSizeInBits();
+
+ // Remove low part of known bits mask
+ Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
+ Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
+
+ // Remove high part of known bit mask
+ Known = Known.trunc(EltBitWidth);
+ break;
+ }
+ case ISD::EXTRACT_VECTOR_ELT: {
+ SDValue InVec = Op.getOperand(0);
+ SDValue EltNo = Op.getOperand(1);
+ EVT VecVT = InVec.getValueType();
+ const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
+ const unsigned NumSrcElts = VecVT.getVectorNumElements();
+ // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
+ // anything about the extended bits.
+ if (BitWidth > EltBitWidth)
+ Known = Known.trunc(EltBitWidth);
+ ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
+ if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
+ // If we know the element index, just demand that vector element.
+ unsigned Idx = ConstEltNo->getZExtValue();
+ APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
+ Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
+ } else {
+ // Unknown element index, so ignore DemandedElts and demand them all.
+ Known = computeKnownBits(InVec, Depth + 1);
+ }
+ if (BitWidth > EltBitWidth)
+ Known = Known.zext(BitWidth, false /* => any extend */);
+ break;
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ SDValue InVec = Op.getOperand(0);
+ SDValue InVal = Op.getOperand(1);
+ SDValue EltNo = Op.getOperand(2);
+
+ ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
+ if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
+ // If we know the element index, split the demand between the
+ // source vector and the inserted element.
+ Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
+ unsigned EltIdx = CEltNo->getZExtValue();
+
+ // If we demand the inserted element then add its common known bits.
+ if (DemandedElts[EltIdx]) {
+ Known2 = computeKnownBits(InVal, Depth + 1);
+ Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
+ Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
+ }
+
+ // If we demand the source vector then add its common known bits, ensuring
+ // that we don't demand the inserted element.
+ APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
+ if (!!VectorElts) {
+ Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ } else {
+ // Unknown element index, so ignore DemandedElts and demand them all.
+ Known = computeKnownBits(InVec, Depth + 1);
+ Known2 = computeKnownBits(InVal, Depth + 1);
+ Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
+ Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
+ }
+ break;
+ }
+ case ISD::BITREVERSE: {
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known.Zero = Known2.Zero.reverseBits();
+ Known.One = Known2.One.reverseBits();
+ break;
+ }
+ case ISD::BSWAP: {
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known.Zero = Known2.Zero.byteSwap();
+ Known.One = Known2.One.byteSwap();
+ break;
+ }
+ case ISD::ABS: {
+ Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+
+ // If the source's MSB is zero then we know the rest of the bits already.
+ if (Known2.isNonNegative()) {
+ Known.Zero = Known2.Zero;
+ Known.One = Known2.One;
+ break;
+ }
+
+ // We only know that the absolute values's MSB will be zero iff there is
+ // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
+ Known2.One.clearSignBit();
+ if (Known2.One.getBoolValue()) {
+ Known.Zero = APInt::getSignMask(BitWidth);
+ break;
+ }
+ break;
+ }
+ case ISD::UMIN: {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+
+ // UMIN - we know that the result will have the maximum of the
+ // known zero leading bits of the inputs.
+ unsigned LeadZero = Known.countMinLeadingZeros();
+ LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
+
+ Known.Zero &= Known2.Zero;
+ Known.One &= Known2.One;
+ Known.Zero.setHighBits(LeadZero);
+ break;
+ }
+ case ISD::UMAX: {
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+
+ // UMAX - we know that the result will have the maximum of the
+ // known one leading bits of the inputs.
+ unsigned LeadOne = Known.countMinLeadingOnes();
+ LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
+
+ Known.Zero &= Known2.Zero;
+ Known.One &= Known2.One;
+ Known.One.setHighBits(LeadOne);
+ break;
+ }
+ case ISD::SMIN:
+ case ISD::SMAX: {
+ // If we have a clamp pattern, we know that the number of sign bits will be
+ // the minimum of the clamp min/max range.
+ bool IsMax = (Opcode == ISD::SMAX);
+ ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
+ if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
+ if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
+ CstHigh =
+ isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
+ if (CstLow && CstHigh) {
+ if (!IsMax)
+ std::swap(CstLow, CstHigh);
+
+ const APInt &ValueLow = CstLow->getAPIntValue();
+ const APInt &ValueHigh = CstHigh->getAPIntValue();
+ if (ValueLow.sle(ValueHigh)) {
+ unsigned LowSignBits = ValueLow.getNumSignBits();
+ unsigned HighSignBits = ValueHigh.getNumSignBits();
+ unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
+ if (ValueLow.isNegative() && ValueHigh.isNegative()) {
+ Known.One.setHighBits(MinSignBits);
+ break;
+ }
+ if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
+ Known.Zero.setHighBits(MinSignBits);
+ break;
+ }
+ }
+ }
+
+ // Fallback - just get the shared known bits of the operands.
+ Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ if (Known.isUnknown()) break; // Early-out
+ Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ Known.Zero &= Known2.Zero;
+ Known.One &= Known2.One;
+ break;
+ }
+ case ISD::FrameIndex:
+ case ISD::TargetFrameIndex:
+ TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
+ break;
+
+ default:
+ if (Opcode < ISD::BUILTIN_OP_END)
+ break;
+ LLVM_FALLTHROUGH;
+ case ISD::INTRINSIC_WO_CHAIN:
+ case ISD::INTRINSIC_W_CHAIN:
+ case ISD::INTRINSIC_VOID:
+ // Allow the target to implement this method for its nodes.
+ TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
+ break;
+ }
+
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ return Known;
+}
+
+SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
+ SDValue N1) const {
+ // X + 0 never overflow
+ if (isNullConstant(N1))
+ return OFK_Never;
+
+ KnownBits N1Known = computeKnownBits(N1);
+ if (N1Known.Zero.getBoolValue()) {
+ KnownBits N0Known = computeKnownBits(N0);
+
+ bool overflow;
+ (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
+ if (!overflow)
+ return OFK_Never;
+ }
+
+ // mulhi + 1 never overflow
+ if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
+ (~N1Known.Zero & 0x01) == ~N1Known.Zero)
+ return OFK_Never;
+
+ if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
+ KnownBits N0Known = computeKnownBits(N0);
+
+ if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
+ return OFK_Never;
+ }
+
+ return OFK_Sometime;
+}
+
+bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
+ EVT OpVT = Val.getValueType();
+ unsigned BitWidth = OpVT.getScalarSizeInBits();
+
+ // Is the constant a known power of 2?
+ if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
+ return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
+
+ // A left-shift of a constant one will have exactly one bit set because
+ // shifting the bit off the end is undefined.
+ if (Val.getOpcode() == ISD::SHL) {
+ auto *C = isConstOrConstSplat(Val.getOperand(0));
+ if (C && C->getAPIntValue() == 1)
+ return true;
+ }
+
+ // Similarly, a logical right-shift of a constant sign-bit will have exactly
+ // one bit set.
+ if (Val.getOpcode() == ISD::SRL) {
+ auto *C = isConstOrConstSplat(Val.getOperand(0));
+ if (C && C->getAPIntValue().isSignMask())
+ return true;
+ }
+
+ // Are all operands of a build vector constant powers of two?
+ if (Val.getOpcode() == ISD::BUILD_VECTOR)
+ if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
+ return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
+ return false;
+ }))
+ return true;
+
+ // More could be done here, though the above checks are enough
+ // to handle some common cases.
+
+ // Fall back to computeKnownBits to catch other known cases.
+ KnownBits Known = computeKnownBits(Val);
+ return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
+}
+
+unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
+ EVT VT = Op.getValueType();
+ APInt DemandedElts = VT.isVector()
+ ? APInt::getAllOnesValue(VT.getVectorNumElements())
+ : APInt(1, 1);
+ return ComputeNumSignBits(Op, DemandedElts, Depth);
+}
+
+unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
+ unsigned Depth) const {
+ EVT VT = Op.getValueType();
+ assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
+ unsigned VTBits = VT.getScalarSizeInBits();
+ unsigned NumElts = DemandedElts.getBitWidth();
+ unsigned Tmp, Tmp2;
+ unsigned FirstAnswer = 1;
+
+ if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
+ const APInt &Val = C->getAPIntValue();
+ return Val.getNumSignBits();
+ }
+
+ if (Depth == 6)
+ return 1; // Limit search depth.
+
+ if (!DemandedElts)
+ return 1; // No demanded elts, better to assume we don't know anything.
+
+ unsigned Opcode = Op.getOpcode();
+ switch (Opcode) {
+ default: break;
+ case ISD::AssertSext:
+ Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
+ return VTBits-Tmp+1;
+ case ISD::AssertZext:
+ Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
+ return VTBits-Tmp;
+
+ case ISD::BUILD_VECTOR:
+ Tmp = VTBits;
+ for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
+ if (!DemandedElts[i])
+ continue;
+
+ SDValue SrcOp = Op.getOperand(i);
+ Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
+
+ // BUILD_VECTOR can implicitly truncate sources, we must handle this.
+ if (SrcOp.getValueSizeInBits() != VTBits) {
+ assert(SrcOp.getValueSizeInBits() > VTBits &&
+ "Expected BUILD_VECTOR implicit truncation");
+ unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
+ Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
+ }
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ return Tmp;
+
+ case ISD::VECTOR_SHUFFLE: {
+ // Collect the minimum number of sign bits that are shared by every vector
+ // element referenced by the shuffle.
+ APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
+ const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
+ assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int M = SVN->getMaskElt(i);
+ if (!DemandedElts[i])
+ continue;
+ // For UNDEF elements, we don't know anything about the common state of
+ // the shuffle result.
+ if (M < 0)
+ return 1;
+ if ((unsigned)M < NumElts)
+ DemandedLHS.setBit((unsigned)M % NumElts);
+ else
+ DemandedRHS.setBit((unsigned)M % NumElts);
+ }
+ Tmp = std::numeric_limits<unsigned>::max();
+ if (!!DemandedLHS)
+ Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
+ if (!!DemandedRHS) {
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ // If we don't know anything, early out and try computeKnownBits fall-back.
+ if (Tmp == 1)
+ break;
+ assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
+ return Tmp;
+ }
+
+ case ISD::BITCAST: {
+ SDValue N0 = Op.getOperand(0);
+ EVT SrcVT = N0.getValueType();
+ unsigned SrcBits = SrcVT.getScalarSizeInBits();
+
+ // Ignore bitcasts from unsupported types..
+ if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
+ break;
+
+ // Fast handling of 'identity' bitcasts.
+ if (VTBits == SrcBits)
+ return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
+
+ bool IsLE = getDataLayout().isLittleEndian();
+
+ // Bitcast 'large element' scalar/vector to 'small element' vector.
+ if ((SrcBits % VTBits) == 0) {
+ assert(VT.isVector() && "Expected bitcast to vector");
+
+ unsigned Scale = SrcBits / VTBits;
+ APInt SrcDemandedElts(NumElts / Scale, 0);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i])
+ SrcDemandedElts.setBit(i / Scale);
+
+ // Fast case - sign splat can be simply split across the small elements.
+ Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
+ if (Tmp == SrcBits)
+ return VTBits;
+
+ // Slow case - determine how far the sign extends into each sub-element.
+ Tmp2 = VTBits;
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i]) {
+ unsigned SubOffset = i % Scale;
+ SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
+ SubOffset = SubOffset * VTBits;
+ if (Tmp <= SubOffset)
+ return 1;
+ Tmp2 = std::min(Tmp2, Tmp - SubOffset);
+ }
+ return Tmp2;
+ }
+ break;
+ }
+
+ case ISD::SIGN_EXTEND:
+ Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
+ return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
+ case ISD::SIGN_EXTEND_INREG:
+ // Max of the input and what this extends.
+ Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
+ Tmp = VTBits-Tmp+1;
+ Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
+ return std::max(Tmp, Tmp2);
+ case ISD::SIGN_EXTEND_VECTOR_INREG: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
+ Tmp = VTBits - SrcVT.getScalarSizeInBits();
+ return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
+ }
+
+ case ISD::SRA:
+ Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
+ // SRA X, C -> adds C sign bits.
+ if (ConstantSDNode *C =
+ isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
+ APInt ShiftVal = C->getAPIntValue();
+ ShiftVal += Tmp;
+ Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
+ }
+ return Tmp;
+ case ISD::SHL:
+ if (ConstantSDNode *C =
+ isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
+ // shl destroys sign bits.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
+ if (C->getAPIntValue().uge(VTBits) || // Bad shift.
+ C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out.
+ return Tmp - C->getZExtValue();
+ }
+ break;
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: // NOT is handled here.
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
+ FirstAnswer = std::min(Tmp, Tmp2);
+ // We computed what we know about the sign bits as our first
+ // answer. Now proceed to the generic code that uses
+ // computeKnownBits, and pick whichever answer is better.
+ }
+ break;
+
+ case ISD::SELECT:
+ case ISD::VSELECT:
+ Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+ Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
+ return std::min(Tmp, Tmp2);
+ case ISD::SELECT_CC:
+ Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+ Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
+ return std::min(Tmp, Tmp2);
+
+ case ISD::SMIN:
+ case ISD::SMAX: {
+ // If we have a clamp pattern, we know that the number of sign bits will be
+ // the minimum of the clamp min/max range.
+ bool IsMax = (Opcode == ISD::SMAX);
+ ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
+ if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
+ if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
+ CstHigh =
+ isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
+ if (CstLow && CstHigh) {
+ if (!IsMax)
+ std::swap(CstLow, CstHigh);
+ if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
+ Tmp = CstLow->getAPIntValue().getNumSignBits();
+ Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
+ return std::min(Tmp, Tmp2);
+ }
+ }
+
+ // Fallback - just get the minimum number of sign bits of the operands.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ if (Tmp == 1)
+ return 1; // Early out.
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
+ return std::min(Tmp, Tmp2);
+ }
+ case ISD::UMIN:
+ case ISD::UMAX:
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ if (Tmp == 1)
+ return 1; // Early out.
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
+ return std::min(Tmp, Tmp2);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO:
+ if (Op.getResNo() != 1)
+ break;
+ // The boolean result conforms to getBooleanContents. Fall through.
+ // If setcc returns 0/-1, all bits are sign bits.
+ // We know that we have an integer-based boolean since these operations
+ // are only available for integer.
+ if (TLI->getBooleanContents(VT.isVector(), false) ==
+ TargetLowering::ZeroOrNegativeOneBooleanContent)
+ return VTBits;
+ break;
+ case ISD::SETCC:
+ // If setcc returns 0/-1, all bits are sign bits.
+ if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
+ TargetLowering::ZeroOrNegativeOneBooleanContent)
+ return VTBits;
+ break;
+ case ISD::ROTL:
+ case ISD::ROTR:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ unsigned RotAmt = C->getAPIntValue().urem(VTBits);
+
+ // Handle rotate right by N like a rotate left by 32-N.
+ if (Opcode == ISD::ROTR)
+ RotAmt = (VTBits - RotAmt) % VTBits;
+
+ // If we aren't rotating out all of the known-in sign bits, return the
+ // number that are left. This handles rotl(sext(x), 1) for example.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
+ }
+ break;
+ case ISD::ADD:
+ case ISD::ADDC:
+ // Add can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+
+ // Special case decrementing a value (ADD X, -1):
+ if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
+ if (CRHS->isAllOnesValue()) {
+ KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
+
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((Known.Zero | 1).isAllOnesValue())
+ return VTBits;
+
+ // If we are subtracting one from a positive number, there is no carry
+ // out of the result.
+ if (Known.isNonNegative())
+ return Tmp;
+ }
+
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+ if (Tmp2 == 1) return 1;
+ return std::min(Tmp, Tmp2)-1;
+
+ case ISD::SUB:
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+ if (Tmp2 == 1) return 1;
+
+ // Handle NEG.
+ if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
+ if (CLHS->isNullValue()) {
+ KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((Known.Zero | 1).isAllOnesValue())
+ return VTBits;
+
+ // If the input is known to be positive (the sign bit is known clear),
+ // the output of the NEG has the same number of sign bits as the input.
+ if (Known.isNonNegative())
+ return Tmp2;
+
+ // Otherwise, we treat this like a SUB.
+ }
+
+ // Sub can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+ return std::min(Tmp, Tmp2)-1;
+ case ISD::TRUNCATE: {
+ // Check if the sign bits of source go down as far as the truncated value.
+ unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
+ unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ if (NumSrcSignBits > (NumSrcBits - VTBits))
+ return NumSrcSignBits - (NumSrcBits - VTBits);
+ break;
+ }
+ case ISD::EXTRACT_ELEMENT: {
+ const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ const int BitWidth = Op.getValueSizeInBits();
+ const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
+
+ // Get reverse index (starting from 1), Op1 value indexes elements from
+ // little end. Sign starts at big end.
+ const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
+
+ // If the sign portion ends in our element the subtraction gives correct
+ // result. Otherwise it gives either negative or > bitwidth result
+ return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ SDValue InVec = Op.getOperand(0);
+ SDValue InVal = Op.getOperand(1);
+ SDValue EltNo = Op.getOperand(2);
+
+ ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
+ if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
+ // If we know the element index, split the demand between the
+ // source vector and the inserted element.
+ unsigned EltIdx = CEltNo->getZExtValue();
+
+ // If we demand the inserted element then get its sign bits.
+ Tmp = std::numeric_limits<unsigned>::max();
+ if (DemandedElts[EltIdx]) {
+ // TODO - handle implicit truncation of inserted elements.
+ if (InVal.getScalarValueSizeInBits() != VTBits)
+ break;
+ Tmp = ComputeNumSignBits(InVal, Depth + 1);
+ }
+
+ // If we demand the source vector then get its sign bits, and determine
+ // the minimum.
+ APInt VectorElts = DemandedElts;
+ VectorElts.clearBit(EltIdx);
+ if (!!VectorElts) {
+ Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ } else {
+ // Unknown element index, so ignore DemandedElts and demand them all.
+ Tmp = ComputeNumSignBits(InVec, Depth + 1);
+ Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
+ return Tmp;
+ }
+ case ISD::EXTRACT_VECTOR_ELT: {
+ SDValue InVec = Op.getOperand(0);
+ SDValue EltNo = Op.getOperand(1);
+ EVT VecVT = InVec.getValueType();
+ const unsigned BitWidth = Op.getValueSizeInBits();
+ const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
+ const unsigned NumSrcElts = VecVT.getVectorNumElements();
+
+ // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
+ // anything about sign bits. But if the sizes match we can derive knowledge
+ // about sign bits from the vector operand.
+ if (BitWidth != EltBitWidth)
+ break;
+
+ // If we know the element index, just demand that vector element, else for
+ // an unknown element index, ignore DemandedElts and demand them all.
+ APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
+ ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
+ if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
+ DemandedSrcElts =
+ APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
+
+ return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
+ }
+ case ISD::EXTRACT_SUBVECTOR: {
+ // If we know the element index, just demand that subvector elements,
+ // otherwise demand them all.
+ SDValue Src = Op.getOperand(0);
+ ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
+ // Offset the demanded elts by the subvector index.
+ uint64_t Idx = SubIdx->getZExtValue();
+ APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
+ return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
+ }
+ return ComputeNumSignBits(Src, Depth + 1);
+ }
+ case ISD::CONCAT_VECTORS: {
+ // Determine the minimum number of sign bits across all demanded
+ // elts of the input vectors. Early out if the result is already 1.
+ Tmp = std::numeric_limits<unsigned>::max();
+ EVT SubVectorVT = Op.getOperand(0).getValueType();
+ unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
+ unsigned NumSubVectors = Op.getNumOperands();
+ for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
+ APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
+ DemandedSub = DemandedSub.trunc(NumSubVectorElts);
+ if (!DemandedSub)
+ continue;
+ Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
+ return Tmp;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ // If we know the element index, demand any elements from the subvector and
+ // the remainder from the src its inserted into, otherwise demand them all.
+ SDValue Src = Op.getOperand(0);
+ SDValue Sub = Op.getOperand(1);
+ auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
+ if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
+ Tmp = std::numeric_limits<unsigned>::max();
+ uint64_t Idx = SubIdx->getZExtValue();
+ APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
+ if (!!DemandedSubElts) {
+ Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
+ if (Tmp == 1) return 1; // early-out
+ }
+ APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
+ APInt DemandedSrcElts = DemandedElts & ~SubMask;
+ if (!!DemandedSrcElts) {
+ Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
+ return Tmp;
+ }
+
+ // Not able to determine the index so just assume worst case.
+ Tmp = ComputeNumSignBits(Sub, Depth + 1);
+ if (Tmp == 1) return 1; // early-out
+ Tmp2 = ComputeNumSignBits(Src, Depth + 1);
+ Tmp = std::min(Tmp, Tmp2);
+ assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
+ return Tmp;
+ }
+ }
+
+ // If we are looking at the loaded value of the SDNode.
+ if (Op.getResNo() == 0) {
+ // Handle LOADX separately here. EXTLOAD case will fallthrough.
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
+ unsigned ExtType = LD->getExtensionType();
+ switch (ExtType) {
+ default: break;
+ case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
+ Tmp = LD->getMemoryVT().getScalarSizeInBits();
+ return VTBits - Tmp + 1;
+ case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
+ Tmp = LD->getMemoryVT().getScalarSizeInBits();
+ return VTBits - Tmp;
+ case ISD::NON_EXTLOAD:
+ if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
+ // We only need to handle vectors - computeKnownBits should handle
+ // scalar cases.
+ Type *CstTy = Cst->getType();
+ if (CstTy->isVectorTy() &&
+ (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
+ Tmp = VTBits;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ if (Constant *Elt = Cst->getAggregateElement(i)) {
+ if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
+ const APInt &Value = CInt->getValue();
+ Tmp = std::min(Tmp, Value.getNumSignBits());
+ continue;
+ }
+ if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
+ APInt Value = CFP->getValueAPF().bitcastToAPInt();
+ Tmp = std::min(Tmp, Value.getNumSignBits());
+ continue;
+ }
+ }
+ // Unknown type. Conservatively assume no bits match sign bit.
+ return 1;
+ }
+ return Tmp;
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ // Allow the target to implement this method for its nodes.
