summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp6288
1 files changed, 6288 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
new file mode 100644
index 000000000000..2d90dcba12b6
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -0,0 +1,6288 @@
+//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the TargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cctype>
+using namespace llvm;
+
+/// NOTE: The TargetMachine owns TLOF.
+TargetLowering::TargetLowering(const TargetMachine &tm)
+ : TargetLoweringBase(tm) {}
+
+const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ return nullptr;
+}
+
+bool TargetLowering::isPositionIndependent() const {
+ return getTargetMachine().isPositionIndependent();
+}
+
+/// Check whether a given call node is in tail position within its function. If
+/// so, it sets Chain to the input chain of the tail call.
+bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
+ SDValue &Chain) const {
+ const Function &F = DAG.getMachineFunction().getFunction();
+
+ // Conservatively require the attributes of the call to match those of
+ // the return. Ignore NoAlias and NonNull because they don't affect the
+ // call sequence.
+ AttributeList CallerAttrs = F.getAttributes();
+ if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
+ .removeAttribute(Attribute::NoAlias)
+ .removeAttribute(Attribute::NonNull)
+ .hasAttributes())
+ return false;
+
+ // It's not safe to eliminate the sign / zero extension of the return value.
+ if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
+ CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
+ return false;
+
+ // Check if the only use is a function return node.
+ return isUsedByReturnOnly(Node, Chain);
+}
+
+bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
+ const uint32_t *CallerPreservedMask,
+ const SmallVectorImpl<CCValAssign> &ArgLocs,
+ const SmallVectorImpl<SDValue> &OutVals) const {
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ const CCValAssign &ArgLoc = ArgLocs[I];
+ if (!ArgLoc.isRegLoc())
+ continue;
+ unsigned Reg = ArgLoc.getLocReg();
+ // Only look at callee saved registers.
+ if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
+ continue;
+ // Check that we pass the value used for the caller.
+ // (We look for a CopyFromReg reading a virtual register that is used
+ // for the function live-in value of register Reg)
+ SDValue Value = OutVals[I];
+ if (Value->getOpcode() != ISD::CopyFromReg)
+ return false;
+ unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
+ if (MRI.getLiveInPhysReg(ArgReg) != Reg)
+ return false;
+ }
+ return true;
+}
+
+/// Set CallLoweringInfo attribute flags based on a call instruction
+/// and called function attributes.
+void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
+ unsigned ArgIdx) {
+ IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
+ IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
+ IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
+ IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
+ IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
+ IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
+ IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
+ IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
+ IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
+ IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
+ Alignment = Call->getParamAlignment(ArgIdx);
+ ByValType = nullptr;
+ if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
+ ByValType = Call->getParamByValType(ArgIdx);
+}
+
+/// Generate a libcall taking the given operands as arguments and returning a
+/// result of type RetVT.
+std::pair<SDValue, SDValue>
+TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
+ ArrayRef<SDValue> Ops, bool isSigned,
+ const SDLoc &dl, bool doesNotReturn,
+ bool isReturnValueUsed,
+ bool isPostTypeLegalization) const {
+ TargetLowering::ArgListTy Args;
+ Args.reserve(Ops.size());
+
+ TargetLowering::ArgListEntry Entry;
+ for (SDValue Op : Ops) {
+ Entry.Node = Op;
+ Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
+ Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
+ Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
+ Args.push_back(Entry);
+ }
+
+ if (LC == RTLIB::UNKNOWN_LIBCALL)
+ report_fatal_error("Unsupported library call operation!");
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy(DAG.getDataLayout()));
+
+ Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
+ CLI.setDebugLoc(dl)
+ .setChain(DAG.getEntryNode())
+ .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
+ .setNoReturn(doesNotReturn)
+ .setDiscardResult(!isReturnValueUsed)
+ .setIsPostTypeLegalization(isPostTypeLegalization)
+ .setSExtResult(signExtend)
+ .setZExtResult(!signExtend);
+ return LowerCallTo(CLI);
+}
+
+bool
+TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
+ unsigned Limit, uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset,
+ bool ZeroMemset,
+ bool MemcpyStrSrc,
+ bool AllowOverlap,
+ unsigned DstAS, unsigned SrcAS,
+ const AttributeList &FuncAttributes) const {
+ // If 'SrcAlign' is zero, that means the memory operation does not need to
+ // load the value, i.e. memset or memcpy from constant string. Otherwise,
+ // it's the inferred alignment of the source. 'DstAlign', on the other hand,
+ // is the specified alignment of the memory operation. If it is zero, that
+ // means it's possible to change the alignment of the destination.
+ // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
+ // not need to be loaded.
+ if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
+ return false;
+
+ EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
+ IsMemset, ZeroMemset, MemcpyStrSrc,
+ FuncAttributes);
+
+ if (VT == MVT::Other) {
+ // Use the largest integer type whose alignment constraints are satisfied.
+ // We only need to check DstAlign here as SrcAlign is always greater or
+ // equal to DstAlign (or zero).
+ VT = MVT::i64;
+ while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
+ !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
+ VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
+ assert(VT.isInteger());
+
+ // Find the largest legal integer type.
+ MVT LVT = MVT::i64;
+ while (!isTypeLegal(LVT))
+ LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
+ assert(LVT.isInteger());
+
+ // If the type we've chosen is larger than the largest legal integer type
+ // then use that instead.
+ if (VT.bitsGT(LVT))
+ VT = LVT;
+ }
+
+ unsigned NumMemOps = 0;
+ while (Size != 0) {
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ while (VTSize > Size) {
+ // For now, only use non-vector load / store's for the left-over pieces.
+ EVT NewVT = VT;
+ unsigned NewVTSize;
+
+ bool Found = false;
+ if (VT.isVector() || VT.isFloatingPoint()) {
+ NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
+ if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
+ isSafeMemOpType(NewVT.getSimpleVT()))
+ Found = true;
+ else if (NewVT == MVT::i64 &&
+ isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
+ isSafeMemOpType(MVT::f64)) {
+ // i64 is usually not legal on 32-bit targets, but f64 may be.
+ NewVT = MVT::f64;
+ Found = true;
+ }
+ }
+
+ if (!Found) {
+ do {
+ NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
+ if (NewVT == MVT::i8)
+ break;
+ } while (!isSafeMemOpType(NewVT.getSimpleVT()));
+ }
+ NewVTSize = NewVT.getSizeInBits() / 8;
+
+ // If the new VT cannot cover all of the remaining bits, then consider
+ // issuing a (or a pair of) unaligned and overlapping load / store.
+ bool Fast;
+ if (NumMemOps && AllowOverlap && NewVTSize < Size &&
+ allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
+ MachineMemOperand::MONone, &Fast) &&
+ Fast)
+ VTSize = Size;
+ else {
+ VT = NewVT;
+ VTSize = NewVTSize;
+ }
+ }
+
+ if (++NumMemOps > Limit)
+ return false;
+
+ MemOps.push_back(VT);
+ Size -= VTSize;
+ }
+
+ return true;
+}
+
+/// Soften the operands of a comparison. This code is shared among BR_CC,
+/// SELECT_CC, and SETCC handlers.
+void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
+ SDValue &NewLHS, SDValue &NewRHS,
+ ISD::CondCode &CCCode,
+ const SDLoc &dl) const {
+ assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
+ && "Unsupported setcc type!");
+
+ // Expand into one or more soft-fp libcall(s).
+ RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
+ bool ShouldInvertCC = false;
+ switch (CCCode) {
+ case ISD::SETEQ:
+ case ISD::SETOEQ:
+ LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
+ (VT == MVT::f64) ? RTLIB::OEQ_F64 :
+ (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
+ break;
+ case ISD::SETNE:
+ case ISD::SETUNE:
+ LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
+ (VT == MVT::f64) ? RTLIB::UNE_F64 :
+ (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
+ break;
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
+ (VT == MVT::f64) ? RTLIB::OGE_F64 :
+ (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
+ break;
+ case ISD::SETLT:
+ case ISD::SETOLT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
+ (VT == MVT::f64) ? RTLIB::OLT_F64 :
+ (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
+ break;
+ case ISD::SETLE:
+ case ISD::SETOLE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
+ (VT == MVT::f64) ? RTLIB::OLE_F64 :
+ (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
+ break;
+ case ISD::SETGT:
+ case ISD::SETOGT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
+ (VT == MVT::f64) ? RTLIB::OGT_F64 :
+ (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
+ break;
+ case ISD::SETUO:
+ LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
+ (VT == MVT::f64) ? RTLIB::UO_F64 :
+ (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
+ break;
+ case ISD::SETO:
+ LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
+ (VT == MVT::f64) ? RTLIB::O_F64 :
+ (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
+ break;
+ case ISD::SETONE:
+ // SETONE = SETOLT | SETOGT
+ LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
+ (VT == MVT::f64) ? RTLIB::OLT_F64 :
+ (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
+ LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
+ (VT == MVT::f64) ? RTLIB::OGT_F64 :
+ (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
+ break;
+ case ISD::SETUEQ:
+ LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
+ (VT == MVT::f64) ? RTLIB::UO_F64 :
+ (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
+ LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
+ (VT == MVT::f64) ? RTLIB::OEQ_F64 :
+ (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
+ break;
+ default:
+ // Invert CC for unordered comparisons
+ ShouldInvertCC = true;
+ switch (CCCode) {
+ case ISD::SETULT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
+ (VT == MVT::f64) ? RTLIB::OGE_F64 :
+ (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
+ break;
+ case ISD::SETULE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
+ (VT == MVT::f64) ? RTLIB::OGT_F64 :
+ (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
+ break;
+ case ISD::SETUGT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
+ (VT == MVT::f64) ? RTLIB::OLE_F64 :
+ (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
+ break;
+ case ISD::SETUGE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
+ (VT == MVT::f64) ? RTLIB::OLT_F64 :
+ (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
+ break;
+ default: llvm_unreachable("Do not know how to soften this setcc!");
+ }
+ }
+
+ // Use the target specific return value for comparions lib calls.
+ EVT RetVT = getCmpLibcallReturnType();
+ SDValue Ops[2] = {NewLHS, NewRHS};
+ NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
+ dl).first;
+ NewRHS = DAG.getConstant(0, dl, RetVT);
+
+ CCCode = getCmpLibcallCC(LC1);
+ if (ShouldInvertCC)
+ CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
+
+ if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
+ SDValue Tmp = DAG.getNode(
+ ISD::SETCC, dl,
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
+ NewLHS, NewRHS, DAG.getCondCode(CCCode));
+ NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
+ dl).first;
+ NewLHS = DAG.getNode(
+ ISD::SETCC, dl,
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
+ NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
+ NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
+ NewRHS = SDValue();
+ }
+}
+
+/// Return the entry encoding for a jump table in the current function. The
+/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
+unsigned TargetLowering::getJumpTableEncoding() const {
+ // In non-pic modes, just use the address of a block.
+ if (!isPositionIndependent())
+ return MachineJumpTableInfo::EK_BlockAddress;
+
+ // In PIC mode, if the target supports a GPRel32 directive, use it.
+ if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
+ return MachineJumpTableInfo::EK_GPRel32BlockAddress;
+
+ // Otherwise, use a label difference.
+ return MachineJumpTableInfo::EK_LabelDifference32;
+}
+
+SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ // If our PIC model is GP relative, use the global offset table as the base.
+ unsigned JTEncoding = getJumpTableEncoding();
+
+ if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
+ (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
+ return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
+
+ return Table;
+}
+
+/// This returns the relocation base for the given PIC jumptable, the same as
+/// getPICJumpTableRelocBase, but as an MCExpr.
+const MCExpr *
+TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
+ unsigned JTI,MCContext &Ctx) const{
+ // The normal PIC reloc base is the label at the start of the jump table.
+ return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
+}
+
+bool
+TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ const TargetMachine &TM = getTargetMachine();
+ const GlobalValue *GV = GA->getGlobal();
+
+ // If the address is not even local to this DSO we will have to load it from
+ // a got and then add the offset.
+ if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
+ return false;
+
+ // If the code is position independent we will have to add a base register.
+ if (isPositionIndependent())
+ return false;
+
+ // Otherwise we can do it.
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Optimization Methods
+//===----------------------------------------------------------------------===//
+
+/// If the specified instruction has a constant integer operand and there are
+/// bits set in that constant that are not demanded, then clear those bits and
+/// return true.
+bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
+ TargetLoweringOpt &TLO) const {
+ SDLoc DL(Op);
+ unsigned Opcode = Op.getOpcode();
+
+ // Do target-specific constant optimization.
+ if (targetShrinkDemandedConstant(Op, Demanded, TLO))
+ return TLO.New.getNode();
+
+ // FIXME: ISD::SELECT, ISD::SELECT_CC
+ switch (Opcode) {
+ default:
+ break;
+ case ISD::XOR:
+ case ISD::AND:
+ case ISD::OR: {
+ auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!Op1C)
+ return false;
+
+ // If this is a 'not' op, don't touch it because that's a canonical form.
+ const APInt &C = Op1C->getAPIntValue();
+ if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
+ return false;
+
+ if (!C.isSubsetOf(Demanded)) {
+ EVT VT = Op.getValueType();
+ SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
+ SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
+ return TLO.CombineTo(Op, NewOp);
+ }
+
+ break;
+ }
+ }
+
+ return false;
+}
+
+/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
+/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
+/// generalized for targets with other types of implicit widening casts.
+bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
+ const APInt &Demanded,
+ TargetLoweringOpt &TLO) const {
+ assert(Op.getNumOperands() == 2 &&
+ "ShrinkDemandedOp only supports binary operators!");
+ assert(Op.getNode()->getNumValues() == 1 &&
+ "ShrinkDemandedOp only supports nodes with one result!");
+
+ SelectionDAG &DAG = TLO.DAG;
+ SDLoc dl(Op);
+
+ // Early return, as this function cannot handle vector types.
+ if (Op.getValueType().isVector())
+ return false;
+
+ // Don't do this if the node has another user, which may require the
+ // full value.
+ if (!Op.getNode()->hasOneUse())
+ return false;
+
+ // Search for the smallest integer type with free casts to and from
+ // Op's type. For expedience, just check power-of-2 integer types.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned DemandedSize = Demanded.getActiveBits();
+ unsigned SmallVTBits = DemandedSize;
+ if (!isPowerOf2_32(SmallVTBits))
+ SmallVTBits = NextPowerOf2(SmallVTBits);
+ for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
+ EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
+ if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
+ TLI.isZExtFree(SmallVT, Op.getValueType())) {
+ // We found a type with free casts.
+ SDValue X = DAG.getNode(
+ Op.getOpcode(), dl, SmallVT,
+ DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
+ DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
+ assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
+ SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
+ return TLO.CombineTo(Op, Z);
+ }
+ }
+ return false;
+}
+
+bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ KnownBits Known;
+
+ bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
+ if (Simplified) {
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ return Simplified;
+}
+
+bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
+ KnownBits &Known,
+ TargetLoweringOpt &TLO,
+ unsigned Depth,
+ bool AssumeSingleUse) const {
+ EVT VT = Op.getValueType();
+ APInt DemandedElts = VT.isVector()
+ ? APInt::getAllOnesValue(VT.getVectorNumElements())
+ : APInt(1, 1);
+ return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
+ AssumeSingleUse);
+}
+
+/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
+/// result of Op are ever used downstream. If we can use this information to
+/// simplify Op, create a new simplified DAG node and return true, returning the
+/// original and new nodes in Old and New. Otherwise, analyze the expression and
+/// return a mask of Known bits for the expression (used to simplify the
+/// caller). The Known bits may only be accurate for those bits in the
+/// OriginalDemandedBits and OriginalDemandedElts.
+bool TargetLowering::SimplifyDemandedBits(
+ SDValue Op, const APInt &OriginalDemandedBits,
+ const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
+ unsigned Depth, bool AssumeSingleUse) const {
+ unsigned BitWidth = OriginalDemandedBits.getBitWidth();
+ assert(Op.getScalarValueSizeInBits() == BitWidth &&
+ "Mask size mismatches value type size!");
+
+ unsigned NumElts = OriginalDemandedElts.getBitWidth();
+ assert((!Op.getValueType().isVector() ||
+ NumElts == Op.getValueType().getVectorNumElements()) &&
+ "Unexpected vector size");
+
+ APInt DemandedBits = OriginalDemandedBits;
+ APInt DemandedElts = OriginalDemandedElts;
+ SDLoc dl(Op);
+ auto &DL = TLO.DAG.getDataLayout();
+
+ // Don't know anything.
+ Known = KnownBits(BitWidth);
+
+ // Undef operand.
+ if (Op.isUndef())
+ return false;
+
+ if (Op.getOpcode() == ISD::Constant) {
+ // We know all of the bits for a constant!
+ Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
+ Known.Zero = ~Known.One;
+ return false;
+ }
+
+ // Other users may use these bits.
+ EVT VT = Op.getValueType();
+ if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
+ if (Depth != 0) {
+ // If not at the root, Just compute the Known bits to
+ // simplify things downstream.
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ return false;
+ }
+ // If this is the root being simplified, allow it to have multiple uses,
+ // just set the DemandedBits/Elts to all bits.
+ DemandedBits = APInt::getAllOnesValue(BitWidth);
+ DemandedElts = APInt::getAllOnesValue(NumElts);
+ } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
+ // Not demanding any bits/elts from Op.
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+ } else if (Depth == 6) { // Limit search depth.
+ return false;
+ }
+
+ KnownBits Known2, KnownOut;
+ switch (Op.getOpcode()) {
+ case ISD::SCALAR_TO_VECTOR: {
+ if (!DemandedElts[0])
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+
+ KnownBits SrcKnown;
+ SDValue Src = Op.getOperand(0);
+ unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
+ APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
+ if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
+ return true;
+ Known = SrcKnown.zextOrTrunc(BitWidth, false);
+ break;
+ }
+ case ISD::BUILD_VECTOR:
+ // Collect the known bits that are shared by every demanded element.
+ // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ return false; // Don't fall through, will infinitely loop.
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ if (getTargetConstantFromLoad(LD)) {
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ return false; // Don't fall through, will infinitely loop.
+ }
+ break;
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ SDValue Vec = Op.getOperand(0);
+ SDValue Scl = Op.getOperand(1);
+ auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ EVT VecVT = Vec.getValueType();
+
+ // If index isn't constant, assume we need all vector elements AND the
+ // inserted element.
+ APInt DemandedVecElts(DemandedElts);
+ if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
+ unsigned Idx = CIdx->getZExtValue();
+ DemandedVecElts.clearBit(Idx);
+
+ // Inserted element is not required.
+ if (!DemandedElts[Idx])
+ return TLO.CombineTo(Op, Vec);
+ }
+
+ KnownBits KnownScl;
+ unsigned NumSclBits = Scl.getScalarValueSizeInBits();
+ APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
+ if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
+ return true;
+
+ Known = KnownScl.zextOrTrunc(BitWidth, false);
+
+ KnownBits KnownVec;
+ if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
+ Depth + 1))
+ return true;
+
+ if (!!DemandedVecElts) {
+ Known.One &= KnownVec.One;
+ Known.Zero &= KnownVec.Zero;
+ }
+
+ return false;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ SDValue Base = Op.getOperand(0);
+ SDValue Sub = Op.getOperand(1);
+ EVT SubVT = Sub.getValueType();
+ unsigned NumSubElts = SubVT.getVectorNumElements();
+
+ // If index isn't constant, assume we need the original demanded base
+ // elements and ALL the inserted subvector elements.
+ APInt BaseElts = DemandedElts;
+ APInt SubElts = APInt::getAllOnesValue(NumSubElts);
+ if (isa<ConstantSDNode>(Op.getOperand(2))) {
+ const APInt &Idx = Op.getConstantOperandAPInt(2);
+ if (Idx.ule(NumElts - NumSubElts)) {
+ unsigned SubIdx = Idx.getZExtValue();
+ SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
+ BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
+ }
+ }
+
+ KnownBits KnownSub, KnownBase;
+ if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
+ Depth + 1))
+ return true;
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ if (!!SubElts) {
+ Known.One &= KnownSub.One;
+ Known.Zero &= KnownSub.Zero;
+ }
+ if (!!BaseElts) {
+ Known.One &= KnownBase.One;
+ Known.Zero &= KnownBase.Zero;
+ }
+ break;
+ }
+ case ISD::CONCAT_VECTORS: {
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ EVT SubVT = Op.getOperand(0).getValueType();
+ unsigned NumSubVecs = Op.getNumOperands();
+ unsigned NumSubElts = SubVT.getVectorNumElements();
+ for (unsigned i = 0; i != NumSubVecs; ++i) {
+ APInt DemandedSubElts =
+ DemandedElts.extractBits(NumSubElts, i * NumSubElts);
+ if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
+ Known2, TLO, Depth + 1))
+ return true;
+ // Known bits are shared by every demanded subvector element.
+ if (!!DemandedSubElts) {
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ }
+ break;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
+
+ // Collect demanded elements from shuffle operands..
+ APInt DemandedLHS(NumElts, 0);
+ APInt DemandedRHS(NumElts, 0);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ int M = ShuffleMask[i];
+ if (M < 0) {
+ // For UNDEF elements, we don't know anything about the common state of
+ // the shuffle result.
