diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp | 6288 |
1 files changed, 6288 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp new file mode 100644 index 000000000000..2d90dcba12b6 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -0,0 +1,6288 @@ +//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This implements the TargetLowering class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" +#include <cctype> +using namespace llvm; + +/// NOTE: The TargetMachine owns TLOF. +TargetLowering::TargetLowering(const TargetMachine &tm) + : TargetLoweringBase(tm) {} + +const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { + return nullptr; +} + +bool TargetLowering::isPositionIndependent() const { + return getTargetMachine().isPositionIndependent(); +} + +/// Check whether a given call node is in tail position within its function. If +/// so, it sets Chain to the input chain of the tail call. +bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, + SDValue &Chain) const { + const Function &F = DAG.getMachineFunction().getFunction(); + + // Conservatively require the attributes of the call to match those of + // the return. Ignore NoAlias and NonNull because they don't affect the + // call sequence. + AttributeList CallerAttrs = F.getAttributes(); + if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) + .removeAttribute(Attribute::NoAlias) + .removeAttribute(Attribute::NonNull) + .hasAttributes()) + return false; + + // It's not safe to eliminate the sign / zero extension of the return value. + if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || + CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) + return false; + + // Check if the only use is a function return node. + return isUsedByReturnOnly(Node, Chain); +} + +bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, + const uint32_t *CallerPreservedMask, + const SmallVectorImpl<CCValAssign> &ArgLocs, + const SmallVectorImpl<SDValue> &OutVals) const { + for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { + const CCValAssign &ArgLoc = ArgLocs[I]; + if (!ArgLoc.isRegLoc()) + continue; + unsigned Reg = ArgLoc.getLocReg(); + // Only look at callee saved registers. + if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) + continue; + // Check that we pass the value used for the caller. + // (We look for a CopyFromReg reading a virtual register that is used + // for the function live-in value of register Reg) + SDValue Value = OutVals[I]; + if (Value->getOpcode() != ISD::CopyFromReg) + return false; + unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); + if (MRI.getLiveInPhysReg(ArgReg) != Reg) + return false; + } + return true; +} + +/// Set CallLoweringInfo attribute flags based on a call instruction +/// and called function attributes. +void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, + unsigned ArgIdx) { + IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); + IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); + IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); + IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); + IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); + IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); + IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); + IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); + IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); + IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); + Alignment = Call->getParamAlignment(ArgIdx); + ByValType = nullptr; + if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) + ByValType = Call->getParamByValType(ArgIdx); +} + +/// Generate a libcall taking the given operands as arguments and returning a +/// result of type RetVT. +std::pair<SDValue, SDValue> +TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, + ArrayRef<SDValue> Ops, bool isSigned, + const SDLoc &dl, bool doesNotReturn, + bool isReturnValueUsed, + bool isPostTypeLegalization) const { + TargetLowering::ArgListTy Args; + Args.reserve(Ops.size()); + + TargetLowering::ArgListEntry Entry; + for (SDValue Op : Ops) { + Entry.Node = Op; + Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); + Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); + Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); + Args.push_back(Entry); + } + + if (LC == RTLIB::UNKNOWN_LIBCALL) + report_fatal_error("Unsupported library call operation!"); + SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), + getPointerTy(DAG.getDataLayout())); + + Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + TargetLowering::CallLoweringInfo CLI(DAG); + bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); + CLI.setDebugLoc(dl) + .setChain(DAG.getEntryNode()) + .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) + .setNoReturn(doesNotReturn) + .setDiscardResult(!isReturnValueUsed) + .setIsPostTypeLegalization(isPostTypeLegalization) + .setSExtResult(signExtend) + .setZExtResult(!signExtend); + return LowerCallTo(CLI); +} + +bool +TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, + unsigned Limit, uint64_t Size, + unsigned DstAlign, unsigned SrcAlign, + bool IsMemset, + bool ZeroMemset, + bool MemcpyStrSrc, + bool AllowOverlap, + unsigned DstAS, unsigned SrcAS, + const AttributeList &FuncAttributes) const { + // If 'SrcAlign' is zero, that means the memory operation does not need to + // load the value, i.e. memset or memcpy from constant string. Otherwise, + // it's the inferred alignment of the source. 'DstAlign', on the other hand, + // is the specified alignment of the memory operation. If it is zero, that + // means it's possible to change the alignment of the destination. + // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does + // not need to be loaded. + if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) + return false; + + EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, + IsMemset, ZeroMemset, MemcpyStrSrc, + FuncAttributes); + + if (VT == MVT::Other) { + // Use the largest integer type whose alignment constraints are satisfied. + // We only need to check DstAlign here as SrcAlign is always greater or + // equal to DstAlign (or zero). + VT = MVT::i64; + while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && + !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) + VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); + assert(VT.isInteger()); + + // Find the largest legal integer type. + MVT LVT = MVT::i64; + while (!isTypeLegal(LVT)) + LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); + assert(LVT.isInteger()); + + // If the type we've chosen is larger than the largest legal integer type + // then use that instead. + if (VT.bitsGT(LVT)) + VT = LVT; + } + + unsigned NumMemOps = 0; + while (Size != 0) { + unsigned VTSize = VT.getSizeInBits() / 8; + while (VTSize > Size) { + // For now, only use non-vector load / store's for the left-over pieces. + EVT NewVT = VT; + unsigned NewVTSize; + + bool Found = false; + if (VT.isVector() || VT.isFloatingPoint()) { + NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; + if (isOperationLegalOrCustom(ISD::STORE, NewVT) && + isSafeMemOpType(NewVT.getSimpleVT())) + Found = true; + else if (NewVT == MVT::i64 && + isOperationLegalOrCustom(ISD::STORE, MVT::f64) && + isSafeMemOpType(MVT::f64)) { + // i64 is usually not legal on 32-bit targets, but f64 