+ if (Opcode >= ISD::BUILTIN_OP_END ||
+ Opcode == ISD::INTRINSIC_WO_CHAIN ||
+ Opcode == ISD::INTRINSIC_W_CHAIN ||
+ Opcode == ISD::INTRINSIC_VOID) {
+ unsigned NumBits =
+ TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
+ if (NumBits > 1)
+ FirstAnswer = std::max(FirstAnswer, NumBits);
+ }
+
+ // Finally, if we can prove that the top bits of the result are 0's or 1's,
+ // use this information.
+ KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
+
+ APInt Mask;
+ if (Known.isNonNegative()) { // sign bit is 0
+ Mask = Known.Zero;
+ } else if (Known.isNegative()) { // sign bit is 1;
+ Mask = Known.One;
+ } else {
+ // Nothing known.
+ return FirstAnswer;
+ }
+
+ // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
+ // the number of identical bits in the top of the input value.
+ Mask = ~Mask;
+ Mask <<= Mask.getBitWidth()-VTBits;
+ // Return # leading zeros. We use 'min' here in case Val was zero before
+ // shifting. We don't want to return '64' as for an i32 "0".
+ return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
+}
+
+bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
+ if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
+ !isa<ConstantSDNode>(Op.getOperand(1)))
+ return false;
+
+ if (Op.getOpcode() == ISD::OR &&
+ !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
+ return false;
+
+ return true;
+}
+
+bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
+ // If we're told that NaNs won't happen, assume they won't.
+ if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
+ return true;
+
+ if (Depth == 6)
+ return false; // Limit search depth.
+
+ // TODO: Handle vectors.
+ // If the value is a constant, we can obviously see if it is a NaN or not.
+ if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
+ return !C->getValueAPF().isNaN() ||
+ (SNaN && !C->getValueAPF().isSignaling());
+ }
+
+ unsigned Opcode = Op.getOpcode();
+ switch (Opcode) {
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::FSIN:
+ case ISD::FCOS: {
+ if (SNaN)
+ return true;
+ // TODO: Need isKnownNeverInfinity
+ return false;
+ }
+ case ISD::FCANONICALIZE:
+ case ISD::FEXP:
+ case ISD::FEXP2:
+ case ISD::FTRUNC:
+ case ISD::FFLOOR:
+ case ISD::FCEIL:
+ case ISD::FROUND:
+ case ISD::FRINT:
+ case ISD::FNEARBYINT: {
+ if (SNaN)
+ return true;
+ return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
+ }
+ case ISD::FABS:
+ case ISD::FNEG:
+ case ISD::FCOPYSIGN: {
+ return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
+ }
+ case ISD::SELECT:
+ return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
+ isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
+ case ISD::FP_EXTEND:
+ case ISD::FP_ROUND: {
+ if (SNaN)
+ return true;
+ return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
+ }
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ return true;
+ case ISD::FMA:
+ case ISD::FMAD: {
+ if (SNaN)
+ return true;
+ return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
+ isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
+ isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
+ }
+ case ISD::FSQRT: // Need is known positive
+ case ISD::FLOG:
+ case ISD::FLOG2:
+ case ISD::FLOG10:
+ case ISD::FPOWI:
+ case ISD::FPOW: {
+ if (SNaN)
+ return true;
+ // TODO: Refine on operand
+ return false;
+ }
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM: {
+ // Only one needs to be known not-nan, since it will be returned if the
+ // other ends up being one.
+ return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
+ isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
+ }
+ case ISD::FMINNUM_IEEE:
+ case ISD::FMAXNUM_IEEE: {
+ if (SNaN)
+ return true;
+ // This can return a NaN if either operand is an sNaN, or if both operands
+ // are NaN.
+ return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
+ isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
+ (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
+ isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
+ }
+ case ISD::FMINIMUM:
+ case ISD::FMAXIMUM: {
+ // TODO: Does this quiet or return the origina NaN as-is?
+ return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
+ isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
+ }
+ case ISD::EXTRACT_VECTOR_ELT: {
+ return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
+ }
+ default:
+ if (Opcode >= ISD::BUILTIN_OP_END ||
+ Opcode == ISD::INTRINSIC_WO_CHAIN ||
+ Opcode == ISD::INTRINSIC_W_CHAIN ||
+ Opcode == ISD::INTRINSIC_VOID) {
+ return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
+ }
+
+ return false;
+ }
+}
+
+bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
+ assert(Op.getValueType().isFloatingPoint() &&
+ "Floating point type expected");
+
+ // If the value is a constant, we can obviously see if it is a zero or not.
+ // TODO: Add BuildVector support.
+ if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
+ return !C->isZero();
+ return false;
+}
+
+bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
+ assert(!Op.getValueType().isFloatingPoint() &&
+ "Floating point types unsupported - use isKnownNeverZeroFloat");
+
+ // If the value is a constant, we can obviously see if it is a zero or not.
+ if (ISD::matchUnaryPredicate(
+ Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
+ return true;
+
+ // TODO: Recognize more cases here.
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::OR:
+ if (isKnownNeverZero(Op.getOperand(1)) ||
+ isKnownNeverZero(Op.getOperand(0)))
+ return true;
+ break;
+ }
+
+ return false;
+}
+
+bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
+ // Check the obvious case.
+ if (A == B) return true;
+
+ // For for negative and positive zero.
+ if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
+ if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
+ if (CA->isZero() && CB->isZero()) return true;
+
+ // Otherwise they may not be equal.
+ return false;
+}
+
+// FIXME: unify with llvm::haveNoCommonBitsSet.
+// FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
+bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
+ assert(A.getValueType() == B.getValueType() &&
+ "Values must have the same type");
+ return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
+}
+
+static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
+ ArrayRef<SDValue> Ops,
+ SelectionDAG &DAG) {
+ int NumOps = Ops.size();
+ assert(NumOps != 0 && "Can't build an empty vector!");
+ assert(VT.getVectorNumElements() == (unsigned)NumOps &&
+ "Incorrect element count in BUILD_VECTOR!");
+
+ // BUILD_VECTOR of UNDEFs is UNDEF.
+ if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
+ return DAG.getUNDEF(VT);
+
+ // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
+ SDValue IdentitySrc;
+ bool IsIdentity = true;
+ for (int i = 0; i != NumOps; ++i) {
+ if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ Ops[i].getOperand(0).getValueType() != VT ||
+ (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
+ !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
+ cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
+ IsIdentity = false;
+ break;
+ }
+ IdentitySrc = Ops[i].getOperand(0);
+ }
+ if (IsIdentity)
+ return IdentitySrc;
+
+ return SDValue();
+}
+
+/// Try to simplify vector concatenation to an input value, undef, or build
+/// vector.
+static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
+ ArrayRef<SDValue> Ops,
+ SelectionDAG &DAG) {
+ assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
+ assert(llvm::all_of(Ops,
+ [Ops](SDValue Op) {
+ return Ops[0].getValueType() == Op.getValueType();
+ }) &&
+ "Concatenation of vectors with inconsistent value types!");
+ assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
+ VT.getVectorNumElements() &&
+ "Incorrect element count in vector concatenation!");
+
+ if (Ops.size() == 1)
+ return Ops[0];
+
+ // Concat of UNDEFs is UNDEF.
+ if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
+ return DAG.getUNDEF(VT);
+
+ // Scan the operands and look for extract operations from a single source
+ // that correspond to insertion at the same location via this concatenation:
+ // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
+ SDValue IdentitySrc;
+ bool IsIdentity = true;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ SDValue Op = Ops[i];
+ unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
+ if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
+ Op.getOperand(0).getValueType() != VT ||
+ (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
+ !isa<ConstantSDNode>(Op.getOperand(1)) ||
+ Op.getConstantOperandVal(1) != IdentityIndex) {
+ IsIdentity = false;
+ break;
+ }
+ assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
+ "Unexpected identity source vector for concat of extracts");
+ IdentitySrc = Op.getOperand(0);
+ }
+ if (IsIdentity) {
+ assert(IdentitySrc && "Failed to set source vector of extracts");
+ return IdentitySrc;
+ }
+
+ // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
+ // simplified to one big BUILD_VECTOR.
+ // FIXME: Add support for SCALAR_TO_VECTOR as well.
+ EVT SVT = VT.getScalarType();
+ SmallVector<SDValue, 16> Elts;
+ for (SDValue Op : Ops) {
+ EVT OpVT = Op.getValueType();
+ if (Op.isUndef())
+ Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
+ else if (Op.getOpcode() == ISD::BUILD_VECTOR)
+ Elts.append(Op->op_begin(), Op->op_end());
+ else
+ return SDValue();
+ }
+
+ // BUILD_VECTOR requires all inputs to be of the same type, find the
+ // maximum type and extend them all.
+ for (SDValue Op : Elts)
+ SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
+
+ if (SVT.bitsGT(VT.getScalarType()))
+ for (SDValue &Op : Elts)
+ Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
+ ? DAG.getZExtOrTrunc(Op, DL, SVT)
+ : DAG.getSExtOrTrunc(Op, DL, SVT);
+
+ SDValue V = DAG.getBuildVector(VT, DL, Elts);
+ NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
+ return V;
+}
+
+/// Gets or creates the specified node.
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, getVTList(VT), None);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
+ getVTList(VT));
+ CSEMap.InsertNode(N, IP);
+
+ InsertNode(N);
+ SDValue V = SDValue(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+ SDValue Operand, const SDNodeFlags Flags) {
+ // Constant fold unary operations with an integer constant operand. Even
+ // opaque constant will be folded, because the folding of unary operations
+ // doesn't create new constants with different values. Nevertheless, the
+ // opaque flag is preserved during folding to prevent future folding with
+ // other constants.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
+ const APInt &Val = C->getAPIntValue();
+ switch (Opcode) {
+ default: break;
+ case ISD::SIGN_EXTEND:
+ return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
+ C->isTargetOpcode(), C->isOpaque());
+ case ISD::TRUNCATE:
+ if (C->isOpaque())
+ break;
+ LLVM_FALLTHROUGH;
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND:
+ return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
+ C->isTargetOpcode(), C->isOpaque());
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP: {
+ APFloat apf(EVTToAPFloatSemantics(VT),
+ APInt::getNullValue(VT.getSizeInBits()));
+ (void)apf.convertFromAPInt(Val,
+ Opcode==ISD::SINT_TO_FP,
+ APFloat::rmNearestTiesToEven);
+ return getConstantFP(apf, DL, VT);
+ }
+ case ISD::BITCAST:
+ if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
+ return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
+ if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
+ return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
+ if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
+ return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
+ if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
+ return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
+ break;
+ case ISD::ABS:
+ return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
+ C->isOpaque());
+ case ISD::BITREVERSE:
+ return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
+ C->isOpaque());
+ case ISD::BSWAP:
+ return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
+ C->isOpaque());
+ case ISD::CTPOP:
+ return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
+ C->isOpaque());
+ case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF:
+ return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
+ C->isOpaque());
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF:
+ return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
+ C->isOpaque());
+ case ISD::FP16_TO_FP: {
+ bool Ignored;
+ APFloat FPV(APFloat::IEEEhalf(),
+ (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
+
+ // This can return overflow, underflow, or inexact; we don't care.
+ // FIXME need to be more flexible about rounding mode.
+ (void)FPV.convert(EVTToAPFloatSemantics(VT),
+ APFloat::rmNearestTiesToEven, &Ignored);
+ return getConstantFP(FPV, DL, VT);
+ }
+ }
+ }
+
+ // Constant fold unary operations with a floating point constant operand.
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
+ APFloat V = C->getValueAPF(); // make copy
+ switch (Opcode) {
+ case ISD::FNEG:
+ V.changeSign();
+ return getConstantFP(V, DL, VT);
+ case ISD::FABS:
+ V.clearSign();
+ return getConstantFP(V, DL, VT);
+ case ISD::FCEIL: {
+ APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
+ if (fs == APFloat::opOK || fs == APFloat::opInexact)
+ return getConstantFP(V, DL, VT);
+ break;
+ }
+ case ISD::FTRUNC: {
+ APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
+ if (fs == APFloat::opOK || fs == APFloat::opInexact)
+ return getConstantFP(V, DL, VT);
+ break;
+ }
+ case ISD::FFLOOR: {
+ APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
+ if (fs == APFloat::opOK || fs == APFloat::opInexact)
+ return getConstantFP(V, DL, VT);
+ break;
+ }
+ case ISD::FP_EXTEND: {
+ bool ignored;
+ // This can return overflow, underflow, or inexact; we don't care.
+ // FIXME need to be more flexible about rounding mode.
+ (void)V.convert(EVTToAPFloatSemantics(VT),
+ APFloat::rmNearestTiesToEven, &ignored);
+ return getConstantFP(V, DL, VT);
+ }
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: {
+ bool ignored;
+ APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
+ // FIXME need to be more flexible about rounding mode.
+ APFloat::opStatus s =
+ V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
+ if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
+ break;
+ return getConstant(IntVal, DL, VT);
+ }
+ case ISD::BITCAST:
+ if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
+ return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
+ else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
+ return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
+ else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
+ return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
+ break;
+ case ISD::FP_TO_FP16: {
+ bool Ignored;
+ // This can return overflow, underflow, or inexact; we don't care.
+ // FIXME need to be more flexible about rounding mode.
+ (void)V.convert(APFloat::IEEEhalf(),
+ APFloat::rmNearestTiesToEven, &Ignored);
+ return getConstant(V.bitcastToAPInt(), DL, VT);
+ }
+ }
+ }
+
+ // Constant fold unary operations with a vector integer or float operand.
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
+ if (BV->isConstant()) {
+ switch (Opcode) {
+ default:
+ // FIXME: Entirely reasonable to perform folding of other unary
+ // operations here as the need arises.
+ break;
+ case ISD::FNEG:
+ case ISD::FABS:
+ case ISD::FCEIL:
+ case ISD::FTRUNC:
+ case ISD::FFLOOR:
+ case ISD::FP_EXTEND:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::TRUNCATE:
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::SIGN_EXTEND:
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP:
+ case ISD::ABS:
+ case ISD::BITREVERSE:
+ case ISD::BSWAP:
+ case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF:
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF:
+ case ISD::CTPOP: {
+ SDValue Ops = { Operand };
+ if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
+ return Fold;
+ }
+ }
+ }
+ }
+
+ unsigned OpOpcode = Operand.getNode()->getOpcode();
+ switch (Opcode) {
+ case ISD::TokenFactor:
+ case ISD::MERGE_VALUES:
+ case ISD::CONCAT_VECTORS:
+ return Operand; // Factor, merge or concat of one node? No need.
+ case ISD::BUILD_VECTOR: {
+ // Attempt to simplify BUILD_VECTOR.
+ SDValue Ops[] = {Operand};
+ if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
+ return V;
+ break;
+ }
+ case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
+ case ISD::FP_EXTEND:
+ assert(VT.isFloatingPoint() &&
+ Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
+ if (Operand.getValueType() == VT) return Operand; // noop conversion.
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ assert(Operand.getValueType().bitsLT(VT) &&
+ "Invalid fpext node, dst < src!");
+ if (Operand.isUndef())
+ return getUNDEF(VT);
+ break;
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ if (Operand.isUndef())
+ return getUNDEF(VT);
+ break;
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ // [us]itofp(undef) = 0, because the result value is bounded.
+ if (Operand.isUndef())
+ return getConstantFP(0.0, DL, VT);
+ break;
+ case ISD::SIGN_EXTEND:
+ assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+ "Invalid SIGN_EXTEND!");
+ assert(VT.isVector() == Operand.getValueType().isVector() &&
+ "SIGN_EXTEND result type type should be vector iff the operand "
+ "type is vector!");
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ assert(Operand.getValueType().bitsLT(VT) &&
+ "Invalid sext node, dst < src!");
+ if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
+ return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
+ else if (OpOpcode == ISD::UNDEF)
+ // sext(undef) = 0, because the top bits will all be the same.
+ return getConstant(0, DL, VT);
+ break;
+ case ISD::ZERO_EXTEND:
+ assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+ "Invalid ZERO_EXTEND!");
+ assert(VT.isVector() == Operand.getValueType().isVector() &&
+ "ZERO_EXTEND result type type should be vector iff the operand "
+ "type is vector!");
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ assert(Operand.getValueType().bitsLT(VT) &&
+ "Invalid zext node, dst < src!");
+ if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
+ return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
+ else if (OpOpcode == ISD::UNDEF)
+ // zext(undef) = 0, because the top bits will be zero.
+ return getConstant(0, DL, VT);
+ break;
+ case ISD::ANY_EXTEND:
+ assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+ "Invalid ANY_EXTEND!");
+ assert(VT.isVector() == Operand.getValueType().isVector() &&
+ "ANY_EXTEND result type type should be vector iff the operand "
+ "type is vector!");
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ assert(Operand.getValueType().bitsLT(VT) &&
+ "Invalid anyext node, dst < src!");
+
+ if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
+ OpOpcode == ISD::ANY_EXTEND)
+ // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
+ return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
+ else if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+
+ // (ext (trunc x)) -> x
+ if (OpOpcode == ISD::TRUNCATE) {
+ SDValue OpOp = Operand.getOperand(0);
+ if (OpOp.getValueType() == VT) {
+ transferDbgValues(Operand, OpOp);
+ return OpOp;
+ }
+ }
+ break;
+ case ISD::TRUNCATE:
+ assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+ "Invalid TRUNCATE!");
+ assert(VT.isVector() == Operand.getValueType().isVector() &&
+ "TRUNCATE result type type should be vector iff the operand "
+ "type is vector!");
+ if (Operand.getValueType() == VT) return Operand; // noop truncate
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ assert(Operand.getValueType().bitsGT(VT) &&
+ "Invalid truncate node, src < dst!");
+ if (OpOpcode == ISD::TRUNCATE)
+ return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
+ if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
+ OpOpcode == ISD::ANY_EXTEND) {
+ // If the source is smaller than the dest, we still need an extend.
+ if (Operand.getOperand(0).getValueType().getScalarType()
+ .bitsLT(VT.getScalarType()))
+ return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
+ if (Operand.getOperand(0).getValueType().bitsGT(VT))
+ return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
+ return Operand.getOperand(0);
+ }
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+ break;
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ assert(VT.isVector() && "This DAG node is restricted to vector types.");
+ assert(Operand.getValueType().bitsLE(VT) &&
+ "The input must be the same size or smaller than the result.");
+ assert(VT.getVectorNumElements() <
+ Operand.getValueType().getVectorNumElements() &&
+ "The destination vector type must have fewer lanes than the input.");
+ break;
+ case ISD::ABS:
+ assert(VT.isInteger() && VT == Operand.getValueType() &&
+ "Invalid ABS!");
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+ break;
+ case ISD::BSWAP:
+ assert(VT.isInteger() && VT == Operand.getValueType() &&
+ "Invalid BSWAP!");
+ assert((VT.getScalarSizeInBits() % 16 == 0) &&
+ "BSWAP types must be a multiple of 16 bits!");
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+ break;
+ case ISD::BITREVERSE:
+ assert(VT.isInteger() && VT == Operand.getValueType() &&
+ "Invalid BITREVERSE!");
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+ break;
+ case ISD::BITCAST:
+ // Basic sanity checking.
+ assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
+ "Cannot BITCAST between types of different sizes!");
+ if (VT == Operand.getValueType()) return Operand; // noop conversion.
+ if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
+ return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+ break;
+ case ISD::SCALAR_TO_VECTOR:
+ assert(VT.isVector() && !Operand.getValueType().isVector() &&
+ (VT.getVectorElementType() == Operand.getValueType() ||
+ (VT.getVectorElementType().isInteger() &&
+ Operand.getValueType().isInteger() &&
+ VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
+ "Illegal SCALAR_TO_VECTOR node!");
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+ // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
+ if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
+ isa<ConstantSDNode>(Operand.getOperand(1)) &&
+ Operand.getConstantOperandVal(1) == 0 &&
+ Operand.getOperand(0).getValueType() == VT)
+ return Operand.getOperand(0);
+ break;
+ case ISD::FNEG:
+ // Negation of an unknown bag of bits is still completely undefined.
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+
+ // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
+ if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
+ OpOpcode == ISD::FSUB)
+ return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
+ Operand.getOperand(0), Flags);
+ if (OpOpcode == ISD::FNEG) // --X -> X
+ return Operand.getOperand(0);
+ break;
+ case ISD::FABS:
+ if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
+ return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
+ break;
+ }
+
+ SDNode *N;
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = {Operand};
+ if (VT != MVT::Glue) { // Don't CSE flag producing nodes
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTs, Ops);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
+ E->intersectFlagsWith(Flags);
+ return SDValue(E, 0);
+ }
+
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ N->setFlags(Flags);
+ createOperands(N, Ops);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ createOperands(N, Ops);
+ }
+
+ InsertNode(N);
+ SDValue V = SDValue(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
+ const APInt &C2) {
+ switch (Opcode) {
+ case ISD::ADD: return std::make_pair(C1 + C2, true);
+ case ISD::SUB: return std::make_pair(C1 - C2, true);
+ case ISD::MUL: return std::make_pair(C1 * C2, true);
+ case ISD::AND: return std::make_pair(C1 & C2, true);
+ case ISD::OR: return std::make_pair(C1 | C2, true);
+ case ISD::XOR: return std::make_pair(C1 ^ C2, true);
+ case ISD::SHL: return std::make_pair(C1 << C2, true);
+ case ISD::SRL: return std::make_pair(C1.lshr(C2), true);
+ case ISD::SRA: return std::make_pair(C1.ashr(C2), true);
+ case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
+ case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
+ case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
+ case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
+ case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
+ case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
+ case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
+ case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
+ case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
+ case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
+ case ISD::UDIV:
+ if (!C2.getBoolValue())
+ break;
+ return std::make_pair(C1.udiv(C2), true);
+ case ISD::UREM:
+ if (!C2.getBoolValue())
+ break;
+ return std::make_pair(C1.urem(C2), true);
+ case ISD::SDIV:
+ if (!C2.getBoolValue())
+ break;
+ return std::make_pair(C1.sdiv(C2), true);
+ case ISD::SREM:
+ if (!C2.getBoolValue())
+ break;
+ return std::make_pair(C1.srem(C2), true);
+ }
+ return std::make_pair(APInt(1, 0), false);
+}
+
+SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
+ EVT VT, const ConstantSDNode *C1,
+ const ConstantSDNode *C2) {
+ if (C1->isOpaque() || C2->isOpaque())
+ return SDValue();
+
+ std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
+ C2->getAPIntValue());
+ if (!Folded.second)
+ return SDValue();
+ return getConstant(Folded.first, DL, VT);
+}
+
+SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
+ const GlobalAddressSDNode *GA,
+ const SDNode *N2) {
+ if (GA->getOpcode() != ISD::GlobalAddress)
+ return SDValue();
+ if (!TLI->isOffsetFoldingLegal(GA))
+ return SDValue();
+ auto *C2 = dyn_cast<ConstantSDNode>(N2);
+ if (!C2)
+ return SDValue();
+ int64_t Offset = C2->getSExtValue();
+ switch (Opcode) {
+ case ISD::ADD: break;
+ case ISD::SUB: Offset = -uint64_t(Offset); break;
+ default: return SDValue();
+ }
+ return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
+ GA->getOffset() + uint64_t(Offset));
+}
+
+bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
+ switch (Opcode) {
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM: {
+ // If a divisor is zero/undef or any element of a divisor vector is
+ // zero/undef, the whole op is undef.