+ DemandedLHS.clearAllBits();
+ DemandedRHS.clearAllBits();
+ break;
+ }
+ assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
+ if (M < (int)NumElts)
+ DemandedLHS.setBit(M);
+ else
+ DemandedRHS.setBit(M - NumElts);
+ }
+
+ if (!!DemandedLHS || !!DemandedRHS) {
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ if (!!DemandedLHS) {
+ if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
+ Known2, TLO, Depth + 1))
+ return true;
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ if (!!DemandedRHS) {
+ if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
+ Known2, TLO, Depth + 1))
+ return true;
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ }
+ }
+ break;
+ }
+ case ISD::AND: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // If the RHS is a constant, check to see if the LHS would be zero without
+ // using the bits from the RHS. Below, we use knowledge about the RHS to
+ // simplify the LHS, here we're using information from the LHS to simplify
+ // the RHS.
+ if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
+ // Do not increment Depth here; that can cause an infinite loop.
+ KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
+ // If the LHS already has zeros where RHSC does, this 'and' is dead.
+ if ((LHSKnown.Zero & DemandedBits) ==
+ (~RHSC->getAPIntValue() & DemandedBits))
+ return TLO.CombineTo(Op, Op0);
+
+ // If any of the set bits in the RHS are known zero on the LHS, shrink
+ // the constant.
+ if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
+ return true;
+
+ // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
+ // constant, but if this 'and' is only clearing bits that were just set by
+ // the xor, then this 'and' can be eliminated by shrinking the mask of
+ // the xor. For example, for a 32-bit X:
+ // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
+ if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
+ LHSKnown.One == ~RHSC->getAPIntValue()) {
+ SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
+ return TLO.CombineTo(Op, Xor);
+ }
+ }
+
+ if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
+ Known2, TLO, Depth + 1))
+ return true;
+ assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known one on one side, return the other.
+ // These bits cannot contribute to the result of the 'and'.
+ if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
+ return TLO.CombineTo(Op, Op0);
+ if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
+ return TLO.CombineTo(Op, Op1);
+ // If all of the demanded bits in the inputs are known zeros, return zero.
+ if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
+ // If the RHS is a constant, see if we can simplify it.
+ if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
+ return true;
+ // If the operation can be done in a smaller type, do so.
+ if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
+ return true;
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ Known.One &= Known2.One;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ Known.Zero |= Known2.Zero;
+ break;
+ }
+ case ISD::OR: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
+ Known2, TLO, Depth + 1))
+ return true;
+ assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'or'.
+ if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
+ return TLO.CombineTo(Op, Op0);
+ if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
+ return TLO.CombineTo(Op, Op1);
+ // If the RHS is a constant, see if we can simplify it.
+ if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
+ return true;
+ // If the operation can be done in a smaller type, do so.
+ if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
+ return true;
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ Known.Zero &= Known2.Zero;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ Known.One |= Known2.One;
+ break;
+ }
+ case ISD::XOR: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'xor'.
+ if (DemandedBits.isSubsetOf(Known.Zero))
+ return TLO.CombineTo(Op, Op0);
+ if (DemandedBits.isSubsetOf(Known2.Zero))
+ return TLO.CombineTo(Op, Op1);
+ // If the operation can be done in a smaller type, do so.
+ if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
+ return true;
+
+ // If all of the unknown bits are known to be zero on one side or the other
+ // (but not both) turn this into an *inclusive* or.
+ // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+ if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
+
+ if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
+ // If one side is a constant, and all of the known set bits on the other
+ // side are also set in the constant, turn this into an AND, as we know
+ // the bits will be cleared.
+ // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
+ // NB: it is okay if more bits are known than are requested
+ if (C->getAPIntValue() == Known2.One) {
+ SDValue ANDC =
+ TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
+ }
+
+ // If the RHS is a constant, see if we can change it. Don't alter a -1
+ // constant because that's a 'not' op, and that is better for combining
+ // and codegen.
+ if (!C->isAllOnesValue()) {
+ if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
+ // We're flipping all demanded bits. Flip the undemanded bits too.
+ SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
+ return TLO.CombineTo(Op, New);
+ }
+ // If we can't turn this into a 'not', try to shrink the constant.
+ if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
+ return true;
+ }
+ }
+
+ Known = std::move(KnownOut);
+ break;
+ }
+ case ISD::SELECT:
+ if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
+
+ // If the operands are constants, see if we can simplify them.
+ if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ break;
+ case ISD::SELECT_CC:
+ if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
+
+ // If the operands are constants, see if we can simplify them.
+ if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ break;
+ case ISD::SETCC: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ // If (1) we only need the sign-bit, (2) the setcc operands are the same
+ // width as the setcc result, and (3) the result of a setcc conforms to 0 or
+ // -1, we may be able to bypass the setcc.
+ if (DemandedBits.isSignMask() &&
+ Op0.getScalarValueSizeInBits() == BitWidth &&
+ getBooleanContents(VT) ==
+ BooleanContent::ZeroOrNegativeOneBooleanContent) {
+ // If we're testing X < 0, then this compare isn't needed - just use X!
+ // FIXME: We're limiting to integer types here, but this should also work
+ // if we don't care about FP signed-zero. The use of SETLT with FP means
+ // that we don't care about NaNs.
+ if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
+ (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
+ return TLO.CombineTo(Op, Op0);
+
+ // TODO: Should we check for other forms of sign-bit comparisons?
+ // Examples: X <= -1, X >= 0
+ }
+ if (getBooleanContents(Op0.getValueType()) ==
+ TargetLowering::ZeroOrOneBooleanContent &&
+ BitWidth > 1)
+ Known.Zero.setBitsFrom(1);
+ break;
+ }
+ case ISD::SHL: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
+ // If the shift count is an invalid immediate, don't do anything.
+ if (SA->getAPIntValue().uge(BitWidth))
+ break;
+
+ unsigned ShAmt = SA->getZExtValue();
+ if (ShAmt == 0)
+ return TLO.CombineTo(Op, Op0);
+
+ // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
+ // single shift. We can do this if the bottom bits (which are shifted
+ // out) are never demanded.
+ // TODO - support non-uniform vector amounts.
+ if (Op0.getOpcode() == ISD::SRL) {
+ if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
+ if (ConstantSDNode *SA2 =
+ isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
+ if (SA2->getAPIntValue().ult(BitWidth)) {
+ unsigned C1 = SA2->getZExtValue();
+ unsigned Opc = ISD::SHL;
+ int Diff = ShAmt - C1;
+ if (Diff < 0) {
+ Diff = -Diff;
+ Opc = ISD::SRL;
+ }
+
+ SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
+ }
+ }
+ }
+ }
+
+ if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
+ Known, TLO, Depth + 1))
+ return true;
+
+ // Try shrinking the operation as long as the shift amount will still be
+ // in range.
+ if ((ShAmt < DemandedBits.getActiveBits()) &&
+ ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
+ return true;
+
+ // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
+ // are not demanded. This will likely allow the anyext to be folded away.
+ if (Op0.getOpcode() == ISD::ANY_EXTEND) {
+ SDValue InnerOp = Op0.getOperand(0);
+ EVT InnerVT = InnerOp.getValueType();
+ unsigned InnerBits = InnerVT.getScalarSizeInBits();
+ if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
+ isTypeDesirableForOp(ISD::SHL, InnerVT)) {
+ EVT ShTy = getShiftAmountTy(InnerVT, DL);
+ if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
+ ShTy = InnerVT;
+ SDValue NarrowShl =
+ TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
+ TLO.DAG.getConstant(ShAmt, dl, ShTy));
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
+ }
+ // Repeat the SHL optimization above in cases where an extension
+ // intervenes: (shl (anyext (shr x, c1)), c2) to
+ // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
+ // aren't demanded (as above) and that the shifted upper c1 bits of
+ // x aren't demanded.
+ if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
+ InnerOp.hasOneUse()) {
+ if (ConstantSDNode *SA2 =
+ isConstOrConstSplat(InnerOp.getOperand(1))) {
+ unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
+ if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
+ DemandedBits.getActiveBits() <=
+ (InnerBits - InnerShAmt + ShAmt) &&
+ DemandedBits.countTrailingZeros() >= ShAmt) {
+ SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
+ Op1.getValueType());
+ SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
+ InnerOp.getOperand(0));
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
+ }
+ }
+ }
+ }
+
+ Known.Zero <<= ShAmt;
+ Known.One <<= ShAmt;
+ // low bits known zero.
+ Known.Zero.setLowBits(ShAmt);
+ }
+ break;
+ }
+ case ISD::SRL: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
+ // If the shift count is an invalid immediate, don't do anything.
+ if (SA->getAPIntValue().uge(BitWidth))
+ break;
+
+ unsigned ShAmt = SA->getZExtValue();
+ if (ShAmt == 0)
+ return TLO.CombineTo(Op, Op0);
+
+ EVT ShiftVT = Op1.getValueType();
+ APInt InDemandedMask = (DemandedBits << ShAmt);
+
+ // If the shift is exact, then it does demand the low bits (and knows that
+ // they are zero).
+ if (Op->getFlags().hasExact())
+ InDemandedMask.setLowBits(ShAmt);
+
+ // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
+ // single shift. We can do this if the top bits (which are shifted out)
+ // are never demanded.
+ // TODO - support non-uniform vector amounts.
+ if (Op0.getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *SA2 =
+ isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
+ if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
+ if (SA2->getAPIntValue().ult(BitWidth)) {
+ unsigned C1 = SA2->getZExtValue();
+ unsigned Opc = ISD::SRL;
+ int Diff = ShAmt - C1;
+ if (Diff < 0) {
+ Diff = -Diff;
+ Opc = ISD::SHL;
+ }
+
+ SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
+ }
+ }
+ }
+ }
+
+ // Compute the new bits that are at the top now.
+ if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ Known.Zero.lshrInPlace(ShAmt);
+ Known.One.lshrInPlace(ShAmt);
+
+ Known.Zero.setHighBits(ShAmt); // High bits known zero.
+ }
+ break;
+ }
+ case ISD::SRA: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // If this is an arithmetic shift right and only the low-bit is set, we can
+ // always convert this into a logical shr, even if the shift amount is
+ // variable. The low bit of the shift cannot be an input sign bit unless
+ // the shift amount is >= the size of the datatype, which is undefined.
+ if (DemandedBits.isOneValue())
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
+
+ if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
+ // If the shift count is an invalid immediate, don't do anything.
+ if (SA->getAPIntValue().uge(BitWidth))
+ break;
+
+ unsigned ShAmt = SA->getZExtValue();
+ if (ShAmt == 0)
+ return TLO.CombineTo(Op, Op0);
+
+ APInt InDemandedMask = (DemandedBits << ShAmt);
+
+ // If the shift is exact, then it does demand the low bits (and knows that
+ // they are zero).
+ if (Op->getFlags().hasExact())
+ InDemandedMask.setLowBits(ShAmt);
+
+ // If any of the demanded bits are produced by the sign extension, we also
+ // demand the input sign bit.
+ if (DemandedBits.countLeadingZeros() < ShAmt)
+ InDemandedMask.setSignBit();
+
+ if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ Known.Zero.lshrInPlace(ShAmt);
+ Known.One.lshrInPlace(ShAmt);
+
+ // If the input sign bit is known to be zero, or if none of the top bits
+ // are demanded, turn this into an unsigned shift right.
+ if (Known.Zero[BitWidth - ShAmt - 1] ||
+ DemandedBits.countLeadingZeros() >= ShAmt) {
+ SDNodeFlags Flags;
+ Flags.setExact(Op->getFlags().hasExact());
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
+ }
+
+ int Log2 = DemandedBits.exactLogBase2();
+ if (Log2 >= 0) {
+ // The bit must come from the sign.
+ SDValue NewSA =
+ TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
+ }
+
+ if (Known.One[BitWidth - ShAmt - 1])
+ // New bits are known one.
+ Known.One.setHighBits(ShAmt);
+ }
+ break;
+ }
+ case ISD::FSHL:
+ case ISD::FSHR: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue Op2 = Op.getOperand(2);
+ bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
+
+ if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
+ unsigned Amt = SA->getAPIntValue().urem(BitWidth);
+
+ // For fshl, 0-shift returns the 1st arg.
+ // For fshr, 0-shift returns the 2nd arg.
+ if (Amt == 0) {
+ if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
+ Known, TLO, Depth + 1))
+ return true;
+ break;
+ }
+
+ // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
+ // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
+ APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
+ APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
+ if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+
+ Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
+ Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
+ Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
+ Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
+ Known.One |= Known2.One;
+ Known.Zero |= Known2.Zero;
+ }
+ break;
+ }
+ case ISD::BITREVERSE: {
+ SDValue Src = Op.getOperand(0);
+ APInt DemandedSrcBits = DemandedBits.reverseBits();
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+ Known.One = Known2.One.reverseBits();
+ Known.Zero = Known2.Zero.reverseBits();
+ break;
+ }
+ case ISD::SIGN_EXTEND_INREG: {
+ SDValue Op0 = Op.getOperand(0);
+ EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ unsigned ExVTBits = ExVT.getScalarSizeInBits();
+
+ // If we only care about the highest bit, don't bother shifting right.
+ if (DemandedBits.isSignMask()) {
+ unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
+ bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
+ // However if the input is already sign extended we expect the sign
+ // extension to be dropped altogether later and do not simplify.
+ if (!AlreadySignExtended) {
+ // Compute the correct shift amount type, which must be getShiftAmountTy
+ // for scalar types after legalization.
+ EVT ShiftAmtTy = VT;
+ if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
+ ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
+
+ SDValue ShiftAmt =
+ TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
+ return TLO.CombineTo(Op,
+ TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
+ }
+ }
+
+ // If none of the extended bits are demanded, eliminate the sextinreg.
+ if (DemandedBits.getActiveBits() <= ExVTBits)
+ return TLO.CombineTo(Op, Op0);
+
+ APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
+
+ // Since the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ InputDemandedBits.setBit(ExVTBits - 1);
+
+ if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+
+ // If the input sign bit is known zero, convert this into a zero extension.
+ if (Known.Zero[ExVTBits - 1])
+ return TLO.CombineTo(
+ Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
+
+ APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
+ if (Known.One[ExVTBits - 1]) { // Input sign bit known set
+ Known.One.setBitsFrom(ExVTBits);
+ Known.Zero &= Mask;
+ } else { // Input sign bit unknown
+ Known.Zero &= Mask;
+ Known.One &= Mask;
+ }
+ break;
+ }
+ case ISD::BUILD_PAIR: {
+ EVT HalfVT = Op.getOperand(0).getValueType();
+ unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
+
+ APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
+ APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
+
+ KnownBits KnownLo, KnownHi;
+
+ if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
+ return true;
+
+ if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
+ return true;
+
+ Known.Zero = KnownLo.Zero.zext(BitWidth) |
+ KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
+
+ Known.One = KnownLo.One.zext(BitWidth) |
+ KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
+ break;
+ }
+ case ISD::ZERO_EXTEND:
+ case ISD::ZERO_EXTEND_VECTOR_INREG: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ unsigned InBits = SrcVT.getScalarSizeInBits();
+ unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
+ bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
+
+ // If none of the top bits are demanded, convert this into an any_extend.
+ if (DemandedBits.getActiveBits() <= InBits) {
+ // If we only need the non-extended bits of the bottom element
+ // then we can just bitcast to the result.
+ if (IsVecInReg && DemandedElts == 1 &&
+ VT.getSizeInBits() == SrcVT.getSizeInBits() &&
+ TLO.DAG.getDataLayout().isLittleEndian())
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
+
+ unsigned Opc =
+ IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
+ if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
+ }
+
+ APInt InDemandedBits = DemandedBits.trunc(InBits);
+ APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
+ if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ assert(Known.getBitWidth() == InBits && "Src width has changed?");
+ Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
+ break;
+ }
+ case ISD::SIGN_EXTEND:
+ case ISD::SIGN_EXTEND_VECTOR_INREG: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ unsigned InBits = SrcVT.getScalarSizeInBits();
+ unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
+ bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
+
+ // If none of the top bits are demanded, convert this into an any_extend.
+ if (DemandedBits.getActiveBits() <= InBits) {
+ // If we only need the non-extended bits of the bottom element
+ // then we can just bitcast to the result.
+ if (IsVecInReg && DemandedElts == 1 &&
+ VT.getSizeInBits() == SrcVT.getSizeInBits() &&
+ TLO.DAG.getDataLayout().isLittleEndian())
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
+
+ unsigned Opc =
+ IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
+ if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
+ }
+
+ APInt InDemandedBits = DemandedBits.trunc(InBits);
+ APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
+
+ // Since some of the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ InDemandedBits.setBit(InBits - 1);
+
+ if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ assert(Known.getBitWidth() == InBits && "Src width has changed?");
+
+ // If the sign bit is known one, the top bits match.
+ Known = Known.sext(BitWidth);
+
+ // If the sign bit is known zero, convert this to a zero extend.
+ if (Known.isNonNegative()) {
+ unsigned Opc =
+ IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
+ if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
+ }
+ break;
+ }
+ case ISD::ANY_EXTEND:
+ case ISD::ANY_EXTEND_VECTOR_INREG: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ unsigned InBits = SrcVT.getScalarSizeInBits();
+ unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
+ bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
+
+ // If we only need the bottom element then we can just bitcast.
+ // TODO: Handle ANY_EXTEND?
+ if (IsVecInReg && DemandedElts == 1 &&
+ VT.getSizeInBits() == SrcVT.getSizeInBits() &&
+ TLO.DAG.getDataLayout().isLittleEndian())
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
+
+ APInt InDemandedBits = DemandedBits.trunc(InBits);
+ APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
+ if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ assert(Known.getBitWidth() == InBits && "Src width has changed?");
+ Known = Known.zext(BitWidth, false /* => any extend */);
+ break;
+ }
+ case ISD::TRUNCATE: {
+ SDValue Src = Op.getOperand(0);
+
+ // Simplify the input, using demanded bit information, and compute the known
+ // zero/one bits live out.
+ unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
+ APInt TruncMask = DemandedBits.zext(OperandBitWidth);
+ if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
+ return true;
+ Known = Known.trunc(BitWidth);
+
+ // If the input is only used by this truncate, see if we can shrink it based
+ // on the known demanded bits.
+ if (Src.getNode()->hasOneUse()) {
+ switch (Src.getOpcode()) {
+ default:
+ break;
+ case ISD::SRL:
+ // Shrink SRL by a constant if none of the high bits shifted in are
+ // demanded.
+ if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
+ // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
+ // undesirable.
+ break;
+
+ auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
+ if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
+ break;
+
+ SDValue Shift = Src.getOperand(1);
+ uint64_t ShVal = ShAmt->getZExtValue();
+
+ if (TLO.LegalTypes())
+ Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
+
+ APInt HighBits =
+ APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
+ HighBits.lshrInPlace(ShVal);
+ HighBits = HighBits.trunc(BitWidth);
+
+ if (!(HighBits & DemandedBits)) {
+ // None of the shifted in bits are needed. Add a truncate of the
+ // shift input, then shift it.
+ SDValue NewTrunc =
+ TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
+ }
+ break;
+ }
+ }
+
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ break;
+ }
+ case ISD::AssertZext: {
+ // AssertZext demands all of the high bits, plus any of the low bits
+ // demanded by its users.
+ EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
+ if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
+ TLO, Depth + 1))
+ return true;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+
+ Known.Zero |= ~InMask;
+ break;
+ }
+ case ISD::EXTRACT_VECTOR_ELT: {
+ SDValue Src = Op.getOperand(0);
+ SDValue Idx = Op.getOperand(1);
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ unsigned EltBitWidth = Src.getScalarValueSizeInBits();
+
+ // Demand the bits from every vector element without a constant index.
+ APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
+ if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
+ if (CIdx->getAPIntValue().ult(NumSrcElts))
+ DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
+
+ // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
+ // anything about the extended bits.
+ APInt DemandedSrcBits = DemandedBits;
+ if (BitWidth > EltBitWidth)
+ DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
+
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
+ Depth + 1))
+ return true;
+
+ Known = Known2;
+ if (BitWidth > EltBitWidth)
+ Known = Known.zext(BitWidth, false /* => any extend */);
+ break;
+ }
+ case ISD::BITCAST: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
+
+ // If this is an FP->Int bitcast and if the sign bit is the only
+ // thing demanded, turn this into a FGETSIGN.
+ if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
+ DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
+ SrcVT.isFloatingPoint()) {
+ bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
+ bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
+ if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
+ SrcVT != MVT::f128) {
+ // Cannot eliminate/lower SHL for f128 yet.
+ EVT Ty = OpVTLegal ? VT : MVT::i32;
+ // Make a FGETSIGN + SHL to move the sign bit into the appropriate
+ // place. We expect the SHL to be eliminated by other optimizations.
+ SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
+ unsigned OpVTSizeInBits = Op.getValueSizeInBits();
+ if (!OpVTLegal && OpVTSizeInBits > 32)
+ Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
+ unsigned ShVal = Op.getValueSizeInBits() - 1;
+ SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
+ return TLO.CombineTo(Op,
+ TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
+ }
+ }
+
+ // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
+ // Demand the elt/bit if any of the original elts/bits are demanded.