may be. + NewVT = MVT::f64; + Found = true; + } + } + + if (!Found) { + do { + NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); + if (NewVT == MVT::i8) + break; + } while (!isSafeMemOpType(NewVT.getSimpleVT())); + } + NewVTSize = NewVT.getSizeInBits() / 8; + + // If the new VT cannot cover all of the remaining bits, then consider + // issuing a (or a pair of) unaligned and overlapping load / store. + bool Fast; + if (NumMemOps && AllowOverlap && NewVTSize < Size && + allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, + MachineMemOperand::MONone, &Fast) && + Fast) + VTSize = Size; + else { + VT = NewVT; + VTSize = NewVTSize; + } + } + + if (++NumMemOps > Limit) + return false; + + MemOps.push_back(VT); + Size -= VTSize; + } + + return true; +} + +/// Soften the operands of a comparison. This code is shared among BR_CC, +/// SELECT_CC, and SETCC handlers. +void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, + SDValue &NewLHS, SDValue &NewRHS, + ISD::CondCode &CCCode, + const SDLoc &dl) const { + assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) + && "Unsupported setcc type!"); + + // Expand into one or more soft-fp libcall(s). + RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; + bool ShouldInvertCC = false; + switch (CCCode) { + case ISD::SETEQ: + case ISD::SETOEQ: + LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : + (VT == MVT::f64) ? RTLIB::OEQ_F64 : + (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; + break; + case ISD::SETNE: + case ISD::SETUNE: + LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : + (VT == MVT::f64) ? RTLIB::UNE_F64 : + (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; + break; + case ISD::SETGE: + case ISD::SETOGE: + LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : + (VT == MVT::f64) ? RTLIB::OGE_F64 : + (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; + break; + case ISD::SETLT: + case ISD::SETOLT: + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : + (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; + break; + case ISD::SETLE: + case ISD::SETOLE: + LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : + (VT == MVT::f64) ? RTLIB::OLE_F64 : + (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; + break; + case ISD::SETGT: + case ISD::SETOGT: + LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : + (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; + break; + case ISD::SETUO: + LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : + (VT == MVT::f64) ? RTLIB::UO_F64 : + (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; + break; + case ISD::SETO: + LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : + (VT == MVT::f64) ? RTLIB::O_F64 : + (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; + break; + case ISD::SETONE: + // SETONE = SETOLT | SETOGT + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : + (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; + LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : + (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; + break; + case ISD::SETUEQ: + LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : + (VT == MVT::f64) ? RTLIB::UO_F64 : + (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; + LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : + (VT == MVT::f64) ? RTLIB::OEQ_F64 : + (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; + break; + default: + // Invert CC for unordered comparisons + ShouldInvertCC = true; + switch (CCCode) { + case ISD::SETULT: + LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : + (VT == MVT::f64) ? RTLIB::OGE_F64 : + (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; + break; + case ISD::SETULE: + LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : + (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; + break; + case ISD::SETUGT: + LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : + (VT == MVT::f64) ? RTLIB::OLE_F64 : + (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; + break; + case ISD::SETUGE: + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : + (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; + break; + default: llvm_unreachable("Do not know how to soften this setcc!"); + } + } + + // Use the target specific return value for comparions lib calls. + EVT RetVT = getCmpLibcallReturnType(); + SDValue Ops[2] = {NewLHS, NewRHS}; + NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, + dl).first; + NewRHS = DAG.getConstant(0, dl, RetVT); + + CCCode = getCmpLibcallCC(LC1); + if (ShouldInvertCC) + CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); + + if (LC2 != RTLIB::UNKNOWN_LIBCALL) { + SDValue Tmp = DAG.getNode( + ISD::SETCC, dl, + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), + NewLHS, NewRHS, DAG.getCondCode(CCCode)); + NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, + dl).first; + NewLHS = DAG.getNode( + ISD::SETCC, dl, + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), + NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); + NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); + NewRHS = SDValue(); + } +} + +/// Return the entry encoding for a jump table in the current function. The +/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. +unsigned TargetLowering::getJumpTableEncoding() const { + // In non-pic modes, just use the address of a block. + if (!isPositionIndependent()) + return MachineJumpTableInfo::EK_BlockAddress; + + // In PIC mode, if the target supports a GPRel32 directive, use it. + if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) + return MachineJumpTableInfo::EK_GPRel32BlockAddress; + + // Otherwise, use a label difference. + return MachineJumpTableInfo::EK_LabelDifference32; +} + +SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { + // If our PIC model is GP relative, use the global offset table as the base. + unsigned JTEncoding = getJumpTableEncoding(); + + if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || + (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) + return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); + + return Table; +} + +/// This returns the relocation base for the given PIC jumptable, the same as +/// getPICJumpTableRelocBase, but as an MCExpr. +const MCExpr * +TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, + unsigned JTI,MCContext &Ctx) const{ + // The normal PIC reloc base is the label at the start of the jump table. + return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); +} + +bool +TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + const TargetMachine &TM = getTargetMachine(); + const GlobalValue *GV = GA->getGlobal(); + + // If the address is not even local to this DSO we will have to load it from + // a got and then add the offset. + if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) + return false; + + // If the code is position independent we will have to add a base register. + if (isPositionIndependent()) + return false; + + // Otherwise we can do it. + return true; +} + +//===----------------------------------------------------------------------===// +// Optimization Methods +//===----------------------------------------------------------------------===// + +/// If the specified instruction has a constant integer operand and there are +/// bits set in that constant that are not demanded, then clear