+ assert(Ops.size() == 2 && "Div/rem should have 2 operands");
+ SDValue Divisor = Ops[1];
+ if (Divisor.isUndef() || isNullConstant(Divisor))
+ return true;
+
+ return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
+ llvm::any_of(Divisor->op_values(),
+ [](SDValue V) { return V.isUndef() ||
+ isNullConstant(V); });
+ // TODO: Handle signed overflow.
+ }
+ // TODO: Handle oversized shifts.
+ default:
+ return false;
+ }
+}
+
+SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
+ EVT VT, SDNode *N1, SDNode *N2) {
+ // If the opcode is a target-specific ISD node, there's nothing we can
+ // do here and the operand rules may not line up with the below, so
+ // bail early.
+ if (Opcode >= ISD::BUILTIN_OP_END)
+ return SDValue();
+
+ if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
+ return getUNDEF(VT);
+
+ // Handle the case of two scalars.
+ if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
+ if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
+ SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
+ assert((!Folded || !VT.isVector()) &&
+ "Can't fold vectors ops with scalar operands");
+ return Folded;
+ }
+ }
+
+ // fold (add Sym, c) -> Sym+c
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
+ return FoldSymbolOffset(Opcode, VT, GA, N2);
+ if (TLI->isCommutativeBinOp(Opcode))
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
+ return FoldSymbolOffset(Opcode, VT, GA, N1);
+
+ // For vectors, extract each constant element and fold them individually.
+ // Either input may be an undef value.
+ auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
+ if (!BV1 && !N1->isUndef())
+ return SDValue();
+ auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
+ if (!BV2 && !N2->isUndef())
+ return SDValue();
+ // If both operands are undef, that's handled the same way as scalars.
+ if (!BV1 && !BV2)
+ return SDValue();
+
+ assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
+ "Vector binop with different number of elements in operands?");
+
+ EVT SVT = VT.getScalarType();
+ EVT LegalSVT = SVT;
+ if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
+ LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
+ if (LegalSVT.bitsLT(SVT))
+ return SDValue();
+ }
+ SmallVector<SDValue, 4> Outputs;
+ unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
+ for (unsigned I = 0; I != NumOps; ++I) {
+ SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
+ SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
+ if (SVT.isInteger()) {
+ if (V1->getValueType(0).bitsGT(SVT))
+ V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
+ if (V2->getValueType(0).bitsGT(SVT))
+ V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
+ }
+
+ if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
+ return SDValue();
+
+ // Fold one vector element.
+ SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
+ if (LegalSVT != SVT)
+ ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
+
+ // Scalar folding only succeeded if the result is a constant or UNDEF.
+ if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
+ ScalarResult.getOpcode() != ISD::ConstantFP)
+ return SDValue();
+ Outputs.push_back(ScalarResult);
+ }
+
+ assert(VT.getVectorNumElements() == Outputs.size() &&
+ "Vector size mismatch!");
+
+ // We may have a vector type but a scalar result. Create a splat.
+ Outputs.resize(VT.getVectorNumElements(), Outputs.back());
+
+ // Build a big vector out of the scalar elements we generated.
+ return getBuildVector(VT, SDLoc(), Outputs);
+}
+
+// TODO: Merge with FoldConstantArithmetic
+SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
+ const SDLoc &DL, EVT VT,
+ ArrayRef<SDValue> Ops,
+ const SDNodeFlags Flags) {
+ // If the opcode is a target-specific ISD node, there's nothing we can
+ // do here and the operand rules may not line up with the below, so
+ // bail early.
+ if (Opcode >= ISD::BUILTIN_OP_END)
+ return SDValue();
+
+ if (isUndef(Opcode, Ops))
+ return getUNDEF(VT);
+
+ // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
+ if (!VT.isVector())
+ return SDValue();
+
+ unsigned NumElts = VT.getVectorNumElements();
+
+ auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
+ return !Op.getValueType().isVector() ||
+ Op.getValueType().getVectorNumElements() == NumElts;
+ };
+
+ auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
+ BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
+ return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
+ (BV && BV->isConstant());
+ };
+
+ // All operands must be vector types with the same number of elements as
+ // the result type and must be either UNDEF or a build vector of constant
+ // or UNDEF scalars.
+ if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
+ !llvm::all_of(Ops, IsScalarOrSameVectorSize))
+ return SDValue();
+
+ // If we are comparing vectors, then the result needs to be a i1 boolean
+ // that is then sign-extended back to the legal result type.
+ EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
+
+ // Find legal integer scalar type for constant promotion and
+ // ensure that its scalar size is at least as large as source.
+ EVT LegalSVT = VT.getScalarType();
+ if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
+ LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
+ if (LegalSVT.bitsLT(VT.getScalarType()))
+ return SDValue();
+ }
+
+ // Constant fold each scalar lane separately.
+ SmallVector<SDValue, 4> ScalarResults;
+ for (unsigned i = 0; i != NumElts; i++) {
+ SmallVector<SDValue, 4> ScalarOps;
+ for (SDValue Op : Ops) {
+ EVT InSVT = Op.getValueType().getScalarType();
+ BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
+ if (!InBV) {
+ // We've checked that this is UNDEF or a constant of some kind.
+ if (Op.isUndef())
+ ScalarOps.push_back(getUNDEF(InSVT));
+ else
+ ScalarOps.push_back(Op);
+ continue;
+ }
+
+ SDValue ScalarOp = InBV->getOperand(i);
+ EVT ScalarVT = ScalarOp.getValueType();
+
+ // Build vector (integer) scalar operands may need implicit
+ // truncation - do this before constant folding.
+ if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
+ ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
+
+ ScalarOps.push_back(ScalarOp);
+ }
+
+ // Constant fold the scalar operands.
+ SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
+
+ // Legalize the (integer) scalar constant if necessary.
+ if (LegalSVT != SVT)
+ ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
+
+ // Scalar folding only succeeded if the result is a constant or UNDEF.
+ if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
+ ScalarResult.getOpcode() != ISD::ConstantFP)
+ return SDValue();
+ ScalarResults.push_back(ScalarResult);
+ }
+
+ SDValue V = getBuildVector(VT, DL, ScalarResults);
+ NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
+ EVT VT, SDValue N1, SDValue N2) {
+ // TODO: We don't do any constant folding for strict FP opcodes here, but we
+ // should. That will require dealing with a potentially non-default
+ // rounding mode, checking the "opStatus" return value from the APFloat
+ // math calculations, and possibly other variations.
+ auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
+ auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
+ if (N1CFP && N2CFP) {
+ APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
+ switch (Opcode) {
+ case ISD::FADD:
+ C1.add(C2, APFloat::rmNearestTiesToEven);
+ return getConstantFP(C1, DL, VT);
+ case ISD::FSUB:
+ C1.subtract(C2, APFloat::rmNearestTiesToEven);
+ return getConstantFP(C1, DL, VT);
+ case ISD::FMUL:
+ C1.multiply(C2, APFloat::rmNearestTiesToEven);
+ return getConstantFP(C1, DL, VT);
+ case ISD::FDIV:
+ C1.divide(C2, APFloat::rmNearestTiesToEven);
+ return getConstantFP(C1, DL, VT);
+ case ISD::FREM:
+ C1.mod(C2);
+ return getConstantFP(C1, DL, VT);
+ case ISD::FCOPYSIGN:
+ C1.copySign(C2);
+ return getConstantFP(C1, DL, VT);
+ default: break;
+ }
+ }
+ if (N1CFP && Opcode == ISD::FP_ROUND) {
+ APFloat C1 = N1CFP->getValueAPF(); // make copy
+ bool Unused;
+ // This can return overflow, underflow, or inexact; we don't care.
+ // FIXME need to be more flexible about rounding mode.
+ (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
+ &Unused);
+ return getConstantFP(C1, DL, VT);
+ }
+
+ switch (Opcode) {
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM:
+ // If both operands are undef, the result is undef. If 1 operand is undef,
+ // the result is NaN. This should match the behavior of the IR optimizer.
+ if (N1.isUndef() && N2.isUndef())
+ return getUNDEF(VT);
+ if (N1.isUndef() || N2.isUndef())
+ return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
+ }
+ return SDValue();
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+ SDValue N1, SDValue N2, const SDNodeFlags Flags) {
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
+
+ // Canonicalize constant to RHS if commutative.
+ if (TLI->isCommutativeBinOp(Opcode)) {
+ if (N1C && !N2C) {
+ std::swap(N1C, N2C);
+ std::swap(N1, N2);
+ } else if (N1CFP && !N2CFP) {
+ std::swap(N1CFP, N2CFP);
+ std::swap(N1, N2);
+ }
+ }
+
+ switch (Opcode) {
+ default: break;
+ case ISD::TokenFactor:
+ assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
+ N2.getValueType() == MVT::Other && "Invalid token factor!");
+ // Fold trivial token factors.
+ if (N1.getOpcode() == ISD::EntryToken) return N2;
+ if (N2.getOpcode() == ISD::EntryToken) return N1;
+ if (N1 == N2) return N1;
+ break;
+ case ISD::BUILD_VECTOR: {
+ // Attempt to simplify BUILD_VECTOR.
+ SDValue Ops[] = {N1, N2};
+ if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
+ return V;
+ break;
+ }
+ case ISD::CONCAT_VECTORS: {
+ SDValue Ops[] = {N1, N2};
+ if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
+ return V;
+ break;
+ }
+ case ISD::AND:
+ assert(VT.isInteger() && "This operator does not apply to FP types!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
+ // worth handling here.
+ if (N2C && N2C->isNullValue())
+ return N2;
+ if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
+ return N1;
+ break;
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::ADD:
+ case ISD::SUB:
+ assert(VT.isInteger() && "This operator does not apply to FP types!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
+ // it's worth handling here.
+ if (N2C && N2C->isNullValue())
+ return N1;
+ break;
+ case ISD::UDIV:
+ case ISD::UREM:
+ case ISD::MULHU:
+ case ISD::MULHS:
+ case ISD::MUL:
+ case ISD::SDIV:
+ case ISD::SREM:
+ case ISD::SMIN:
+ case ISD::SMAX:
+ case ISD::UMIN:
+ case ISD::UMAX:
+ case ISD::SADDSAT:
+ case ISD::SSUBSAT:
+ case ISD::UADDSAT:
+ case ISD::USUBSAT:
+ assert(VT.isInteger() && "This operator does not apply to FP types!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ break;
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM:
+ assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
+ return V;
+ break;
+ case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
+ assert(N1.getValueType() == VT &&
+ N1.getValueType().isFloatingPoint() &&
+ N2.getValueType().isFloatingPoint() &&
+ "Invalid FCOPYSIGN!");
+ break;
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ if (SDValue V = simplifyShift(N1, N2))
+ return V;
+ LLVM_FALLTHROUGH;
+ case ISD::ROTL:
+ case ISD::ROTR:
+ assert(VT == N1.getValueType() &&
+ "Shift operators return type must be the same as their first arg");
+ assert(VT.isInteger() && N2.getValueType().isInteger() &&
+ "Shifts only work on integers");
+ assert((!VT.isVector() || VT == N2.getValueType()) &&
+ "Vector shift amounts must be in the same as their first arg");
+ // Verify that the shift amount VT is big enough to hold valid shift
+ // amounts. This catches things like trying to shift an i1024 value by an
+ // i8, which is easy to fall into in generic code that uses
+ // TLI.getShiftAmount().
+ assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
+ "Invalid use of small shift amount with oversized value!");
+
+ // Always fold shifts of i1 values so the code generator doesn't need to
+ // handle them. Since we know the size of the shift has to be less than the
+ // size of the value, the shift/rotate count is guaranteed to be zero.
+ if (VT == MVT::i1)
+ return N1;
+ if (N2C && N2C->isNullValue())
+ return N1;
+ break;
+ case ISD::FP_ROUND_INREG: {
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
+ assert(VT == N1.getValueType() && "Not an inreg round!");
+ assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
+ "Cannot FP_ROUND_INREG integer types");
+ assert(EVT.isVector() == VT.isVector() &&
+ "FP_ROUND_INREG type should be vector iff the operand "
+ "type is vector!");
+ assert((!EVT.isVector() ||
+ EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
+ "Vector element counts must match in FP_ROUND_INREG");
+ assert(EVT.bitsLE(VT) && "Not rounding down!");
+ (void)EVT;
+ if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
+ break;
+ }
+ case ISD::FP_ROUND:
+ assert(VT.isFloatingPoint() &&
+ N1.getValueType().isFloatingPoint() &&
+ VT.bitsLE(N1.getValueType()) &&
+ N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
+ "Invalid FP_ROUND!");
+ if (N1.getValueType() == VT) return N1; // noop conversion.
+ break;
+ case ISD::AssertSext:
+ case ISD::AssertZext: {
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
+ assert(VT == N1.getValueType() && "Not an inreg extend!");
+ assert(VT.isInteger() && EVT.isInteger() &&
+ "Cannot *_EXTEND_INREG FP types");
+ assert(!EVT.isVector() &&
+ "AssertSExt/AssertZExt type should be the vector element type "
+ "rather than the vector type!");
+ assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
+ if (VT.getScalarType() == EVT) return N1; // noop assertion.
+ break;
+ }
+ case ISD::SIGN_EXTEND_INREG: {
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
+ assert(VT == N1.getValueType() && "Not an inreg extend!");
+ assert(VT.isInteger() && EVT.isInteger() &&
+ "Cannot *_EXTEND_INREG FP types");
+ assert(EVT.isVector() == VT.isVector() &&
+ "SIGN_EXTEND_INREG type should be vector iff the operand "
+ "type is vector!");
+ assert((!EVT.isVector() ||
+ EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
+ "Vector element counts must match in SIGN_EXTEND_INREG");
+ assert(EVT.bitsLE(VT) && "Not extending!");
+ if (EVT == VT) return N1; // Not actually extending
+
+ auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
+ unsigned FromBits = EVT.getScalarSizeInBits();
+ Val <<= Val.getBitWidth() - FromBits;
+ Val.ashrInPlace(Val.getBitWidth() - FromBits);
+ return getConstant(Val, DL, ConstantVT);
+ };
+
+ if (N1C) {
+ const APInt &Val = N1C->getAPIntValue();
+ return SignExtendInReg(Val, VT);
+ }
+ if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
+ SmallVector<SDValue, 8> Ops;
+ llvm::EVT OpVT = N1.getOperand(0).getValueType();
+ for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
+ SDValue Op = N1.getOperand(i);
+ if (Op.isUndef()) {
+ Ops.push_back(getUNDEF(OpVT));
+ continue;
+ }
+ ConstantSDNode *C = cast<ConstantSDNode>(Op);
+ APInt Val = C->getAPIntValue();
+ Ops.push_back(SignExtendInReg(Val, OpVT));
+ }
+ return getBuildVector(VT, DL, Ops);
+ }
+ break;
+ }
+ case ISD::EXTRACT_VECTOR_ELT:
+ assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
+ "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
+ element type of the vector.");
+
+ // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
+ if (N1.isUndef())
+ return getUNDEF(VT);
+
+ // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
+ if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
+ return getUNDEF(VT);
+
+ // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
+ // expanding copies of large vectors from registers.
+ if (N2C &&
+ N1.getOpcode() == ISD::CONCAT_VECTORS &&
+ N1.getNumOperands() > 0) {
+ unsigned Factor =
+ N1.getOperand(0).getValueType().getVectorNumElements();
+ return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
+ N1.getOperand(N2C->getZExtValue() / Factor),
+ getConstant(N2C->getZExtValue() % Factor, DL,
+ N2.getValueType()));
+ }
+
+ // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
+ // expanding large vector constants.
+ if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
+ SDValue Elt = N1.getOperand(N2C->getZExtValue());
+
+ if (VT != Elt.getValueType())
+ // If the vector element type is not legal, the BUILD_VECTOR operands
+ // are promoted and implicitly truncated, and the result implicitly
+ // extended. Make that explicit here.
+ Elt = getAnyExtOrTrunc(Elt, DL, VT);
+
+ return Elt;
+ }
+
+ // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
+ // operations are lowered to scalars.
+ if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
+ // If the indices are the same, return the inserted element else
+ // if the indices are known different, extract the element from
+ // the original vector.
+ SDValue N1Op2 = N1.getOperand(2);
+ ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
+
+ if (N1Op2C && N2C) {
+ if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
+ if (VT == N1.getOperand(1).getValueType())
+ return N1.getOperand(1);
+ else
+ return getSExtOrTrunc(N1.getOperand(1), DL, VT);
+ }
+
+ return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
+ }
+ }
+
+ // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
+ // when vector types are scalarized and v1iX is legal.
+ // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
+ if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
+ N1.getValueType().getVectorNumElements() == 1) {
+ return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
+ N1.getOperand(1));
+ }
+ break;
+ case ISD::EXTRACT_ELEMENT:
+ assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
+ assert(!N1.getValueType().isVector() && !VT.isVector() &&
+ (N1.getValueType().isInteger() == VT.isInteger()) &&
+ N1.getValueType() != VT &&
+ "Wrong types for EXTRACT_ELEMENT!");
+
+ // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
+ // 64-bit integers into 32-bit parts. Instead of building the extract of
+ // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
+ if (N1.getOpcode() == ISD::BUILD_PAIR)
+ return N1.getOperand(N2C->getZExtValue());
+
+ // EXTRACT_ELEMENT of a constant int is also very common.
+ if (N1C) {
+ unsigned ElementSize = VT.getSizeInBits();
+ unsigned Shift = ElementSize * N2C->getZExtValue();
+ APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
+ return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
+ }
+ break;
+ case ISD::EXTRACT_SUBVECTOR:
+ if (VT.isSimple() && N1.getValueType().isSimple()) {
+ assert(VT.isVector() && N1.getValueType().isVector() &&
+ "Extract subvector VTs must be a vectors!");
+ assert(VT.getVectorElementType() ==
+ N1.getValueType().getVectorElementType() &&
+ "Extract subvector VTs must have the same element type!");
+ assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
+ "Extract subvector must be from larger vector to smaller vector!");
+
+ if (N2C) {
+ assert((VT.getVectorNumElements() + N2C->getZExtValue()
+ <= N1.getValueType().getVectorNumElements())
+ && "Extract subvector overflow!");
+ }
+
+ // Trivial extraction.
+ if (VT.getSimpleVT() == N1.getSimpleValueType())
+ return N1;
+
+ // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
+ if (N1.isUndef())
+ return getUNDEF(VT);
+
+ // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
+ // the concat have the same type as the extract.
+ if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
+ N1.getNumOperands() > 0 &&
+ VT == N1.getOperand(0).getValueType()) {
+ unsigned Factor = VT.getVectorNumElements();
+ return N1.getOperand(N2C->getZExtValue() / Factor);
+ }
+
+ // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
+ // during shuffle legalization.
+ if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
+ VT == N1.getOperand(1).getValueType())
+ return N1.getOperand(1);
+ }
+ break;
+ }
+
+ // Perform trivial constant folding.
+ if (SDValue SV =
+ FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
+ return SV;
+
+ if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
+ return V;
+
+ // Canonicalize an UNDEF to the RHS, even over a constant.
+ if (N1.isUndef()) {
+ if (TLI->isCommutativeBinOp(Opcode)) {
+ std::swap(N1, N2);
+ } else {
+ switch (Opcode) {
+ case ISD::FP_ROUND_INREG:
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::SUB:
+ return getUNDEF(VT); // fold op(undef, arg2) -> undef
+ case ISD::UDIV:
+ case ISD::SDIV:
+ case ISD::UREM:
+ case ISD::SREM:
+ case ISD::SSUBSAT:
+ case ISD::USUBSAT:
+ return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
+ }
+ }
+ }
+
+ // Fold a bunch of operators when the RHS is undef.
+ if (N2.isUndef()) {
+ switch (Opcode) {
+ case ISD::XOR:
+ if (N1.isUndef())
+ // Handle undef ^ undef -> 0 special case. This is a common
+ // idiom (misuse).
+ return getConstant(0, DL, VT);
+ LLVM_FALLTHROUGH;
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::UDIV:
+ case ISD::SDIV:
+ case ISD::UREM:
+ case ISD::SREM:
+ return getUNDEF(VT); // fold op(arg1, undef) -> undef
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::SSUBSAT:
+ case ISD::USUBSAT:
+ return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
+ case ISD::OR:
+ case ISD::SADDSAT:
+ case ISD::UADDSAT:
+ return getAllOnesConstant(DL, VT);
+ }
+ }
+
+ // Memoize this node if possible.
+ SDNode *N;
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = {N1, N2};
+ if (VT != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTs, Ops);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
+ E->intersectFlagsWith(Flags);
+ return SDValue(E, 0);
+ }
+
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ N->setFlags(Flags);
+ createOperands(N, Ops);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ createOperands(N, Ops);
+ }
+
+ InsertNode(N);
+ SDValue V = SDValue(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+ SDValue N1, SDValue N2, SDValue N3,
+ const SDNodeFlags Flags) {
+ // Perform various simplifications.