+ // TODO - bigendian once we have test coverage.
+ // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
+ if (SrcVT.isVector() && NumSrcEltBits > 1 &&
+ (BitWidth % NumSrcEltBits) == 0 &&
+ TLO.DAG.getDataLayout().isLittleEndian()) {
+ unsigned Scale = BitWidth / NumSrcEltBits;
+ unsigned NumSrcElts = SrcVT.getVectorNumElements();
+ APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
+ APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
+ for (unsigned i = 0; i != Scale; ++i) {
+ unsigned Offset = i * NumSrcEltBits;
+ APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
+ if (!Sub.isNullValue()) {
+ DemandedSrcBits |= Sub;
+ for (unsigned j = 0; j != NumElts; ++j)
+ if (DemandedElts[j])
+ DemandedSrcElts.setBit((j * Scale) + i);
+ }
+ }
+
+ APInt KnownSrcUndef, KnownSrcZero;
+ if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
+ KnownSrcZero, TLO, Depth + 1))
+ return true;
+
+ KnownBits KnownSrcBits;
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
+ KnownSrcBits, TLO, Depth + 1))
+ return true;
+ } else if ((NumSrcEltBits % BitWidth) == 0 &&
+ TLO.DAG.getDataLayout().isLittleEndian()) {
+ unsigned Scale = NumSrcEltBits / BitWidth;
+ unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
+ APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
+ APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i]) {
+ unsigned Offset = (i % Scale) * BitWidth;
+ DemandedSrcBits.insertBits(DemandedBits, Offset);
+ DemandedSrcElts.setBit(i / Scale);
+ }
+
+ if (SrcVT.isVector()) {
+ APInt KnownSrcUndef, KnownSrcZero;
+ if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
+ KnownSrcZero, TLO, Depth + 1))
+ return true;
+ }
+
+ KnownBits KnownSrcBits;
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
+ KnownSrcBits, TLO, Depth + 1))
+ return true;
+ }
+
+ // If this is a bitcast, let computeKnownBits handle it. Only do this on a
+ // recursive call where Known may be useful to the caller.
+ if (Depth > 0) {
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ return false;
+ }
+ break;
+ }
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::SUB: {
+ // Add, Sub, and Mul don't demand any bits in positions beyond that
+ // of the highest bit demanded of them.
+ SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
+ unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
+ APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
+ if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
+ Depth + 1) ||
+ SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
+ Depth + 1) ||
+ // See if the operation should be performed at a smaller bit width.
+ ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
+ SDNodeFlags Flags = Op.getNode()->getFlags();
+ if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
+ // Disable the nsw and nuw flags. We can no longer guarantee that we
+ // won't wrap after simplification.
+ Flags.setNoSignedWrap(false);
+ Flags.setNoUnsignedWrap(false);
+ SDValue NewOp =
+ TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ return true;
+ }
+
+ // If we have a constant operand, we may be able to turn it into -1 if we
+ // do not demand the high bits. This can make the constant smaller to
+ // encode, allow more general folding, or match specialized instruction
+ // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
+ // is probably not useful (and could be detrimental).
+ ConstantSDNode *C = isConstOrConstSplat(Op1);
+ APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
+ if (C && !C->isAllOnesValue() && !C->isOne() &&
+ (C->getAPIntValue() | HighMask).isAllOnesValue()) {
+ SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
+ // We can't guarantee that the new math op doesn't wrap, so explicitly
+ // clear those flags to prevent folding with a potential existing node
+ // that has those flags set.
+ SDNodeFlags Flags;
+ Flags.setNoSignedWrap(false);
+ Flags.setNoUnsignedWrap(false);
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
+ return TLO.CombineTo(Op, NewOp);
+ }
+
+ LLVM_FALLTHROUGH;
+ }
+ default:
+ if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
+ if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
+ Known, TLO, Depth))
+ return true;
+ break;
+ }
+
+ // Just use computeKnownBits to compute output bits.
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ break;
+ }
+
+ // If we know the value of all of the demanded bits, return this as a
+ // constant.
+ if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
+ // Avoid folding to a constant if any OpaqueConstant is involved.
+ const SDNode *N = Op.getNode();
+ for (SDNodeIterator I = SDNodeIterator::begin(N),
+ E = SDNodeIterator::end(N);
+ I != E; ++I) {
+ SDNode *Op = *I;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
+ if (C->isOpaque())
+ return false;
+ }
+ // TODO: Handle float bits as well.
+ if (VT.isInteger())
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
+ }
+
+ return false;
+}
+
+bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
+ const APInt &DemandedElts,
+ APInt &KnownUndef,
+ APInt &KnownZero,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+
+ bool Simplified =
+ SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
+ if (Simplified) {
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+
+ return Simplified;
+}
+
+/// Given a vector binary operation and known undefined elements for each input
+/// operand, compute whether each element of the output is undefined.
+static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
+ const APInt &UndefOp0,
+ const APInt &UndefOp1) {
+ EVT VT = BO.getValueType();
+ assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
+ "Vector binop only");
+
+ EVT EltVT = VT.getVectorElementType();
+ unsigned NumElts = VT.getVectorNumElements();
+ assert(UndefOp0.getBitWidth() == NumElts &&
+ UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
+
+ auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
+ const APInt &UndefVals) {
+ if (UndefVals[Index])
+ return DAG.getUNDEF(EltVT);
+
+ if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
+ // Try hard to make sure that the getNode() call is not creating temporary
+ // nodes. Ignore opaque integers because they do not constant fold.
+ SDValue Elt = BV->getOperand(Index);
+ auto *C = dyn_cast<ConstantSDNode>(Elt);
+ if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
+ return Elt;
+ }
+
+ return SDValue();
+ };
+
+ APInt KnownUndef = APInt::getNullValue(NumElts);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If both inputs for this element are either constant or undef and match
+ // the element type, compute the constant/undef result for this element of
+ // the vector.
+ // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
+ // not handle FP constants. The code within getNode() should be refactored
+ // to avoid the danger of creating a bogus temporary node here.
+ SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
+ SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
+ if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
+ if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
+ KnownUndef.setBit(i);
+ }
+ return KnownUndef;
+}
+
+bool TargetLowering::SimplifyDemandedVectorElts(
+ SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
+ APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
+ bool AssumeSingleUse) const {
+ EVT VT = Op.getValueType();
+ APInt DemandedElts = OriginalDemandedElts;
+ unsigned NumElts = DemandedElts.getBitWidth();
+ assert(VT.isVector() && "Expected vector op");
+ assert(VT.getVectorNumElements() == NumElts &&
+ "Mask size mismatches value type element count!");
+
+ KnownUndef = KnownZero = APInt::getNullValue(NumElts);
+
+ // Undef operand.
+ if (Op.isUndef()) {
+ KnownUndef.setAllBits();
+ return false;
+ }
+
+ // If Op has other users, assume that all elements are needed.
+ if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
+ DemandedElts.setAllBits();
+
+ // Not demanding any elements from Op.
+ if (DemandedElts == 0) {
+ KnownUndef.setAllBits();
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+ }
+
+ // Limit search depth.
+ if (Depth >= 6)
+ return false;
+
+ SDLoc DL(Op);
+ unsigned EltSizeInBits = VT.getScalarSizeInBits();
+
+ switch (Op.getOpcode()) {
+ case ISD::SCALAR_TO_VECTOR: {
+ if (!DemandedElts[0]) {
+ KnownUndef.setAllBits();
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+ }
+ KnownUndef.setHighBits(NumElts - 1);
+ break;
+ }
+ case ISD::BITCAST: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+
+ // We only handle vectors here.
+ // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
+ if (!SrcVT.isVector())
+ break;
+
+ // Fast handling of 'identity' bitcasts.
+ unsigned NumSrcElts = SrcVT.getVectorNumElements();
+ if (NumSrcElts == NumElts)
+ return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
+ KnownZero, TLO, Depth + 1);
+
+ APInt SrcZero, SrcUndef;
+ APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
+
+ // Bitcast from 'large element' src vector to 'small element' vector, we
+ // must demand a source element if any DemandedElt maps to it.
+ if ((NumElts % NumSrcElts) == 0) {
+ unsigned Scale = NumElts / NumSrcElts;
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i])
+ SrcDemandedElts.setBit(i / Scale);
+
+ if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
+ TLO, Depth + 1))
+ return true;
+
+ // Try calling SimplifyDemandedBits, converting demanded elts to the bits
+ // of the large element.
+ // TODO - bigendian once we have test coverage.
+ if (TLO.DAG.getDataLayout().isLittleEndian()) {
+ unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
+ APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i]) {
+ unsigned Ofs = (i % Scale) * EltSizeInBits;
+ SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
+ }
+
+ KnownBits Known;
+ if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
+ return true;
+ }
+
+ // If the src element is zero/undef then all the output elements will be -
+ // only demanded elements are guaranteed to be correct.
+ for (unsigned i = 0; i != NumSrcElts; ++i) {
+ if (SrcDemandedElts[i]) {
+ if (SrcZero[i])
+ KnownZero.setBits(i * Scale, (i + 1) * Scale);
+ if (SrcUndef[i])
+ KnownUndef.setBits(i * Scale, (i + 1) * Scale);
+ }
+ }
+ }
+
+ // Bitcast from 'small element' src vector to 'large element' vector, we
+ // demand all smaller source elements covered by the larger demanded element
+ // of this vector.
+ if ((NumSrcElts % NumElts) == 0) {
+ unsigned Scale = NumSrcElts / NumElts;
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i])
+ SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
+
+ if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
+ TLO, Depth + 1))
+ return true;
+
+ // If all the src elements covering an output element are zero/undef, then
+ // the output element will be as well, assuming it was demanded.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (DemandedElts[i]) {
+ if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
+ KnownZero.setBit(i);
+ if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
+ KnownUndef.setBit(i);
+ }
+ }
+ }
+ break;
+ }
+ case ISD::BUILD_VECTOR: {
+ // Check all elements and simplify any unused elements with UNDEF.
+ if (!DemandedElts.isAllOnesValue()) {
+ // Don't simplify BROADCASTS.
+ if (llvm::any_of(Op->op_values(),
+ [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
+ SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
+ bool Updated = false;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (!DemandedElts[i] && !Ops[i].isUndef()) {
+ Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
+ KnownUndef.setBit(i);
+ Updated = true;
+ }
+ }
+ if (Updated)
+ return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
+ }
+ }
+ for (unsigned i = 0; i != NumElts; ++i) {
+ SDValue SrcOp = Op.getOperand(i);
+ if (SrcOp.isUndef()) {
+ KnownUndef.setBit(i);
+ } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
+ (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
+ KnownZero.setBit(i);
+ }
+ }
+ break;
+ }
+ case ISD::CONCAT_VECTORS: {
+ EVT SubVT = Op.getOperand(0).getValueType();
+ unsigned NumSubVecs = Op.getNumOperands();
+ unsigned NumSubElts = SubVT.getVectorNumElements();
+ for (unsigned i = 0; i != NumSubVecs; ++i) {
+ SDValue SubOp = Op.getOperand(i);
+ APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
+ APInt SubUndef, SubZero;
+ if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
+ Depth + 1))
+ return true;
+ KnownUndef.insertBits(SubUndef, i * NumSubElts);
+ KnownZero.insertBits(SubZero, i * NumSubElts);
+ }
+ break;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ if (!isa<ConstantSDNode>(Op.getOperand(2)))
+ break;
+ SDValue Base = Op.getOperand(0);
+ SDValue Sub = Op.getOperand(1);
+ EVT SubVT = Sub.getValueType();
+ unsigned NumSubElts = SubVT.getVectorNumElements();
+ const APInt &Idx = Op.getConstantOperandAPInt(2);
+ if (Idx.ugt(NumElts - NumSubElts))
+ break;
+ unsigned SubIdx = Idx.getZExtValue();
+ APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
+ APInt SubUndef, SubZero;
+ if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
+ Depth + 1))
+ return true;
+ APInt BaseElts = DemandedElts;
+ BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
+ if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
+ Depth + 1))
+ return true;
+ KnownUndef.insertBits(SubUndef, SubIdx);
+ KnownZero.insertBits(SubZero, SubIdx);
+ break;
+ }
+ case ISD::EXTRACT_SUBVECTOR: {
+ SDValue Src = Op.getOperand(0);
+ ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
+ // Offset the demanded elts by the subvector index.
+ uint64_t Idx = SubIdx->getZExtValue();
+ APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
+ APInt SrcUndef, SrcZero;
+ if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
+ Depth + 1))
+ return true;
+ KnownUndef = SrcUndef.extractBits(NumElts, Idx);
+ KnownZero = SrcZero.extractBits(NumElts, Idx);
+ }
+ break;
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ SDValue Vec = Op.getOperand(0);
+ SDValue Scl = Op.getOperand(1);
+ auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+
+ // For a legal, constant insertion index, if we don't need this insertion
+ // then strip it, else remove it from the demanded elts.
+ if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
+ unsigned Idx = CIdx->getZExtValue();
+ if (!DemandedElts[Idx])
+ return TLO.CombineTo(Op, Vec);
+
+ APInt DemandedVecElts(DemandedElts);
+ DemandedVecElts.clearBit(Idx);
+ if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
+ KnownZero, TLO, Depth + 1))
+ return true;
+
+ KnownUndef.clearBit(Idx);
+ if (Scl.isUndef())
+ KnownUndef.setBit(Idx);
+
+ KnownZero.clearBit(Idx);
+ if (isNullConstant(Scl) || isNullFPConstant(Scl))
+ KnownZero.setBit(Idx);
+ break;
+ }
+
+ APInt VecUndef, VecZero;
+ if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
+ Depth + 1))
+ return true;
+ // Without knowing the insertion index we can't set KnownUndef/KnownZero.
+ break;
+ }
+ case ISD::VSELECT: {
+ // Try to transform the select condition based on the current demanded
+ // elements.
+ // TODO: If a condition element is undef, we can choose from one arm of the
+ // select (and if one arm is undef, then we can propagate that to the
+ // result).
+ // TODO - add support for constant vselect masks (see IR version of this).
+ APInt UnusedUndef, UnusedZero;
+ if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
+ UnusedZero, TLO, Depth + 1))
+ return true;
+
+ // See if we can simplify either vselect operand.
+ APInt DemandedLHS(DemandedElts);
+ APInt DemandedRHS(DemandedElts);
+ APInt UndefLHS, ZeroLHS;
+ APInt UndefRHS, ZeroRHS;
+ if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
+ ZeroLHS, TLO, Depth + 1))
+ return true;
+ if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
+ ZeroRHS, TLO, Depth + 1))
+ return true;
+
+ KnownUndef = UndefLHS & UndefRHS;
+ KnownZero = ZeroLHS & ZeroRHS;
+ break;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
+
+ // Collect demanded elements from shuffle operands..
+ APInt DemandedLHS(NumElts, 0);
+ APInt DemandedRHS(NumElts, 0);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int M = ShuffleMask[i];
+ if (M < 0 || !DemandedElts[i])
+ continue;
+ assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
+ if (M < (int)NumElts)
+ DemandedLHS.setBit(M);
+ else
+ DemandedRHS.setBit(M - NumElts);
+ }
+
+ // See if we can simplify either shuffle operand.
+ APInt UndefLHS, ZeroLHS;
+ APInt UndefRHS, ZeroRHS;
+ if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
+ ZeroLHS, TLO, Depth + 1))
+ return true;
+ if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
+ ZeroRHS, TLO, Depth + 1))
+ return true;
+
+ // Simplify mask using undef elements from LHS/RHS.
+ bool Updated = false;
+ bool IdentityLHS = true, IdentityRHS = true;
+ SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int &M = NewMask[i];
+ if (M < 0)
+ continue;
+ if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
+ (M >= (int)NumElts && UndefRHS[M - NumElts])) {
+ Updated = true;
+ M = -1;
+ }
+ IdentityLHS &= (M < 0) || (M == (int)i);
+ IdentityRHS &= (M < 0) || ((M - NumElts) == i);
+ }
+
+ // Update legal shuffle masks based on demanded elements if it won't reduce
+ // to Identity which can cause premature removal of the shuffle mask.
+ if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
+ isShuffleMaskLegal(NewMask, VT))
+ return TLO.CombineTo(Op,
+ TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
+ Op.getOperand(1), NewMask));
+
+ // Propagate undef/zero elements from LHS/RHS.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int M = ShuffleMask[i];
+ if (M < 0) {
+ KnownUndef.setBit(i);
+ } else if (M < (int)NumElts) {
+ if (UndefLHS[M])
+ KnownUndef.setBit(i);
+ if (ZeroLHS[M])
+ KnownZero.setBit(i);
+ } else {
+ if (UndefRHS[M - NumElts])
+ KnownUndef.setBit(i);
+ if (ZeroRHS[M - NumElts])
+ KnownZero.setBit(i);
+ }
+ }
+ break;
+ }
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ case ISD::ZERO_EXTEND_VECTOR_INREG: {
+ APInt SrcUndef, SrcZero;
+ SDValue Src = Op.getOperand(0);
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
+ if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
+ Depth + 1))
+ return true;
+ KnownZero = SrcZero.zextOrTrunc(NumElts);
+ KnownUndef = SrcUndef.zextOrTrunc(NumElts);
+
+ if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
+ Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
+ DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
+ // aext - if we just need the bottom element then we can bitcast.
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
+ }
+
+ if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
+ // zext(undef) upper bits are guaranteed to be zero.
+ if (DemandedElts.isSubsetOf(KnownUndef))
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
+ KnownUndef.clearAllBits();
+ }
+ break;
+ }
+
+ // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
+ // MAX, saturated math, etc.
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM: {
+ APInt UndefRHS, ZeroRHS;
+ if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
+ ZeroRHS, TLO, Depth + 1))
+ return true;
+ APInt UndefLHS, ZeroLHS;
+ if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
+ ZeroLHS, TLO, Depth + 1))
+ return true;
+
+ KnownZero = ZeroLHS & ZeroRHS;
+ KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
+ break;
+ }
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA:
+ case ISD::ROTL:
+ case ISD::ROTR: {
+ APInt UndefRHS, ZeroRHS;
+ if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
+ ZeroRHS, TLO, Depth + 1))
+ return true;
+ APInt UndefLHS, ZeroLHS;
+ if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
+ ZeroLHS, TLO, Depth + 1))
+ return true;
+
+ KnownZero = ZeroLHS;
+ KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
+ break;
+ }
+ case ISD::MUL:
+ case ISD::AND: {
+ APInt SrcUndef, SrcZero;
+ if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
+ SrcZero, TLO, Depth + 1))
+ return true;
+ if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
+ KnownZero, TLO, Depth + 1))
+ return true;
+
+ // If either side has a zero element, then the result element is zero, even
+ // if the other is an UNDEF.
+ // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
+ // and then handle 'and' nodes with the rest of the binop opcodes.
+ KnownZero |= SrcZero;
+ KnownUndef &= SrcUndef;
+ KnownUndef &= ~KnownZero;
+ break;
+ }
+ case ISD::TRUNCATE:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
+ KnownZero, TLO, Depth + 1))
+ return true;
+
+ if (Op.getOpcode() == ISD::ZERO_EXTEND) {
+ // zext(undef) upper bits are guaranteed to be zero.
+ if (DemandedElts.isSubsetOf(KnownUndef))
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
+ KnownUndef.clearAllBits();
+ }
+ break;
+ default: {
+ if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
+ if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
+ KnownZero, TLO, Depth))
+ return true;
+ } else {
+ KnownBits Known;
+ APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
+ if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
+ TLO, Depth, AssumeSingleUse))
+ return true;
+ }
+ break;
+ }
+ }
+ assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
+
+ // Constant fold all undef cases.
+ // TODO: Handle zero cases as well.
+ if (DemandedElts.isSubsetOf(KnownUndef))
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+
+ return false;
+}
+
+/// Determine which of the bits specified in Mask are known to be either zero or
+/// one and return them in the Known.
+void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ KnownBits &Known,
+ const APInt &DemandedElts,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+ Known.resetAll();
+}
+
+void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
+ KnownBits &Known,
+ const APInt &DemandedElts,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
+
+ if (unsigned Align = DAG.InferPtrAlignment(Op)) {
+ // The low bits are known zero if the pointer is aligned.
+ Known.Zero.setLowBits(Log2_32(Align));
+ }
+}
+
+/// This method can be implemented by targets that want to expose additional
+/// information about sign bits to the DAG Combiner.
+unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
+ const APInt &,
+ const SelectionDAG &,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use ComputeNumSignBits if you don't know whether Op"
+ " is a target node!");
+ return 1;
+}
+
+bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
+ SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
+ TargetLoweringOpt &TLO, unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use SimplifyDemandedVectorElts if you don't know whether Op"
+ " is a target node!");
+ return false;
+}
+
+bool TargetLowering::SimplifyDemandedBitsForTargetNode(
+ SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
+ KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use SimplifyDemandedBits if you don't know whether Op"
+ " is a target node!");
+ computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
+ return false;
+}
+
+const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
+ return nullptr;
+}
+
+bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
+ const SelectionDAG &DAG,
+ bool SNaN,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use isKnownNeverNaN if you don't know whether Op"
+ " is a target node!");
+ return false;
+}
+
+// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
+// work with truncating build vectors and vectors with elements of less than
+// 8 bits.