those bits and +/// return true. +bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, + TargetLoweringOpt &TLO) const { + SDLoc DL(Op); + unsigned Opcode = Op.getOpcode(); + + // Do target-specific constant optimization. + if (targetShrinkDemandedConstant(Op, Demanded, TLO)) + return TLO.New.getNode(); + + // FIXME: ISD::SELECT, ISD::SELECT_CC + switch (Opcode) { + default: + break; + case ISD::XOR: + case ISD::AND: + case ISD::OR: { + auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (!Op1C) + return false; + + // If this is a 'not' op, don't touch it because that's a canonical form. + const APInt &C = Op1C->getAPIntValue(); + if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) + return false; + + if (!C.isSubsetOf(Demanded)) { + EVT VT = Op.getValueType(); + SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); + SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); + return TLO.CombineTo(Op, NewOp); + } + + break; + } + } + + return false; +} + +/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. +/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be +/// generalized for targets with other types of implicit widening casts. +bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, + const APInt &Demanded, + TargetLoweringOpt &TLO) const { + assert(Op.getNumOperands() == 2 && + "ShrinkDemandedOp only supports binary operators!"); + assert(Op.getNode()->getNumValues() == 1 && + "ShrinkDemandedOp only supports nodes with one result!"); + + SelectionDAG &DAG = TLO.DAG; + SDLoc dl(Op); + + // Early return, as this function cannot handle vector types. + if (Op.getValueType().isVector()) + return false; + + // Don't do this if the node has another user, which may require the + // full value. + if (!Op.getNode()->hasOneUse()) + return false; + + // Search for the smallest integer type with free casts to and from + // Op's type. For expedience, just check power-of-2 integer types. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned DemandedSize = Demanded.getActiveBits(); + unsigned SmallVTBits = DemandedSize; + if (!isPowerOf2_32(SmallVTBits)) + SmallVTBits = NextPowerOf2(SmallVTBits); + for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { + EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); + if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && + TLI.isZExtFree(SmallVT, Op.getValueType())) { + // We found a type with free casts. + SDValue X = DAG.getNode( + Op.getOpcode(), dl, SmallVT, + DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), + DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); + assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); + SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); + return TLO.CombineTo(Op, Z); + } + } + return false; +} + +bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + KnownBits Known; + + bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); + if (Simplified) { + DCI.AddToWorklist(Op.getNode()); + DCI.CommitTargetLoweringOpt(TLO); + } + return Simplified; +} + +bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + KnownBits &Known, + TargetLoweringOpt &TLO, + unsigned Depth, + bool AssumeSingleUse) const { + EVT VT = Op.getValueType(); + APInt DemandedElts = VT.isVector() + ? APInt::getAllOnesValue(VT.getVectorNumElements()) + : APInt(1, 1); + return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, + AssumeSingleUse); +} + +/// Look at Op. At this point, we know that only the OriginalDemandedBits of the +/// result of Op are ever used downstream. If we can use this information to +/// simplify Op, create a new simplified DAG node and return true, returning the +/// original and new nodes in Old and New. Otherwise, analyze the expression and +/// return a mask of Known bits for the expression (used to simplify the +/// caller). The Known bits may only be accurate for those bits in the +/// OriginalDemandedBits and OriginalDemandedElts. +bool TargetLowering::SimplifyDemandedBits( + SDValue Op, const APInt &OriginalDemandedBits, + const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, + unsigned Depth, bool AssumeSingleUse) const { + unsigned BitWidth = OriginalDemandedBits.getBitWidth(); + assert(Op.getScalarValueSizeInBits() == BitWidth && + "Mask size mismatches value type size!"); + + unsigned NumElts = OriginalDemandedElts.getBitWidth(); + assert((!Op.getValueType().isVector() || + NumElts == Op.getValueType().getVectorNumElements()) && + "Unexpected vector size"); + + APInt DemandedBits = OriginalDemandedBits; + APInt DemandedElts = OriginalDemandedElts; + SDLoc dl(Op); + auto &DL = TLO.DAG.getDataLayout(); + + // Don't know anything. + Known = KnownBits(BitWidth); + + // Undef operand. + if (Op.isUndef()) + return false; + + if (Op.getOpcode() == ISD::Constant) { + // We know all of the bits for a constant! + Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); + Known.Zero = ~Known.One; + return false; + } + + // Other users may use these bits. + EVT VT = Op.getValueType(); + if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { + if (Depth != 0) { + // If not at the root, Just compute the Known bits to + // simplify things downstream. + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + return false; + } + // If this is the root being simplified, allow it to have multiple uses, + // just set the DemandedBits/Elts to all bits. + DemandedBits = APInt::getAllOnesValue(BitWidth); + DemandedElts = APInt::getAllOnesValue(NumElts); + } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { + // Not demanding any bits/elts from Op. + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + } else if (Depth == 6) { // Limit search depth. + return false; + } + + KnownBits Known2, KnownOut; + switch (Op.getOpcode()) { + case ISD::SCALAR_TO_VECTOR: { + if (!DemandedElts[0]) + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + + KnownBits SrcKnown; + SDValue Src = Op.getOperand(0); + unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); + APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); + if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) + return true; + Known = SrcKnown.zextOrTrunc(BitWidth, false); + break; + } + case ISD::BUILD_VECTOR: + // Collect the known bits that are shared by every demanded element. + // TODO: Call SimplifyDemandedBits for non-constant demanded elements. + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + return false; // Don't fall through, will infinitely loop. + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(Op); + if (getTargetConstantFromLoad(LD)) { + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + return false; // Don't fall through, will infinitely loop. + } + break; + } + case ISD::INSERT_VECTOR_ELT: { + SDValue Vec = Op.getOperand(0); + SDValue Scl = Op.getOperand(1); + auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + EVT VecVT = Vec.getValueType(); + + // If index isn't constant, assume we need all vector elements AND the + // inserted element. + APInt DemandedVecElts(DemandedElts); + if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { + unsigned Idx = CIdx->getZExtValue(); + DemandedVecElts.clearBit(Idx); + + // Inserted element is not required. + if (!DemandedElts[Idx]) + return TLO.CombineTo(Op, Vec); + } + + KnownBits KnownScl; + unsigned NumSclBits = Scl.getScalarValueSizeInBits(); + APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); + if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) + return true; + + Known = KnownScl.zextOrTrunc(BitWidth, false); + + KnownBits KnownVec; + if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, + Depth + 1)) + return true; + + if (!!DemandedVecElts) { + Known.One &= KnownVec.One; + Known.Zero &= KnownVec.Zero; + } + + return false; + } + case ISD::INSERT_SUBVECTOR: { + SDValue Base = Op.getOperand(0); + SDValue Sub = Op.getOperand(1); + EVT SubVT = Sub.getValueType(); + unsigned NumSubElts = SubVT.getVectorNumElements(); + + // If index isn't constant, assume we need the original demanded base + // elements and ALL the inserted subvector elements. + APInt BaseElts = DemandedElts; + APInt SubElts = APInt::getAllOnesValue(NumSubElts); + if (isa<ConstantSDNode>(Op.getOperand(2))) { + const APInt &Idx = Op.getConstantOperandAPInt(2); + if (Idx.ule(NumElts - NumSubElts)) { + unsigned SubIdx = Idx.getZExtValue(); + SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); + BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); + } + } + + KnownBits KnownSub, KnownBase; + if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, + Depth + 1)) + return true; + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + if (!!SubElts) { + Known.One &= KnownSub.One; + Known.Zero &= KnownSub.Zero; + } + if (!!BaseElts) { + Known.One &= KnownBase.One; + Known.Zero &= KnownBase.Zero; + } + break; + } + case ISD::CONCAT_VECTORS: { + Known.Zero.setAllBits(); + Known.One.setAllBits(); + EVT SubVT = Op.getOperand(0).getValueType(); + unsigned NumSubVecs = Op.getNumOperands(); + unsigned NumSubElts = SubVT.getVectorNumElements(); + for (unsigned i = 0; i != NumSubVecs; ++i) { + APInt DemandedSubElts = + DemandedElts.extractBits(NumSubElts, i * NumSubElts); + if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, + Known2, TLO, Depth + 1)) + return true; + // Known bits are shared by every demanded subvector element. + if (!!DemandedSubElts) { + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + } + break; + } + case ISD::VECTOR_SHUFFLE: { + ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); + + // Collect demanded elements from shuffle operands.. + APInt DemandedLHS(NumElts, 0); + APInt DemandedRHS(NumElts, 0); + for (unsigned i = 0; i != NumElts; ++i) { + if (!DemandedElts[i]) + continue; + int M = ShuffleMask[i]; + if (M < 0) { + // For UNDEF elements, we don't know anything about the common state of + // the shuffle result. + DemandedLHS.clearAllBits(); + DemandedRHS.clearAllBits(); + break; + } + assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); + if (M < (int)NumElts) + DemandedLHS.setBit(M); + else + DemandedRHS.setBit(M - NumElts); + } + + if (!!DemandedLHS || !!DemandedRHS) { + Known.Zero.setAllBits(); + Known.One.setAllBits(); + if (!!DemandedLHS) { + if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, + Known2, TLO, Depth + 1)) + return true; + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + if (!!DemandedRHS) { + if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, + Known2, TLO, Depth + 1)) + return true; + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + } + } + break; + } + case ISD::AND: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + // If the RHS is a constant, check to see if the LHS would be zero without + // using the bits from the RHS. Below, we use knowledge about the RHS to + // simplify the LHS, here we're using information from the LHS to simplify + // the RHS. + if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { + // Do not increment Depth here; that can cause an infinite loop. + KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); + // If the LHS already has zeros where RHSC does, this 'and' is dead. + if ((LHSKnown.Zero & DemandedBits) == + (~RHSC->getAPIntValue() & DemandedBits)) + return TLO.CombineTo(Op, Op0); + + // If any of the set bits in the RHS are known zero on the LHS, shrink + // the constant. + if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) + return true; + + // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its + // constant, but if this 'and' is only clearing bits that were just set by + // the xor, then this 'and' can be eliminated by shrinking the mask of + // the xor. For example, for a 32-bit X: + // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 + if (isBitwiseNot(Op0) && Op0.hasOneUse() && + LHSKnown.One == ~RHSC->getAPIntValue()) { + SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); + return TLO.CombineTo(Op, Xor); + } + } + + if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, + Known2, TLO, Depth + 1)) + return true; + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known one on one side, return the other. + // These bits cannot contribute to the result of the 'and'. + if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) + return TLO.CombineTo(Op, Op0); + if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) + return TLO.CombineTo(Op, Op1); + // If all of the demanded bits in the inputs are known zeros, return zero. + if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) + return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); + // If the RHS is a constant, see if we can simplify it. + if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) + return true; + // If the operation can be done in a smaller type, do so. + if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) + return true; + + // Output known-1 bits are only known if set in both the LHS & RHS. + Known.One &= Known2.One; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + Known.Zero |= Known2.Zero; + break; + } + case ISD::OR: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, + Known2, TLO, Depth + 1)) + return true; + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'or'. + if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) + return TLO.CombineTo(Op, Op0); + if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) + return TLO.CombineTo(Op, Op1); + // If the RHS is a constant, see if we can simplify it. + if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) + return true; + // If the operation can be done in a smaller type, do so. + if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) + return true; + + // Output known-0 bits are only known if clear in both the LHS & RHS. + Known.Zero &= Known2.Zero; + // Output known-1 are known to be set if set in either the LHS | RHS. + Known.One |= Known2.One; + break; + } + case ISD::XOR: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'xor'. + if (DemandedBits.isSubsetOf(Known.Zero)) + return TLO.CombineTo(Op, Op0); + if (DemandedBits.isSubsetOf(Known2.Zero)) + return TLO.CombineTo(Op, Op1); + // If the operation can be done in a smaller type, do so. + if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) + return true; + + // If all of the unknown bits are known to be zero on one side or the other + // (but not both) turn this into an *inclusive* or. + // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 + if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); + + if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { + // If one side is a constant, and all of the known set bits on the other + // side are also set in the constant, turn this into an AND, as we know + // the bits will be