+ switch (Opcode) {
+ case ISD::FMA: {
+ assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
+ assert(N1.getValueType() == VT && N2.getValueType() == VT &&
+ N3.getValueType() == VT && "FMA types must match!");
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
+ ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
+ if (N1CFP && N2CFP && N3CFP) {
+ APFloat V1 = N1CFP->getValueAPF();
+ const APFloat &V2 = N2CFP->getValueAPF();
+ const APFloat &V3 = N3CFP->getValueAPF();
+ V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
+ return getConstantFP(V1, DL, VT);
+ }
+ break;
+ }
+ case ISD::BUILD_VECTOR: {
+ // Attempt to simplify BUILD_VECTOR.
+ SDValue Ops[] = {N1, N2, N3};
+ if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
+ return V;
+ break;
+ }
+ case ISD::CONCAT_VECTORS: {
+ SDValue Ops[] = {N1, N2, N3};
+ if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
+ return V;
+ break;
+ }
+ case ISD::SETCC: {
+ assert(VT.isInteger() && "SETCC result type must be an integer!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ "SETCC operands must have the same type!");
+ assert(VT.isVector() == N1.getValueType().isVector() &&
+ "SETCC type should be vector iff the operand type is vector!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
+ "SETCC vector element counts must match!");
+ // Use FoldSetCC to simplify SETCC's.
+ if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
+ return V;
+ // Vector constant folding.
+ SDValue Ops[] = {N1, N2, N3};
+ if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
+ NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
+ return V;
+ }
+ break;
+ }
+ case ISD::SELECT:
+ case ISD::VSELECT:
+ if (SDValue V = simplifySelect(N1, N2, N3))
+ return V;
+ break;
+ case ISD::VECTOR_SHUFFLE:
+ llvm_unreachable("should use getVectorShuffle constructor!");
+ case ISD::INSERT_VECTOR_ELT: {
+ ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
+ // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
+ if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
+ return getUNDEF(VT);
+ break;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ // Inserting undef into undef is still undef.
+ if (N1.isUndef() && N2.isUndef())
+ return getUNDEF(VT);
+ SDValue Index = N3;
+ if (VT.isSimple() && N1.getValueType().isSimple()
+ && N2.getValueType().isSimple()) {
+ assert(VT.isVector() && N1.getValueType().isVector() &&
+ N2.getValueType().isVector() &&
+ "Insert subvector VTs must be a vectors");
+ assert(VT == N1.getValueType() &&
+ "Dest and insert subvector source types must match!");
+ assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
+ "Insert subvector must be from smaller vector to larger vector!");
+ if (isa<ConstantSDNode>(Index)) {
+ assert((N2.getValueType().getVectorNumElements() +
+ cast<ConstantSDNode>(Index)->getZExtValue()
+ <= VT.getVectorNumElements())
+ && "Insert subvector overflow!");
+ }
+
+ // Trivial insertion.
+ if (VT.getSimpleVT() == N2.getSimpleValueType())
+ return N2;
+
+ // If this is an insert of an extracted vector into an undef vector, we
+ // can just use the input to the extract.
+ if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
+ N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
+ return N2.getOperand(0);
+ }
+ break;
+ }
+ case ISD::BITCAST:
+ // Fold bit_convert nodes from a type to themselves.
+ if (N1.getValueType() == VT)
+ return N1;
+ break;
+ }
+
+ // Memoize node if it doesn't produce a flag.
+ SDNode *N;
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = {N1, N2, N3};
+ if (VT != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTs, Ops);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
+ E->intersectFlagsWith(Flags);
+ return SDValue(E, 0);
+ }
+
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ N->setFlags(Flags);
+ createOperands(N, Ops);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ createOperands(N, Ops);
+ }
+
+ InsertNode(N);
+ SDValue V = SDValue(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+ SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
+ SDValue Ops[] = { N1, N2, N3, N4 };
+ return getNode(Opcode, DL, VT, Ops);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+ SDValue N1, SDValue N2, SDValue N3, SDValue N4,
+ SDValue N5) {
+ SDValue Ops[] = { N1, N2, N3, N4, N5 };
+ return getNode(Opcode, DL, VT, Ops);
+}
+
+/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
+/// the incoming stack arguments to be loaded from the stack.
+SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
+ SmallVector<SDValue, 8> ArgChains;
+
+ // Include the original chain at the beginning of the list. When this is
+ // used by target LowerCall hooks, this helps legalize find the
+ // CALLSEQ_BEGIN node.
+ ArgChains.push_back(Chain);
+
+ // Add a chain value for each stack argument.
+ for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
+ UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
+ if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
+ if (FI->getIndex() < 0)
+ ArgChains.push_back(SDValue(L, 1));
+
+ // Build a tokenfactor for all the chains.
+ return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
+}
+
+/// getMemsetValue - Vectorized representation of the memset value
+/// operand.
+static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
+ const SDLoc &dl) {
+ assert(!Value.isUndef());
+
+ unsigned NumBits = VT.getScalarSizeInBits();
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
+ assert(C->getAPIntValue().getBitWidth() == 8);
+ APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
+ if (VT.isInteger()) {
+ bool IsOpaque = VT.getSizeInBits() > 64 ||
+ !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
+ return DAG.getConstant(Val, dl, VT, false, IsOpaque);
+ }
+ return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
+ VT);
+ }
+
+ assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
+ EVT IntVT = VT.getScalarType();
+ if (!IntVT.isInteger())
+ IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
+
+ Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
+ if (NumBits > 8) {
+ // Use a multiplication with 0x010101... to extend the input to the
+ // required length.
+ APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
+ Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
+ DAG.getConstant(Magic, dl, IntVT));
+ }
+
+ if (VT != Value.getValueType() && !VT.isInteger())
+ Value = DAG.getBitcast(VT.getScalarType(), Value);
+ if (VT != Value.getValueType())
+ Value = DAG.getSplatBuildVector(VT, dl, Value);
+
+ return Value;
+}
+
+/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
+/// used when a memcpy is turned into a memset when the source is a constant
+/// string ptr.
+static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
+ const TargetLowering &TLI,
+ const ConstantDataArraySlice &Slice) {
+ // Handle vector with all elements zero.
+ if (Slice.Array == nullptr) {
+ if (VT.isInteger())
+ return DAG.getConstant(0, dl, VT);
+ else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
+ return DAG.getConstantFP(0.0, dl, VT);
+ else if (VT.isVector()) {
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getConstant(0, dl,
+ EVT::getVectorVT(*DAG.getContext(),
+ EltVT, NumElts)));
+ } else
+ llvm_unreachable("Expected type!");
+ }
+
+ assert(!VT.isVector() && "Can't handle vector type here!");
+ unsigned NumVTBits = VT.getSizeInBits();
+ unsigned NumVTBytes = NumVTBits / 8;
+ unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
+
+ APInt Val(NumVTBits, 0);
+ if (DAG.getDataLayout().isLittleEndian()) {
+ for (unsigned i = 0; i != NumBytes; ++i)
+ Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
+ } else {
+ for (unsigned i = 0; i != NumBytes; ++i)
+ Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
+ }
+
+ // If the "cost" of materializing the integer immediate is less than the cost
+ // of a load, then it is cost effective to turn the load into the immediate.
+ Type *Ty = VT.getTypeForEVT(*DAG.getContext());
+ if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
+ return DAG.getConstant(Val, dl, VT);
+ return SDValue(nullptr, 0);
+}
+
+SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
+ const SDLoc &DL) {
+ EVT VT = Base.getValueType();
+ return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
+}
+
+/// Returns true if memcpy source is constant data.
+static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
+ uint64_t SrcDelta = 0;
+ GlobalAddressSDNode *G = nullptr;
+ if (Src.getOpcode() == ISD::GlobalAddress)
+ G = cast<GlobalAddressSDNode>(Src);
+ else if (Src.getOpcode() == ISD::ADD &&
+ Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
+ Src.getOperand(1).getOpcode() == ISD::Constant) {
+ G = cast<GlobalAddressSDNode>(Src.getOperand(0));
+ SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
+ }
+ if (!G)
+ return false;
+
+ return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
+ SrcDelta + G->getOffset());
+}
+
+static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
+ // On Darwin, -Os means optimize for size without hurting performance, so
+ // only really optimize for size when -Oz (MinSize) is used.
+ if (MF.getTarget().getTargetTriple().isOSDarwin())
+ return MF.getFunction().hasMinSize();
+ return MF.getFunction().hasOptSize();
+}
+
+static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
+ SmallVector<SDValue, 32> &OutChains, unsigned From,
+ unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
+ SmallVector<SDValue, 16> &OutStoreChains) {
+ assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
+ assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
+ SmallVector<SDValue, 16> GluedLoadChains;
+ for (unsigned i = From; i < To; ++i) {
+ OutChains.push_back(OutLoadChains[i]);
+ GluedLoadChains.push_back(OutLoadChains[i]);
+ }
+
+ // Chain for all loads.
+ SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ GluedLoadChains);
+
+ for (unsigned i = From; i < To; ++i) {
+ StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
+ SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
+ ST->getBasePtr(), ST->getMemoryVT(),
+ ST->getMemOperand());
+ OutChains.push_back(NewStore);
+ }
+}
+
+static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
+ SDValue Chain, SDValue Dst, SDValue Src,
+ uint64_t Size, unsigned Align,
+ bool isVol, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+ // Turn a memcpy of undef to nop.
+ // FIXME: We need to honor volatile even is Src is undef.
+ if (Src.isUndef())
+ return Chain;
+
+ // Expand memcpy to a series of load and store ops if the size operand falls
+ // below a certain threshold.
+ // TODO: In the AlwaysInline case, if the size is big then generate a loop
+ // rather than maybe a humongous number of loads and stores.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const DataLayout &DL = DAG.getDataLayout();
+ LLVMContext &C = *DAG.getContext();
+ std::vector<EVT> MemOps;
+ bool DstAlignCanChange = false;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool OptSize = shouldLowerMemFuncForSize(MF);
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
+ if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
+ DstAlignCanChange = true;
+ unsigned SrcAlign = DAG.InferPtrAlignment(Src);
+ if (Align > SrcAlign)
+ SrcAlign = Align;
+ ConstantDataArraySlice Slice;
+ bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
+ bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
+ unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
+
+ if (!TLI.findOptimalMemOpLowering(
+ MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align),
+ (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
+ /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
+ /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
+ SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
+ return SDValue();
+
+ if (DstAlignCanChange) {
+ Type *Ty = MemOps[0].getTypeForEVT(C);
+ unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
+
+ // Don't promote to an alignment that would require dynamic stack
+ // realignment.
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ if (!TRI->needsStackRealignment(MF))
+ while (NewAlign > Align &&
+ DL.exceedsNaturalStackAlignment(NewAlign))
+ NewAlign /= 2;
+
+ if (NewAlign > Align) {
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI.setObjectAlignment(FI->getIndex(), NewAlign);
+ Align = NewAlign;
+ }
+ }
+
+ MachineMemOperand::Flags MMOFlags =
+ isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
+ SmallVector<SDValue, 16> OutLoadChains;
+ SmallVector<SDValue, 16> OutStoreChains;
+ SmallVector<SDValue, 32> OutChains;
+ unsigned NumMemOps = MemOps.size();
+ uint64_t SrcOff = 0, DstOff = 0;
+ for (unsigned i = 0; i != NumMemOps; ++i) {
+ EVT VT = MemOps[i];
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ SDValue Value, Store;
+
+ if (VTSize > Size) {
+ // Issuing an unaligned load / store pair that overlaps with the previous
+ // pair. Adjust the offset accordingly.
+ assert(i == NumMemOps-1 && i != 0);
+ SrcOff -= VTSize - Size;
+ DstOff -= VTSize - Size;
+ }
+
+ if (CopyFromConstant &&
+ (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
+ // It's unlikely a store of a vector immediate can be done in a single
+ // instruction. It would require a load from a constantpool first.
+ // We only handle zero vectors here.
+ // FIXME: Handle other cases where store of vector immediate is done in
+ // a single instruction.
+ ConstantDataArraySlice SubSlice;
+ if (SrcOff < Slice.Length) {
+ SubSlice = Slice;
+ SubSlice.move(SrcOff);
+ } else {
+ // This is an out-of-bounds access and hence UB. Pretend we read zero.
+ SubSlice.Array = nullptr;
+ SubSlice.Offset = 0;
+ SubSlice.Length = VTSize;
+ }
+ Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
+ if (Value.getNode()) {
+ Store = DAG.getStore(Chain, dl, Value,
+ DAG.getMemBasePlusOffset(Dst, DstOff, dl),
+ DstPtrInfo.getWithOffset(DstOff), Align,
+ MMOFlags);
+ OutChains.push_back(Store);
+ }
+ }
+
+ if (!Store.getNode()) {
+ // The type might not be legal for the target. This should only happen
+ // if the type is smaller than a legal type, as on PPC, so the right
+ // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
+ // to Load/Store if NVT==VT.
+ // FIXME does the case above also need this?
+ EVT NVT = TLI.getTypeToTransformTo(C, VT);
+ assert(NVT.bitsGE(VT));
+
+ bool isDereferenceable =
+ SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
+ MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
+ if (isDereferenceable)
+ SrcMMOFlags |= MachineMemOperand::MODereferenceable;
+
+ Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
+ DAG.getMemBasePlusOffset(Src, SrcOff, dl),
+ SrcPtrInfo.getWithOffset(SrcOff), VT,
+ MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
+ OutLoadChains.push_back(Value.getValue(1));
+
+ Store = DAG.getTruncStore(
+ Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
+ DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
+ OutStoreChains.push_back(Store);
+ }
+ SrcOff += VTSize;
+ DstOff += VTSize;
+ Size -= VTSize;
+ }
+
+ unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
+ TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
+ unsigned NumLdStInMemcpy = OutStoreChains.size();
+
+ if (NumLdStInMemcpy) {
+ // It may be that memcpy might be converted to memset if it's memcpy
+ // of constants. In such a case, we won't have loads and stores, but
+ // just stores. In the absence of loads, there is nothing to gang up.
+ if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
+ // If target does not care, just leave as it.
+ for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
+ OutChains.push_back(OutLoadChains[i]);
+ OutChains.push_back(OutStoreChains[i]);
+ }
+ } else {
+ // Ld/St less than/equal limit set by target.
+ if (NumLdStInMemcpy <= GluedLdStLimit) {
+ chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
+ NumLdStInMemcpy, OutLoadChains,
+ OutStoreChains);
+ } else {
+ unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
+ unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
+ unsigned GlueIter = 0;
+
+ for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
+ unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
+ unsigned IndexTo = NumLdStInMemcpy - GlueIter;
+
+ chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
+ OutLoadChains, OutStoreChains);
+ GlueIter += GluedLdStLimit;
+ }
+
+ // Residual ld/st.
+ if (RemainingLdStInMemcpy) {
+ chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
+ RemainingLdStInMemcpy, OutLoadChains,
+ OutStoreChains);
+ }
+ }
+ }
+ }
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+}
+
+static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
+ SDValue Chain, SDValue Dst, SDValue Src,
+ uint64_t Size, unsigned Align,
+ bool isVol, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+ // Turn a memmove of undef to nop.
+ // FIXME: We need to honor volatile even is Src is undef.
+ if (Src.isUndef())
+ return Chain;
+
+ // Expand memmove to a series of load and store ops if the size operand falls
+ // below a certain threshold.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const DataLayout &DL = DAG.getDataLayout();
+ LLVMContext &C = *DAG.getContext();
+ std::vector<EVT> MemOps;
+ bool DstAlignCanChange = false;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool OptSize = shouldLowerMemFuncForSize(MF);
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
+ if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
+ DstAlignCanChange = true;
+ unsigned SrcAlign = DAG.InferPtrAlignment(Src);
+ if (Align > SrcAlign)
+ SrcAlign = Align;
+ unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
+ // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
+ // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
+ // correct code.
+ bool AllowOverlap = false;
+ if (!TLI.findOptimalMemOpLowering(
+ MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
+ /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
+ AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
+ MF.getFunction().getAttributes()))
+ return SDValue();
+
+ if (DstAlignCanChange) {
+ Type *Ty = MemOps[0].getTypeForEVT(C);
+ unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
+ if (NewAlign > Align) {
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI.setObjectAlignment(FI->getIndex(), NewAlign);
+ Align = NewAlign;
+ }
+ }
+
+ MachineMemOperand::Flags MMOFlags =
+ isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
+ uint64_t SrcOff = 0, DstOff = 0;
+ SmallVector<SDValue, 8> LoadValues;
+ SmallVector<SDValue, 8> LoadChains;
+ SmallVector<SDValue, 8> OutChains;
+ unsigned NumMemOps = MemOps.size();
+ for (unsigned i = 0; i < NumMemOps; i++) {
+ EVT VT = MemOps[i];
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ SDValue Value;
+
+ bool isDereferenceable =
+ SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
+ MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
+ if (isDereferenceable)
+ SrcMMOFlags |= MachineMemOperand::MODereferenceable;
+
+ Value =
+ DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
+ SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
+ LoadValues.push_back(Value);
+ LoadChains.push_back(Value.getValue(1));
+ SrcOff += VTSize;
+ }
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
+ OutChains.clear();
+ for (unsigned i = 0; i < NumMemOps; i++) {
+ EVT VT = MemOps[i];
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ SDValue Store;
+
+ Store = DAG.getStore(Chain, dl, LoadValues[i],
+ DAG.getMemBasePlusOffset(Dst, DstOff, dl),
+ DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
+ OutChains.push_back(Store);
+ DstOff += VTSize;
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+}
+
+/// Lower the call to 'memset' intrinsic function into a series of store
+/// operations.
+///
+/// \param DAG Selection DAG where lowered code is placed.
+/// \param dl Link to corresponding IR location.
+/// \param Chain Control flow dependency.
+/// \param Dst Pointer to destination memory location.
+/// \param Src Value of byte to write into the memory.
+/// \param Size Number of bytes to write.
+/// \param Align Alignment of the destination in bytes.
+/// \param isVol True if destination is volatile.
+/// \param DstPtrInfo IR information on the memory pointer.
+/// \returns New head in the control flow, if lowering was successful, empty
+/// SDValue otherwise.
+///
+/// The function tries to replace 'llvm.memset' intrinsic with several store
+/// operations and value calculation code. This is usually profitable for small
+/// memory size.
+static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
+ SDValue Chain, SDValue Dst, SDValue Src,
+ uint64_t Size, unsigned Align, bool isVol,
+ MachinePointerInfo DstPtrInfo) {
+ // Turn a memset of undef to nop.
+ // FIXME: We need to honor volatile even is Src is undef.
+ if (Src.isUndef())
+ return Chain;
+
+ // Expand memset to a series of load/store ops if the size operand
+ // falls below a certain threshold.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ std::vector<EVT> MemOps;
+ bool DstAlignCanChange = false;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool OptSize = shouldLowerMemFuncForSize(MF);
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
+ if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
+ DstAlignCanChange = true;
+ bool IsZeroVal =
+ isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
+ if (!TLI.findOptimalMemOpLowering(
+ MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
+ (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
+ /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
+ /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
+ MF.getFunction().getAttributes()))
+ return SDValue();
+
+ if (DstAlignCanChange) {
+ Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
+ unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
+ if (NewAlign > Align) {
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI.setObjectAlignment(FI->getIndex(), NewAlign);
+ Align = NewAlign;
+ }
+ }
+
+ SmallVector<SDValue, 8> OutChains;
+ uint64_t DstOff = 0;
+ unsigned NumMemOps = MemOps.size();
+
+ // Find the largest store and generate the bit pattern for it.
+ EVT LargestVT = MemOps[0];
+ for (unsigned i = 1; i < NumMemOps; i++)
+ if (MemOps[i].bitsGT(LargestVT))
+ LargestVT = MemOps[i];
+ SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
+
+ for (unsigned i = 0; i < NumMemOps; i++) {
+ EVT VT = MemOps[i];
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ if (VTSize > Size) {
+ // Issuing an unaligned load / store pair that overlaps with the previous
+ // pair. Adjust the offset accordingly.
+ assert(i == NumMemOps-1 && i != 0);
+ DstOff -= VTSize - Size;
+ }
+
+ // If this store is smaller than the largest store see whether we can get
+ // the smaller value for free with a truncate.
+ SDValue Value = MemSetValue;
+ if (VT.bitsLT(LargestVT)) {
+ if (!LargestVT.isVector() && !VT.isVector() &&
+ TLI.isTruncateFree(LargestVT, VT))
+ Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
+ else
+ Value = getMemsetValue(Src, VT, DAG, dl);
+ }
+ assert(Value.getValueType() == VT && "Value with wrong type.");
+ SDValue Store = DAG.getStore(
+ Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
+ DstPtrInfo.getWithOffset(DstOff), Align,
+ isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
+ OutChains.push_back(Store);
+ DstOff += VT.getSizeInBits() / 8;
+ Size -= VTSize;
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+}
+
+static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
+ unsigned AS) {
+ // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
+ // pointer operands can be losslessly bitcasted to pointers of address space 0
+ if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
+ report_fatal_error("cannot lower memory intrinsic in address space " +
+ Twine(AS));
+ }
+}
+
+SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
+ SDValue Src, SDValue Size, unsigned Align,
+ bool isVol, bool AlwaysInline, bool isTailCall,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+ assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
+
+ // Check to see if we should lower the memcpy to loads and stores first.
+ // For cases within the target-specified limits, this is the best choice.
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (ConstantSize) {
+ // Memcpy with size zero? Just return the original chain.
+ if (ConstantSize->isNullValue())
+ return Chain;
+
+ SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
+ ConstantSize->getZExtValue(),Align,
+ isVol, false, DstPtrInfo, SrcPtrInfo);
+ if (Result.getNode())
+ return Result;
+ }
+
+ // Then check to see if we should lower the memcpy with target-specific
+ // code. If the target chooses to do this, this is the next best.
+ if (TSI) {
+ SDValue Result = TSI->EmitTargetCodeForMemcpy(
+ *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
+ DstPtrInfo, SrcPtrInfo);
+ if (Result.getNode())
+ return Result;
+ }
+
+ // If we really need inline code and the target declined to provide it,
+ // use a (potentially long) sequence of loads and stores.