+bool TargetLowering::isConstTrueVal(const SDNode *N) const {
+ if (!N)
+ return false;
+
+ APInt CVal;
+ if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
+ CVal = CN->getAPIntValue();
+ } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ auto *CN = BV->getConstantSplatNode();
+ if (!CN)
+ return false;
+
+ // If this is a truncating build vector, truncate the splat value.
+ // Otherwise, we may fail to match the expected values below.
+ unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
+ CVal = CN->getAPIntValue();
+ if (BVEltWidth < CVal.getBitWidth())
+ CVal = CVal.trunc(BVEltWidth);
+ } else {
+ return false;
+ }
+
+ switch (getBooleanContents(N->getValueType(0))) {
+ case UndefinedBooleanContent:
+ return CVal[0];
+ case ZeroOrOneBooleanContent:
+ return CVal.isOneValue();
+ case ZeroOrNegativeOneBooleanContent:
+ return CVal.isAllOnesValue();
+ }
+
+ llvm_unreachable("Invalid boolean contents");
+}
+
+bool TargetLowering::isConstFalseVal(const SDNode *N) const {
+ if (!N)
+ return false;
+
+ const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
+ if (!CN) {
+ const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
+ if (!BV)
+ return false;
+
+ // Only interested in constant splats, we don't care about undef
+ // elements in identifying boolean constants and getConstantSplatNode
+ // returns NULL if all ops are undef;
+ CN = BV->getConstantSplatNode();
+ if (!CN)
+ return false;
+ }
+
+ if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
+ return !CN->getAPIntValue()[0];
+
+ return CN->isNullValue();
+}
+
+bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
+ bool SExt) const {
+ if (VT == MVT::i1)
+ return N->isOne();
+
+ TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
+ switch (Cnt) {
+ case TargetLowering::ZeroOrOneBooleanContent:
+ // An extended value of 1 is always true, unless its original type is i1,
+ // in which case it will be sign extended to -1.
+ return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
+ case TargetLowering::UndefinedBooleanContent:
+ case TargetLowering::ZeroOrNegativeOneBooleanContent:
+ return N->isAllOnesValue() && SExt;
+ }
+ llvm_unreachable("Unexpected enumeration.");
+}
+
+/// This helper function of SimplifySetCC tries to optimize the comparison when
+/// either operand of the SetCC node is a bitwise-and instruction.
+SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, const SDLoc &DL,
+ DAGCombinerInfo &DCI) const {
+ // Match these patterns in any of their permutations:
+ // (X & Y) == Y
+ // (X & Y) != Y
+ if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
+ std::swap(N0, N1);
+
+ EVT OpVT = N0.getValueType();
+ if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
+ (Cond != ISD::SETEQ && Cond != ISD::SETNE))
+ return SDValue();
+
+ SDValue X, Y;
+ if (N0.getOperand(0) == N1) {
+ X = N0.getOperand(1);
+ Y = N0.getOperand(0);
+ } else if (N0.getOperand(1) == N1) {
+ X = N0.getOperand(0);
+ Y = N0.getOperand(1);
+ } else {
+ return SDValue();
+ }
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Zero = DAG.getConstant(0, DL, OpVT);
+ if (DAG.isKnownToBeAPowerOfTwo(Y)) {
+ // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
+ // Note that where Y is variable and is known to have at most one bit set
+ // (for example, if it is Z & 1) we cannot do this; the expressions are not
+ // equivalent when Y == 0.
+ Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(Cond, N0.getSimpleValueType()))
+ return DAG.getSetCC(DL, VT, N0, Zero, Cond);
+ } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
+ // If the target supports an 'and-not' or 'and-complement' logic operation,
+ // try to use that to make a comparison operation more efficient.
+ // But don't do this transform if the mask is a single bit because there are
+ // more efficient ways to deal with that case (for example, 'bt' on x86 or
+ // 'rlwinm' on PPC).
+
+ // Bail out if the compare operand that we want to turn into a zero is
+ // already a zero (otherwise, infinite loop).
+ auto *YConst = dyn_cast<ConstantSDNode>(Y);
+ if (YConst && YConst->isNullValue())
+ return SDValue();
+
+ // Transform this into: ~X & Y == 0.
+ SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
+ SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
+ return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
+ }
+
+ return SDValue();
+}
+
+/// There are multiple IR patterns that could be checking whether certain
+/// truncation of a signed number would be lossy or not. The pattern which is
+/// best at IR level, may not lower optimally. Thus, we want to unfold it.
+/// We are looking for the following pattern: (KeptBits is a constant)
+/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
+/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
+/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
+/// We will unfold it into the natural trunc+sext pattern:
+/// ((%x << C) a>> C) dstcond %x
+/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
+SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
+ EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
+ const SDLoc &DL) const {
+ // We must be comparing with a constant.
+ ConstantSDNode *C1;
+ if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
+ return SDValue();
+
+ // N0 should be: add %x, (1 << (KeptBits-1))
+ if (N0->getOpcode() != ISD::ADD)
+ return SDValue();
+
+ // And we must be 'add'ing a constant.
+ ConstantSDNode *C01;
+ if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
+ return SDValue();
+
+ SDValue X = N0->getOperand(0);
+ EVT XVT = X.getValueType();
+
+ // Validate constants ...
+
+ APInt I1 = C1->getAPIntValue();
+
+ ISD::CondCode NewCond;
+ if (Cond == ISD::CondCode::SETULT) {
+ NewCond = ISD::CondCode::SETEQ;
+ } else if (Cond == ISD::CondCode::SETULE) {
+ NewCond = ISD::CondCode::SETEQ;
+ // But need to 'canonicalize' the constant.
+ I1 += 1;
+ } else if (Cond == ISD::CondCode::SETUGT) {
+ NewCond = ISD::CondCode::SETNE;
+ // But need to 'canonicalize' the constant.
+ I1 += 1;
+ } else if (Cond == ISD::CondCode::SETUGE) {
+ NewCond = ISD::CondCode::SETNE;
+ } else
+ return SDValue();
+
+ APInt I01 = C01->getAPIntValue();
+
+ auto checkConstants = [&I1, &I01]() -> bool {
+ // Both of them must be power-of-two, and the constant from setcc is bigger.
+ return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
+ };
+
+ if (checkConstants()) {
+ // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
+ } else {
+ // What if we invert constants? (and the target predicate)
+ I1.negate();
+ I01.negate();
+ NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
+ if (!checkConstants())
+ return SDValue();
+ // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
+ }
+
+ // They are power-of-two, so which bit is set?
+ const unsigned KeptBits = I1.logBase2();
+ const unsigned KeptBitsMinusOne = I01.logBase2();
+
+ // Magic!
+ if (KeptBits != (KeptBitsMinusOne + 1))
+ return SDValue();
+ assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
+
+ // We don't want to do this in every single case.
+ SelectionDAG &DAG = DCI.DAG;
+ if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
+ XVT, KeptBits))
+ return SDValue();
+
+ const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
+ assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
+
+ // Unfold into: ((%x << C) a>> C) cond %x
+ // Where 'cond' will be either 'eq' or 'ne'.
+ SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
+ SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
+ SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
+ SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
+
+ return T2;
+}
+
+/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
+/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
+/// handle the commuted versions of these patterns.
+SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, const SDLoc &DL,
+ DAGCombinerInfo &DCI) const {
+ unsigned BOpcode = N0.getOpcode();
+ assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
+ "Unexpected binop");
+ assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
+
+ // (X + Y) == X --> Y == 0
+ // (X - Y) == X --> Y == 0
+ // (X ^ Y) == X --> Y == 0
+ SelectionDAG &DAG = DCI.DAG;
+ EVT OpVT = N0.getValueType();
+ SDValue X = N0.getOperand(0);
+ SDValue Y = N0.getOperand(1);
+ if (X == N1)
+ return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
+
+ if (Y != N1)
+ return SDValue();
+
+ // (X + Y) == Y --> X == 0
+ // (X ^ Y) == Y --> X == 0
+ if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
+ return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
+
+ // The shift would not be valid if the operands are boolean (i1).
+ if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
+ return SDValue();
+
+ // (X - Y) == Y --> X == Y << 1
+ EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
+ !DCI.isBeforeLegalize());
+ SDValue One = DAG.getConstant(1, DL, ShiftVT);
+ SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(YShl1.getNode());
+ return DAG.getSetCC(DL, VT, X, YShl1, Cond);
+}
+
+/// Try to simplify a setcc built with the specified operands and cc. If it is
+/// unable to simplify it, return a null SDValue.
+SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, bool foldBooleans,
+ DAGCombinerInfo &DCI,
+ const SDLoc &dl) const {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT OpVT = N0.getValueType();
+
+ // Constant fold or commute setcc.
+ if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
+ return Fold;
+
+ // Ensure that the constant occurs on the RHS and fold constant comparisons.
+ // TODO: Handle non-splat vector constants. All undef causes trouble.
+ ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
+ if (isConstOrConstSplat(N0) &&
+ (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
+ return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
+
+ // If we have a subtract with the same 2 non-constant operands as this setcc
+ // -- but in reverse order -- then try to commute the operands of this setcc
+ // to match. A matching pair of setcc (cmp) and sub may be combined into 1
+ // instruction on some targets.
+ if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
+ (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
+ DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
+ !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
+ return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
+
+ if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
+ // equality comparison, then we're just comparing whether X itself is
+ // zero.
+ if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
+ N0.getOperand(0).getOpcode() == ISD::CTLZ &&
+ N0.getOperand(1).getOpcode() == ISD::Constant) {
+ const APInt &ShAmt = N0.getConstantOperandAPInt(1);
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ ShAmt == Log2_32(N0.getValueSizeInBits())) {
+ if ((C1 == 0) == (Cond == ISD::SETEQ)) {
+ // (srl (ctlz x), 5) == 0 -> X != 0
+ // (srl (ctlz x), 5) != 1 -> X != 0
+ Cond = ISD::SETNE;
+ } else {
+ // (srl (ctlz x), 5) != 0 -> X == 0
+ // (srl (ctlz x), 5) == 1 -> X == 0
+ Cond = ISD::SETEQ;
+ }
+ SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
+ Zero, Cond);
+ }
+ }
+
+ SDValue CTPOP = N0;
+ // Look through truncs that don't change the value of a ctpop.
+ if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
+ CTPOP = N0.getOperand(0);
+
+ if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
+ (N0 == CTPOP ||
+ N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
+ EVT CTVT = CTPOP.getValueType();
+ SDValue CTOp = CTPOP.getOperand(0);
+
+ // (ctpop x) u< 2 -> (x & x-1) == 0
+ // (ctpop x) u> 1 -> (x & x-1) != 0
+ if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
+ DAG.getConstant(1, dl, CTVT));
+ SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
+ ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
+ return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
+ }
+
+ // If ctpop is not supported, expand a power-of-2 comparison based on it.
+ if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
+ // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
+ SDValue Zero = DAG.getConstant(0, dl, CTVT);
+ SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
+ ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
+ SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
+ SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
+ SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
+ SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
+ unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
+ return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
+ }
+ }
+
+ // (zext x) == C --> x == (trunc C)
+ // (sext x) == C --> x == (trunc C)
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ DCI.isBeforeLegalize() && N0->hasOneUse()) {
+ unsigned MinBits = N0.getValueSizeInBits();
+ SDValue PreExt;
+ bool Signed = false;
+ if (N0->getOpcode() == ISD::ZERO_EXTEND) {
+ // ZExt
+ MinBits = N0->getOperand(0).getValueSizeInBits();
+ PreExt = N0->getOperand(0);
+ } else if (N0->getOpcode() == ISD::AND) {
+ // DAGCombine turns costly ZExts into ANDs
+ if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
+ if ((C->getAPIntValue()+1).isPowerOf2()) {
+ MinBits = C->getAPIntValue().countTrailingOnes();
+ PreExt = N0->getOperand(0);
+ }
+ } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
+ // SExt
+ MinBits = N0->getOperand(0).getValueSizeInBits();
+ PreExt = N0->getOperand(0);
+ Signed = true;
+ } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
+ // ZEXTLOAD / SEXTLOAD
+ if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
+ MinBits = LN0->getMemoryVT().getSizeInBits();
+ PreExt = N0;
+ } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
+ Signed = true;
+ MinBits = LN0->getMemoryVT().getSizeInBits();
+ PreExt = N0;
+ }
+ }
+
+ // Figure out how many bits we need to preserve this constant.
+ unsigned ReqdBits = Signed ?
+ C1.getBitWidth() - C1.getNumSignBits() + 1 :
+ C1.getActiveBits();
+
+ // Make sure we're not losing bits from the constant.
+ if (MinBits > 0 &&
+ MinBits < C1.getBitWidth() &&
+ MinBits >= ReqdBits) {
+ EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
+ if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
+ // Will get folded away.
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
+ if (MinBits == 1 && C1 == 1)
+ // Invert the condition.
+ return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
+ return DAG.getSetCC(dl, VT, Trunc, C, Cond);
+ }
+
+ // If truncating the setcc operands is not desirable, we can still
+ // simplify the expression in some cases:
+ // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
+ // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
+ // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
+ // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
+ // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
+ // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
+ SDValue TopSetCC = N0->getOperand(0);
+ unsigned N0Opc = N0->getOpcode();
+ bool SExt = (N0Opc == ISD::SIGN_EXTEND);
+ if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
+ TopSetCC.getOpcode() == ISD::SETCC &&
+ (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
+ (isConstFalseVal(N1C) ||
+ isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
+
+ bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
+ (!N1C->isNullValue() && Cond == ISD::SETNE);
+
+ if (!Inverse)
+ return TopSetCC;
+
+ ISD::CondCode InvCond = ISD::getSetCCInverse(
+ cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
+ TopSetCC.getOperand(0).getValueType().isInteger());
+ return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
+ TopSetCC.getOperand(1),
+ InvCond);
+ }
+ }
+ }
+
+ // If the LHS is '(and load, const)', the RHS is 0, the test is for
+ // equality or unsigned, and all 1 bits of the const are in the same
+ // partial word, see if we can shorten the load.
+ if (DCI.isBeforeLegalize() &&
+ !ISD::isSignedIntSetCC(Cond) &&
+ N0.getOpcode() == ISD::AND && C1 == 0 &&
+ N0.getNode()->hasOneUse() &&
+ isa<LoadSDNode>(N0.getOperand(0)) &&
+ N0.getOperand(0).getNode()->hasOneUse() &&
+ isa<ConstantSDNode>(N0.getOperand(1))) {
+ LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
+ APInt bestMask;
+ unsigned bestWidth = 0, bestOffset = 0;
+ if (!Lod->isVolatile() && Lod->isUnindexed()) {
+ unsigned origWidth = N0.getValueSizeInBits();
+ unsigned maskWidth = origWidth;
+ // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
+ // 8 bits, but have to be careful...
+ if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
+ origWidth = Lod->getMemoryVT().getSizeInBits();
+ const APInt &Mask = N0.getConstantOperandAPInt(1);
+ for (unsigned width = origWidth / 2; width>=8; width /= 2) {
+ APInt newMask = APInt::getLowBitsSet(maskWidth, width);
+ for (unsigned offset=0; offset<origWidth/width; offset++) {
+ if (Mask.isSubsetOf(newMask)) {
+ if (DAG.getDataLayout().isLittleEndian())
+ bestOffset = (uint64_t)offset * (width/8);
+ else
+ bestOffset = (origWidth/width - offset - 1) * (width/8);
+ bestMask = Mask.lshr(offset * (width/8) * 8);
+ bestWidth = width;
+ break;
+ }
+ newMask <<= width;
+ }
+ }
+ }
+ if (bestWidth) {
+ EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
+ if (newVT.isRound() &&
+ shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
+ EVT PtrType = Lod->getOperand(1).getValueType();
+ SDValue Ptr = Lod->getBasePtr();
+ if (bestOffset != 0)
+ Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
+ DAG.getConstant(bestOffset, dl, PtrType));
+ unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
+ SDValue NewLoad = DAG.getLoad(
+ newVT, dl, Lod->getChain(), Ptr,
+ Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
+ return DAG.getSetCC(dl, VT,
+ DAG.getNode(ISD::AND, dl, newVT, NewLoad,
+ DAG.getConstant(bestMask.trunc(bestWidth),
+ dl, newVT)),
+ DAG.getConstant(0LL, dl, newVT), Cond);
+ }
+ }
+ }
+
+ // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
+ if (N0.getOpcode() == ISD::ZERO_EXTEND) {
+ unsigned InSize = N0.getOperand(0).getValueSizeInBits();
+
+ // If the comparison constant has bits in the upper part, the
+ // zero-extended value could never match.
+ if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
+ C1.getBitWidth() - InSize))) {
+ switch (Cond) {
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETEQ:
+ return DAG.getConstant(0, dl, VT);
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETNE:
+ return DAG.getConstant(1, dl, VT);
+ case ISD::SETGT:
+ case ISD::SETGE:
+ // True if the sign bit of C1 is set.
+ return DAG.getConstant(C1.isNegative(), dl, VT);
+ case ISD::SETLT:
+ case ISD::SETLE:
+ // True if the sign bit of C1 isn't set.
+ return DAG.getConstant(C1.isNonNegative(), dl, VT);
+ default:
+ break;
+ }
+ }
+
+ // Otherwise, we can perform the comparison with the low bits.
+ switch (Cond) {
+ case ISD::SETEQ:
+ case ISD::SETNE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETULT:
+ case ISD::SETULE: {
+ EVT newVT = N0.getOperand(0).getValueType();
+ if (DCI.isBeforeLegalizeOps() ||
+ (isOperationLegal(ISD::SETCC, newVT) &&
+ isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
+ EVT NewSetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
+ SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
+
+ SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
+ NewConst, Cond);
+ return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
+ }
+ break;
+ }
+ default:
+ break; // todo, be more careful with signed comparisons
+ }
+ } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
+ unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
+ EVT ExtDstTy = N0.getValueType();
+ unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
+
+ // If the constant doesn't fit into the number of bits for the source of
+ // the sign extension, it is impossible for both sides to be equal.
+ if (C1.getMinSignedBits() > ExtSrcTyBits)
+ return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
+
+ SDValue ZextOp;
+ EVT Op0Ty = N0.getOperand(0).getValueType();
+ if (Op0Ty == ExtSrcTy) {
+ ZextOp = N0.getOperand(0);
+ } else {
+ APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
+ ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
+ DAG.getConstant(Imm, dl, Op0Ty));
+ }
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(ZextOp.getNode());
+ // Otherwise, make this a use of a zext.
+ return DAG.getSetCC(dl, VT, ZextOp,
+ DAG.getConstant(C1 & APInt::getLowBitsSet(
+ ExtDstTyBits,
+ ExtSrcTyBits),
+ dl, ExtDstTy),
+ Cond);
+ } else if ((N1C->isNullValue() || N1C->isOne()) &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
+ if (N0.getOpcode() == ISD::SETCC &&
+ isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
+ bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
+ if (TrueWhenTrue)
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
+ // Invert the condition.
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+ CC = ISD::getSetCCInverse(CC,
+ N0.getOperand(0).getValueType().isInteger());
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
+ }
+
+ if ((N0.getOpcode() == ISD::XOR ||
+ (N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR &&
+ N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
+ isa<ConstantSDNode>(N0.getOperand(1)) &&
+ cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
+ // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
+ // can only do this if the top bits are known zero.
+ unsigned BitWidth = N0.getValueSizeInBits();
+ if (DAG.MaskedValueIsZero(N0,
+ APInt::getHighBitsSet(BitWidth,
+ BitWidth-1))) {
+ // Okay, get the un-inverted input value.
+ SDValue Val;
+ if (N0.getOpcode() == ISD::XOR) {
+ Val = N0.getOperand(0);
+ } else {
+ assert(N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR);
+ // ((X^1)&1)^1 -> X & 1
+ Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
+ N0.getOperand(0).getOperand(0),
+ N0.getOperand(1));
+ }
+
+ return DAG.getSetCC(dl, VT, Val, N1,
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ } else if (N1C->isOne() &&
+ (VT == MVT::i1 ||
+ getBooleanContents(N0->getValueType(0)) ==
+ ZeroOrOneBooleanContent)) {
+ SDValue Op0 = N0;
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+
+ if ((Op0.getOpcode() == ISD::XOR) &&
+ Op0.getOperand(0).getOpcode() == ISD::SETCC &&
+ Op0.getOperand(1).getOpcode() == ISD::SETCC) {
+ // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
+ Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
+ return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
+ Cond);
+ }
+ if (Op0.getOpcode() == ISD::AND &&
+ isa<ConstantSDNode>(Op0.getOperand(1)) &&
+ cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
+ // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
+ if (Op0.getValueType().bitsGT(VT))
+ Op0 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
+ DAG.getConstant(1, dl, VT));
+ else if (Op0.getValueType().bitsLT(VT))
+ Op0 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
+ DAG.getConstant(1, dl, VT));
+
+ return DAG.getSetCC(dl, VT, Op0,
+ DAG.getConstant(0, dl, Op0.getValueType()),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ if (Op0.getOpcode() == ISD::AssertZext &&
+ cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
+ return DAG.getSetCC(dl, VT, Op0,
+ DAG.getConstant(0, dl, Op0.getValueType()),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ }
+
+ // Given:
+ // icmp eq/ne (urem %x, %y), 0
+ // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
+ // icmp eq/ne %x, 0
+ if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
+ KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
+ if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
+ }
+
+ if (SDValue V =
+ optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
+ return V;
+ }
+
+ // These simplifications apply to splat vectors as well.