cleared. + // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 + // NB: it is okay if more bits are known than are requested + if (C->getAPIntValue() == Known2.One) { + SDValue ANDC = + TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); + } + + // If the RHS is a constant, see if we can change it. Don't alter a -1 + // constant because that's a 'not' op, and that is better for combining + // and codegen. + if (!C->isAllOnesValue()) { + if (DemandedBits.isSubsetOf(C->getAPIntValue())) { + // We're flipping all demanded bits. Flip the undemanded bits too. + SDValue New = TLO.DAG.getNOT(dl, Op0, VT); + return TLO.CombineTo(Op, New); + } + // If we can't turn this into a 'not', try to shrink the constant. + if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) + return true; + } + } + + Known = std::move(KnownOut); + break; + } + case ISD::SELECT: + if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); + + // If the operands are constants, see if we can simplify them. + if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) + return true; + + // Only known if known in both the LHS and RHS. + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + break; + case ISD::SELECT_CC: + if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); + + // If the operands are constants, see if we can simplify them. + if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) + return true; + + // Only known if known in both the LHS and RHS. + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + break; + case ISD::SETCC: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + // If (1) we only need the sign-bit, (2) the setcc operands are the same + // width as the setcc result, and (3) the result of a setcc conforms to 0 or + // -1, we may be able to bypass the setcc. + if (DemandedBits.isSignMask() && + Op0.getScalarValueSizeInBits() == BitWidth && + getBooleanContents(VT) == + BooleanContent::ZeroOrNegativeOneBooleanContent) { + // If we're testing X < 0, then this compare isn't needed - just use X! + // FIXME: We're limiting to integer types here, but this should also work + // if we don't care about FP signed-zero. The use of SETLT with FP means + // that we don't care about NaNs. + if (CC == ISD::SETLT && Op1.getValueType().isInteger() && + (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) + return TLO.CombineTo(Op, Op0); + + // TODO: Should we check for other forms of sign-bit comparisons? + // Examples: X <= -1, X >= 0 + } + if (getBooleanContents(Op0.getValueType()) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + Known.Zero.setBitsFrom(1); + break; + } + case ISD::SHL: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { + // If the shift count is an invalid immediate, don't do anything. + if (SA->getAPIntValue().uge(BitWidth)) + break; + + unsigned ShAmt = SA->getZExtValue(); + if (ShAmt == 0) + return TLO.CombineTo(Op, Op0); + + // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a + // single shift. We can do this if the bottom bits (which are shifted + // out) are never demanded. + // TODO - support non-uniform vector amounts. + if (Op0.getOpcode() == ISD::SRL) { + if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { + if (ConstantSDNode *SA2 = + isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { + if (SA2->getAPIntValue().ult(BitWidth)) { + unsigned C1 = SA2->getZExtValue(); + unsigned Opc = ISD::SHL; + int Diff = ShAmt - C1; + if (Diff < 0) { + Diff = -Diff; + Opc = ISD::SRL; + } + + SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); + return TLO.CombineTo( + Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); + } + } + } + } + + if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, + Known, TLO, Depth + 1)) + return true; + + // Try shrinking the operation as long as the shift amount will still be + // in range. + if ((ShAmt < DemandedBits.getActiveBits()) && + ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) + return true; + + // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits + // are not demanded. This will likely allow the anyext to be folded away. + if (Op0.getOpcode() == ISD::ANY_EXTEND) { + SDValue InnerOp = Op0.getOperand(0); + EVT InnerVT = InnerOp.getValueType(); + unsigned InnerBits = InnerVT.getScalarSizeInBits(); + if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && + isTypeDesirableForOp(ISD::SHL, InnerVT)) { + EVT ShTy = getShiftAmountTy(InnerVT, DL); + if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) + ShTy = InnerVT; + SDValue NarrowShl = + TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, + TLO.DAG.getConstant(ShAmt, dl, ShTy)); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); + } + // Repeat the SHL optimization above in cases where an extension + // intervenes: (shl (anyext (shr x, c1)), c2) to + // (shl (anyext x), c2-c1). This requires that the bottom c1 bits + // aren't demanded (as above) and that the shifted upper c1 bits of + // x aren't demanded. + if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && + InnerOp.hasOneUse()) { + if (ConstantSDNode *SA2 = + isConstOrConstSplat(InnerOp.getOperand(1))) { + unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); + if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && + DemandedBits.getActiveBits() <= + (InnerBits - InnerShAmt + ShAmt) && + DemandedBits.countTrailingZeros() >= ShAmt) { + SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, + Op1.getValueType()); + SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, + InnerOp.getOperand(0)); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); + } + } + } + } + + Known.Zero <<= ShAmt; + Known.One <<= ShAmt; + // low bits known zero. + Known.Zero.setLowBits(ShAmt); + } + break; + } + case ISD::SRL: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { + // If the shift count is an invalid immediate, don't do anything. + if (SA->getAPIntValue().uge(BitWidth)) + break; + + unsigned ShAmt = SA->getZExtValue(); + if (ShAmt == 0) + return TLO.CombineTo(Op, Op0); + + EVT ShiftVT = Op1.getValueType(); + APInt InDemandedMask = (DemandedBits << ShAmt); + + // If the shift is exact, then it does demand the low bits (and knows that + // they are zero). + if (Op->getFlags().hasExact()) + InDemandedMask.setLowBits(ShAmt); + + // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a + // single shift. We can do this if the top bits (which are shifted out) + // are never demanded. + // TODO - support non-uniform vector amounts. + if (Op0.getOpcode() == ISD::SHL) { + if (ConstantSDNode *SA2 = + isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { + if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { + if (SA2->getAPIntValue().ult(BitWidth)) { + unsigned C1 = SA2->getZExtValue(); + unsigned Opc = ISD::SRL; + int Diff = ShAmt - C1; + if (Diff < 0) { + Diff = -Diff; + Opc = ISD::SHL; + } + + SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); + return TLO.CombineTo( + Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); + } + } + } + } + + // Compute the new bits that are at the top now. + if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + Known.Zero.lshrInPlace(ShAmt); + Known.One.lshrInPlace(ShAmt); + + Known.Zero.setHighBits(ShAmt); // High bits known zero. + } + break; + } + case ISD::SRA: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + // If this is an arithmetic shift right and only the low-bit is set, we can + // always convert this into a logical shr, even if the shift amount is + // variable. The low bit of the shift cannot be an input sign bit unless + // the shift amount is >= the size of the datatype, which is undefined. + if (DemandedBits.isOneValue()) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); + + if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { + // If the shift count is an invalid immediate, don't do anything. + if (SA->getAPIntValue().uge(BitWidth)) + break; + + unsigned ShAmt = SA->getZExtValue(); + if (ShAmt == 0) + return TLO.CombineTo(Op, Op0); + + APInt InDemandedMask = (DemandedBits << ShAmt); + + // If the shift is exact, then it does demand the low bits (and knows that + // they are zero). + if (Op->getFlags().hasExact()) + InDemandedMask.setLowBits(ShAmt); + + // If any of the demanded bits are produced by the sign extension, we also + // demand the input sign bit. + if (DemandedBits.countLeadingZeros() < ShAmt) + InDemandedMask.setSignBit(); + + if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + Known.Zero.lshrInPlace(ShAmt); + Known.One.lshrInPlace(ShAmt); + + // If the input sign bit is known to be zero, or if none of the top bits + // are demanded, turn this into an unsigned shift right. + if (Known.Zero[BitWidth - ShAmt - 1] || + DemandedBits.countLeadingZeros() >= ShAmt) { + SDNodeFlags Flags; + Flags.setExact(Op->getFlags().hasExact()); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); + } + + int Log2 = DemandedBits.exactLogBase2(); + if (Log2 >= 0) { + // The bit must come from the sign. + SDValue NewSA = + TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); + } + + if (Known.One[BitWidth - ShAmt - 1]) + // New bits are known one. + Known.One.setHighBits(ShAmt); + } + break; + } + case ISD::FSHL: + case ISD::FSHR: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue Op2 = Op.getOperand(2); + bool IsFSHL = (Op.getOpcode() == ISD::FSHL); + + if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { + unsigned Amt = SA->getAPIntValue().urem(BitWidth); + + // For fshl, 0-shift returns the 1st arg. + // For fshr, 0-shift returns the 2nd arg. + if (Amt == 0) { + if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, + Known, TLO, Depth + 1)) + return true; + break; + } + + // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) + // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) + APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); + APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); + if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, + Depth + 1)) + return true; + + Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); + Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); + Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); + Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); + Known.One |= Known2.One; + Known.Zero |= Known2.Zero; + } + break; + } + case ISD::BITREVERSE: { + SDValue Src = Op.getOperand(0); + APInt DemandedSrcBits = DemandedBits.reverseBits(); + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + Known.One = Known2.One.reverseBits(); + Known.Zero = Known2.Zero.reverseBits(); + break; + } + case ISD::SIGN_EXTEND_INREG: { + SDValue Op0 = Op.getOperand(0); + EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + unsigned ExVTBits = ExVT.getScalarSizeInBits(); + + // If we only care about the highest bit, don't bother shifting right. + if (DemandedBits.isSignMask()) { + unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); + bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; + // However if the input is already sign extended we expect the sign + // extension to be dropped altogether later and do not simplify. + if (!AlreadySignExtended) { + // Compute the correct shift amount type, which must be getShiftAmountTy + // for scalar types after legalization. + EVT ShiftAmtTy = VT; + if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) + ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); + + SDValue ShiftAmt = + TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); + return TLO.CombineTo(Op, + TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); + } + } + + // If none of the extended bits are demanded, eliminate the sextinreg. + if (DemandedBits.getActiveBits() <= ExVTBits) + return TLO.CombineTo(Op, Op0); + + APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); + + // Since the sign extended bits are demanded, we know that the sign + // bit is demanded. + InputDemandedBits.setBit(ExVTBits - 1); + + if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + + // If the input sign bit is known zero, convert this into a zero extension. + if (Known.Zero[ExVTBits - 1]) + return TLO.CombineTo( + Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); + + APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); + if (Known.One[ExVTBits - 1]) { // Input sign bit known set + Known.One.setBitsFrom(ExVTBits); + Known.Zero &= Mask; + } else { // Input sign bit unknown + Known.Zero &= Mask; + Known.One &= Mask; + } + break; + } + case ISD::BUILD_PAIR: { + EVT HalfVT = Op.getOperand(0).getValueType(); + unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); + + APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); + APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); + + KnownBits KnownLo, KnownHi; + + if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) + return true; + + if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) + return true; + + Known.Zero = KnownLo.Zero.zext(BitWidth) | + KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); + + Known.One = KnownLo.One.zext(BitWidth) | + KnownHi.One.zext(BitWidth).shl(HalfBitWidth); + break; + } + case ISD::ZERO_EXTEND: + case ISD::ZERO_EXTEND_VECTOR_INREG: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + unsigned InBits = SrcVT.getScalarSizeInBits(); + unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; + bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; + + // If none of the top bits are demanded, convert this into an any_extend. + if (DemandedBits.getActiveBits() <= InBits) { + // If we only need the non-extended bits of the bottom element + // then we can just bitcast to the result. + if (IsVecInReg && DemandedElts == 1 && + VT.getSizeInBits() == SrcVT.getSizeInBits() && + TLO.DAG.getDataLayout().isLittleEndian()) + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); + + unsigned Opc = + IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; + if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) + return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); + } + + APInt InDemandedBits = DemandedBits.trunc(InBits); + APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); + if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + assert(Known.getBitWidth() == InBits && "Src width has changed?"); + Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); + break; + } + case ISD::SIGN_EXTEND: + case ISD::SIGN_EXTEND_VECTOR_INREG: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + unsigned InBits = SrcVT.getScalarSizeInBits(); + unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; + bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; + + // If none of the top bits are demanded, convert this into an any_extend. + if (DemandedBits.getActiveBits() <= InBits) { + // If we only need the non-extended