+ if (AlwaysInline) {
+ assert(ConstantSize && "AlwaysInline requires a constant size!");
+ return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
+ ConstantSize->getZExtValue(), Align, isVol,
+ true, DstPtrInfo, SrcPtrInfo);
+ }
+
+ checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
+ checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
+
+ // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
+ // memcpy is not guaranteed to be safe. libc memcpys aren't required to
+ // respect volatile, so they may do things like read or write memory
+ // beyond the given memory regions. But fixing this isn't easy, and most
+ // people don't care.
+
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = Type::getInt8PtrTy(*getContext());
+ Entry.Node = Dst; Args.push_back(Entry);
+ Entry.Node = Src; Args.push_back(Entry);
+
+ Entry.Ty = getDataLayout().getIntPtrType(*getContext());
+ Entry.Node = Size; Args.push_back(Entry);
+ // FIXME: pass in SDLoc
+ TargetLowering::CallLoweringInfo CLI(*this);
+ CLI.setDebugLoc(dl)
+ .setChain(Chain)
+ .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
+ Dst.getValueType().getTypeForEVT(*getContext()),
+ getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
+ TLI->getPointerTy(getDataLayout())),
+ std::move(Args))
+ .setDiscardResult()
+ .setTailCall(isTailCall);
+
+ std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
+ SDValue Dst, unsigned DstAlign,
+ SDValue Src, unsigned SrcAlign,
+ SDValue Size, Type *SizeTy,
+ unsigned ElemSz, bool isTailCall,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = getDataLayout().getIntPtrType(*getContext());
+ Entry.Node = Dst;
+ Args.push_back(Entry);
+
+ Entry.Node = Src;
+ Args.push_back(Entry);
+
+ Entry.Ty = SizeTy;
+ Entry.Node = Size;
+ Args.push_back(Entry);
+
+ RTLIB::Libcall LibraryCall =
+ RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
+ if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
+ report_fatal_error("Unsupported element size");
+
+ TargetLowering::CallLoweringInfo CLI(*this);
+ CLI.setDebugLoc(dl)
+ .setChain(Chain)
+ .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
+ Type::getVoidTy(*getContext()),
+ getExternalSymbol(TLI->getLibcallName(LibraryCall),
+ TLI->getPointerTy(getDataLayout())),
+ std::move(Args))
+ .setDiscardResult()
+ .setTailCall(isTailCall);
+
+ std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
+ SDValue Src, SDValue Size, unsigned Align,
+ bool isVol, bool isTailCall,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+ assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
+
+ // Check to see if we should lower the memmove to loads and stores first.
+ // For cases within the target-specified limits, this is the best choice.
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (ConstantSize) {
+ // Memmove with size zero? Just return the original chain.
+ if (ConstantSize->isNullValue())
+ return Chain;
+
+ SDValue Result =
+ getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
+ ConstantSize->getZExtValue(), Align, isVol,
+ false, DstPtrInfo, SrcPtrInfo);
+ if (Result.getNode())
+ return Result;
+ }
+
+ // Then check to see if we should lower the memmove with target-specific
+ // code. If the target chooses to do this, this is the next best.
+ if (TSI) {
+ SDValue Result = TSI->EmitTargetCodeForMemmove(
+ *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
+ if (Result.getNode())
+ return Result;
+ }
+
+ checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
+ checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
+
+ // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
+ // not be safe. See memcpy above for more details.
+
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = Type::getInt8PtrTy(*getContext());
+ Entry.Node = Dst; Args.push_back(Entry);
+ Entry.Node = Src; Args.push_back(Entry);
+
+ Entry.Ty = getDataLayout().getIntPtrType(*getContext());
+ Entry.Node = Size; Args.push_back(Entry);
+ // FIXME: pass in SDLoc
+ TargetLowering::CallLoweringInfo CLI(*this);
+ CLI.setDebugLoc(dl)
+ .setChain(Chain)
+ .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
+ Dst.getValueType().getTypeForEVT(*getContext()),
+ getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
+ TLI->getPointerTy(getDataLayout())),
+ std::move(Args))
+ .setDiscardResult()
+ .setTailCall(isTailCall);
+
+ std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
+ SDValue Dst, unsigned DstAlign,
+ SDValue Src, unsigned SrcAlign,
+ SDValue Size, Type *SizeTy,
+ unsigned ElemSz, bool isTailCall,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = getDataLayout().getIntPtrType(*getContext());
+ Entry.Node = Dst;
+ Args.push_back(Entry);
+
+ Entry.Node = Src;
+ Args.push_back(Entry);
+
+ Entry.Ty = SizeTy;
+ Entry.Node = Size;
+ Args.push_back(Entry);
+
+ RTLIB::Libcall LibraryCall =
+ RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
+ if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
+ report_fatal_error("Unsupported element size");
+
+ TargetLowering::CallLoweringInfo CLI(*this);
+ CLI.setDebugLoc(dl)
+ .setChain(Chain)
+ .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
+ Type::getVoidTy(*getContext()),
+ getExternalSymbol(TLI->getLibcallName(LibraryCall),
+ TLI->getPointerTy(getDataLayout())),
+ std::move(Args))
+ .setDiscardResult()
+ .setTailCall(isTailCall);
+
+ std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
+ SDValue Src, SDValue Size, unsigned Align,
+ bool isVol, bool isTailCall,
+ MachinePointerInfo DstPtrInfo) {
+ assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
+
+ // Check to see if we should lower the memset to stores first.
+ // For cases within the target-specified limits, this is the best choice.
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (ConstantSize) {
+ // Memset with size zero? Just return the original chain.
+ if (ConstantSize->isNullValue())
+ return Chain;
+
+ SDValue Result =
+ getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
+ Align, isVol, DstPtrInfo);
+
+ if (Result.getNode())
+ return Result;
+ }
+
+ // Then check to see if we should lower the memset with target-specific
+ // code. If the target chooses to do this, this is the next best.
+ if (TSI) {
+ SDValue Result = TSI->EmitTargetCodeForMemset(
+ *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
+ if (Result.getNode())
+ return Result;
+ }
+
+ checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
+
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
+ Args.push_back(Entry);
+ Entry.Node = Src;
+ Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
+ Args.push_back(Entry);
+ Entry.Node = Size;
+ Entry.Ty = getDataLayout().getIntPtrType(*getContext());
+ Args.push_back(Entry);
+
+ // FIXME: pass in SDLoc
+ TargetLowering::CallLoweringInfo CLI(*this);
+ CLI.setDebugLoc(dl)
+ .setChain(Chain)
+ .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
+ Dst.getValueType().getTypeForEVT(*getContext()),
+ getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
+ TLI->getPointerTy(getDataLayout())),
+ std::move(Args))
+ .setDiscardResult()
+ .setTailCall(isTailCall);
+
+ std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
+ SDValue Dst, unsigned DstAlign,
+ SDValue Value, SDValue Size, Type *SizeTy,
+ unsigned ElemSz, bool isTailCall,
+ MachinePointerInfo DstPtrInfo) {
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = getDataLayout().getIntPtrType(*getContext());
+ Entry.Node = Dst;
+ Args.push_back(Entry);
+
+ Entry.Ty = Type::getInt8Ty(*getContext());
+ Entry.Node = Value;
+ Args.push_back(Entry);
+
+ Entry.Ty = SizeTy;
+ Entry.Node = Size;
+ Args.push_back(Entry);
+
+ RTLIB::Libcall LibraryCall =
+ RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
+ if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
+ report_fatal_error("Unsupported element size");
+
+ TargetLowering::CallLoweringInfo CLI(*this);
+ CLI.setDebugLoc(dl)
+ .setChain(Chain)
+ .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
+ Type::getVoidTy(*getContext()),
+ getExternalSymbol(TLI->getLibcallName(LibraryCall),
+ TLI->getPointerTy(getDataLayout())),
+ std::move(Args))
+ .setDiscardResult()
+ .setTailCall(isTailCall);
+
+ std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
+ SDVTList VTList, ArrayRef<SDValue> Ops,
+ MachineMemOperand *MMO) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(MemVT.getRawBits());
+ AddNodeIDNode(ID, Opcode, VTList, Ops);
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void* IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<AtomicSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+
+ auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
+ VTList, MemVT, MMO);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
+ EVT MemVT, SDVTList VTs, SDValue Chain,
+ SDValue Ptr, SDValue Cmp, SDValue Swp,
+ MachineMemOperand *MMO) {
+ assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
+ Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
+ assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
+
+ SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
+ SDValue Chain, SDValue Ptr, SDValue Val,
+ MachineMemOperand *MMO) {
+ assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
+ Opcode == ISD::ATOMIC_LOAD_SUB ||
+ Opcode == ISD::ATOMIC_LOAD_AND ||
+ Opcode == ISD::ATOMIC_LOAD_CLR ||
+ Opcode == ISD::ATOMIC_LOAD_OR ||
+ Opcode == ISD::ATOMIC_LOAD_XOR ||
+ Opcode == ISD::ATOMIC_LOAD_NAND ||
+ Opcode == ISD::ATOMIC_LOAD_MIN ||
+ Opcode == ISD::ATOMIC_LOAD_MAX ||
+ Opcode == ISD::ATOMIC_LOAD_UMIN ||
+ Opcode == ISD::ATOMIC_LOAD_UMAX ||
+ Opcode == ISD::ATOMIC_LOAD_FADD ||
+ Opcode == ISD::ATOMIC_LOAD_FSUB ||
+ Opcode == ISD::ATOMIC_SWAP ||
+ Opcode == ISD::ATOMIC_STORE) &&
+ "Invalid Atomic Op");
+
+ EVT VT = Val.getValueType();
+
+ SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
+ getVTList(VT, MVT::Other);
+ SDValue Ops[] = {Chain, Ptr, Val};
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
+ EVT VT, SDValue Chain, SDValue Ptr,
+ MachineMemOperand *MMO) {
+ assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
+
+ SDVTList VTs = getVTList(VT, MVT::Other);
+ SDValue Ops[] = {Chain, Ptr};
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
+}
+
+/// getMergeValues - Create a MERGE_VALUES node from the given operands.
+SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
+ if (Ops.size() == 1)
+ return Ops[0];
+
+ SmallVector<EVT, 4> VTs;
+ VTs.reserve(Ops.size());
+ for (unsigned i = 0; i < Ops.size(); ++i)
+ VTs.push_back(Ops[i].getValueType());
+ return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
+}
+
+SDValue SelectionDAG::getMemIntrinsicNode(
+ unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
+ EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
+ MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) {
+ if (Align == 0) // Ensure that codegen never sees alignment 0
+ Align = getEVTAlignment(MemVT);
+
+ if (!Size)
+ Size = MemVT.getStoreSize();
+
+ MachineFunction &MF = getMachineFunction();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
+
+ return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
+}
+
+SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
+ SDVTList VTList,
+ ArrayRef<SDValue> Ops, EVT MemVT,
+ MachineMemOperand *MMO) {
+ assert((Opcode == ISD::INTRINSIC_VOID ||
+ Opcode == ISD::INTRINSIC_W_CHAIN ||
+ Opcode == ISD::PREFETCH ||
+ Opcode == ISD::LIFETIME_START ||
+ Opcode == ISD::LIFETIME_END ||
+ ((int)Opcode <= std::numeric_limits<int>::max() &&
+ (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
+ "Opcode is not a memory-accessing opcode!");
+
+ // Memoize the node unless it returns a flag.
+ MemIntrinsicSDNode *N;
+ if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTList, Ops);
+ ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
+ Opcode, dl.getIROrder(), VTList, MemVT, MMO));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+
+ N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
+ VTList, MemVT, MMO);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
+ VTList, MemVT, MMO);
+ createOperands(N, Ops);
+ }
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
+ SDValue Chain, int FrameIndex,
+ int64_t Size, int64_t Offset) {
+ const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
+ const auto VTs = getVTList(MVT::Other);
+ SDValue Ops[2] = {
+ Chain,
+ getFrameIndex(FrameIndex,
+ getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
+ true)};
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTs, Ops);
+ ID.AddInteger(FrameIndex);
+ ID.AddInteger(Size);
+ ID.AddInteger(Offset);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
+ return SDValue(E, 0);
+
+ LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
+ Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
+ createOperands(N, Ops);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
+/// MachinePointerInfo record from it. This is particularly useful because the
+/// code generator has many cases where it doesn't bother passing in a
+/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
+static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
+ SelectionDAG &DAG, SDValue Ptr,
+ int64_t Offset = 0) {
+ // If this is FI+Offset, we can model it.
+ if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
+ return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
+ FI->getIndex(), Offset);
+
+ // If this is (FI+Offset1)+Offset2, we can model it.
+ if (Ptr.getOpcode() != ISD::ADD ||
+ !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
+ !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
+ return Info;
+
+ int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+ return MachinePointerInfo::getFixedStack(
+ DAG.getMachineFunction(), FI,
+ Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
+}
+
+/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
+/// MachinePointerInfo record from it. This is particularly useful because the
+/// code generator has many cases where it doesn't bother passing in a
+/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
+static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
+ SelectionDAG &DAG, SDValue Ptr,
+ SDValue OffsetOp) {
+ // If the 'Offset' value isn't a constant, we can't handle this.
+ if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
+ return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
+ if (OffsetOp.isUndef())
+ return InferPointerInfo(Info, DAG, Ptr);
+ return Info;
+}
+
+SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
+ EVT VT, const SDLoc &dl, SDValue Chain,
+ SDValue Ptr, SDValue Offset,
+ MachinePointerInfo PtrInfo, EVT MemVT,
+ unsigned Alignment,
+ MachineMemOperand::Flags MMOFlags,
+ const AAMDNodes &AAInfo, const MDNode *Ranges) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(MemVT);
+
+ MMOFlags |= MachineMemOperand::MOLoad;
+ assert((MMOFlags & MachineMemOperand::MOStore) == 0);
+ // If we don't have a PtrInfo, infer the trivial frame index case to simplify
+ // clients.
+ if (PtrInfo.V.isNull())
+ PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
+
+ MachineFunction &MF = getMachineFunction();
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
+ return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
+}
+
+SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
+ EVT VT, const SDLoc &dl, SDValue Chain,
+ SDValue Ptr, SDValue Offset, EVT MemVT,
+ MachineMemOperand *MMO) {
+ if (VT == MemVT) {
+ ExtType = ISD::NON_EXTLOAD;
+ } else if (ExtType == ISD::NON_EXTLOAD) {
+ assert(VT == MemVT && "Non-extending load from different memory type!");
+ } else {
+ // Extending load.
+ assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
+ "Should only be an extending load, not truncating!");
+ assert(VT.isInteger() == MemVT.isInteger() &&
+ "Cannot convert from FP to Int or Int -> FP!");
+ assert(VT.isVector() == MemVT.isVector() &&
+ "Cannot use an ext load to convert to or from a vector!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
+ "Cannot use an ext load to change the number of vector elements!");
+ }
+
+ bool Indexed = AM != ISD::UNINDEXED;
+ assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
+
+ SDVTList VTs = Indexed ?
+ getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
+ SDValue Ops[] = { Chain, Ptr, Offset };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
+ ID.AddInteger(MemVT.getRawBits());
+ ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
+ dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<LoadSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
+ ExtType, MemVT, MMO);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
+ SDValue Ptr, MachinePointerInfo PtrInfo,
+ unsigned Alignment,
+ MachineMemOperand::Flags MMOFlags,
+ const AAMDNodes &AAInfo, const MDNode *Ranges) {
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
+ PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
+}
+
+SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
+ SDValue Ptr, MachineMemOperand *MMO) {
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
+ VT, MMO);
+}
+
+SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
+ EVT VT, SDValue Chain, SDValue Ptr,
+ MachinePointerInfo PtrInfo, EVT MemVT,
+ unsigned Alignment,
+ MachineMemOperand::Flags MMOFlags,
+ const AAMDNodes &AAInfo) {
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
+ MemVT, Alignment, MMOFlags, AAInfo);
+}
+
+SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
+ EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
+ MachineMemOperand *MMO) {
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
+ MemVT, MMO);
+}
+
+SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
+ SDValue Base, SDValue Offset,
+ ISD::MemIndexedMode AM) {
+ LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
+ assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
+ // Don't propagate the invariant or dereferenceable flags.
+ auto MMOFlags =
+ LD->getMemOperand()->getFlags() &
+ ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
+ return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
+ LD->getChain(), Base, Offset, LD->getPointerInfo(),
+ LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
+ LD->getAAInfo());
+}
+
+SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
+ SDValue Ptr, MachinePointerInfo PtrInfo,
+ unsigned Alignment,
+ MachineMemOperand::Flags MMOFlags,
+ const AAMDNodes &AAInfo) {
+ assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(Val.getValueType());
+
+ MMOFlags |= MachineMemOperand::MOStore;
+ assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
+
+ if (PtrInfo.V.isNull())
+ PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
+
+ MachineFunction &MF = getMachineFunction();
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
+ return getStore(Chain, dl, Val, Ptr, MMO);
+}
+
+SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
+ SDValue Ptr, MachineMemOperand *MMO) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ EVT VT = Val.getValueType();
+ SDVTList VTs = getVTList(MVT::Other);
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ SDValue Ops[] = { Chain, Val, Ptr, Undef };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
+ ID.AddInteger(VT.getRawBits());
+ ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
+ dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<StoreSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
+ ISD::UNINDEXED, false, VT, MMO);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
+ SDValue Ptr, MachinePointerInfo PtrInfo,
+ EVT SVT, unsigned Alignment,
+ MachineMemOperand::Flags MMOFlags,
+ const AAMDNodes &AAInfo) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(SVT);
+
+ MMOFlags |= MachineMemOperand::MOStore;
+ assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
+
+ if (PtrInfo.V.isNull())
+ PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
+
+ MachineFunction &MF = getMachineFunction();
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
+ return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
+}
+
+SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
+ SDValue Ptr, EVT SVT,
+ MachineMemOperand *MMO) {
+ EVT VT = Val.getValueType();
+
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ if (VT == SVT)
+ return getStore(Chain, dl, Val, Ptr, MMO);
+
+ assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
+ "Should only be a truncating store, not extending!");
+ assert(VT.isInteger() == SVT.isInteger() &&
+ "Can't do FP-INT conversion!");
+ assert(VT.isVector() == SVT.isVector() &&
+ "Cannot use trunc store to convert to or from a vector!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
+ "Cannot use trunc store to change the number of vector elements!");
+
+ SDVTList VTs = getVTList(MVT::Other);
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ SDValue Ops[] = { Chain, Val, Ptr, Undef };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
+ ID.AddInteger(SVT.getRawBits());
+ ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
+ dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<StoreSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
+ ISD::UNINDEXED, true, SVT, MMO);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
+ SDValue Base, SDValue Offset,
+ ISD::MemIndexedMode AM) {
+ StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
+ assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
+ SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
+ SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
+ ID.AddInteger(ST->getMemoryVT().getRawBits());
+ ID.AddInteger(ST->getRawSubclassData());
+ ID.AddInteger(ST->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
+ return SDValue(E, 0);
+
+ auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
+ ST->isTruncatingStore(), ST->getMemoryVT(),
+ ST->getMemOperand());
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
+ SDValue Ptr, SDValue Mask, SDValue PassThru,
+ EVT MemVT, MachineMemOperand *MMO,
+ ISD::LoadExtType ExtTy, bool isExpanding) {
+ SDVTList VTs = getVTList(VT, MVT::Other);
+ SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
+ ID.AddInteger(MemVT.getRawBits());
+ ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
+ dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
+ ExtTy, isExpanding, MemVT, MMO);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
+ SDValue Val, SDValue Ptr, SDValue Mask,
+ EVT MemVT, MachineMemOperand *MMO,
+ bool IsTruncating, bool IsCompressing) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ SDVTList VTs = getVTList(MVT::Other);
+ SDValue Ops[] = { Chain, Val, Ptr, Mask };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
+ ID.AddInteger(MemVT.getRawBits());
+ ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
+ dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
+ IsTruncating, IsCompressing, MemVT, MMO);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
+ ArrayRef<SDValue> Ops,
+ MachineMemOperand *MMO) {
+ assert(Ops.size() == 6 && "Incompatible number of operands");
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
+ ID.AddInteger(VT.getRawBits());
+ ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
+ dl.getIROrder(), VTs, VT, MMO));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+
+ auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
+ VTs, VT, MMO);
+ createOperands(N, Ops);
+
+ assert(N->getPassThru().getValueType() == N->getValueType(0) &&
+ "Incompatible type of the PassThru value in MaskedGatherSDNode");
+ assert(N->getMask().getValueType().getVectorNumElements() ==
+ N->getValueType(0).getVectorNumElements() &&
+ "Vector width mismatch between mask and data");
+ assert(N->getIndex().getValueType().getVectorNumElements() >=
+ N->getValueType(0).getVectorNumElements() &&
+ "Vector width mismatch between index and data");
+ assert(isa<ConstantSDNode>(N->getScale()) &&
+ cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
+ "Scale should be a constant power of 2");
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
+ ArrayRef<SDValue> Ops,
+ MachineMemOperand *MMO) {
+ assert(Ops.size() == 6 && "Incompatible number of operands");
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
+ ID.AddInteger(VT.getRawBits());
+ ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
+ dl.getIROrder(), VTs, VT, MMO));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
+ cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
+ VTs, VT, MMO);
+ createOperands(N, Ops);
+
+ assert(N->getMask().getValueType().getVectorNumElements() ==
+ N->getValue().getValueType().getVectorNumElements() &&
+ "Vector width mismatch between mask and data");
+ assert(N->getIndex().getValueType().getVectorNumElements() >=
+ N->getValue().getValueType().getVectorNumElements() &&
+ "Vector width mismatch between index and data");
+ assert(isa<ConstantSDNode>(N->getScale()) &&
+ cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
+ "Scale should be a constant power of 2");
+
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
+ // select undef, T, F --> T (if T is a constant), otherwise F
+ // select, ?, undef, F --> F
+ // select, ?, T, undef --> T
+ if (Cond.isUndef())
+ return isConstantValueOfAnyType(T) ? T : F;
+ if (T.isUndef())
+ return F;
+ if (F.isUndef())
+ return T;
+
+ // select true, T, F --> T
+ // select false, T, F --> F
+ if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
+ return CondC->isNullValue() ? F : T;
+
+ // TODO: This should simplify VSELECT with constant condition using something
+ // like this (but check boolean contents to be complete?):
+ // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
+ // return T;
+ // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
+ // return F;
+
+ // select ?, T, T --> T
+ if (T == F)
+ return T;
+
+ return SDValue();
+}
+
+SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
+ // shift undef, Y --> 0 (can always assume that the undef value is 0)
+ if (X.isUndef())
+ return getConstant(0, SDLoc(X.getNode()), X.getValueType());
+ // shift X, undef --> undef (because it may shift by the bitwidth)
+ if (Y.isUndef())
+ return getUNDEF(X.getValueType());
+
+ // shift 0, Y --> 0
+ // shift X, 0 --> X
+ if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
+ return X;
+
+ // shift X, C >= bitwidth(X) --> undef
+ // All vector elements must be too big (or undef) to avoid partial undefs.