+ // TODO: Handle more splat vector cases.
+ if (auto *N1C = isConstOrConstSplat(N1)) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ APInt MinVal, MaxVal;
+ unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
+ if (ISD::isSignedIntSetCC(Cond)) {
+ MinVal = APInt::getSignedMinValue(OperandBitSize);
+ MaxVal = APInt::getSignedMaxValue(OperandBitSize);
+ } else {
+ MinVal = APInt::getMinValue(OperandBitSize);
+ MaxVal = APInt::getMaxValue(OperandBitSize);
+ }
+
+ // Canonicalize GE/LE comparisons to use GT/LT comparisons.
+ if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
+ // X >= MIN --> true
+ if (C1 == MinVal)
+ return DAG.getBoolConstant(true, dl, VT, OpVT);
+
+ if (!VT.isVector()) { // TODO: Support this for vectors.
+ // X >= C0 --> X > (C0 - 1)
+ APInt C = C1 - 1;
+ ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
+ if ((DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
+ (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
+ isLegalICmpImmediate(C.getSExtValue())))) {
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C, dl, N1.getValueType()),
+ NewCC);
+ }
+ }
+ }
+
+ if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
+ // X <= MAX --> true
+ if (C1 == MaxVal)
+ return DAG.getBoolConstant(true, dl, VT, OpVT);
+
+ // X <= C0 --> X < (C0 + 1)
+ if (!VT.isVector()) { // TODO: Support this for vectors.
+ APInt C = C1 + 1;
+ ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
+ if ((DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
+ (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
+ isLegalICmpImmediate(C.getSExtValue())))) {
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C, dl, N1.getValueType()),
+ NewCC);
+ }
+ }
+ }
+
+ if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
+ if (C1 == MinVal)
+ return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
+
+ // TODO: Support this for vectors after legalize ops.
+ if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
+ // Canonicalize setlt X, Max --> setne X, Max
+ if (C1 == MaxVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+
+ // If we have setult X, 1, turn it into seteq X, 0
+ if (C1 == MinVal+1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MinVal, dl, N0.getValueType()),
+ ISD::SETEQ);
+ }
+ }
+
+ if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
+ if (C1 == MaxVal)
+ return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
+
+ // TODO: Support this for vectors after legalize ops.
+ if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
+ // Canonicalize setgt X, Min --> setne X, Min
+ if (C1 == MinVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+
+ // If we have setugt X, Max-1, turn it into seteq X, Max
+ if (C1 == MaxVal-1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MaxVal, dl, N0.getValueType()),
+ ISD::SETEQ);
+ }
+ }
+
+ // If we have "setcc X, C0", check to see if we can shrink the immediate
+ // by changing cc.
+ // TODO: Support this for vectors after legalize ops.
+ if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
+ // SETUGT X, SINTMAX -> SETLT X, 0
+ if (Cond == ISD::SETUGT &&
+ C1 == APInt::getSignedMaxValue(OperandBitSize))
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(0, dl, N1.getValueType()),
+ ISD::SETLT);
+
+ // SETULT X, SINTMIN -> SETGT X, -1
+ if (Cond == ISD::SETULT &&
+ C1 == APInt::getSignedMinValue(OperandBitSize)) {
+ SDValue ConstMinusOne =
+ DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
+ N1.getValueType());
+ return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
+ }
+ }
+ }
+
+ // Back to non-vector simplifications.
+ // TODO: Can we do these for vector splats?
+ if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ // Fold bit comparisons when we can.
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ (VT == N0.getValueType() ||
+ (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
+ N0.getOpcode() == ISD::AND) {
+ auto &DL = DAG.getDataLayout();
+ if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
+ !DCI.isBeforeLegalize());
+ if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
+ // Perform the xform if the AND RHS is a single bit.
+ if (AndRHS->getAPIntValue().isPowerOf2()) {
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
+ DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
+ ShiftTy)));
+ }
+ } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
+ // (X & 8) == 8 --> (X & 8) >> 3
+ // Perform the xform if C1 is a single bit.
+ if (C1.isPowerOf2()) {
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
+ DAG.getConstant(C1.logBase2(), dl,
+ ShiftTy)));
+ }
+ }
+ }
+ }
+
+ if (C1.getMinSignedBits() <= 64 &&
+ !isLegalICmpImmediate(C1.getSExtValue())) {
+ // (X & -256) == 256 -> (X >> 8) == 1
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
+ if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ const APInt &AndRHSC = AndRHS->getAPIntValue();
+ if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
+ unsigned ShiftBits = AndRHSC.countTrailingZeros();
+ auto &DL = DAG.getDataLayout();
+ EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
+ !DCI.isBeforeLegalize());
+ EVT CmpTy = N0.getValueType();
+ SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
+ DAG.getConstant(ShiftBits, dl,
+ ShiftTy));
+ SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
+ return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
+ }
+ }
+ } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
+ Cond == ISD::SETULE || Cond == ISD::SETUGT) {
+ bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
+ // X < 0x100000000 -> (X >> 32) < 1
+ // X >= 0x100000000 -> (X >> 32) >= 1
+ // X <= 0x0ffffffff -> (X >> 32) < 1
+ // X > 0x0ffffffff -> (X >> 32) >= 1
+ unsigned ShiftBits;
+ APInt NewC = C1;
+ ISD::CondCode NewCond = Cond;
+ if (AdjOne) {
+ ShiftBits = C1.countTrailingOnes();
+ NewC = NewC + 1;
+ NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ } else {
+ ShiftBits = C1.countTrailingZeros();
+ }
+ NewC.lshrInPlace(ShiftBits);
+ if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
+ isLegalICmpImmediate(NewC.getSExtValue())) {
+ auto &DL = DAG.getDataLayout();
+ EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
+ !DCI.isBeforeLegalize());
+ EVT CmpTy = N0.getValueType();
+ SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
+ DAG.getConstant(ShiftBits, dl, ShiftTy));
+ SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
+ return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
+ }
+ }
+ }
+ }
+
+ if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
+ auto *CFP = cast<ConstantFPSDNode>(N1);
+ assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
+
+ // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
+ // constant if knowing that the operand is non-nan is enough. We prefer to
+ // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
+ // materialize 0.0.
+ if (Cond == ISD::SETO || Cond == ISD::SETUO)
+ return DAG.getSetCC(dl, VT, N0, N0, Cond);
+
+ // setcc (fneg x), C -> setcc swap(pred) x, -C
+ if (N0.getOpcode() == ISD::FNEG) {
+ ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
+ SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
+ }
+ }
+
+ // If the condition is not legal, see if we can find an equivalent one
+ // which is legal.
+ if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
+ // If the comparison was an awkward floating-point == or != and one of
+ // the comparison operands is infinity or negative infinity, convert the
+ // condition to a less-awkward <= or >=.
+ if (CFP->getValueAPF().isInfinity()) {
+ if (CFP->getValueAPF().isNegative()) {
+ if (Cond == ISD::SETOEQ &&
+ isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
+ if (Cond == ISD::SETUEQ &&
+ isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
+ if (Cond == ISD::SETUNE &&
+ isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
+ if (Cond == ISD::SETONE &&
+ isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
+ } else {
+ if (Cond == ISD::SETOEQ &&
+ isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
+ if (Cond == ISD::SETUEQ &&
+ isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
+ if (Cond == ISD::SETUNE &&
+ isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
+ if (Cond == ISD::SETONE &&
+ isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
+ }
+ }
+ }
+ }
+
+ if (N0 == N1) {
+ // The sext(setcc()) => setcc() optimization relies on the appropriate
+ // constant being emitted.
+ assert(!N0.getValueType().isInteger() &&
+ "Integer types should be handled by FoldSetCC");
+
+ bool EqTrue = ISD::isTrueWhenEqual(Cond);
+ unsigned UOF = ISD::getUnorderedFlavor(Cond);
+ if (UOF == 2) // FP operators that are undefined on NaNs.
+ return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
+ if (UOF == unsigned(EqTrue))
+ return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
+ // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
+ // if it is not already.
+ ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
+ if (NewCond != Cond &&
+ (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(NewCond, N0.getSimpleValueType())))
+ return DAG.getSetCC(dl, VT, N0, N1, NewCond);
+ }
+
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getValueType().isInteger()) {
+ if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
+ N0.getOpcode() == ISD::XOR) {
+ // Simplify (X+Y) == (X+Z) --> Y == Z
+ if (N0.getOpcode() == N1.getOpcode()) {
+ if (N0.getOperand(0) == N1.getOperand(0))
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
+ if (N0.getOperand(1) == N1.getOperand(1))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
+ if (isCommutativeBinOp(N0.getOpcode())) {
+ // If X op Y == Y op X, try other combinations.
+ if (N0.getOperand(0) == N1.getOperand(1))
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
+ Cond);
+ if (N0.getOperand(1) == N1.getOperand(0))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
+ Cond);
+ }
+ }
+
+ // If RHS is a legal immediate value for a compare instruction, we need
+ // to be careful about increasing register pressure needlessly.
+ bool LegalRHSImm = false;
+
+ if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
+ if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ // Turn (X+C1) == C2 --> X == C2-C1
+ if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(RHSC->getAPIntValue()-
+ LHSR->getAPIntValue(),
+ dl, N0.getValueType()), Cond);
+ }
+
+ // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
+ if (N0.getOpcode() == ISD::XOR)
+ // If we know that all of the inverted bits are zero, don't bother
+ // performing the inversion.
+ if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
+ return
+ DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(LHSR->getAPIntValue() ^
+ RHSC->getAPIntValue(),
+ dl, N0.getValueType()),
+ Cond);
+ }
+
+ // Turn (C1-X) == C2 --> X == C1-C2
+ if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
+ if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
+ return
+ DAG.getSetCC(dl, VT, N0.getOperand(1),
+ DAG.getConstant(SUBC->getAPIntValue() -
+ RHSC->getAPIntValue(),
+ dl, N0.getValueType()),
+ Cond);
+ }
+ }
+
+ // Could RHSC fold directly into a compare?
+ if (RHSC->getValueType(0).getSizeInBits() <= 64)
+ LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
+ }
+
+ // (X+Y) == X --> Y == 0 and similar folds.
+ // Don't do this if X is an immediate that can fold into a cmp
+ // instruction and X+Y has other uses. It could be an induction variable
+ // chain, and the transform would increase register pressure.
+ if (!LegalRHSImm || N0.hasOneUse())
+ if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
+ return V;
+ }
+
+ if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
+ N1.getOpcode() == ISD::XOR)
+ if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
+ return V;
+
+ if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
+ return V;
+ }
+
+ // Fold remainder of division by a constant.
+ if (N0.getOpcode() == ISD::UREM && N0.hasOneUse() &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
+
+ // When division is cheap or optimizing for minimum size,
+ // fall through to DIVREM creation by skipping this fold.
+ if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize))
+ if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
+ return Folded;
+ }
+
+ // Fold away ALL boolean setcc's.
+ if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
+ SDValue Temp;
+ switch (Cond) {
+ default: llvm_unreachable("Unknown integer setcc!");
+ case ISD::SETEQ: // X == Y -> ~(X^Y)
+ Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
+ N0 = DAG.getNOT(dl, Temp, OpVT);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETNE: // X != Y --> (X^Y)
+ N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
+ break;
+ case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
+ case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
+ Temp = DAG.getNOT(dl, N0, OpVT);
+ N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
+ case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
+ Temp = DAG.getNOT(dl, N1, OpVT);
+ N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
+ case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
+ Temp = DAG.getNOT(dl, N0, OpVT);
+ N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
+ case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
+ Temp = DAG.getNOT(dl, N1, OpVT);
+ N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
+ break;
+ }
+ if (VT.getScalarType() != MVT::i1) {
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(N0.getNode());
+ // FIXME: If running after legalize, we probably can't do this.
+ ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
+ N0 = DAG.getNode(ExtendCode, dl, VT, N0);
+ }
+ return N0;
+ }
+
+ // Could not fold it.
+ return SDValue();
+}
+
+/// Returns true (and the GlobalValue and the offset) if the node is a
+/// GlobalAddress + offset.
+bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
+ int64_t &Offset) const {
+
+ SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
+
+ if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
+ GA = GASD->getGlobal();
+ Offset += GASD->getOffset();
+ return true;
+ }
+
+ if (N->getOpcode() == ISD::ADD) {
+ SDValue N1 = N->getOperand(0);
+ SDValue N2 = N->getOperand(1);
+ if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
+ if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
+ Offset += V->getSExtValue();
+ return true;
+ }
+ } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
+ if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
+ Offset += V->getSExtValue();
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+SDValue TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ // Default implementation: no optimization.
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembler Implementation Methods
+//===----------------------------------------------------------------------===//
+
+TargetLowering::ConstraintType
+TargetLowering::getConstraintType(StringRef Constraint) const {
+ unsigned S = Constraint.size();
+
+ if (S == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'r':
+ return C_RegisterClass;
+ case 'm': // memory
+ case 'o': // offsetable
+ case 'V': // not offsetable
+ return C_Memory;
+ case 'n': // Simple Integer
+ case 'E': // Floating Point Constant
+ case 'F': // Floating Point Constant
+ return C_Immediate;
+ case 'i': // Simple Integer or Relocatable Constant
+ case 's': // Relocatable Constant
+ case 'p': // Address.
+ case 'X': // Allow ANY value.
+ case 'I': // Target registers.
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ case '<':
+ case '>':
+ return C_Other;
+ }
+ }
+
+ if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
+ if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
+ return C_Memory;
+ return C_Register;
+ }
+ return C_Unknown;
+}
+
+/// Try to replace an X constraint, which matches anything, with another that
+/// has more specific requirements based on the type of the corresponding
+/// operand.
+const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
+ if (ConstraintVT.isInteger())
+ return "r";
+ if (ConstraintVT.isFloatingPoint())
+ return "f"; // works for many targets
+ return nullptr;
+}
+
+SDValue TargetLowering::LowerAsmOutputForConstraint(
+ SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
+ SelectionDAG &DAG) const {
+ return SDValue();
+}
+
+/// Lower the specified operand into the Ops vector.
+/// If it is invalid, don't add anything to Ops.
+void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+
+ if (Constraint.length() > 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'X': // Allows any operand; labels (basic block) use this.
+ if (Op.getOpcode() == ISD::BasicBlock ||
+ Op.getOpcode() == ISD::TargetBlockAddress) {
+ Ops.push_back(Op);
+ return;
+ }
+ LLVM_FALLTHROUGH;
+ case 'i': // Simple Integer or Relocatable Constant
+ case 'n': // Simple Integer
+ case 's': { // Relocatable Constant
+
+ GlobalAddressSDNode *GA;
+ ConstantSDNode *C;
+ BlockAddressSDNode *BA;
+ uint64_t Offset = 0;
+
+ // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
+ // etc., since getelementpointer is variadic. We can't use
+ // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
+ // while in this case the GA may be furthest from the root node which is
+ // likely an ISD::ADD.
+ while (1) {
+ if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
+ Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
+ GA->getValueType(0),
+ Offset + GA->getOffset()));
+ return;
+ } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
+ ConstraintLetter != 's') {
+ // gcc prints these as sign extended. Sign extend value to 64 bits
+ // now; without this it would get ZExt'd later in
+ // ScheduleDAGSDNodes::EmitNode, which is very generic.
+ bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
+ BooleanContent BCont = getBooleanContents(MVT::i64);
+ ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
+ : ISD::SIGN_EXTEND;
+ int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
+ : C->getSExtValue();
+ Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
+ SDLoc(C), MVT::i64));
+ return;
+ } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
+ ConstraintLetter != 'n') {
+ Ops.push_back(DAG.getTargetBlockAddress(
+ BA->getBlockAddress(), BA->getValueType(0),
+ Offset + BA->getOffset(), BA->getTargetFlags()));
+ return;
+ } else {
+ const unsigned OpCode = Op.getOpcode();
+ if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
+ if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
+ Op = Op.getOperand(1);
+ // Subtraction is not commutative.
+ else if (OpCode == ISD::ADD &&
+ (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
+ Op = Op.getOperand(0);
+ else
+ return;
+ Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
+ continue;
+ }
+ }
+ return;
+ }
+ break;
+ }
+ }
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
+ StringRef Constraint,
+ MVT VT) const {
+ if (Constraint.empty() || Constraint[0] != '{')
+ return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
+ assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
+
+ // Remove the braces from around the name.
+ StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
+
+ std::pair<unsigned, const TargetRegisterClass *> R =
+ std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
+
+ // Figure out which register class contains this reg.
+ for (const TargetRegisterClass *RC : RI->regclasses()) {
+ // If none of the value types for this register class are valid, we
+ // can't use it. For example, 64-bit reg classes on 32-bit targets.
+ if (!isLegalRC(*RI, *RC))
+ continue;
+
+ for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+ I != E; ++I) {
+ if (RegName.equals_lower(RI->getRegAsmName(*I))) {
+ std::pair<unsigned, const TargetRegisterClass *> S =
+ std::make_pair(*I, RC);
+
+ // If this register class has the requested value type, return it,
+ // otherwise keep searching and return the first class found
+ // if no other is found which explicitly has the requested type.
+ if (RI->isTypeLegalForClass(*RC, VT))
+ return S;
+ if (!R.second)
+ R = S;
+ }
+ }
+ }
+
+ return R;
+}
+
+//===----------------------------------------------------------------------===//
+// Constraint Selection.
+
+/// Return true of this is an input operand that is a matching constraint like
+/// "4".
+bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
+ assert(!ConstraintCode.empty() && "No known constraint!");
+ return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
+}
+
+/// If this is an input matching constraint, this method returns the output
+/// operand it matches.
+unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
+ assert(!ConstraintCode.empty() && "No known constraint!");
+ return atoi(ConstraintCode.c_str());
+}
+
+/// Split up the constraint string from the inline assembly value into the
+/// specific constraints and their prefixes, and also tie in the associated
+/// operand values.
+/// If this returns an empty vector, and if the constraint string itself
+/// isn't empty, there was an error parsing.
+TargetLowering::AsmOperandInfoVector
+TargetLowering::ParseConstraints(const DataLayout &DL,
+ const TargetRegisterInfo *TRI,
+ ImmutableCallSite CS) const {
+ /// Information about all of the constraints.
+ AsmOperandInfoVector ConstraintOperands;
+ const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+ unsigned maCount = 0; // Largest number of multiple alternative constraints.
+
+ // Do a prepass over the constraints, canonicalizing them, and building up the
+ // ConstraintOperands list.
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ unsigned ResNo = 0; // ResNo - The result number of the next output.
+
+ for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
+ ConstraintOperands.emplace_back(std::move(CI));
+ AsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ // Update multiple alternative constraint count.
+ if (OpInfo.multipleAlternatives.size() > maCount)
+ maCount = OpInfo.multipleAlternatives.size();
+
+ OpInfo.ConstraintVT = MVT::Other;
+
+ // Compute the value type for each operand.
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ // Indirect outputs just consume an argument.
+ if (OpInfo.isIndirect) {
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ }
+
+ // The return value of the call is this value. As such, there is no
+ // corresponding argument.
+ assert(!CS.getType()->isVoidTy() &&
+ "Bad inline asm!");
+ if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
+ OpInfo.ConstraintVT =
+ getSimpleValueType(DL, STy->getElementType(ResNo));
+ } else {
+ assert(ResNo == 0 && "Asm only has one result!");
+ OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
+ }
+ ++ResNo;
+ break;
+ case InlineAsm::isInput:
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ case InlineAsm::isClobber:
+ // Nothing to do.
+ break;
+ }
+
+ if (OpInfo.CallOperandVal) {
+ llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
+ if (OpInfo.isIndirect) {
+ llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
+ if (!PtrTy)
+ report_fatal_error("Indirect operand for inline asm not a pointer!");
+ OpTy = PtrTy->getElementType();
+ }
+
+ // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
+ if (StructType *STy = dyn_cast<StructType>(OpTy))
+ if (STy->getNumElements() == 1)
+ OpTy = STy->getElementType(0);
+
+ // If OpTy is not a single value, it may be a struct/union that we
+ // can tile with integers.
+ if (!OpTy->isSingleValueType() && OpTy->isSized()) {
+ unsigned BitSize = DL.getTypeSizeInBits(OpTy);
+ switch (BitSize) {
+ default: break;
+ case 1:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ case 128:
+ OpInfo.ConstraintVT =
+ MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
+ break;
+ }
+ } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
+ unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
+ OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
+ } else {
+ OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
+ }
+ }
+ }
+
+ // If we have multiple alternative constraints, select the best alternative.
+ if (!ConstraintOperands.empty()) {
+ if (maCount) {
+ unsigned bestMAIndex = 0;
+ int bestWeight = -1;
+ // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
+ int weight = -1;
+ unsigned maIndex;
+ // Compute the sums of the weights for each alternative, keeping track
+ // of the best (highest weight) one so far.
+ for (maIndex = 0; maIndex < maCount; ++maIndex) {
+ int weightSum = 0;
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
+ if (OpInfo.Type == InlineAsm::isClobber)
+ continue;
+
+ // If this is an output operand with a matching input operand,
+ // look up the matching input. If their types mismatch, e.g. one
+ // is an integer, the other is floating point, or their sizes are
+ // different, flag it as an maCantMatch.
+ if (OpInfo.hasMatchingInput()) {
+ AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (OpInfo.ConstraintVT.getSizeInBits() !=
+ Input.ConstraintVT.getSizeInBits())) {
+ weightSum = -1; // Can't match.
+ break;
+ }
+ }
+ }
+ weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
+ if (weight == -1) {
+ weightSum = -1;
+ break;
+ }
+ weightSum += weight;
+ }
+ // Update best.
+ if (weightSum > bestWeight) {
+ bestWeight = weightSum;
+ bestMAIndex = maIndex;
+ }
+ }
+
+ // Now select chosen alternative in each constraint.
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
+ if (cInfo.Type == InlineAsm::isClobber)
+ continue;
+ cInfo.selectAlternative(bestMAIndex);
+ }
+ }
+ }
+
+ // Check and hook up tied operands, choose constraint code to use.
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
+
+ // If this is an output operand with a matching input operand, look up the
+ // matching input. If their types mismatch, e.g. one is an integer, the
+ // other is floating point, or their sizes are different, flag it as an
+ // error.
+ if (OpInfo.hasMatchingInput()) {
+ AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ std::pair<unsigned, const TargetRegisterClass *> MatchRC =
+ getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+ std::pair<unsigned, const TargetRegisterClass *> InputRC =
+ getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
+ Input.ConstraintVT);
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (MatchRC.second != InputRC.second)) {
+ report_fatal_error("Unsupported asm: input constraint"
+ " with a matching output constraint of"
+ " incompatible type!");
+ }
+ }
+ }
+ }
+
+ return ConstraintOperands;
+}
+
+/// Return an integer indicating how general CT is.
+static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
+ switch (CT) {
+ case TargetLowering::C_Immediate:
+ case TargetLowering::C_Other:
+ case TargetLowering::C_Unknown:
+ return 0;
+ case TargetLowering::C_Register:
+ return 1;
+ case TargetLowering::C_RegisterClass:
+ return 2;
+ case TargetLowering::C_Memory:
+ return 3;
+ }
+ llvm_unreachable("Invalid constraint type");
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ TargetLowering::getMultipleConstraintMatchWeight(
+ AsmOperandInfo &info, int maIndex) const {
+ InlineAsm::ConstraintCodeVector *rCodes;
+ if (maIndex >= (int)info.multipleAlternatives.size())
+ rCodes = &info.Codes;
+ else
+ rCodes = &info.multipleAlternatives[maIndex].Codes;
+ ConstraintWeight BestWeight = CW_Invalid;
+
+ // Loop over the options, keeping track of the most general one.
+ for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
+ ConstraintWeight weight =
+ getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
+ if (weight > BestWeight)
+ BestWeight = weight;
+ }
+
+ return BestWeight;
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ // Look at the constraint type.
+ switch (*constraint) {
+ case 'i': // immediate integer.
+ case 'n': // immediate integer with a known value.
+ if (isa<ConstantInt>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 's': // non-explicit intregal immediate.
+ if (isa<GlobalValue>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 'E': // immediate float if host format.
+ case 'F': // immediate float.
+ if (isa<ConstantFP>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case '<': // memory operand with autodecrement.
+ case '>': // memory operand with autoincrement.
+ case 'm': // memory operand.
+ case 'o': // offsettable memory operand
+ case 'V': // non-offsettable memory operand
+ weight = CW_Memory;
+ break;
+ case 'r': // general register.
+ case 'g': // general register, memory operand or immediate integer.
+ // note: Clang converts "g" to "imr".
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_Register;
+ break;
+ case 'X': // any operand.
+ default:
+ weight = CW_Default;
+ break;
+ }
+ return weight;
+}
+
+/// If there are multiple different constraints that we could pick for this
+/// operand (e.g. "imr") try to pick the 'best' one.
+/// This is somewhat tricky: constraints fall into four classes:
+/// Other -> immediates and magic values
+/// Register -> one specific register
+/// RegisterClass -> a group of regs
+/// Memory -> memory
+/// Ideally, we would pick the most specific constraint possible: if we have
+/// something that fits into a register, we would pick it. The problem here
+/// is that if we have something that could either be in a register or in
+/// memory that use of the register could cause selection of *other*
+/// operands to fail: they might only succeed if we pick memory. Because of
+/// this the heuristic we use is:
+///
+/// 1) If there is an 'other' constraint, and if the operand is valid for
+/// that constraint, use it. This makes us take advantage of 'i'
+/// constraints when available.
+/// 2) Otherwise, pick the most general constraint present. This prefers
+/// 'm' over 'r', for example.
+///
+static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
+ const TargetLowering &TLI,
+ SDValue Op, SelectionDAG *DAG) {
+ assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
+ unsigned BestIdx = 0;
+ TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
+ int BestGenerality = -1;
+
+ // Loop over the options, keeping track of the most general one.
+ for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
+ TargetLowering::ConstraintType CType =
+ TLI.getConstraintType(OpInfo.Codes[i]);
+
+ // If this is an 'other' or 'immediate' constraint, see if the operand is
+ // valid for it. For example, on X86 we might have an 'rI' constraint. If
+ // the operand is an integer in the range [0..31] we want to use I (saving a
+ // load of a register), otherwise we must use 'r'.
+ if ((CType == TargetLowering::C_Other ||
+ CType == TargetLowering::C_Immediate) && Op.getNode()) {
+ assert(OpInfo.Codes[i].size() == 1 &&
+ "Unhandled multi-letter 'other' constraint");
+ std::vector<SDValue> ResultOps;
+ TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
+ ResultOps, *DAG);
+ if (!ResultOps.empty()) {
+ BestType = CType;
+ BestIdx = i;
+ break;
+ }
+ }
+
+ // Things with matching constraints can only be registers, per gcc
+ // documentation. This mainly affects "g" constraints.
+ if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
+ continue;
+
+ // This constraint letter is more general than the previous one, use it.
+ int Generality = getConstraintGenerality(CType);
+ if (Generality > BestGenerality) {
+ BestType = CType;
+ BestIdx = i;
+ BestGenerality = Generality;
+ }
+ }
+
+ OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
+ OpInfo.ConstraintType = BestType;
+}
+
+/// Determines the constraint code and constraint type to use for the specific
+/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
+void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
+ SDValue Op,
+ SelectionDAG *DAG) const {
+ assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
+
+ // Single-letter constraints ('r') are very common.
+ if (OpInfo.Codes.size() == 1) {
+ OpInfo.ConstraintCode = OpInfo.Codes[0];
+ OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
+ } else {
+ ChooseConstraint(OpInfo, *this, Op, DAG);
+ }
+
+ // 'X' matches anything.
+ if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
+ // Labels and constants are handled elsewhere ('X' is the only thing
+ // that matches labels). For Functions, the type here is the type of
+ // the result, which is not what we want to look at; leave them alone.
+ Value *v = OpInfo.CallOperandVal;
+ if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
+ OpInfo.CallOperandVal = v;
+ return;
+ }
+
+ if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
+ return;
+
+ // Otherwise, try to resolve it to something we know about by looking at
+ // the actual operand type.
+ if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
+ OpInfo.ConstraintCode = Repl;
+ OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
+ }
+ }
+}
+
+/// Given an exact SDIV by a constant, create a multiplication
+/// with the multiplicative inverse of the constant.
+static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
+ const SDLoc &dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDNode *> &Created) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+
+ bool UseSRA = false;
+ SmallVector<SDValue, 16> Shifts, Factors;
+
+ auto BuildSDIVPattern = [&](ConstantSDNode *C) {
+ if (C->isNullValue())
+ return false;
+ APInt Divisor = C->getAPIntValue();
+ unsigned Shift = Divisor.countTrailingZeros();
+ if (Shift) {
+ Divisor.ashrInPlace(Shift);
+ UseSRA = true;
+ }
+ // Calculate the multiplicative inverse, using Newton's method.
+ APInt t;
+ APInt Factor = Divisor;
+ while ((t = Divisor * Factor) != 1)
+ Factor *= APInt(Divisor.getBitWidth(), 2) - t;
+ Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
+ Factors.push_back(DAG.getConstant(Factor, dl, SVT));
+ return true;
+ };
+
+ // Collect all magic values from the build vector.
+ if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
+ return SDValue();
+
+ SDValue Shift, Factor;
+ if (VT.isVector()) {
+ Shift = DAG.getBuildVector(ShVT, dl, Shifts);
+ Factor = DAG.getBuildVector(VT, dl, Factors);
+ } else {
+ Shift = Shifts[0];
+ Factor = Factors[0];
+ }
+
+ SDValue Res = Op0;
+
+ // Shift the value upfront if it is even, so the LSB is one.
+ if (UseSRA) {
+ // TODO: For UDIV use SRL instead of SRA.
+ SDNodeFlags Flags;
+ Flags.setExact(true);
+ Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
+ Created.push_back(Res.getNode());
+ }
+
+ return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
+}
+
+SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDNode *> &Created) const {
+ AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.isIntDivCheap(N->getValueType(0), Attr))
+ return SDValue(N, 0); // Lower SDIV as SDIV
+ return SDValue();
+}
+
+/// Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
+SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
+ bool IsAfterLegalization,
+ SmallVectorImpl<SDNode *> &Created) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+ unsigned EltBits = VT.getScalarSizeInBits();
+
+ // Check to see if we can do this.
+ // FIXME: We should be more aggressive here.
+ if (!isTypeLegal(VT))
+ return SDValue();
+
+ // If the sdiv has an 'exact' bit we can use a simpler lowering.
+ if (N->getFlags().hasExact())
+ return BuildExactSDIV(*this, N, dl, DAG, Created);
+
+ SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
+
+ auto BuildSDIVPattern = [&](ConstantSDNode *C) {
+ if (C->isNullValue())
+ return false;
+
+ const APInt &Divisor = C->getAPIntValue();
+ APInt::ms magics = Divisor.magic();
+ int NumeratorFactor = 0;
+ int ShiftMask = -1;
+
+ if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
+ // If d is +1/-1, we just multiply the numerator by +1/-1.
+ NumeratorFactor = Divisor.getSExtValue();
+ magics.m = 0;
+ magics.s = 0;
+ ShiftMask = 0;
+ } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
+ // If d > 0 and m < 0, add the numerator.
+ NumeratorFactor = 1;
+ } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
+ // If d < 0 and m > 0, subtract the numerator.
+ NumeratorFactor = -1;
+ }
+
+ MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
+ Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
+ Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
+ ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
+ return true;
+ };
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // Collect the shifts / magic values from each element.
+ if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
+ return SDValue();
+
+ SDValue MagicFactor, Factor, Shift, ShiftMask;
+ if (VT.isVector()) {
+ MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
+ Factor = DAG.getBuildVector(VT, dl, Factors);
+ Shift = DAG.getBuildVector(ShVT, dl, Shifts);
+ ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
+ } else {
+ MagicFactor = MagicFactors[0];
+ Factor = Factors[0];
+ Shift = Shifts[0];
+ ShiftMask = ShiftMasks[0];
+ }
+
+ // Multiply the numerator (operand 0) by the magic value.
+ // FIXME: We should support doing a MUL in a wider type.
+ SDValue Q;
+ if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
+ : isOperationLegalOrCustom(ISD::MULHS, VT))
+ Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
+ else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
+ : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
+ SDValue LoHi =
+ DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
+ Q = SDValue(LoHi.getNode(), 1);
+ } else
+ return SDValue(); // No mulhs or equivalent.
+ Created.push_back(Q.getNode());
+
+ // (Optionally) Add/subtract the numerator using Factor.
+ Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
+ Created.push_back(Factor.getNode());
+ Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
+ Created.push_back(Q.getNode());
+
+ // Shift right algebraic by shift value.
+ Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
+ Created.push_back(Q.getNode());
+
+ // Extract the sign bit, mask it and add it to the quotient.
+ SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
+ SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
+ Created.push_back(T.getNode());
+ T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
+ Created.push_back(T.getNode());
+ return DAG.getNode(ISD::ADD, dl, VT, Q, T);
+}
+
+/// Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
+SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
+ bool IsAfterLegalization,
+ SmallVectorImpl<SDNode *> &Created) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+ unsigned EltBits = VT.getScalarSizeInBits();
+
+ // Check to see if we can do this.
+ // FIXME: We should be more aggressive here.
+ if (!isTypeLegal(VT))
+ return SDValue();
+
+ bool UseNPQ = false;
+ SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
+
+ auto BuildUDIVPattern = [&](ConstantSDNode *C) {
+ if (C->isNullValue())
+ return false;
+ // FIXME: We should use a narrower constant when the upper
+ // bits are known to be zero.
+ APInt Divisor = C->getAPIntValue();
+ APInt::mu magics = Divisor.magicu();
+ unsigned PreShift = 0, PostShift = 0;
+
+ // If the divisor is even, we can avoid using the expensive fixup by
+ // shifting the divided value upfront.
+ if (magics.a != 0 && !Divisor[0]) {
+ PreShift = Divisor.countTrailingZeros();
+ // Get magic number for the shifted divisor.
+ magics = Divisor.lshr(PreShift).magicu(PreShift);
+ assert(magics.a == 0 && "Should use cheap fixup now");
+ }
+
+ APInt Magic = magics.m;
+
+ unsigned SelNPQ;
+ if (magics.a == 0 || Divisor.isOneValue()) {
+ assert(magics.s < Divisor.getBitWidth() &&
+ "We shouldn't generate an undefined shift!");
+ PostShift = magics.s;
+ SelNPQ = false;
+ } else {
+ PostShift = magics.s - 1;
+ SelNPQ = true;
+ }
+
+ PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
+ MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
+ NPQFactors.push_back(
+ DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
+ : APInt::getNullValue(EltBits),
+ dl, SVT));
+ PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
+ UseNPQ |= SelNPQ;
+ return true;
+ };
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // Collect the shifts/magic values from each element.
+ if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
+ return SDValue();
+
+ SDValue PreShift, PostShift, MagicFactor, NPQFactor;
+ if (VT.isVector()) {
+ PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
+ MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
+ NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
+ PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
+ } else {
+ PreShift = PreShifts[0];
+ MagicFactor = MagicFactors[0];
+ PostShift = PostShifts[0];
+ }
+
+ SDValue Q = N0;
+ Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
+ Created.push_back(Q.getNode());
+
+ // FIXME: We should support doing a MUL in a wider type.
+ auto GetMULHU = [&](SDValue X, SDValue Y) {
+ if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
+ : isOperationLegalOrCustom(ISD::MULHU, VT))
+ return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
+ if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
+ : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
+ SDValue LoHi =
+ DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
+ return SDValue(LoHi.getNode(), 1);
+ }
+ return SDValue(); // No mulhu or equivalent
+ };
+
+ // Multiply the numerator (operand 0) by the magic value.
+ Q = GetMULHU(Q, MagicFactor);
+ if (!Q)
+ return SDValue();
+
+ Created.push_back(Q.getNode());
+
+ if (UseNPQ) {
+ SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
+ Created.push_back(NPQ.getNode());
+
+ // For vectors we might have a mix of non-NPQ/NPQ paths, so use
+ // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
+ if (VT.isVector())
+ NPQ = GetMULHU(NPQ, NPQFactor);
+ else
+ NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
+
+ Created.push_back(NPQ.getNode());
+
+ Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
+ Created.push_back(Q.getNode());
+ }
+
+ Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
+ Created.push_back(Q.getNode());
+
+ SDValue One = DAG.getConstant(1, dl, VT);
+ SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
+ return DAG.getSelect(dl, VT, IsOne, N0, Q);
+}
+
+/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
+/// where the divisor is constant and the comparison target is zero,
+/// return a DAG expression that will generate the same comparison result
+/// using only multiplications, additions and shifts/rotations.
+/// Ref: "Hacker's Delight" 10-17.
+SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
+ SDValue CompTargetNode,
+ ISD::CondCode Cond,
+ DAGCombinerInfo &DCI,
+ const SDLoc &DL) const {
+ SmallVector<SDNode *, 2> Built;
+ if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
+ DCI, DL, Built)) {
+ for (SDNode *N : Built)
+ DCI.AddToWorklist(N);
+ return Folded;
+ }
+
+ return SDValue();
+}
+
+SDValue
+TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
+ SDValue CompTargetNode, ISD::CondCode Cond,
+ DAGCombinerInfo &DCI, const SDLoc &DL,
+ SmallVectorImpl<SDNode *> &Created) const {
+ // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
+ // - D must be constant with D = D0 * 2^K where D0 is odd and D0 != 1
+ // - P is the multiplicative inverse of D0 modulo 2^W
+ // - Q = floor((2^W - 1) / D0)
+ // where W is the width of the common type of N and D.
+ assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ "Only applicable for (in)equality comparisons.");
+
+ EVT VT = REMNode.getValueType();
+
+ // If MUL is unavailable, we cannot proceed in any case.
+ if (!isOperationLegalOrCustom(ISD::MUL, VT))
+ return SDValue();
+
+ // TODO: Add non-uniform constant support.
+ ConstantSDNode *Divisor = isConstOrConstSplat(REMNode->getOperand(1));
+ ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
+ if (!Divisor || !CompTarget || Divisor->isNullValue() ||
+ !CompTarget->isNullValue())
+ return SDValue();
+
+ const APInt &D = Divisor->getAPIntValue();
+
+ // Decompose D into D0 * 2^K
+ unsigned K = D.countTrailingZeros();
+ bool DivisorIsEven = (K != 0);
+ APInt D0 = D.lshr(K);
+
+ // The fold is invalid when D0 == 1.
+ // This is reachable because visitSetCC happens before visitREM.
+ if (D0.isOneValue())
+ return SDValue();
+
+ // P = inv(D0, 2^W)
+ // 2^W requires W + 1 bits, so we have to extend and then truncate.
+ unsigned W = D.getBitWidth();
+ APInt P = D0.zext(W + 1)
+ .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
+ .trunc(W);
+ assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
+ assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
+
+ // Q = floor((2^W - 1) / D)
+ APInt Q = APInt::getAllOnesValue(W).udiv(D);
+
+ SelectionDAG &DAG = DCI.DAG;
+
+ SDValue PVal = DAG.getConstant(P, DL, VT);
+ SDValue QVal = DAG.getConstant(Q, DL, VT);
+ // (mul N, P)
+ SDValue Op1 = DAG.getNode(ISD::MUL, DL, VT, REMNode->getOperand(0), PVal);
+ Created.push_back(Op1.getNode());
+
+ // Rotate right only if D was even.
+ if (DivisorIsEven) {
+ // We need ROTR to do this.
+ if (!isOperationLegalOrCustom(ISD::ROTR, VT))
+ return SDValue();
+ SDValue ShAmt =
+ DAG.getConstant(K, DL, getShiftAmountTy(VT, DAG.getDataLayout()));
+ SDNodeFlags Flags;
+ Flags.setExact(true);
+ // UREM: (rotr (mul N, P), K)
+ Op1 = DAG.getNode(ISD::ROTR, DL, VT, Op1, ShAmt, Flags);
+ Created.push_back(Op1.getNode());
+ }
+
+ // UREM: (setule/setugt (rotr (mul N, P), K), Q)
+ return DAG.getSetCC(DL, SETCCVT, Op1, QVal,
+ ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
+}
+
+bool TargetLowering::
+verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
+ if (!isa<ConstantSDNode>(Op.getOperand(0))) {
+ DAG.getContext()->emitError("argument to '__builtin_return_address' must "
+ "be a constant integer");
+ return true;
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Legalization Utilities
+//===----------------------------------------------------------------------===//
+
+bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
+ SDValue LHS, SDValue RHS,
+ SmallVectorImpl<SDValue> &Result,
+ EVT HiLoVT, SelectionDAG &DAG,
+ MulExpansionKind Kind, SDValue LL,
+ SDValue LH, SDValue RL, SDValue RH) const {
+ assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
+ Opcode == ISD::SMUL_LOHI);
+
+ bool HasMULHS = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
+ bool HasMULHU = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
+ bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
+ bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
+
+ if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
+ return false;
+
+ unsigned OuterBitSize = VT.getScalarSizeInBits();
+ unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
+ unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
+ unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
+
+ // LL, LH, RL, and RH must be either all NULL or all set to a value.
+ assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
+ (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
+
+ SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
+ auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
+ bool Signed) -> bool {
+ if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
+ Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
+ Hi = SDValue(Lo.getNode(), 1);
+ return true;
+ }
+ if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
+ Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
+ Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
+ return true;
+ }
+ return false;
+ };
+
+ SDValue Lo, Hi;
+
+ if (!LL.getNode() && !RL.getNode() &&
+ isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
+ LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
+ RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
+ }
+
+ if (!LL.getNode())
+ return false;
+
+ APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
+ if (DAG.MaskedValueIsZero(LHS, HighMask) &&
+ DAG.MaskedValueIsZero(RHS, HighMask)) {
+ // The inputs are both zero-extended.
+ if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
+ Result.push_back(Lo);
+ Result.push_back(Hi);
+ if (Opcode != ISD::MUL) {
+ SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
+ Result.push_back(Zero);
+ Result.push_back(Zero);
+ }
+ return true;
+ }
+ }
+
+ if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
+ RHSSB > InnerBitSize) {
+ // The input values are both sign-extended.
+ // TODO non-MUL case?
+ if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
+ Result.push_back(Lo);
+ Result.push_back(Hi);
+ return true;
+ }
+ }
+
+ unsigned ShiftAmount = OuterBitSize - InnerBitSize;
+ EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
+ if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
+ // FIXME getShiftAmountTy does not always return a sensible result when VT
+ // is an illegal type, and so the type may be too small to fit the shift
+ // amount. Override it with i32. The shift will have to be legalized.
+ ShiftAmountTy = MVT::i32;
+ }
+ SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
+
+ if (!LH.getNode() && !RH.getNode() &&
+ isOperationLegalOrCustom(ISD::SRL, VT) &&
+ isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
+ LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
+ LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
+ RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
+ RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
+ }
+
+ if (!LH.getNode())
+ return false;
+
+ if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
+ return false;
+
+ Result.push_back(Lo);
+
+ if (Opcode == ISD::MUL) {
+ RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
+ LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
+ Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
+ Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
+ Result.push_back(Hi);
+ return true;
+ }
+
+ // Compute the full width result.
+ auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
+ Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
+ Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
+ return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
+ };
+
+ SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
+ if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
+ return false;
+
+ // This is effectively the add part of a multiply-add of half-sized operands,
+ // so it cannot overflow.
+ Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
+
+ if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
+ return false;
+
+ SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
+ EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+
+ bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
+ isOperationLegalOrCustom(ISD::ADDE, VT));
+ if (UseGlue)
+ Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
+ Merge(Lo, Hi));
+ else
+ Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
+ Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
+
+ SDValue Carry = Next.getValue(1);
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
+
+ if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
+ return false;
+
+ if (UseGlue)
+ Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
+ Carry);
+ else
+ Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
+ Zero, Carry);
+
+ Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
+
+ if (Opcode == ISD::SMUL_LOHI) {
+ SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
+ Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
+
+ NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
+ Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
+ }
+
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ return true;
+}
+
+bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
+ SelectionDAG &DAG, MulExpansionKind Kind,
+ SDValue LL, SDValue LH, SDValue RL,
+ SDValue RH) const {
+ SmallVector<SDValue, 2> Result;
+ bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
+ N->getOperand(0), N->getOperand(1), Result, HiLoVT,
+ DAG, Kind, LL, LH, RL, RH);
+ if (Ok) {
+ assert(Result.size() == 2);
+ Lo = Result[0];
+ Hi = Result[1];
+ }
+ return Ok;
+}
+
+bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ EVT VT = Node->getValueType(0);
+
+ if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
+ !isOperationLegalOrCustom(ISD::SRL, VT) ||
+ !isOperationLegalOrCustom(ISD::SUB, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
+ return false;
+
+ // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
+ // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
+ SDValue X = Node->getOperand(0);
+ SDValue Y = Node->getOperand(1);
+ SDValue Z = Node->getOperand(2);
+
+ unsigned EltSizeInBits = VT.getScalarSizeInBits();
+ bool IsFSHL = Node->getOpcode() == ISD::FSHL;
+ SDLoc DL(SDValue(Node, 0));
+
+ EVT ShVT = Z.getValueType();
+ SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
+ SDValue Zero = DAG.getConstant(0, DL, ShVT);
+
+ SDValue ShAmt;
+ if (isPowerOf2_32(EltSizeInBits)) {
+ SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
+ ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
+ } else {
+ ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
+ }
+
+ SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
+ SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
+ SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
+ SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
+
+ // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
+ // and that is undefined. We must compare and select to avoid UB.
+ EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
+
+ // For fshl, 0-shift returns the 1st arg (X).
+ // For fshr, 0-shift returns the 2nd arg (Y).
+ SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
+ Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
+ return true;
+}
+
+// TODO: Merge with expandFunnelShift.
+bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ EVT VT = Node->getValueType(0);
+ unsigned EltSizeInBits = VT.getScalarSizeInBits();
+ bool IsLeft = Node->getOpcode() == ISD::ROTL;
+ SDValue Op0 = Node->getOperand(0);
+ SDValue Op1 = Node->getOperand(1);
+ SDLoc DL(SDValue(Node, 0));
+
+ EVT ShVT = Op1.getValueType();
+ SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
+
+ // If a rotate in the other direction is legal, use it.
+ unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
+ if (isOperationLegal(RevRot, VT)) {
+ SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
+ Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
+ return true;
+ }
+
+ if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
+ !isOperationLegalOrCustom(ISD::SRL, VT) ||
+ !isOperationLegalOrCustom(ISD::SUB, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
+ return false;
+
+ // Otherwise,
+ // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
+ // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
+ //
+ assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
+ "Expecting the type bitwidth to be a power of 2");
+ unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
+ unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
+ SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
+ SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
+ SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
+ SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
+ Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
+ DAG.getNode(HsOpc, DL, VT, Op0, And1));
+ return true;
+}
+
+bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ SDValue Src = Node->getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Node->getValueType(0);
+ SDLoc dl(SDValue(Node, 0));
+
+ // FIXME: Only f32 to i64 conversions are supported.
+ if (SrcVT != MVT::f32 || DstVT != MVT::i64)
+ return false;
+
+ // Expand f32 -> i64 conversion
+ // This algorithm comes from compiler-rt's implementation of fixsfdi:
+ // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
+ unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
+ EVT IntVT = SrcVT.changeTypeToInteger();
+ EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
+
+ SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
+ SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
+ SDValue Bias = DAG.getConstant(127, dl, IntVT);
+ SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
+ SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
+ SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
+
+ SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
+
+ SDValue ExponentBits = DAG.getNode(
+ ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
+ DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
+ SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
+
+ SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
+ DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
+ DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
+ Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
+
+ SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
+ DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
+ DAG.getConstant(0x00800000, dl, IntVT));
+
+ R = DAG.getZExtOrTrunc(R, dl, DstVT);
+
+ R = DAG.getSelectCC(
+ dl, Exponent, ExponentLoBit,
+ DAG.getNode(ISD::SHL, dl, DstVT, R,
+ DAG.getZExtOrTrunc(
+ DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
+ dl, IntShVT)),
+ DAG.getNode(ISD::SRL, dl, DstVT, R,
+ DAG.getZExtOrTrunc(
+ DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
+ dl, IntShVT)),
+ ISD::SETGT);
+
+ SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
+ DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
+
+ Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
+ DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
+ return true;
+}
+
+bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ SDLoc dl(SDValue(Node, 0));
+ SDValue Src = Node->getOperand(0);
+
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Node->getValueType(0);
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
+ return false;
+
+ // If the maximum float value is smaller then the signed integer range,
+ // the destination signmask can't be represented by the float, so we can
+ // just use FP_TO_SINT directly.
+ const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
+ APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
+ APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
+ if (APFloat::opOverflow &
+ APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
+ Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
+ return true;
+ }
+
+ SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
+ SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
+
+ bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
+ if (Strict) {
+ // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
+ // signmask then offset (the result of which should be fully representable).
+ // Sel = Src < 0x8000000000000000
+ // Val = select Sel, Src, Src - 0x8000000000000000
+ // Ofs = select Sel, 0, 0x8000000000000000
+ // Result = fp_to_sint(Val) ^ Ofs
+
+ // TODO: Should any fast-math-flags be set for the FSUB?
+ SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
+ DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
+ SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
+ DAG.getConstant(SignMask, dl, DstVT));
+ Result = DAG.getNode(ISD::XOR, dl, DstVT,
+ DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
+ } else {
+ // Expand based on maximum range of FP_TO_SINT:
+ // True = fp_to_sint(Src)
+ // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
+ // Result = select (Src < 0x8000000000000000), True, False
+
+ SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
+ // TODO: Should any fast-math-flags be set for the FSUB?
+ SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
+ DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
+ False = DAG.getNode(ISD::XOR, dl, DstVT, False,
+ DAG.getConstant(SignMask, dl, DstVT));
+ Result = DAG.getSelect(dl, DstVT, Sel, True, False);
+ }
+ return true;
+}
+
+bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ SDValue Src = Node->getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Node->getValueType(0);
+
+ if (SrcVT.getScalarType() != MVT::i64)
+ return false;
+
+ SDLoc dl(SDValue(Node, 0));
+ EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
+
+ if (DstVT.getScalarType() == MVT::f32) {
+ // Only expand vector types if we have the appropriate vector bit
+ // operations.
+ if (SrcVT.isVector() &&
+ (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
+ !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
+ !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
+ return false;
+
+ // For unsigned conversions, convert them to signed conversions using the
+ // algorithm from the x86_64 __floatundidf in compiler_rt.
+ SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
+
+ SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
+ SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
+ SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
+ SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
+ SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
+
+ SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
+ SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
+
+ // TODO: This really should be implemented using a branch rather than a
+ // select. We happen to get lucky and machinesink does the right
+ // thing most of the time. This would be a good candidate for a
+ // pseudo-op, or, even better, for whole-function isel.
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
+
+ SDValue SignBitTest = DAG.getSetCC(
+ dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
+ Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
+ return true;
+ }
+
+ if (DstVT.getScalarType() == MVT::f64) {
+ // Only expand vector types if we have the appropriate vector bit
+ // operations.
+ if (SrcVT.isVector() &&
+ (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
+ !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
+ !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
+ return false;
+
+ // Implementation of unsigned i64 to f64 following the algorithm in
+ // __floatundidf in compiler_rt. This implementation has the advantage
+ // of performing rounding correctly, both in the default rounding mode
+ // and in all alternate rounding modes.
+ SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
+ SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
+ BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
+ SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
+ SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
+ SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
+
+ SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
+ SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
+ SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
+ SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
+ SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
+ SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
+ SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
+ Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
+ return true;
+ }
+
+ return false;
+}
+
+SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
+ ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
+ EVT VT = Node->getValueType(0);
+ if (isOperationLegalOrCustom(NewOp, VT)) {
+ SDValue Quiet0 = Node->getOperand(0);
+ SDValue Quiet1 = Node->getOperand(1);
+
+ if (!Node->getFlags().hasNoNaNs()) {
+ // Insert canonicalizes if it's possible we need to quiet to get correct
+ // sNaN behavior.
+ if (!DAG.isKnownNeverSNaN(Quiet0)) {
+ Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
+ Node->getFlags());
+ }
+ if (!DAG.isKnownNeverSNaN(Quiet1)) {
+ Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
+ Node->getFlags());
+ }
+ }
+
+ return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
+ }
+
+ // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
+ // instead if there are no NaNs.
+ if (Node->getFlags().hasNoNaNs()) {
+ unsigned IEEE2018Op =
+ Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
+ if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
+ return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
+ Node->getOperand(1), Node->getFlags());
+ }
+ }
+
+ return SDValue();
+}
+
+bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Op = Node->getOperand(0);
+ unsigned Len = VT.getScalarSizeInBits();
+ assert(VT.isInteger() && "CTPOP not implemented for this type.");
+
+ // TODO: Add support for irregular type lengths.
+ if (!(Len <= 128 && Len % 8 == 0))
+ return false;
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
+ !isOperationLegalOrCustom(ISD::SUB, VT) ||
+ !isOperationLegalOrCustom(ISD::SRL, VT) ||
+ (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
+ !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
+ return false;
+
+ // This is the "best" algorithm from
+ // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ SDValue Mask55 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
+ SDValue Mask33 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
+ SDValue Mask0F =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
+ SDValue Mask01 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
+
+ // v = v - ((v >> 1) & 0x55555555...)
+ Op = DAG.getNode(ISD::SUB, dl, VT, Op,
+ DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRL, dl, VT, Op,
+ DAG.getConstant(1, dl, ShVT)),
+ Mask55));
+ // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
+ Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
+ DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRL, dl, VT, Op,
+ DAG.getConstant(2, dl, ShVT)),
+ Mask33));
+ // v = (v + (v >> 4)) & 0x0F0F0F0F...
+ Op = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::ADD, dl, VT, Op,
+ DAG.getNode(ISD::SRL, dl, VT, Op,
+ DAG.getConstant(4, dl, ShVT))),
+ Mask0F);
+ // v = (v * 0x01010101...) >> (Len - 8)
+ if (Len > 8)
+ Op =
+ DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
+ DAG.getConstant(Len - 8, dl, ShVT));
+
+ Result = Op;
+ return true;
+}
+
+bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Op = Node->getOperand(0);
+ unsigned NumBitsPerElt = VT.getScalarSizeInBits();
+
+ // If the non-ZERO_UNDEF version is supported we can use that instead.
+ if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
+ isOperationLegalOrCustom(ISD::CTLZ, VT)) {
+ Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
+ return true;
+ }
+
+ // If the ZERO_UNDEF version is supported use that and handle the zero case.
+ if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
+ Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
+ DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
+ return true;
+ }
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
+ !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
+ !isOperationLegalOrCustom(ISD::SRL, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
+ return false;
+
+ // for now, we do this:
+ // x = x | (x >> 1);
+ // x = x | (x >> 2);
+ // ...
+ // x = x | (x >>16);
+ // x = x | (x >>32); // for 64-bit input
+ // return popcount(~x);
+ //
+ // Ref: "Hacker's Delight" by Henry Warren
+ for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
+ SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
+ Op = DAG.getNode(ISD::OR, dl, VT, Op,
+ DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
+ }
+ Op = DAG.getNOT(dl, Op, VT);
+ Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
+ return true;
+}
+
+bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ SDValue Op = Node->getOperand(0);
+ unsigned NumBitsPerElt = VT.getScalarSizeInBits();
+
+ // If the non-ZERO_UNDEF version is supported we can use that instead.
+ if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
+ isOperationLegalOrCustom(ISD::CTTZ, VT)) {
+ Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
+ return true;
+ }
+
+ // If the ZERO_UNDEF version is supported use that and handle the zero case.
+ if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
+ Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
+ DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
+ return true;
+ }
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
+ (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
+ !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
+ !isOperationLegalOrCustom(ISD::SUB, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
+ return false;
+
+ // for now, we use: { return popcount(~x & (x - 1)); }
+ // unless the target has ctlz but not ctpop, in which case we use:
+ // { return 32 - nlz(~x & (x-1)); }
+ // Ref: "Hacker's Delight" by Henry Warren
+ SDValue Tmp = DAG.getNode(
+ ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
+ DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
+
+ // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
+ if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
+ Result =
+ DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
+ DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
+ return true;
+ }
+
+ Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
+ return true;
+}
+
+bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
+ SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Op = N->getOperand(0);
+
+ // Only expand vector types if we have the appropriate vector operations.
+ if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
+ !isOperationLegalOrCustom(ISD::ADD, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
+ return false;
+
+ SDValue Shift =
+ DAG.getNode(ISD::SRA, dl, VT, Op,
+ DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
+ SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
+ Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
+ return true;
+}
+
+SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
+ SelectionDAG &DAG) const {
+ SDLoc SL(LD);
+ SDValue Chain = LD->getChain();
+ SDValue BasePTR = LD->getBasePtr();
+ EVT SrcVT = LD->getMemoryVT();
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+
+ unsigned NumElem = SrcVT.getVectorNumElements();
+
+ EVT SrcEltVT = SrcVT.getScalarType();
+ EVT DstEltVT = LD->getValueType(0).getScalarType();
+
+ unsigned Stride = SrcEltVT.getSizeInBits() / 8;
+ assert(SrcEltVT.isByteSized());
+
+ SmallVector<SDValue, 8> Vals;
+ SmallVector<SDValue, 8> LoadChains;
+
+ for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
+ SDValue ScalarLoad =
+ DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
+ LD->getPointerInfo().getWithOffset(Idx * Stride),
+ SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
+ LD->getMemOperand()->getFlags(), LD->getAAInfo());
+
+ BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
+
+ Vals.push_back(ScalarLoad.getValue(0));
+ LoadChains.push_back(ScalarLoad.getValue(1));
+ }
+
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
+ SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
+
+ return DAG.getMergeValues({Value, NewChain}, SL);
+}
+
+SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
+ SelectionDAG &DAG) const {
+ SDLoc SL(ST);
+
+ SDValue Chain = ST->getChain();
+ SDValue BasePtr = ST->getBasePtr();
+ SDValue Value = ST->getValue();
+ EVT StVT = ST->getMemoryVT();
+
+ // The type of the data we want to save
+ EVT RegVT = Value.getValueType();
+ EVT RegSclVT = RegVT.getScalarType();
+
+ // The type of data as saved in memory.
+ EVT MemSclVT = StVT.getScalarType();
+
+ EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
+ unsigned NumElem = StVT.getVectorNumElements();
+
+ // A vector must always be stored in memory as-is, i.e. without any padding
+ // between the elements, since various code depend on it, e.g. in the
+ // handling of a bitcast of a vector type to int, which may be done with a
+ // vector store followed by an integer load. A vector that does not have
+ // elements that are byte-sized must therefore be stored as an integer
+ // built out of the extracted vector elements.
+ if (!MemSclVT.isByteSized()) {
+ unsigned NumBits = StVT.getSizeInBits();
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
+
+ SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
+
+ for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
+ DAG.getConstant(Idx, SL, IdxVT));
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
+ SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
+ unsigned ShiftIntoIdx =
+ (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
+ SDValue ShiftAmount =
+ DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
+ SDValue ShiftedElt =
+ DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
+ CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
+ }
+
+ return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
+ ST->getAlignment(), ST->getMemOperand()->getFlags(),
+ ST->getAAInfo());
+ }
+
+ // Store Stride in bytes
+ unsigned Stride = MemSclVT.getSizeInBits() / 8;
+ assert(Stride && "Zero stride!");
+ // Extract each of the elements from the original vector and save them into
+ // memory individually.
+ SmallVector<SDValue, 8> Stores;
+ for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
+ DAG.getConstant(Idx, SL, IdxVT));
+
+ SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
+
+ // This scalar TruncStore may be illegal, but we legalize it later.
+ SDValue Store = DAG.getTruncStore(
+ Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
+ MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
+ ST->getMemOperand()->getFlags(), ST->getAAInfo());
+
+ Stores.push_back(Store);
+ }
+
+ return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
+}
+
+std::pair<SDValue, SDValue>
+TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
+ assert(LD->getAddressingMode() == ISD::UNINDEXED &&
+ "unaligned indexed loads not implemented!");
+ SDValue Chain = LD->getChain();
+ SDValue Ptr = LD->getBasePtr();
+ EVT VT = LD->getValueType(0);
+ EVT LoadedVT = LD->getMemoryVT();
+ SDLoc dl(LD);
+ auto &MF = DAG.getMachineFunction();
+
+ if (VT.isFloatingPoint() || VT.isVector()) {
+ EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
+ if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
+ if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
+ LoadedVT.isVector()) {
+ // Scalarize the load and let the individual components be handled.
+ SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
+ if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
+ return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
+ return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
+ }
+
+ // Expand to a (misaligned) integer load of the same size,
+ // then bitconvert to floating point or vector.
+ SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
+ LD->getMemOperand());
+ SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
+ if (LoadedVT != VT)
+ Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
+ ISD::ANY_EXTEND, dl, VT, Result);
+
+ return std::make_pair(Result, newLoad.getValue(1));
+ }
+
+ // Copy the value to a (aligned) stack slot using (unaligned) integer
+ // loads and stores, then do a (aligned) load from the stack slot.
+ MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
+ unsigned LoadedBytes = LoadedVT.getStoreSize();
+ unsigned RegBytes = RegVT.getSizeInBits() / 8;
+ unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
+
+ // Make sure the stack slot is also aligned for the register type.
+ SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
+ auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
+ SmallVector<SDValue, 8> Stores;
+ SDValue StackPtr = StackBase;
+ unsigned Offset = 0;
+
+ EVT PtrVT = Ptr.getValueType();
+ EVT StackPtrVT = StackPtr.getValueType();
+
+ SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
+ SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
+
+ // Do all but one copies using the full register width.
+ for (unsigned i = 1; i < NumRegs; i++) {
+ // Load one integer register's worth from the original location.
+ SDValue Load = DAG.getLoad(
+ RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
+ MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+ // Follow the load with a store to the stack slot. Remember the store.
+ Stores.push_back(DAG.getStore(
+ Load.getValue(1), dl, Load, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
+ // Increment the pointers.
+ Offset += RegBytes;
+
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
+ StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
+ }
+
+ // The last copy may be partial. Do an extending load.
+ EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
+ 8 * (LoadedBytes - Offset));
+ SDValue Load =
+ DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(Offset), MemVT,
+ MinAlign(LD->getAlignment(), Offset),
+ LD->getMemOperand()->getFlags(), LD->getAAInfo());
+ // Follow the load with a store to the stack slot. Remember the store.