+ auto isShiftTooBig = [X](ConstantSDNode *Val) {
+ return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
+ };
+ if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
+ return getUNDEF(X.getValueType());
+
+ return SDValue();
+}
+
+// TODO: Use fast-math-flags to enable more simplifications.
+SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
+ ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
+ if (!YC)
+ return SDValue();
+
+ // X + -0.0 --> X
+ if (Opcode == ISD::FADD)
+ if (YC->getValueAPF().isNegZero())
+ return X;
+
+ // X - +0.0 --> X
+ if (Opcode == ISD::FSUB)
+ if (YC->getValueAPF().isPosZero())
+ return X;
+
+ // X * 1.0 --> X
+ // X / 1.0 --> X
+ if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
+ if (YC->getValueAPF().isExactlyValue(1.0))
+ return X;
+
+ return SDValue();
+}
+
+SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
+ SDValue Ptr, SDValue SV, unsigned Align) {
+ SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
+ return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+ ArrayRef<SDUse> Ops) {
+ switch (Ops.size()) {
+ case 0: return getNode(Opcode, DL, VT);
+ case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
+ case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
+ case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
+ default: break;
+ }
+
+ // Copy from an SDUse array into an SDValue array for use with
+ // the regular getNode logic.
+ SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
+ return getNode(Opcode, DL, VT, NewOps);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
+ ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
+ unsigned NumOps = Ops.size();
+ switch (NumOps) {
+ case 0: return getNode(Opcode, DL, VT);
+ case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
+ case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
+ case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
+ default: break;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case ISD::BUILD_VECTOR:
+ // Attempt to simplify BUILD_VECTOR.
+ if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
+ return V;
+ break;
+ case ISD::CONCAT_VECTORS:
+ if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
+ return V;
+ break;
+ case ISD::SELECT_CC:
+ assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
+ assert(Ops[0].getValueType() == Ops[1].getValueType() &&
+ "LHS and RHS of condition must have same type!");
+ assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+ "True and False arms of SelectCC must have same type!");
+ assert(Ops[2].getValueType() == VT &&
+ "select_cc node must be of same type as true and false value!");
+ break;
+ case ISD::BR_CC:
+ assert(NumOps == 5 && "BR_CC takes 5 operands!");
+ assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+ "LHS/RHS of comparison should match types!");
+ break;
+ }
+
+ // Memoize nodes.
+ SDNode *N;
+ SDVTList VTs = getVTList(VT);
+
+ if (VT != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTs, Ops);
+ void *IP = nullptr;
+
+ if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
+ return SDValue(E, 0);
+
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ createOperands(N, Ops);
+
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ createOperands(N, Ops);
+ }
+
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
+ ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
+ return getNode(Opcode, DL, getVTList(ResultTys), Ops);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
+ ArrayRef<SDValue> Ops) {
+ if (VTList.NumVTs == 1)
+ return getNode(Opcode, DL, VTList.VTs[0], Ops);
+
+#if 0
+ switch (Opcode) {
+ // FIXME: figure out how to safely handle things like
+ // int foo(int x) { return 1 << (x & 255); }
+ // int bar() { return foo(256); }
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS:
+ case ISD::SHL_PARTS:
+ if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
+ return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
+ else if (N3.getOpcode() == ISD::AND)
+ if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
+ // If the and is only masking out bits that cannot effect the shift,
+ // eliminate the and.
+ unsigned NumBits = VT.getScalarSizeInBits()*2;
+ if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
+ return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
+ }
+ break;
+ }
+#endif
+
+ // Memoize the node unless it returns a flag.
+ SDNode *N;
+ if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTList, Ops);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
+ return SDValue(E, 0);
+
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
+ createOperands(N, Ops);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
+ createOperands(N, Ops);
+ }
+ InsertNode(N);
+ SDValue V(N, 0);
+ NewSDValueDbgMsg(V, "Creating new node: ", this);
+ return V;
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
+ SDVTList VTList) {
+ return getNode(Opcode, DL, VTList, None);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
+ SDValue N1) {
+ SDValue Ops[] = { N1 };
+ return getNode(Opcode, DL, VTList, Ops);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
+ SDValue N1, SDValue N2) {
+ SDValue Ops[] = { N1, N2 };
+ return getNode(Opcode, DL, VTList, Ops);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
+ SDValue N1, SDValue N2, SDValue N3) {
+ SDValue Ops[] = { N1, N2, N3 };
+ return getNode(Opcode, DL, VTList, Ops);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
+ SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
+ SDValue Ops[] = { N1, N2, N3, N4 };
+ return getNode(Opcode, DL, VTList, Ops);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
+ SDValue N1, SDValue N2, SDValue N3, SDValue N4,
+ SDValue N5) {
+ SDValue Ops[] = { N1, N2, N3, N4, N5 };
+ return getNode(Opcode, DL, VTList, Ops);
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT) {
+ return makeVTList(SDNode::getValueTypeList(VT), 1);
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(2U);
+ ID.AddInteger(VT1.getRawBits());
+ ID.AddInteger(VT2.getRawBits());
+
+ void *IP = nullptr;
+ SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
+ if (!Result) {
+ EVT *Array = Allocator.Allocate<EVT>(2);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
+ VTListMap.InsertNode(Result, IP);
+ }
+ return Result->getSDVTList();
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(3U);
+ ID.AddInteger(VT1.getRawBits());
+ ID.AddInteger(VT2.getRawBits());
+ ID.AddInteger(VT3.getRawBits());
+
+ void *IP = nullptr;
+ SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
+ if (!Result) {
+ EVT *Array = Allocator.Allocate<EVT>(3);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ Array[2] = VT3;
+ Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
+ VTListMap.InsertNode(Result, IP);
+ }
+ return Result->getSDVTList();
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(4U);
+ ID.AddInteger(VT1.getRawBits());
+ ID.AddInteger(VT2.getRawBits());
+ ID.AddInteger(VT3.getRawBits());
+ ID.AddInteger(VT4.getRawBits());
+
+ void *IP = nullptr;
+ SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
+ if (!Result) {
+ EVT *Array = Allocator.Allocate<EVT>(4);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ Array[2] = VT3;
+ Array[3] = VT4;
+ Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
+ VTListMap.InsertNode(Result, IP);
+ }
+ return Result->getSDVTList();
+}
+
+SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
+ unsigned NumVTs = VTs.size();
+ FoldingSetNodeID ID;
+ ID.AddInteger(NumVTs);
+ for (unsigned index = 0; index < NumVTs; index++) {
+ ID.AddInteger(VTs[index].getRawBits());
+ }
+
+ void *IP = nullptr;
+ SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
+ if (!Result) {
+ EVT *Array = Allocator.Allocate<EVT>(NumVTs);
+ llvm::copy(VTs, Array);
+ Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
+ VTListMap.InsertNode(Result, IP);
+ }
+ return Result->getSDVTList();
+}
+
+
+/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
+/// specified operands. If the resultant node already exists in the DAG,
+/// this does not modify the specified node, instead it returns the node that
+/// already exists. If the resultant node does not exist in the DAG, the
+/// input node is returned. As a degenerate case, if you specify the same
+/// input operands as the node already has, the input node is returned.
+SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
+ assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
+
+ // Check to see if there is no change.
+ if (Op == N->getOperand(0)) return N;
+
+ // See if the modified node already exists.
+ void *InsertPos = nullptr;
+ if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
+ return Existing;
+
+ // Nope it doesn't. Remove the node from its current place in the maps.
+ if (InsertPos)
+ if (!RemoveNodeFromCSEMaps(N))
+ InsertPos = nullptr;
+
+ // Now we update the operands.
+ N->OperandList[0].set(Op);
+
+ updateDivergence(N);
+ // If this gets put into a CSE map, add it.
+ if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+ return N;
+}
+
+SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
+ assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
+
+ // Check to see if there is no change.
+ if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
+ return N; // No operands changed, just return the input node.
+
+ // See if the modified node already exists.
+ void *InsertPos = nullptr;
+ if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
+ return Existing;
+
+ // Nope it doesn't. Remove the node from its current place in the maps.
+ if (InsertPos)
+ if (!RemoveNodeFromCSEMaps(N))
+ InsertPos = nullptr;
+
+ // Now we update the operands.
+ if (N->OperandList[0] != Op1)
+ N->OperandList[0].set(Op1);
+ if (N->OperandList[1] != Op2)
+ N->OperandList[1].set(Op2);
+
+ updateDivergence(N);
+ // If this gets put into a CSE map, add it.
+ if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+ return N;
+}
+
+SDNode *SelectionDAG::
+UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return UpdateNodeOperands(N, Ops);
+}
+
+SDNode *SelectionDAG::
+UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
+ SDValue Op3, SDValue Op4) {
+ SDValue Ops[] = { Op1, Op2, Op3, Op4 };
+ return UpdateNodeOperands(N, Ops);
+}
+
+SDNode *SelectionDAG::
+UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
+ SDValue Op3, SDValue Op4, SDValue Op5) {
+ SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
+ return UpdateNodeOperands(N, Ops);
+}
+
+SDNode *SelectionDAG::
+UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
+ unsigned NumOps = Ops.size();
+ assert(N->getNumOperands() == NumOps &&
+ "Update with wrong number of operands");
+
+ // If no operands changed just return the input node.
+ if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
+ return N;
+
+ // See if the modified node already exists.
+ void *InsertPos = nullptr;
+ if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
+ return Existing;
+
+ // Nope it doesn't. Remove the node from its current place in the maps.
+ if (InsertPos)
+ if (!RemoveNodeFromCSEMaps(N))
+ InsertPos = nullptr;
+
+ // Now we update the operands.
+ for (unsigned i = 0; i != NumOps; ++i)
+ if (N->OperandList[i] != Ops[i])
+ N->OperandList[i].set(Ops[i]);
+
+ updateDivergence(N);
+ // If this gets put into a CSE map, add it.
+ if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+ return N;
+}
+
+/// DropOperands - Release the operands and set this node to have
+/// zero operands.
+void SDNode::DropOperands() {
+ // Unlike the code in MorphNodeTo that does this, we don't need to
+ // watch for dead nodes here.
+ for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
+ SDUse &Use = *I++;
+ Use.set(SDValue());
+ }
+}
+
+void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
+ ArrayRef<MachineMemOperand *> NewMemRefs) {
+ if (NewMemRefs.empty()) {
+ N->clearMemRefs();
+ return;
+ }
+
+ // Check if we can avoid allocating by storing a single reference directly.
+ if (NewMemRefs.size() == 1) {
+ N->MemRefs = NewMemRefs[0];
+ N->NumMemRefs = 1;
+ return;
+ }
+
+ MachineMemOperand **MemRefsBuffer =
+ Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
+ llvm::copy(NewMemRefs, MemRefsBuffer);
+ N->MemRefs = MemRefsBuffer;
+ N->NumMemRefs = static_cast<int>(NewMemRefs.size());
+}
+
+/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
+/// machine opcode.
+///
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT) {
+ SDVTList VTs = getVTList(VT);
+ return SelectNodeTo(N, MachineOpc, VTs, None);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT, SDValue Op1) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT, SDValue Op1,
+ SDValue Op2) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT, SDValue Op1,
+ SDValue Op2, SDValue Op3) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT, ArrayRef<SDValue> Ops) {
+ SDVTList VTs = getVTList(VT);
+ return SelectNodeTo(N, MachineOpc, VTs, Ops);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ return SelectNodeTo(N, MachineOpc, VTs, Ops);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ return SelectNodeTo(N, MachineOpc, VTs, None);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2, EVT VT3,
+ ArrayRef<SDValue> Ops) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ return SelectNodeTo(N, MachineOpc, VTs, Ops);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2,
+ SDValue Op1, SDValue Op2) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1, Op2 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ SDVTList VTs,ArrayRef<SDValue> Ops) {
+ SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
+ // Reset the NodeID to -1.
+ New->setNodeId(-1);
+ if (New != N) {
+ ReplaceAllUsesWith(N, New);
+ RemoveDeadNode(N);
+ }
+ return New;
+}
+
+/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
+/// the line number information on the merged node since it is not possible to
+/// preserve the information that operation is associated with multiple lines.
+/// This will make the debugger working better at -O0, were there is a higher
+/// probability having other instructions associated with that line.
+///
+/// For IROrder, we keep the smaller of the two
+SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
+ DebugLoc NLoc = N->getDebugLoc();
+ if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
+ N->setDebugLoc(DebugLoc());
+ }
+ unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
+ N->setIROrder(Order);
+ return N;
+}
+
+/// MorphNodeTo - This *mutates* the specified node to have the specified
+/// return type, opcode, and operands.
+///
+/// Note that MorphNodeTo returns the resultant node. If there is already a
+/// node of the specified opcode and operands, it returns that node instead of
+/// the current one. Note that the SDLoc need not be the same.
+///
+/// Using MorphNodeTo is faster than creating a new node and swapping it in
+/// with ReplaceAllUsesWith both because it often avoids allocating a new
+/// node, and because it doesn't require CSE recalculation for any of
+/// the node's users.
+///
+/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
+/// As a consequence it isn't appropriate to use from within the DAG combiner or
+/// the legalizer which maintain worklists that would need to be updated when
+/// deleting things.
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+ SDVTList VTs, ArrayRef<SDValue> Ops) {
+ // If an identical node already exists, use it.
+ void *IP = nullptr;
+ if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, VTs, Ops);
+ if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
+ return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
+ }
+
+ if (!RemoveNodeFromCSEMaps(N))
+ IP = nullptr;
+
+ // Start the morphing.
+ N->NodeType = Opc;
+ N->ValueList = VTs.VTs;
+ N->NumValues = VTs.NumVTs;
+
+ // Clear the operands list, updating used nodes to remove this from their
+ // use list. Keep track of any operands that become dead as a result.
+ SmallPtrSet<SDNode*, 16> DeadNodeSet;
+ for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
+ SDUse &Use = *I++;
+ SDNode *Used = Use.getNode();
+ Use.set(SDValue());
+ if (Used->use_empty())
+ DeadNodeSet.insert(Used);
+ }
+
+ // For MachineNode, initialize the memory references information.
+ if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
+ MN->clearMemRefs();
+
+ // Swap for an appropriately sized array from the recycler.
+ removeOperands(N);
+ createOperands(N, Ops);
+
+ // Delete any nodes that are still dead after adding the uses for the
+ // new operands.
+ if (!DeadNodeSet.empty()) {
+ SmallVector<SDNode *, 16> DeadNodes;
+ for (SDNode *N : DeadNodeSet)
+ if (N->use_empty())
+ DeadNodes.push_back(N);
+ RemoveDeadNodes(DeadNodes);
+ }
+
+ if (IP)
+ CSEMap.InsertNode(N, IP); // Memoize the new node.
+ return N;
+}
+
+SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
+ unsigned OrigOpc = Node->getOpcode();
+ unsigned NewOpc;
+ switch (OrigOpc) {
+ default:
+ llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
+ case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
+ case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
+ case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
+ case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
+ case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
+ case ISD::STRICT_FMA: NewOpc = ISD::FMA; break;
+ case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; break;
+ case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
+ case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
+ case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; break;
+ case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; break;
+ case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; break;
+ case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; break;
+ case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; break;
+ case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; break;
+ case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; break;
+ case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; break;
+ case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break;
+ case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
+ case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
+ case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; break;
+ case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; break;
+ case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; break;
+ case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; break;
+ case ISD::STRICT_FP_ROUND: NewOpc = ISD::FP_ROUND; break;
+ case ISD::STRICT_FP_EXTEND: NewOpc = ISD::FP_EXTEND; break;
+ }
+
+ assert(Node->getNumValues() == 2 && "Unexpected number of results!");
+
+ // We're taking this node out of the chain, so we need to re-link things.
+ SDValue InputChain = Node->getOperand(0);
+ SDValue OutputChain = SDValue(Node, 1);
+ ReplaceAllUsesOfValueWith(OutputChain, InputChain);
+
+ SmallVector<SDValue, 3> Ops;
+ for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
+ Ops.push_back(Node->getOperand(i));
+
+ SDVTList VTs = getVTList(Node->getValueType(0));
+ SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
+
+ // MorphNodeTo can operate in two ways: if an existing node with the
+ // specified operands exists, it can just return it. Otherwise, it
+ // updates the node in place to have the requested operands.
+ if (Res == Node) {
+ // If we updated the node in place, reset the node ID. To the isel,
+ // this should be just like a newly allocated machine node.
+ Res->setNodeId(-1);
+ } else {
+ ReplaceAllUsesWith(Node, Res);
+ RemoveDeadNode(Node);
+ }
+
+ return Res;
+}
+
+/// getMachineNode - These are used for target selectors to create a new node
+/// with specified return type(s), MachineInstr opcode, and operands.
+///
+/// Note that getMachineNode returns the resultant node. If there is already a
+/// node of the specified opcode and operands, it returns that node instead of
+/// the current one.
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT) {
+ SDVTList VTs = getVTList(VT);
+ return getMachineNode(Opcode, dl, VTs, None);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT, SDValue Op1) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1 };
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT, SDValue Op1, SDValue Op2) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2 };
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT, SDValue Op1, SDValue Op2,
+ SDValue Op3) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT, ArrayRef<SDValue> Ops) {
+ SDVTList VTs = getVTList(VT);
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT1, EVT VT2, SDValue Op1,
+ SDValue Op2) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1, Op2 };
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT1, EVT VT2, SDValue Op1,
+ SDValue Op2, SDValue Op3) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT1, EVT VT2,
+ ArrayRef<SDValue> Ops) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ SDValue Op1, SDValue Op2) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ SDValue Ops[] = { Op1, Op2 };
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ SDValue Op1, SDValue Op2,
+ SDValue Op3) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ ArrayRef<SDValue> Ops) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
+ ArrayRef<EVT> ResultTys,
+ ArrayRef<SDValue> Ops) {
+ SDVTList VTs = getVTList(ResultTys);
+ return getMachineNode(Opcode, dl, VTs, Ops);
+}
+
+MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
+ SDVTList VTs,
+ ArrayRef<SDValue> Ops) {
+ bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
+ MachineSDNode *N;
+ void *IP = nullptr;
+
+ if (DoCSE) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ~Opcode, VTs, Ops);
+ IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
+ return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
+ }
+ }
+
+ // Allocate a new MachineSDNode.
+ N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
+ createOperands(N, Ops);
+
+ if (DoCSE)
+ CSEMap.InsertNode(N, IP);
+
+ InsertNode(N);
+ return N;
+}
+
+/// getTargetExtractSubreg - A convenience function for creating
+/// TargetOpcode::EXTRACT_SUBREG nodes.
+SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
+ SDValue Operand) {
+ SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
+ SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
+ VT, Operand, SRIdxVal);
+ return SDValue(Subreg, 0);
+}
+
+/// getTargetInsertSubreg - A convenience function for creating
+/// TargetOpcode::INSERT_SUBREG nodes.
+SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
+ SDValue Operand, SDValue Subreg) {
+ SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
+ SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
+ VT, Operand, Subreg, SRIdxVal);
+ return SDValue(Result, 0);
+}
+
+/// getNodeIfExists - Get the specified node if it's already available, or
+/// else return NULL.
+SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
+ ArrayRef<SDValue> Ops,
+ const SDNodeFlags Flags) {
+ if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTList, Ops);
+ void *IP = nullptr;
+ if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
+ E->intersectFlagsWith(Flags);
+ return E;
+ }
+ }
+ return nullptr;
+}
+
+/// getDbgValue - Creates a SDDbgValue node.
+///
+/// SDNode
+SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
+ SDNode *N, unsigned R, bool IsIndirect,
+ const DebugLoc &DL, unsigned O) {
+ assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ return new (DbgInfo->getAlloc())
+ SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
+}
+
+/// Constant
+SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
+ DIExpression *Expr,
+ const Value *C,
+ const DebugLoc &DL, unsigned O) {
+ assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
+}
+
+/// FrameIndex
+SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
+ DIExpression *Expr, unsigned FI,
+ bool IsIndirect,
+ const DebugLoc &DL,
+ unsigned O) {
+ assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ return new (DbgInfo->getAlloc())
+ SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
+}
+
+/// VReg
+SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
+ DIExpression *Expr,
+ unsigned VReg, bool IsIndirect,
+ const DebugLoc &DL, unsigned O) {
+ assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ return new (DbgInfo->getAlloc())
+ SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
+}
+
+void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
+ unsigned OffsetInBits, unsigned SizeInBits,
+ bool InvalidateDbg) {
+ SDNode *FromNode = From.getNode();
+ SDNode *ToNode = To.getNode();
+ assert(FromNode && ToNode && "Can't modify dbg values");
+
+ // PR35338
+ // TODO: assert(From != To && "Redundant dbg value transfer");
+ // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
+ if (From == To || FromNode == ToNode)
+ return;
+
+ if (!FromNode->getHasDebugValue())
+ return;
+
+ SmallVector<SDDbgValue *, 2> ClonedDVs;
+ for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
+ if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
+ continue;
+
+ // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
+
+ // Just transfer the dbg value attached to From.