+ // On big-endian machines this requires a truncating store to ensure
+ // that the bits end up in the right place.
+ Stores.push_back(DAG.getTruncStore(
+ Load.getValue(1), dl, Load, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
+
+ // The order of the stores doesn't matter - say it with a TokenFactor.
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
+
+ // Finally, perform the original load only redirected to the stack slot.
+ Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
+ LoadedVT);
+
+ // Callers expect a MERGE_VALUES node.
+ return std::make_pair(Load, TF);
+ }
+
+ assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
+ "Unaligned load of unsupported type.");
+
+ // Compute the new VT that is half the size of the old one. This is an
+ // integer MVT.
+ unsigned NumBits = LoadedVT.getSizeInBits();
+ EVT NewLoadedVT;
+ NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
+ NumBits >>= 1;
+
+ unsigned Alignment = LD->getAlignment();
+ unsigned IncrementSize = NumBits / 8;
+ ISD::LoadExtType HiExtType = LD->getExtensionType();
+
+ // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
+ if (HiExtType == ISD::NON_EXTLOAD)
+ HiExtType = ISD::ZEXTLOAD;
+
+ // Load the value in two parts
+ SDValue Lo, Hi;
+ if (DAG.getDataLayout().isLittleEndian()) {
+ Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
+ NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
+ Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(IncrementSize),
+ NewLoadedVT, MinAlign(Alignment, IncrementSize),
+ LD->getMemOperand()->getFlags(), LD->getAAInfo());
+ } else {
+ Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
+ NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
+ Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(IncrementSize),
+ NewLoadedVT, MinAlign(Alignment, IncrementSize),
+ LD->getMemOperand()->getFlags(), LD->getAAInfo());
+ }
+
+ // aggregate the two parts
+ SDValue ShiftAmount =
+ DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
+ DAG.getDataLayout()));
+ SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
+ Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ return std::make_pair(Result, TF);
+}
+
+SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
+ SelectionDAG &DAG) const {
+ assert(ST->getAddressingMode() == ISD::UNINDEXED &&
+ "unaligned indexed stores not implemented!");
+ SDValue Chain = ST->getChain();
+ SDValue Ptr = ST->getBasePtr();
+ SDValue Val = ST->getValue();
+ EVT VT = Val.getValueType();
+ int Alignment = ST->getAlignment();
+ auto &MF = DAG.getMachineFunction();
+ EVT StoreMemVT = ST->getMemoryVT();
+
+ SDLoc dl(ST);
+ if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
+ EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
+ if (isTypeLegal(intVT)) {
+ if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
+ StoreMemVT.isVector()) {
+ // Scalarize the store and let the individual components be handled.
+ SDValue Result = scalarizeVectorStore(ST, DAG);
+ return Result;
+ }
+ // Expand to a bitconvert of the value to the integer type of the
+ // same size, then a (misaligned) int store.
+ // FIXME: Does not handle truncating floating point stores!
+ SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
+ Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
+ Alignment, ST->getMemOperand()->getFlags());
+ return Result;
+ }
+ // Do a (aligned) store to a stack slot, then copy from the stack slot
+ // to the final destination using (unaligned) integer loads and stores.
+ MVT RegVT = getRegisterType(
+ *DAG.getContext(),
+ EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
+ EVT PtrVT = Ptr.getValueType();
+ unsigned StoredBytes = StoreMemVT.getStoreSize();
+ unsigned RegBytes = RegVT.getSizeInBits() / 8;
+ unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
+
+ // Make sure the stack slot is also aligned for the register type.
+ SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
+ auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
+
+ // Perform the original store, only redirected to the stack slot.
+ SDValue Store = DAG.getTruncStore(
+ Chain, dl, Val, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
+
+ EVT StackPtrVT = StackPtr.getValueType();
+
+ SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
+ SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
+ SmallVector<SDValue, 8> Stores;
+ unsigned Offset = 0;
+
+ // Do all but one copies using the full register width.
+ for (unsigned i = 1; i < NumRegs; i++) {
+ // Load one integer register's worth from the stack slot.
+ SDValue Load = DAG.getLoad(
+ RegVT, dl, Store, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
+ // Store it to the final location. Remember the store.
+ Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
+ ST->getPointerInfo().getWithOffset(Offset),
+ MinAlign(ST->getAlignment(), Offset),
+ ST->getMemOperand()->getFlags()));
+ // Increment the pointers.
+ Offset += RegBytes;
+ StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
+ }
+
+ // The last store may be partial. Do a truncating store. On big-endian
+ // machines this requires an extending load from the stack slot to ensure
+ // that the bits are in the right place.
+ EVT LoadMemVT =
+ EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
+
+ // Load from the stack slot.
+ SDValue Load = DAG.getExtLoad(
+ ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
+
+ Stores.push_back(
+ DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
+ ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
+ MinAlign(ST->getAlignment(), Offset),
+ ST->getMemOperand()->getFlags(), ST->getAAInfo()));
+ // The order of the stores doesn't matter - say it with a TokenFactor.
+ SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
+ return Result;
+ }
+
+ assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
+ "Unaligned store of unknown type.");
+ // Get the half-size VT
+ EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
+ int NumBits = NewStoredVT.getSizeInBits();
+ int IncrementSize = NumBits / 8;
+
+ // Divide the stored value in two parts.
+ SDValue ShiftAmount = DAG.getConstant(
+ NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
+ SDValue Lo = Val;
+ SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
+
+ // Store the two parts
+ SDValue Store1, Store2;
+ Store1 = DAG.getTruncStore(Chain, dl,
+ DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
+ Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
+ ST->getMemOperand()->getFlags());
+
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
+ Alignment = MinAlign(Alignment, IncrementSize);
+ Store2 = DAG.getTruncStore(
+ Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
+ ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
+ ST->getMemOperand()->getFlags(), ST->getAAInfo());
+
+ SDValue Result =
+ DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
+ return Result;
+}
+
+SDValue
+TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
+ const SDLoc &DL, EVT DataVT,
+ SelectionDAG &DAG,
+ bool IsCompressedMemory) const {
+ SDValue Increment;
+ EVT AddrVT = Addr.getValueType();
+ EVT MaskVT = Mask.getValueType();
+ assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
+ "Incompatible types of Data and Mask");
+ if (IsCompressedMemory) {
+ // Incrementing the pointer according to number of '1's in the mask.
+ EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
+ SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
+ if (MaskIntVT.getSizeInBits() < 32) {
+ MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
+ MaskIntVT = MVT::i32;
+ }
+
+ // Count '1's with POPCNT.
+ Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
+ Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
+ // Scale is an element size in bytes.
+ SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
+ AddrVT);
+ Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
+ } else
+ Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
+
+ return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
+}
+
+static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
+ SDValue Idx,
+ EVT VecVT,
+ const SDLoc &dl) {
+ if (isa<ConstantSDNode>(Idx))
+ return Idx;
+
+ EVT IdxVT = Idx.getValueType();
+ unsigned NElts = VecVT.getVectorNumElements();
+ if (isPowerOf2_32(NElts)) {
+ APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
+ Log2_32(NElts));
+ return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
+ DAG.getConstant(Imm, dl, IdxVT));
+ }
+
+ return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
+ DAG.getConstant(NElts - 1, dl, IdxVT));
+}
+
+SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
+ SDValue VecPtr, EVT VecVT,
+ SDValue Index) const {
+ SDLoc dl(Index);
+ // Make sure the index type is big enough to compute in.
+ Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
+
+ EVT EltVT = VecVT.getVectorElementType();
+
+ // Calculate the element offset and add it to the pointer.
+ unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
+ assert(EltSize * 8 == EltVT.getSizeInBits() &&
+ "Converting bits to bytes lost precision");
+
+ Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
+
+ EVT IdxVT = Index.getValueType();
+
+ Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
+ DAG.getConstant(EltSize, dl, IdxVT));
+ return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
+}
+
+//===----------------------------------------------------------------------===//
+// Implementation of Emulated TLS Model
+//===----------------------------------------------------------------------===//
+
+SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) const {
+ // Access to address of TLS varialbe xyz is lowered to a function call:
+ // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
+ SDLoc dl(GA);
+
+ ArgListTy Args;
+ ArgListEntry Entry;
+ std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
+ Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
+ StringRef EmuTlsVarName(NameString);
+ GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
+ assert(EmuTlsVar && "Cannot find EmuTlsVar ");
+ Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
+ Entry.Ty = VoidPtrType;
+ Args.push_back(Entry);
+
+ SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
+ CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+
+ // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
+ // At last for X86 targets, maybe good for other targets too?
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setAdjustsStack(true); // Is this only for X86 target?
+ MFI.setHasCalls(true);
+
+ assert((GA->getOffset() == 0) &&
+ "Emulated TLS must have zero offset in GlobalAddressSDNode");
+ return CallResult.first;
+}
+
+SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
+ if (!isCtlzFast())
+ return SDValue();
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc dl(Op);
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (C->isNullValue() && CC == ISD::SETEQ) {
+ EVT VT = Op.getOperand(0).getValueType();
+ SDValue Zext = Op.getOperand(0);
+ if (VT.bitsLT(MVT::i32)) {
+ VT = MVT::i32;
+ Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
+ }
+ unsigned Log2b = Log2_32(VT.getSizeInBits());
+ SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
+ SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
+ DAG.getConstant(Log2b, dl, MVT::i32));
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
+ }
+ }
+ return SDValue();
+}
+
+SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
+ unsigned Opcode = Node->getOpcode();
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ EVT VT = LHS.getValueType();
+ SDLoc dl(Node);
+
+ assert(VT == RHS.getValueType() && "Expected operands to be the same type");
+ assert(VT.isInteger() && "Expected operands to be integers");
+
+ // usub.sat(a, b) -> umax(a, b) - b
+ if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
+ SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
+ return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
+ }
+
+ if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
+ SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
+ SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
+ return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
+ }
+
+ unsigned OverflowOp;
+ switch (Opcode) {
+ case ISD::SADDSAT:
+ OverflowOp = ISD::SADDO;
+ break;
+ case ISD::UADDSAT:
+ OverflowOp = ISD::UADDO;
+ break;
+ case ISD::SSUBSAT:
+ OverflowOp = ISD::SSUBO;
+ break;
+ case ISD::USUBSAT:
+ OverflowOp = ISD::USUBO;
+ break;
+ default:
+ llvm_unreachable("Expected method to receive signed or unsigned saturation "
+ "addition or subtraction node.");
+ }
+
+ unsigned BitWidth = LHS.getScalarValueSizeInBits();
+ EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
+ LHS, RHS);
+ SDValue SumDiff = Result.getValue(0);
+ SDValue Overflow = Result.getValue(1);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
+
+ if (Opcode == ISD::UADDSAT) {
+ if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
+ // (LHS + RHS) | OverflowMask
+ SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
+ return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
+ }
+ // Overflow ? 0xffff.... : (LHS + RHS)
+ return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
+ } else if (Opcode == ISD::USUBSAT) {
+ if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
+ // (LHS - RHS) & ~OverflowMask
+ SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
+ SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
+ return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
+ }
+ // Overflow ? 0 : (LHS - RHS)
+ return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
+ } else {
+ // SatMax -> Overflow && SumDiff < 0
+ // SatMin -> Overflow && SumDiff >= 0
+ APInt MinVal = APInt::getSignedMinValue(BitWidth);
+ APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
+ SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
+ SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
+ SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
+ Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
+ return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
+ }
+}
+
+SDValue
+TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
+ assert((Node->getOpcode() == ISD::SMULFIX ||
+ Node->getOpcode() == ISD::UMULFIX ||
+ Node->getOpcode() == ISD::SMULFIXSAT) &&
+ "Expected a fixed point multiplication opcode");
+
+ SDLoc dl(Node);
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ EVT VT = LHS.getValueType();
+ unsigned Scale = Node->getConstantOperandVal(2);
+ bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
+ EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ unsigned VTSize = VT.getScalarSizeInBits();
+
+ if (!Scale) {
+ // [us]mul.fix(a, b, 0) -> mul(a, b)
+ if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
+ return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
+ } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
+ SDValue Result =
+ DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
+ SDValue Product = Result.getValue(0);
+ SDValue Overflow = Result.getValue(1);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+
+ APInt MinVal = APInt::getSignedMinValue(VTSize);
+ APInt MaxVal = APInt::getSignedMaxValue(VTSize);
+ SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
+ SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
+ SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
+ Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
+ return DAG.getSelect(dl, VT, Overflow, Result, Product);
+ }
+ }
+
+ bool Signed =
+ Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
+ assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
+ "Expected scale to be less than the number of bits if signed or at "
+ "most the number of bits if unsigned.");
+ assert(LHS.getValueType() == RHS.getValueType() &&
+ "Expected both operands to be the same type");
+
+ // Get the upper and lower bits of the result.
+ SDValue Lo, Hi;
+ unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
+ unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
+ if (isOperationLegalOrCustom(LoHiOp, VT)) {
+ SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
+ Lo = Result.getValue(0);
+ Hi = Result.getValue(1);
+ } else if (isOperationLegalOrCustom(HiOp, VT)) {
+ Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
+ Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
+ } else if (VT.isVector()) {
+ return SDValue();
+ } else {
+ report_fatal_error("Unable to expand fixed point multiplication.");
+ }
+
+ if (Scale == VTSize)
+ // Result is just the top half since we'd be shifting by the width of the
+ // operand.
+ return Hi;
+
+ // The result will need to be shifted right by the scale since both operands
+ // are scaled. The result is given to us in 2 halves, so we only want part of
+ // both in the result.
+ EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
+ DAG.getConstant(Scale, dl, ShiftTy));
+ if (!Saturating)
+ return Result;
+
+ unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
+ SDValue HiMask =
+ DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
+ SDValue LoMask = DAG.getConstant(
+ APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
+ APInt MaxVal = APInt::getSignedMaxValue(VTSize);
+ APInt MinVal = APInt::getSignedMinValue(VTSize);
+
+ Result = DAG.getSelectCC(dl, Hi, LoMask,
+ DAG.getConstant(MaxVal, dl, VT), Result,
+ ISD::SETGT);
+ return DAG.getSelectCC(dl, Hi, HiMask,
+ DAG.getConstant(MinVal, dl, VT), Result,
+ ISD::SETLT);
+}
+
+void TargetLowering::expandUADDSUBO(
+ SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ bool IsAdd = Node->getOpcode() == ISD::UADDO;
+
+ // If ADD/SUBCARRY is legal, use that instead.
+ unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
+ if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
+ SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
+ SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
+ { LHS, RHS, CarryIn });
+ Result = SDValue(NodeCarry.getNode(), 0);
+ Overflow = SDValue(NodeCarry.getNode(), 1);
+ return;
+ }
+
+ Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
+ LHS.getValueType(), LHS, RHS);
+
+ EVT ResultType = Node->getValueType(1);
+ EVT SetCCType = getSetCCResultType(
+ DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
+ ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
+ SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
+ Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
+}
+
+void TargetLowering::expandSADDSUBO(
+ SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ bool IsAdd = Node->getOpcode() == ISD::SADDO;
+
+ Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
+ LHS.getValueType(), LHS, RHS);
+
+ EVT ResultType = Node->getValueType(1);
+ EVT OType = getSetCCResultType(
+ DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
+
+ // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
+ unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
+ if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
+ SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
+ SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
+ Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
+ return;
+ }
+
+ SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
+
+ // LHSSign -> LHS >= 0
+ // RHSSign -> RHS >= 0
+ // SumSign -> Result >= 0
+ //
+ // Add:
+ // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
+ // Sub:
+ // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
+ SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
+ SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
+ SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
+ IsAdd ? ISD::SETEQ : ISD::SETNE);
+
+ SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
+ SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
+
+ SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
+ Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
+}
+
+bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
+ SDValue &Overflow, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ bool isSigned = Node->getOpcode() == ISD::SMULO;
+
+ // For power-of-two multiplications we can use a simpler shift expansion.
+ if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
+ const APInt &C = RHSC->getAPIntValue();
+ // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
+ if (C.isPowerOf2()) {
+ // smulo(x, signed_min) is same as umulo(x, signed_min).
+ bool UseArithShift = isSigned && !C.isMinSignedValue();
+ EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
+ Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
+ Overflow = DAG.getSetCC(dl, SetCCVT,
+ DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
+ dl, VT, Result, ShiftAmt),
+ LHS, ISD::SETNE);
+ return true;
+ }
+ }
+
+ EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
+ if (VT.isVector())
+ WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
+ VT.getVectorNumElements());
+
+ SDValue BottomHalf;
+ SDValue TopHalf;
+ static const unsigned Ops[2][3] =
+ { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
+ { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
+ if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
+ BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
+ TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
+ } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
+ BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
+ RHS);
+ TopHalf = BottomHalf.getValue(1);
+ } else if (isTypeLegal(WideVT)) {
+ LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
+ RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
+ SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
+ BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
+ SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
+ getShiftAmountTy(WideVT, DAG.getDataLayout()));
+ TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
+ } else {
+ if (VT.isVector())
+ return false;
+
+ // We can fall back to a libcall with an illegal type for the MUL if we
+ // have a libcall big enough.
+ // Also, we can fall back to a division in some cases, but that's a big
+ // performance hit in the general case.
+ RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
+ if (WideVT == MVT::i16)
+ LC = RTLIB::MUL_I16;
+ else if (WideVT == MVT::i32)
+ LC = RTLIB::MUL_I32;
+ else if (WideVT == MVT::i64)
+ LC = RTLIB::MUL_I64;
+ else if (WideVT == MVT::i128)
+ LC = RTLIB::MUL_I128;
+ assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
+
+ SDValue HiLHS;
+ SDValue HiRHS;
+ if (isSigned) {
+ // The high part is obtained by SRA'ing all but one of the bits of low
+ // part.
+ unsigned LoSize = VT.getSizeInBits();
+ HiLHS =
+ DAG.getNode(ISD::SRA, dl, VT, LHS,
+ DAG.getConstant(LoSize - 1, dl,
+ getPointerTy(DAG.getDataLayout())));
+ HiRHS =
+ DAG.getNode(ISD::SRA, dl, VT, RHS,
+ DAG.getConstant(LoSize - 1, dl,
+ getPointerTy(DAG.getDataLayout())));
+ } else {
+ HiLHS = DAG.getConstant(0, dl, VT);
+ HiRHS = DAG.getConstant(0, dl, VT);
+ }
+
+ // Here we're passing the 2 arguments explicitly as 4 arguments that are
+ // pre-lowered to the correct types. This all depends upon WideVT not
+ // being a legal type for the architecture and thus has to be split to
+ // two arguments.
+ SDValue Ret;
+ if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
+ // Halves of WideVT are packed into registers in different order
+ // depending on platform endianness. This is usually handled by
+ // the C calling convention, but we can't defer to it in
+ // the legalizer.
+ SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
+ Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
+ /* doesNotReturn */ false, /* isReturnValueUsed */ true,
+ /* isPostTypeLegalization */ true).first;
+ } else {
+ SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
+ Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
+ /* doesNotReturn */ false, /* isReturnValueUsed */ true,
+ /* isPostTypeLegalization */ true).first;
+ }
+ assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
+ "Ret value is a collection of constituent nodes holding result.");
+ if (DAG.getDataLayout().isLittleEndian()) {
+ // Same as above.
+ BottomHalf = Ret.getOperand(0);
+ TopHalf = Ret.getOperand(1);
+ } else {
+ BottomHalf = Ret.getOperand(1);
+ TopHalf = Ret.getOperand(0);
+ }
+ }
+
+ Result = BottomHalf;
+ if (isSigned) {
+ SDValue ShiftAmt = DAG.getConstant(
+ VT.getScalarSizeInBits() - 1, dl,
+ getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
+ SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
+ Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
+ } else {
+ Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
+ DAG.getConstant(0, dl, VT), ISD::SETNE);
+ }
+
+ // Truncate the result if SetCC returns a larger type than needed.
+ EVT RType = Node->getValueType(1);
+ if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
+ Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
+
+ assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
+ "Unexpected result type for S/UMULO legalization");
+ return true;
+}
+
+SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ bool NoNaN = Node->getFlags().hasNoNaNs();
+ unsigned BaseOpcode = 0;
+ switch (Node->getOpcode()) {
+ default: llvm_unreachable("Expected VECREDUCE opcode");
+ case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
+ case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
+ case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break;
+ case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
+ case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
+ case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
+ case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
+ case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
+ case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
+ case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
+ case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
+ case ISD::VECREDUCE_FMAX:
+ BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
+ break;
+ case ISD::VECREDUCE_FMIN:
+ BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
+ break;
+ }
+
+ SDValue Op = Node->getOperand(0);
+ EVT VT = Op.getValueType();
+
+ // Try to use a shuffle reduction for power of two vectors.
+ if (VT.isPow2VectorType()) {
+ while (VT.getVectorNumElements() > 1) {
+ EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
+ if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
+ break;
+
+ SDValue Lo, Hi;
+ std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
+ Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
+ VT = HalfVT;
+ }
+ }
+
+ EVT EltVT = VT.getVectorElementType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 8> Ops;
+ DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
+
+ SDValue Res = Ops[0];
+ for (unsigned i = 1; i < NumElts; i++)
+ Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
+
+ // Result type may be wider than element type.
+ if (EltVT != Node->getValueType(0))
+ Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
+ return Res;
+}