+ if (Dbg->getResNo() != From.getResNo())
+ continue;
+
+ DIVariable *Var = Dbg->getVariable();
+ auto *Expr = Dbg->getExpression();
+ // If a fragment is requested, update the expression.
+ if (SizeInBits) {
+ // When splitting a larger (e.g., sign-extended) value whose
+ // lower bits are described with an SDDbgValue, do not attempt
+ // to transfer the SDDbgValue to the upper bits.
+ if (auto FI = Expr->getFragmentInfo())
+ if (OffsetInBits + SizeInBits > FI->SizeInBits)
+ continue;
+ auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
+ SizeInBits);
+ if (!Fragment)
+ continue;
+ Expr = *Fragment;
+ }
+ // Clone the SDDbgValue and move it to To.
+ SDDbgValue *Clone =
+ getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
+ Dbg->getDebugLoc(), Dbg->getOrder());
+ ClonedDVs.push_back(Clone);
+
+ if (InvalidateDbg) {
+ // Invalidate value and indicate the SDDbgValue should not be emitted.
+ Dbg->setIsInvalidated();
+ Dbg->setIsEmitted();
+ }
+ }
+
+ for (SDDbgValue *Dbg : ClonedDVs)
+ AddDbgValue(Dbg, ToNode, false);
+}
+
+void SelectionDAG::salvageDebugInfo(SDNode &N) {
+ if (!N.getHasDebugValue())
+ return;
+
+ SmallVector<SDDbgValue *, 2> ClonedDVs;
+ for (auto DV : GetDbgValues(&N)) {
+ if (DV->isInvalidated())
+ continue;
+ switch (N.getOpcode()) {
+ default:
+ break;
+ case ISD::ADD:
+ SDValue N0 = N.getOperand(0);
+ SDValue N1 = N.getOperand(1);
+ if (!isConstantIntBuildVectorOrConstantInt(N0) &&
+ isConstantIntBuildVectorOrConstantInt(N1)) {
+ uint64_t Offset = N.getConstantOperandVal(1);
+ // Rewrite an ADD constant node into a DIExpression. Since we are
+ // performing arithmetic to compute the variable's *value* in the
+ // DIExpression, we need to mark the expression with a
+ // DW_OP_stack_value.
+ auto *DIExpr = DV->getExpression();
+ DIExpr =
+ DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
+ SDDbgValue *Clone =
+ getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
+ DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
+ ClonedDVs.push_back(Clone);
+ DV->setIsInvalidated();
+ DV->setIsEmitted();
+ LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
+ N0.getNode()->dumprFull(this);
+ dbgs() << " into " << *DIExpr << '\n');
+ }
+ }
+ }
+
+ for (SDDbgValue *Dbg : ClonedDVs)
+ AddDbgValue(Dbg, Dbg->getSDNode(), false);
+}
+
+/// Creates a SDDbgLabel node.
+SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
+ const DebugLoc &DL, unsigned O) {
+ assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
+}
+
+namespace {
+
+/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
+/// pointed to by a use iterator is deleted, increment the use iterator
+/// so that it doesn't dangle.
+///
+class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
+ SDNode::use_iterator &UI;
+ SDNode::use_iterator &UE;
+
+ void NodeDeleted(SDNode *N, SDNode *E) override {
+ // Increment the iterator as needed.
+ while (UI != UE && N == *UI)
+ ++UI;
+ }
+
+public:
+ RAUWUpdateListener(SelectionDAG &d,
+ SDNode::use_iterator &ui,
+ SDNode::use_iterator &ue)
+ : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
+};
+
+} // end anonymous namespace
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version assumes From has a single result value.
+///
+void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
+ SDNode *From = FromN.getNode();
+ assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
+ "Cannot replace with this method!");
+ assert(From != To.getNode() && "Cannot replace uses of with self");
+
+ // Preserve Debug Values
+ transferDbgValues(FromN, To);
+
+ // Iterate over all the existing uses of From. New uses will be added
+ // to the beginning of the use list, which we avoid visiting.
+ // This specifically avoids visiting uses of From that arise while the
+ // replacement is happening, because any such uses would be the result
+ // of CSE: If an existing node looks like From after one of its operands
+ // is replaced by To, we don't want to replace of all its users with To
+ // too. See PR3018 for more info.
+ SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+ RAUWUpdateListener Listener(*this, UI, UE);
+ while (UI != UE) {
+ SDNode *User = *UI;
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(User);
+
+ // A user can appear in a use list multiple times, and when this
+ // happens the uses are usually next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ SDUse &Use = UI.getUse();
+ ++UI;
+ Use.set(To);
+ if (To->isDivergent() != From->isDivergent())
+ updateDivergence(User);
+ } while (UI != UE && *UI == User);
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User);
+ }
+
+ // If we just RAUW'd the root, take note.
+ if (FromN == getRoot())
+ setRoot(To);
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version assumes that for each value of From, there is a
+/// corresponding value in To in the same position with the same type.
+///
+void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
+#ifndef NDEBUG
+ for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
+ assert((!From->hasAnyUseOfValue(i) ||
+ From->getValueType(i) == To->getValueType(i)) &&
+ "Cannot use this version of ReplaceAllUsesWith!");
+#endif
+
+ // Handle the trivial case.
+ if (From == To)
+ return;
+
+ // Preserve Debug Info. Only do this if there's a use.
+ for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
+ if (From->hasAnyUseOfValue(i)) {
+ assert((i < To->getNumValues()) && "Invalid To location");
+ transferDbgValues(SDValue(From, i), SDValue(To, i));
+ }
+
+ // Iterate over just the existing users of From. See the comments in
+ // the ReplaceAllUsesWith above.
+ SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+ RAUWUpdateListener Listener(*this, UI, UE);
+ while (UI != UE) {
+ SDNode *User = *UI;
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(User);
+
+ // A user can appear in a use list multiple times, and when this
+ // happens the uses are usually next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ SDUse &Use = UI.getUse();
+ ++UI;
+ Use.setNode(To);
+ if (To->isDivergent() != From->isDivergent())
+ updateDivergence(User);
+ } while (UI != UE && *UI == User);
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User);
+ }
+
+ // If we just RAUW'd the root, take note.
+ if (From == getRoot().getNode())
+ setRoot(SDValue(To, getRoot().getResNo()));
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version can replace From with any result values. To must match the
+/// number and types of values returned by From.
+void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
+ if (From->getNumValues() == 1) // Handle the simple case efficiently.
+ return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
+
+ // Preserve Debug Info.
+ for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
+ transferDbgValues(SDValue(From, i), To[i]);
+
+ // Iterate over just the existing users of From. See the comments in
+ // the ReplaceAllUsesWith above.
+ SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+ RAUWUpdateListener Listener(*this, UI, UE);
+ while (UI != UE) {
+ SDNode *User = *UI;
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(User);
+
+ // A user can appear in a use list multiple times, and when this happens the
+ // uses are usually next to each other in the list. To help reduce the
+ // number of CSE and divergence recomputations, process all the uses of this
+ // user that we can find this way.
+ bool To_IsDivergent = false;
+ do {
+ SDUse &Use = UI.getUse();
+ const SDValue &ToOp = To[Use.getResNo()];
+ ++UI;
+ Use.set(ToOp);
+ To_IsDivergent |= ToOp->isDivergent();
+ } while (UI != UE && *UI == User);
+
+ if (To_IsDivergent != From->isDivergent())
+ updateDivergence(User);
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User);
+ }
+
+ // If we just RAUW'd the root, take note.
+ if (From == getRoot().getNode())
+ setRoot(SDValue(To[getRoot().getResNo()]));
+}
+
+/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
+/// uses of other values produced by From.getNode() alone. The Deleted
+/// vector is handled the same way as for ReplaceAllUsesWith.
+void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
+ // Handle the really simple, really trivial case efficiently.
+ if (From == To) return;
+
+ // Handle the simple, trivial, case efficiently.
+ if (From.getNode()->getNumValues() == 1) {
+ ReplaceAllUsesWith(From, To);
+ return;
+ }
+
+ // Preserve Debug Info.
+ transferDbgValues(From, To);
+
+ // Iterate over just the existing users of From. See the comments in
+ // the ReplaceAllUsesWith above.
+ SDNode::use_iterator UI = From.getNode()->use_begin(),
+ UE = From.getNode()->use_end();
+ RAUWUpdateListener Listener(*this, UI, UE);
+ while (UI != UE) {
+ SDNode *User = *UI;
+ bool UserRemovedFromCSEMaps = false;
+
+ // A user can appear in a use list multiple times, and when this
+ // happens the uses are usually next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ SDUse &Use = UI.getUse();
+
+ // Skip uses of different values from the same node.
+ if (Use.getResNo() != From.getResNo()) {
+ ++UI;
+ continue;
+ }
+
+ // If this node hasn't been modified yet, it's still in the CSE maps,
+ // so remove its old self from the CSE maps.
+ if (!UserRemovedFromCSEMaps) {
+ RemoveNodeFromCSEMaps(User);
+ UserRemovedFromCSEMaps = true;
+ }
+
+ ++UI;
+ Use.set(To);
+ if (To->isDivergent() != From->isDivergent())
+ updateDivergence(User);
+ } while (UI != UE && *UI == User);
+ // We are iterating over all uses of the From node, so if a use
+ // doesn't use the specific value, no changes are made.
+ if (!UserRemovedFromCSEMaps)
+ continue;
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User);
+ }
+
+ // If we just RAUW'd the root, take note.
+ if (From == getRoot())
+ setRoot(To);
+}
+
+namespace {
+
+ /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
+ /// to record information about a use.
+ struct UseMemo {
+ SDNode *User;
+ unsigned Index;
+ SDUse *Use;
+ };
+
+ /// operator< - Sort Memos by User.
+ bool operator<(const UseMemo &L, const UseMemo &R) {
+ return (intptr_t)L.User < (intptr_t)R.User;
+ }
+
+} // end anonymous namespace
+
+void SelectionDAG::updateDivergence(SDNode * N)
+{
+ if (TLI->isSDNodeAlwaysUniform(N))
+ return;
+ bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
+ for (auto &Op : N->ops()) {
+ if (Op.Val.getValueType() != MVT::Other)
+ IsDivergent |= Op.getNode()->isDivergent();
+ }
+ if (N->SDNodeBits.IsDivergent != IsDivergent) {
+ N->SDNodeBits.IsDivergent = IsDivergent;
+ for (auto U : N->uses()) {
+ updateDivergence(U);
+ }
+ }
+}
+
+void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
+ DenseMap<SDNode *, unsigned> Degree;
+ Order.reserve(AllNodes.size());
+ for (auto &N : allnodes()) {
+ unsigned NOps = N.getNumOperands();
+ Degree[&N] = NOps;
+ if (0 == NOps)
+ Order.push_back(&N);
+ }
+ for (size_t I = 0; I != Order.size(); ++I) {
+ SDNode *N = Order[I];
+ for (auto U : N->uses()) {
+ unsigned &UnsortedOps = Degree[U];
+ if (0 == --UnsortedOps)
+ Order.push_back(U);
+ }
+ }
+}
+
+#ifndef NDEBUG
+void SelectionDAG::VerifyDAGDiverence() {
+ std::vector<SDNode *> TopoOrder;
+ CreateTopologicalOrder(TopoOrder);
+ const TargetLowering &TLI = getTargetLoweringInfo();
+ DenseMap<const SDNode *, bool> DivergenceMap;
+ for (auto &N : allnodes()) {
+ DivergenceMap[&N] = false;
+ }
+ for (auto N : TopoOrder) {
+ bool IsDivergent = DivergenceMap[N];
+ bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
+ for (auto &Op : N->ops()) {
+ if (Op.Val.getValueType() != MVT::Other)
+ IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
+ }
+ if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
+ DivergenceMap[N] = true;
+ }
+ }
+ for (auto &N : allnodes()) {
+ (void)N;
+ assert(DivergenceMap[&N] == N.isDivergent() &&
+ "Divergence bit inconsistency detected\n");
+ }
+}
+#endif
+
+/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
+/// uses of other values produced by From.getNode() alone. The same value
+/// may appear in both the From and To list. The Deleted vector is
+/// handled the same way as for ReplaceAllUsesWith.
+void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
+ const SDValue *To,
+ unsigned Num){
+ // Handle the simple, trivial case efficiently.
+ if (Num == 1)
+ return ReplaceAllUsesOfValueWith(*From, *To);
+
+ transferDbgValues(*From, *To);
+
+ // Read up all the uses and make records of them. This helps
+ // processing new uses that are introduced during the
+ // replacement process.
+ SmallVector<UseMemo, 4> Uses;
+ for (unsigned i = 0; i != Num; ++i) {
+ unsigned FromResNo = From[i].getResNo();
+ SDNode *FromNode = From[i].getNode();
+ for (SDNode::use_iterator UI = FromNode->use_begin(),
+ E = FromNode->use_end(); UI != E; ++UI) {
+ SDUse &Use = UI.getUse();
+ if (Use.getResNo() == FromResNo) {
+ UseMemo Memo = { *UI, i, &Use };
+ Uses.push_back(Memo);
+ }
+ }
+ }
+
+ // Sort the uses, so that all the uses from a given User are together.
+ llvm::sort(Uses);
+
+ for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
+ UseIndex != UseIndexEnd; ) {
+ // We know that this user uses some value of From. If it is the right
+ // value, update it.
+ SDNode *User = Uses[UseIndex].User;
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(User);
+
+ // The Uses array is sorted, so all the uses for a given User
+ // are next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ unsigned i = Uses[UseIndex].Index;
+ SDUse &Use = *Uses[UseIndex].Use;
+ ++UseIndex;
+
+ Use.set(To[i]);
+ } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User);
+ }
+}
+
+/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
+/// based on their topological order. It returns the maximum id and a vector
+/// of the SDNodes* in assigned order by reference.
+unsigned SelectionDAG::AssignTopologicalOrder() {
+ unsigned DAGSize = 0;
+
+ // SortedPos tracks the progress of the algorithm. Nodes before it are
+ // sorted, nodes after it are unsorted. When the algorithm completes
+ // it is at the end of the list.
+ allnodes_iterator SortedPos = allnodes_begin();
+
+ // Visit all the nodes. Move nodes with no operands to the front of
+ // the list immediately. Annotate nodes that do have operands with their
+ // operand count. Before we do this, the Node Id fields of the nodes
+ // may contain arbitrary values. After, the Node Id fields for nodes
+ // before SortedPos will contain the topological sort index, and the
+ // Node Id fields for nodes At SortedPos and after will contain the
+ // count of outstanding operands.
+ for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
+ SDNode *N = &*I++;
+ checkForCycles(N, this);
+ unsigned Degree = N->getNumOperands();
+ if (Degree == 0) {
+ // A node with no uses, add it to the result array immediately.
+ N->setNodeId(DAGSize++);
+ allnodes_iterator Q(N);
+ if (Q != SortedPos)
+ SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
+ assert(SortedPos != AllNodes.end() && "Overran node list");
+ ++SortedPos;
+ } else {
+ // Temporarily use the Node Id as scratch space for the degree count.
+ N->setNodeId(Degree);
+ }
+ }
+
+ // Visit all the nodes. As we iterate, move nodes into sorted order,
+ // such that by the time the end is reached all nodes will be sorted.
+ for (SDNode &Node : allnodes()) {
+ SDNode *N = &Node;
+ checkForCycles(N, this);
+ // N is in sorted position, so all its uses have one less operand
+ // that needs to be sorted.
+ for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ UI != UE; ++UI) {
+ SDNode *P = *UI;
+ unsigned Degree = P->getNodeId();
+ assert(Degree != 0 && "Invalid node degree");
+ --Degree;
+ if (Degree == 0) {
+ // All of P's operands are sorted, so P may sorted now.
+ P->setNodeId(DAGSize++);
+ if (P->getIterator() != SortedPos)
+ SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
+ assert(SortedPos != AllNodes.end() && "Overran node list");
+ ++SortedPos;
+ } else {
+ // Update P's outstanding operand count.
+ P->setNodeId(Degree);
+ }
+ }
+ if (Node.getIterator() == SortedPos) {
+#ifndef NDEBUG
+ allnodes_iterator I(N);
+ SDNode *S = &*++I;
+ dbgs() << "Overran sorted position:\n";
+ S->dumprFull(this); dbgs() << "\n";
+ dbgs() << "Checking if this is due to cycles\n";
+ checkForCycles(this, true);
+#endif
+ llvm_unreachable(nullptr);
+ }
+ }
+
+ assert(SortedPos == AllNodes.end() &&
+ "Topological sort incomplete!");
+ assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
+ "First node in topological sort is not the entry token!");
+ assert(AllNodes.front().getNodeId() == 0 &&
+ "First node in topological sort has non-zero id!");
+ assert(AllNodes.front().getNumOperands() == 0 &&
+ "First node in topological sort has operands!");
+ assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
+ "Last node in topologic sort has unexpected id!");
+ assert(AllNodes.back().use_empty() &&
+ "Last node in topologic sort has users!");
+ assert(DAGSize == allnodes_size() && "Node count mismatch!");
+ return DAGSize;
+}
+
+/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
+/// value is produced by SD.
+void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
+ if (SD) {
+ assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
+ SD->setHasDebugValue(true);
+ }
+ DbgInfo->add(DB, SD, isParameter);
+}
+
+void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
+ DbgInfo->add(DB);
+}
+
+SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
+ SDValue NewMemOp) {
+ assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
+ // The new memory operation must have the same position as the old load in
+ // terms of memory dependency. Create a TokenFactor for the old load and new
+ // memory operation and update uses of the old load's output chain to use that
+ // TokenFactor.
+ SDValue OldChain = SDValue(OldLoad, 1);
+ SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
+ if (!OldLoad->hasAnyUseOfValue(1))
+ return NewChain;
+
+ SDValue TokenFactor =
+ getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
+ ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
+ UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
+ return TokenFactor;
+}
+
+SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
+ Function **OutFunction) {
+ assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
+
+ auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
+ auto *Module = MF->getFunction().getParent();
+ auto *Function = Module->getFunction(Symbol);
+
+ if (OutFunction != nullptr)
+ *OutFunction = Function;
+
+ if (Function != nullptr) {
+ auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
+ return getGlobalAddress(Function, SDLoc(Op), PtrTy);
+ }
+
+ std::string ErrorStr;
+ raw_string_ostream ErrorFormatter(ErrorStr);
+
+ ErrorFormatter << "Undefined external symbol ";
+ ErrorFormatter << '"' << Symbol << '"';
+ ErrorFormatter.flush();
+
+ report_fatal_error(ErrorStr);
+}
+
+//===----------------------------------------------------------------------===//
+// SDNode Class
+//===----------------------------------------------------------------------===//
+
+bool llvm::isNullConstant(SDValue V) {
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
+ return Const != nullptr && Const->isNullValue();
+}
+
+bool llvm::isNullFPConstant(SDValue V) {
+ ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
+ return Const != nullptr && Const->isZero() && !Const->isNegative();
+}
+
+bool llvm::isAllOnesConstant(SDValue V) {
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
+ return Const != nullptr && Const->isAllOnesValue();
+}
+
+bool llvm::isOneConstant(SDValue V) {
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
+ return Const != nullptr && Const->isOne();
+}
+
+SDValue llvm::peekThroughBitcasts(SDValue V) {
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+ return V;
+}
+
+SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
+ while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
+ V = V.getOperand(0);
+ return V;
+}
+
+SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
+ while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
+ V = V.getOperand(0);
+ return V;
+}
+
+bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
+ if (V.getOpcode() != ISD::XOR)
+ return false;
+ V = peekThroughBitcasts(V.getOperand(1));
+ unsigned NumBits = V.getScalarValueSizeInBits();
+ ConstantSDNode *C =
+ isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
+ return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
+}
+
+ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
+ bool AllowTruncation) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
+
+ // BuildVectors can truncate their operands. Ignore that case here unless
+ // AllowTruncation is set.
+ if (CN && (UndefElements.none() || AllowUndefs)) {
+ EVT CVT = CN->getValueType(0);
+ EVT NSVT = N.getValueType().getScalarType();
+ assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
+ if (AllowTruncation || (CVT == NSVT))
+ return CN;
+ }
+ }
+
+ return nullptr;
+}
+
+ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
+ bool AllowUndefs,
+ bool AllowTruncation) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
+
+ // BuildVectors can truncate their operands. Ignore that case here unless
+ // AllowTruncation is set.
+ if (CN && (UndefElements.none() || AllowUndefs)) {
+ EVT CVT = CN->getValueType(0);
+ EVT NSVT = N.getValueType().getScalarType();
+ assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
+ if (AllowTruncation || (CVT == NSVT))
+ return CN;
+ }
+ }
+
+ return nullptr;
+}
+
+ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
+ if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
+ if (CN && (UndefElements.none() || AllowUndefs))
+ return CN;
+ }
+
+ return nullptr;
+}
+
+ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
+ const APInt &DemandedElts,
+ bool AllowUndefs) {
+ if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantFPSDNode *CN =
+ BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
+ if (CN && (UndefElements.none() || AllowUndefs))
+ return CN;
+ }
+
+ return nullptr;
+}
+
+bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
+ // TODO: may want to use peekThroughBitcast() here.
+ ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
+ return C && C->isNullValue();
+}
+
+bool llvm::isOneOrOneSplat(SDValue N) {
+ // TODO: may want to use peekThroughBitcast() here.
+ unsigned BitWidth = N.getScalarValueSizeInBits();
+ ConstantSDNode *C = isConstOrConstSplat(N);
+ return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
+}
+
+bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
+ N = peekThroughBitcasts(N);
+ unsigned BitWidth = N.getScalarValueSizeInBits();
+ ConstantSDNode *C = isConstOrConstSplat(N);
+ return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
+}
+
+HandleSDNode::~HandleSDNode() {
+ DropOperands();
+}
+
+GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
+ const DebugLoc &DL,
+ const GlobalValue *GA, EVT VT,
+ int64_t o, unsigned char TF)
+ : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
+ TheGlobal = GA;
+}
+
+AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
+ EVT VT, unsigned SrcAS,
+ unsigned DestAS)
+ : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
+ SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
+
+MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
+ SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
+ : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
+ MemSDNodeBits.IsVolatile = MMO->isVolatile();
+ MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
+ MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
+ MemSDNodeBits.IsInvariant = MMO->isInvariant();
+
+ // We check here that the size of the memory operand fits within the size of
+ // the MMO. This is because the MMO might indicate only a possible address
+ // range instead of specifying the affected memory addresses precisely.
+ assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
+}
+
+/// Profile - Gather unique data for the node.
+///
+void SDNode::Profile(FoldingSetNodeID &ID) const {
+ AddNodeIDNode(ID, this);
+}
+
+namespace {
+
+ struct EVTArray {
+ std::vector<EVT> VTs;
+
+ EVTArray() {
+ VTs.reserve(MVT::LAST_VALUETYPE);
+ for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
+ VTs.push_back(MVT((MVT::SimpleValueType)i));
+ }
+ };
+
+} // end anonymous namespace
+
+static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
+static ManagedStatic<EVTArray> SimpleVTArray;
+static ManagedStatic<sys::SmartMutex<true>> VTMutex;
+
+/// getValueTypeList - Return a pointer to the specified value type.
+///
+const EVT *SDNode::getValueTypeList(EVT VT) {
+ if (VT.isExtended()) {
+ sys::SmartScopedLock<true> Lock(*VTMutex);
+ return &(*EVTs->insert(VT).first);
+ } else {
+ assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
+ "Value type out of range!");
+ return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
+ }
+}
+
+/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
+/// indicated value. This method ignores uses of other values defined by this
+/// operation.
+bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
+ assert(Value < getNumValues() && "Bad value!");
+
+ // TODO: Only iterate over uses of a given value of the node
+ for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
+ if (UI.getUse().getResNo() == Value) {
+ if (NUses == 0)
+ return false;
+ --NUses;
+ }
+ }
+
+ // Found exactly the right number of uses?
+ return NUses == 0;
+}
+
+/// hasAnyUseOfValue - Return true if there are any use of the indicated
+/// value. This method ignores uses of other values defined by this operation.
+bool SDNode::hasAnyUseOfValue(unsigned Value) const {
+ assert(Value < getNumValues() && "Bad value!");
+
+ for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
+ if (UI.getUse().getResNo() == Value)
+ return true;
+
+ return false;
+}
+
+/// isOnlyUserOf - Return true if this node is the only use of N.
+bool SDNode::isOnlyUserOf(const SDNode *N) const {
+ bool Seen = false;
+ for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
+ SDNode *User = *I;
+ if (User == this)
+ Seen = true;
+ else
+ return false;
+ }
+
+ return Seen;
+}
+
+/// Return true if the only users of N are contained in Nodes.
+bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
+ bool Seen = false;
+ for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
+ SDNode *User = *I;
+ if (llvm::any_of(Nodes,
+ [&User](const SDNode *Node) { return User == Node; }))
+ Seen = true;
+ else
+ return false;
+ }
+
+ return Seen;
+}
+
+/// isOperand - Return true if this node is an operand of N.
+bool SDValue::isOperandOf(const SDNode *N) const {
+ return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
+}
+
+bool SDNode::isOperandOf(const SDNode *N) const {
+ return any_of(N->op_values(),
+ [this](SDValue Op) { return this == Op.getNode(); });
+}
+
+/// reachesChainWithoutSideEffects - Return true if this operand (which must
+/// be a chain) reaches the specified operand without crossing any
+/// side-effecting instructions on any chain path. In practice, this looks
+/// through token factors and non-volatile loads. In order to remain efficient,
+/// this only looks a couple of nodes in, it does not do an exhaustive search.
+///
+/// Note that we only need to examine chains when we're searching for
+/// side-effects; SelectionDAG requires that all side-effects are represented
+/// by chains, even if another operand would force a specific ordering. This
+/// constraint is necessary to allow transformations like splitting loads.
+bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
+ unsigned Depth) const {
+ if (*this == Dest) return true;
+
+ // Don't search too deeply, we just want to be able to see through
+ // TokenFactor's etc.
+ if (Depth == 0) return false;
+
+ // If this is a token factor, all inputs to the TF happen in parallel.
+ if (getOpcode() == ISD::TokenFactor) {
+ // First, try a shallow search.
+ if (is_contained((*this)->ops(), Dest)) {
+ // We found the chain we want as an operand of this TokenFactor.
+ // Essentially, we reach the chain without side-effects if we could
+ // serialize the TokenFactor into a simple chain of operations with
+ // Dest as the last operation. This is automatically true if the
+ // chain has one use: there are no other ordering constraints.
+ // If the chain has more than one use, we give up: some other
+ // use of Dest might force a side-effect between Dest and the current
+ // node.
+ if (Dest.hasOneUse())
+ return true;
+ }
+ // Next, try a deep search: check whether every operand of the TokenFactor
+ // reaches Dest.
+ return llvm::all_of((*this)->ops(), [=](SDValue Op) {
+ return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
+ });
+ }
+
+ // Loads don't have side effects, look through them.
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
+ if (!Ld->isVolatile())
+ return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
+ }
+ return false;
+}
+
+bool SDNode::hasPredecessor(const SDNode *N) const {
+ SmallPtrSet<const SDNode *, 32> Visited;
+ SmallVector<const SDNode *, 16> Worklist;
+ Worklist.push_back(this);
+ return hasPredecessorHelper(N, Visited, Worklist);
+}
+
+void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
+ this->Flags.intersectWith(Flags);
+}
+
+SDValue
+SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
+ ArrayRef<ISD::NodeType> CandidateBinOps) {
+ // The pattern must end in an extract from index 0.
+ if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isNullConstant(Extract->getOperand(1)))
+ return SDValue();
+
+ SDValue Op = Extract->getOperand(0);
+ unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
+
+ // Match against one of the candidate binary ops.
+ if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
+ return Op.getOpcode() == unsigned(BinOp);
+ }))
+ return SDValue();
+
+ // At each stage, we're looking for something that looks like:
+ // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
+ // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
+ // i32 undef, i32 undef, i32 undef, i32 undef>
+ // %a = binop <8 x i32> %op, %s
+ // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
+ // we expect something like:
+ // <4,5,6,7,u,u,u,u>
+ // <2,3,u,u,u,u,u,u>
+ // <1,u,u,u,u,u,u,u>
+ unsigned CandidateBinOp = Op.getOpcode();
+ for (unsigned i = 0; i < Stages; ++i) {
+ if (Op.getOpcode() != CandidateBinOp)
+ return SDValue();
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
+ if (Shuffle) {
+ Op = Op1;
+ } else {
+ Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
+ Op = Op0;
+ }
+
+ // The first operand of the shuffle should be the same as the other operand
+ // of the binop.
+ if (!Shuffle || Shuffle->getOperand(0) != Op)
+ return SDValue();
+
+ // Verify the shuffle has the expected (at this stage of the pyramid) mask.
+ for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
+ if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
+ return SDValue();
+ }
+
+ BinOp = (ISD::NodeType)CandidateBinOp;
+ return Op;
+}
+
+SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
+ assert(N->getNumValues() == 1 &&
+ "Can't unroll a vector with multiple results!");
+
+ EVT VT = N->getValueType(0);
+ unsigned NE = VT.getVectorNumElements();
+ EVT EltVT = VT.getVectorElementType();
+ SDLoc dl(N);
+
+ SmallVector<SDValue, 8> Scalars;
+ SmallVector<SDValue, 4> Operands(N->getNumOperands());
+
+ // If ResNE is 0, fully unroll the vector op.
+ if (ResNE == 0)
+ ResNE = NE;
+ else if (NE > ResNE)
+ NE = ResNE;
+
+ unsigned i;
+ for (i= 0; i != NE; ++i) {
+ for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
+ SDValue Operand = N->getOperand(j);
+ EVT OperandVT = Operand.getValueType();
+ if (OperandVT.isVector()) {
+ // A vector operand; extract a single element.
+ EVT OperandEltVT = OperandVT.getVectorElementType();
+ Operands[j] =
+ getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
+ getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
+ } else {
+ // A scalar operand; just use it as is.
+ Operands[j] = Operand;
+ }
+ }
+
+ switch (N->getOpcode()) {
+ default: {
+ Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
+ N->getFlags()));
+ break;
+ }
+ case ISD::VSELECT:
+ Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
+ break;
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::ROTL:
+ case ISD::ROTR:
+ Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
+ getShiftAmountOperand(Operands[0].getValueType(),
+ Operands[1])));
+ break;
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::FP_ROUND_INREG: {
+ EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
+ Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
+ Operands[0],
+ getValueType(ExtVT)));
+ }
+ }
+ }
+
+ for (; i < ResNE; ++i)
+ Scalars.push_back(getUNDEF(EltVT));
+
+ EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
+ return getBuildVector(VecVT, dl, Scalars);
+}
+
+std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
+ SDNode *N, unsigned ResNE) {
+ unsigned Opcode = N->getOpcode();
+ assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
+ Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
+ Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
+ "Expected an overflow opcode");
+
+ EVT ResVT = N->getValueType(0);
+ EVT OvVT = N->getValueType(1);
+ EVT ResEltVT = ResVT.getVectorElementType();
+ EVT OvEltVT = OvVT.getVectorElementType();
+ SDLoc dl(N);
+
+ // If ResNE is 0, fully unroll the vector op.
+ unsigned NE = ResVT.getVectorNumElements();
+ if (ResNE == 0)
+ ResNE = NE;
+ else if (NE > ResNE)
+ NE = ResNE;
+
+ SmallVector<SDValue, 8> LHSScalars;
+ SmallVector<SDValue, 8> RHSScalars;
+ ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
+ ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
+
+ EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
+ SDVTList VTs = getVTList(ResEltVT, SVT);
+ SmallVector<SDValue, 8> ResScalars;
+ SmallVector<SDValue, 8> OvScalars;
+ for (unsigned i = 0; i < NE; ++i) {
+ SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
+ SDValue Ov =
+ getSelect(dl, OvEltVT, Res.getValue(1),
+ getBoolConstant(true, dl, OvEltVT, ResVT),
+ getConstant(0, dl, OvEltVT));
+
+ ResScalars.push_back(Res);
+ OvScalars.push_back(Ov);
+ }
+
+ ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
+ OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
+
+ EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
+ EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
+ return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
+ getBuildVector(NewOvVT, dl, OvScalars));
+}
+
+bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
+ LoadSDNode *Base,
+ unsigned Bytes,
+ int Dist) const {
+ if (LD->isVolatile() || Base->isVolatile())
+ return false;
+ if (LD->isIndexed() || Base->isIndexed())
+ return false;
+ if (LD->getChain() != Base->getChain())
+ return false;
+ EVT VT = LD->getValueType(0);
+ if (VT.getSizeInBits() / 8 != Bytes)
+ return false;
+
+ auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
+ auto LocDecomp = BaseIndexOffset::match(LD, *this);
+
+ int64_t Offset = 0;
+ if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
+ return (Dist * Bytes == Offset);
+ return false;
+}
+
+/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
+/// it cannot be inferred.
+unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
+ // If this is a GlobalAddress + cst, return the alignment.
+ const GlobalValue *GV;
+ int64_t GVOffset = 0;
+ if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
+ unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
+ KnownBits Known(IdxWidth);
+ llvm::computeKnownBits(GV, Known, getDataLayout());
+ unsigned AlignBits = Known.countMinTrailingZeros();
+ unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
+ if (Align)
+ return MinAlign(Align, GVOffset);
+ }
+
+ // If this is a direct reference to a stack slot, use information about the
+ // stack slot's alignment.
+ int FrameIdx = INT_MIN;
+ int64_t FrameOffset = 0;
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
+ FrameIdx = FI->getIndex();
+ } else if (isBaseWithConstantOffset(Ptr) &&
+ isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
+ // Handle FI+Cst
+ FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+ FrameOffset = Ptr.getConstantOperandVal(1);
+ }
+
+ if (FrameIdx != INT_MIN) {
+ const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
+ unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
+ FrameOffset);
+ return FIInfoAlign;
+ }
+
+ return 0;
+}
+
+/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
+/// which is split (or expanded) into two not necessarily identical pieces.
+std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
+ // Currently all types are split in half.
+ EVT LoVT, HiVT;
+ if (!VT.isVector())
+ LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
+ else
+ LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
+
+ return std::make_pair(LoVT, HiVT);
+}
+
+/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
+/// low/high part.
+std::pair<SDValue, SDValue>
+SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
+ const EVT &HiVT) {
+ assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
+ N.getValueType().getVectorNumElements() &&
+ "More vector elements requested than available!");
+ SDValue Lo, Hi;
+ Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
+ getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
+ Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
+ getConstant(LoVT.getVectorNumElements(), DL,
+ TLI->getVectorIdxTy(getDataLayout())));
+ return std::make_pair(Lo, Hi);
+}
+
+/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
+SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
+ EVT VT = N.getValueType();
+ EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
+ NextPowerOf2(VT.getVectorNumElements()));
+ return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
+ getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
+}
+
+void SelectionDAG::ExtractVectorElements(SDValue Op,
+ SmallVectorImpl<SDValue> &Args,
+ unsigned Start, unsigned Count) {
+ EVT VT = Op.getValueType();
+ if (Count == 0)
+ Count = VT.getVectorNumElements();
+
+ EVT EltVT = VT.getVectorElementType();
+ EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
+ SDLoc SL(Op);
+ for (unsigned i = Start, e = Start + Count; i != e; ++i) {
+ Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
+ Op, getConstant(i, SL, IdxTy)));
+ }
+}
+
+// getAddressSpace - Return the address space this GlobalAddress belongs to.
+unsigned GlobalAddressSDNode::getAddressSpace() const {
+ return getGlobal()->getType()->getAddressSpace();
+}
+
+Type *ConstantPoolSDNode::getType() const {
+ if (isMachineConstantPoolEntry())
+ return Val.MachineCPVal->getType();
+ return Val.ConstVal->getType();
+}
+
+bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
+ unsigned &SplatBitSize,
+ bool &HasAnyUndefs,
+ unsigned MinSplatBits,
+ bool IsBigEndian) const {
+ EVT VT = getValueType(0);
+ assert(VT.isVector() && "Expected a vector type");
+ unsigned VecWidth = VT.getSizeInBits();
+ if (MinSplatBits > VecWidth)
+ return false;
+
+ // FIXME: The widths are based on this node's type, but build vectors can
+ // truncate their operands.
+ SplatValue = APInt(VecWidth, 0);
+ SplatUndef = APInt(VecWidth, 0);
+
+ // Get the bits. Bits with undefined values (when the corresponding element
+ // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
+ // in SplatValue. If any of the values are not constant, give up and return
+ // false.
+ unsigned int NumOps = getNumOperands();
+ assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
+ unsigned EltWidth = VT.getScalarSizeInBits();
+
+ for (unsigned j = 0; j < NumOps; ++j) {
+ unsigned i = IsBigEndian ? NumOps - 1 - j : j;
+ SDValue OpVal = getOperand(i);
+ unsigned BitPos = j * EltWidth;
+
+ if (OpVal.isUndef())
+ SplatUndef.setBits(BitPos, BitPos + EltWidth);
+ else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
+ SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
+ else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
+ SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
+ else
+ return false;
+ }
+
+ // The build_vector is all constants or undefs. Find the smallest element
+ // size that splats the vector.
+ HasAnyUndefs = (SplatUndef != 0);
+
+ // FIXME: This does not work for vectors with elements less than 8 bits.
+ while (VecWidth > 8) {
+ unsigned HalfSize = VecWidth / 2;
+ APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
+ APInt LowValue = SplatValue.trunc(HalfSize);
+ APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
+ APInt LowUndef = SplatUndef.trunc(HalfSize);
+
+ // If the two halves do not match (ignoring undef bits), stop here.
+ if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
+ MinSplatBits > HalfSize)
+ break;
+
+ SplatValue = HighValue | LowValue;
+ SplatUndef = HighUndef & LowUndef;
+
+ VecWidth = HalfSize;
+ }
+
+ SplatBitSize = VecWidth;
+ return true;
+}
+
+SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
+ BitVector *UndefElements) const {
+ if (UndefElements) {
+ UndefElements->clear();
+ UndefElements->resize(getNumOperands());
+ }
+ assert(getNumOperands() == DemandedElts.getBitWidth() &&
+ "Unexpected vector size");
+ if (!DemandedElts)
+ return SDValue();
+ SDValue Splatted;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ SDValue Op = getOperand(i);
+ if (Op.isUndef()) {
+ if (UndefElements)
+ (*UndefElements)[i] = true;
+ } else if (!Splatted) {
+ Splatted = Op;
+ } else if (Splatted != Op) {
+ return SDValue();
+ }
+ }
+
+ if (!Splatted) {
+ unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
+ assert(getOperand(FirstDemandedIdx).isUndef() &&
+ "Can only have a splat without a constant for all undefs.");
+ return getOperand(FirstDemandedIdx);
+ }
+
+ return Splatted;
+}
+
+SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
+ APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
+ return getSplatValue(DemandedElts, UndefElements);
+}
+
+ConstantSDNode *
+BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
+ BitVector *UndefElements) const {
+ return dyn_cast_or_null<ConstantSDNode>(
+ getSplatValue(DemandedElts, UndefElements));
+}
+
+ConstantSDNode *
+BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
+ return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
+}
+
+ConstantFPSDNode *
+BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
+ BitVector *UndefElements) const {
+ return dyn_cast_or_null<ConstantFPSDNode>(
+ getSplatValue(DemandedElts, UndefElements));
+}
+
+ConstantFPSDNode *
+BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
+ return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
+}
+
+int32_t
+BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
+ uint32_t BitWidth) const {
+ if (ConstantFPSDNode *CN =
+ dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
+ bool IsExact;
+ APSInt IntVal(BitWidth);
+ const APFloat &APF = CN->getValueAPF();
+ if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
+ APFloat::opOK ||
+ !IsExact)
+ return -1;
+
+ return IntVal.exactLogBase2();
+ }
+ return -1;
+}
+
+bool BuildVectorSDNode::isConstant() const {
+ for (const SDValue &Op : op_values()) {
+ unsigned Opc = Op.getOpcode();
+ if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
+ return false;
+ }
+ return true;
+}
+
+bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
+ // Find the first non-undef value in the shuffle mask.
+ unsigned i, e;
+ for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
+ /* search */;
+
+ // If all elements are undefined, this shuffle can be considered a splat
+ // (although it should eventually get simplified away completely).
+ if (i == e)
+ return true;
+
+ // Make sure all remaining elements are either undef or the same as the first
+ // non-undef value.
+ for (int Idx = Mask[i]; i != e; ++i)
+ if (Mask[i] >= 0 && Mask[i] != Idx)
+ return false;
+ return true;
+}
+
+// Returns the SDNode if it is a constant integer BuildVector
+// or constant integer.
+SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
+ if (isa<ConstantSDNode>(N))
+ return N.getNode();
+ if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
+ return N.getNode();
+ // Treat a GlobalAddress supporting constant offset folding as a
+ // constant integer.
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
+ if (GA->getOpcode() == ISD::GlobalAddress &&
+ TLI->isOffsetFoldingLegal(GA))
+ return GA;
+ return nullptr;
+}
+
+SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
+ if (isa<ConstantFPSDNode>(N))
+ return N.getNode();
+
+ if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
+ return N.getNode();
+
+ return nullptr;
+}
+
+void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
+ assert(!Node->OperandList && "Node already has operands");
+ assert(SDNode::getMaxNumOperands() >= Vals.size() &&
+ "too many operands to fit into SDNode");
+ SDUse *Ops = OperandRecycler.allocate(
+ ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
+
+ bool IsDivergent = false;
+ for (unsigned I = 0; I != Vals.size(); ++I) {
+ Ops[I].setUser(Node);
+ Ops[I].setInitial(Vals[I]);
+ if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
+ IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
+ }
+ Node->NumOperands = Vals.size();
+ Node->OperandList = Ops;
+ IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
+ if (!TLI->isSDNodeAlwaysUniform(Node))
+ Node->SDNodeBits.IsDivergent = IsDivergent;
+ checkForCycles(Node);
+}
+
+SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
+ SmallVectorImpl<SDValue> &Vals) {
+ size_t Limit = SDNode::getMaxNumOperands();
+ while (Vals.size() > Limit) {
+ unsigned SliceIdx = Vals.size() - Limit;
+ auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
+ SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
+ Vals.erase(Vals.begin() + SliceIdx, Vals.end());
+ Vals.emplace_back(NewTF);
+ }
+ return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
+}
+
+#ifndef NDEBUG
+static void checkForCyclesHelper(const SDNode *N,
+ SmallPtrSetImpl<const SDNode*> &Visited,
+ SmallPtrSetImpl<const SDNode*> &Checked,
+ const llvm::SelectionDAG *DAG) {
+ // If this node has already been checked, don't check it again.
+ if (Checked.count(N))
+ return;
+
+ // If a node has already been visited on this depth-first walk, reject it as
+ // a cycle.
+ if (!Visited.insert(N).second) {
+ errs() << "Detected cycle in SelectionDAG\n";
+ dbgs() << "Offending node:\n";
+ N->dumprFull(DAG); dbgs() << "\n";
+ abort();
+ }
+
+ for (const SDValue &Op : N->op_values())
+ checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
+
+ Checked.insert(N);
+ Visited.erase(N);
+}
+#endif
+
+void llvm::checkForCycles(const llvm::SDNode *N,
+ const llvm::SelectionDAG *DAG,
+ bool force) {
+#ifndef NDEBUG
+ bool check = force;
+#ifdef EXPENSIVE_CHECKS
+ check = true;
+#endif // EXPENSIVE_CHECKS
+ if (check) {
+ assert(N && "Checking nonexistent SDNode");
+ SmallPtrSet<const SDNode*, 32> visited;
+ SmallPtrSet<const SDNode*, 32> checked;
+ checkForCyclesHelper(N, visited, checked, DAG);
+ }
+#endif // !NDEBUG
+}
+
+void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
+ checkForCycles(DAG->getRoot().getNode(), DAG, force);
+}