bits of the bottom element + // then we can just bitcast to the result. + if (IsVecInReg && DemandedElts == 1 && + VT.getSizeInBits() == SrcVT.getSizeInBits() && + TLO.DAG.getDataLayout().isLittleEndian()) + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); + + unsigned Opc = + IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; + if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) + return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); + } + + APInt InDemandedBits = DemandedBits.trunc(InBits); + APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); + + // Since some of the sign extended bits are demanded, we know that the sign + // bit is demanded. + InDemandedBits.setBit(InBits - 1); + + if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + assert(Known.getBitWidth() == InBits && "Src width has changed?"); + + // If the sign bit is known one, the top bits match. + Known = Known.sext(BitWidth); + + // If the sign bit is known zero, convert this to a zero extend. + if (Known.isNonNegative()) { + unsigned Opc = + IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; + if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) + return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); + } + break; + } + case ISD::ANY_EXTEND: + case ISD::ANY_EXTEND_VECTOR_INREG: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + unsigned InBits = SrcVT.getScalarSizeInBits(); + unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; + bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; + + // If we only need the bottom element then we can just bitcast. + // TODO: Handle ANY_EXTEND? + if (IsVecInReg && DemandedElts == 1 && + VT.getSizeInBits() == SrcVT.getSizeInBits() && + TLO.DAG.getDataLayout().isLittleEndian()) + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); + + APInt InDemandedBits = DemandedBits.trunc(InBits); + APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); + if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + assert(Known.getBitWidth() == InBits && "Src width has changed?"); + Known = Known.zext(BitWidth, false /* => any extend */); + break; + } + case ISD::TRUNCATE: { + SDValue Src = Op.getOperand(0); + + // Simplify the input, using demanded bit information, and compute the known + // zero/one bits live out. + unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); + APInt TruncMask = DemandedBits.zext(OperandBitWidth); + if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) + return true; + Known = Known.trunc(BitWidth); + + // If the input is only used by this truncate, see if we can shrink it based + // on the known demanded bits. + if (Src.getNode()->hasOneUse()) { + switch (Src.getOpcode()) { + default: + break; + case ISD::SRL: + // Shrink SRL by a constant if none of the high bits shifted in are + // demanded. + if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) + // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is + // undesirable. + break; + + auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); + if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) + break; + + SDValue Shift = Src.getOperand(1); + uint64_t ShVal = ShAmt->getZExtValue(); + + if (TLO.LegalTypes()) + Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); + + APInt HighBits = + APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); + HighBits.lshrInPlace(ShVal); + HighBits = HighBits.trunc(BitWidth); + + if (!(HighBits & DemandedBits)) { + // None of the shifted in bits are needed. Add a truncate of the + // shift input, then shift it. + SDValue NewTrunc = + TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); + } + break; + } + } + + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + break; + } + case ISD::AssertZext: { + // AssertZext demands all of the high bits, plus any of the low bits + // demanded by its users. + EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); + if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, + TLO, Depth + 1)) + return true; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + + Known.Zero |= ~InMask; + break; + } + case ISD::EXTRACT_VECTOR_ELT: { + SDValue Src = Op.getOperand(0); + SDValue Idx = Op.getOperand(1); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + unsigned EltBitWidth = Src.getScalarValueSizeInBits(); + + // Demand the bits from every vector element without a constant index. + APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); + if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) + if (CIdx->getAPIntValue().ult(NumSrcElts)) + DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); + + // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know + // anything about the extended bits. + APInt DemandedSrcBits = DemandedBits; + if (BitWidth > EltBitWidth) + DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); + + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, + Depth + 1)) + return true; + + Known = Known2; + if (BitWidth > EltBitWidth) + Known = Known.zext(BitWidth, false /* => any extend */); + break; + } + case ISD::BITCAST: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); + + // If this is an FP->Int bitcast and if the sign bit is the only + // thing demanded, turn this into a FGETSIGN. + if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && + DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && + SrcVT.isFloatingPoint()) { + bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); + bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); + if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && + SrcVT != MVT::f128) { + // Cannot eliminate/lower SHL for f128 yet. + EVT Ty = OpVTLegal ? VT : MVT::i32; + // Make a FGETSIGN + SHL to move the sign bit into the appropriate + // place. We expect the SHL to be eliminated by other optimizations. + SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); + unsigned OpVTSizeInBits = Op.getValueSizeInBits(); + if (!OpVTLegal && OpVTSizeInBits > 32) + Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); + unsigned ShVal = Op.getValueSizeInBits() - 1; + SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); + return TLO.CombineTo(Op, + TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); + } + } + + // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. + // Demand the elt/bit if any of the original elts/bits are demanded. + // TODO - bigendian once we have test coverage. + // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. + if (SrcVT.isVector() && NumSrcEltBits > 1 && + (BitWidth % NumSrcEltBits) == 0 && + TLO.DAG.getDataLayout().isLittleEndian()) { + unsigned Scale = BitWidth / NumSrcEltBits; + unsigned NumSrcElts = SrcVT.getVectorNumElements(); + APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); + APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); + for (unsigned i = 0; i != Scale; ++i) { + unsigned Offset = i * NumSrcEltBits; + APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); + if (!Sub.isNullValue()) { + DemandedSrcBits |= Sub; + for (unsigned j = 0; j != NumElts; ++j) + if (DemandedElts[j]) + DemandedSrcElts.setBit((j * Scale) + i); + } + } + + APInt KnownSrcUndef, KnownSrcZero; + if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, + KnownSrcZero, TLO, Depth + 1)) + return true; + + KnownBits KnownSrcBits; + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, + KnownSrcBits, TLO, Depth + 1)) + return true; + } else if ((NumSrcEltBits % BitWidth) == 0 && + TLO.DAG.getDataLayout().isLittleEndian()) { + unsigned Scale = NumSrcEltBits / BitWidth; + unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; + APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); + APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) { + unsigned Offset = (i % Scale) * BitWidth; + DemandedSrcBits.insertBits(DemandedBits, Offset); + DemandedSrcElts.setBit(i / Scale); + } + + if (SrcVT.isVector()) { + APInt KnownSrcUndef, KnownSrcZero; + if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, + KnownSrcZero, TLO, Depth + 1)) + return true; + } + + KnownBits KnownSrcBits; + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, + KnownSrcBits, TLO, Depth + 1)) + return true; + } + + // If this is a bitcast, let computeKnownBits handle it. Only do this on a + // recursive call where Known may be useful to the caller. + if (Depth > 0) { + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + return false; + } + break; + } + case ISD::ADD: + case ISD::MUL: + case ISD::SUB: { + // Add, Sub, and Mul don't demand any bits in positions beyond that + // of the highest bit demanded of them. + SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); + unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); + APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); + if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, + Depth + 1) || + SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, + Depth + 1) || + // See if the operation should be performed at a smaller bit width. + ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { + SDNodeFlags Flags = Op.getNode()->getFlags(); + if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { + // Disable the nsw and nuw flags. We can no longer guarantee that we + // won't wrap after simplification. + Flags.setNoSignedWrap(false); + Flags.setNoUnsignedWrap(false); + SDValue NewOp = + TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); + return TLO.CombineTo(Op, NewOp); + } + return true; + } + + // If we have a constant operand, we may be able to turn it into -1 if we + // do not demand the high bits. This can make the constant smaller to + // encode, allow more general folding, or match specialized instruction + // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that + // is probably not useful (and could be detrimental). + ConstantSDNode *C = isConstOrConstSplat(Op1); + APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); + if (C && !C->isAllOnesValue() && !C->isOne() && + (C->getAPIntValue() | HighMask).isAllOnesValue()) { + SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); + // We can't guarantee that the new math op doesn't wrap, so explicitly + // clear those flags to prevent folding with a potential existing node + // that has those flags set. + SDNodeFlags Flags; + Flags.setNoSignedWrap(false); + Flags.setNoUnsignedWrap(false); + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); + return TLO.CombineTo(Op, NewOp); + } + + LLVM_FALLTHROUGH; + } + default: + if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { + if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, + Known, TLO, Depth)) + return true; + break; + } + + // Just use computeKnownBits to compute output bits. + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + break; + } + + // If we know the value of all of the demanded bits, return this as a + // constant. + if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { + // Avoid folding to a constant if any OpaqueConstant is involved. + const SDNode *N = Op.getNode(); + for (SDNodeIterator I = SDNodeIterator::begin(N), + E = SDNodeIterator::end(N); + I != E; ++I) { + SDNode *Op = *I; + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) + if (C->isOpaque()) + return false; + } + // TODO: Handle float bits as well. + if (VT.isInteger()) + return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); + } + + return false; +} + +bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, + const APInt &DemandedElts, + APInt &KnownUndef, + APInt &KnownZero, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + + bool Simplified = + SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); + if (Simplified) { + DCI.AddToWorklist(Op.getNode()); + DCI.CommitTargetLoweringOpt(TLO); + } + + return Simplified; +} + +/// Given a vector binary operation and known undefined elements for each input +/// operand, compute whether each element of the output is undefined. +static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, + const APInt &UndefOp0, + const APInt &UndefOp1) { + EVT VT = BO.getValueType(); + assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && + "Vector binop only"); + + EVT EltVT = VT.getVectorElementType(); + unsigned NumElts = VT.getVectorNumElements(); + assert(UndefOp0.getBitWidth() == NumElts && + UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); + + auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, + const APInt &UndefVals) { + if (UndefVals[Index]) + return DAG.getUNDEF(EltVT); + + if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { + // Try hard to make sure that the getNode() call is not creating temporary + // nodes. Ignore opaque integers because they do not constant fold. + SDValue Elt = BV->getOperand(Index); + auto *C = dyn_cast<ConstantSDNode>(Elt); + if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) + return Elt; + } + + return SDValue(); + }; + + APInt KnownUndef = APInt::getNullValue(NumElts); + for (unsigned i = 0; i != NumElts; ++i) { + // If both inputs for this element are either constant or undef and match + // the element type, compute the constant/undef result for this element of + // the vector. + // TODO: Ideally we would use FoldConstantArithmetic() here, but that does + // not handle FP constants. The code within getNode() should be refactored + // to avoid the danger of creating a bogus temporary node here. + SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); + SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); + if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) + if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) + KnownUndef.setBit(i); + } + return KnownUndef; +} + +bool TargetLowering::SimplifyDemandedVectorElts( + SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, + APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, + bool AssumeSingleUse) const { + EVT VT = Op.getValueType(); + APInt DemandedElts = OriginalDemandedElts; + unsigned NumElts = DemandedElts.getBitWidth(); + assert(VT.isVector() && "Expected vector op"); + assert(VT.getVectorNumElements() == NumElts && + "Mask size mismatches value type element count!"); + + KnownUndef = KnownZero = APInt::getNullValue(NumElts); + + // Undef operand. + if (Op.isUndef()) { + KnownUndef.setAllBits(); + return false; + } + + // If Op has other users, assume that all elements are needed. + if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) + DemandedElts.setAllBits(); + + // Not demanding any elements from Op. + if (DemandedElts == 0) { + KnownUndef.setAllBits(); + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + } + + // Limit search depth. + if (Depth >= 6) + return false; + + SDLoc DL(Op); + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + + switch (Op.getOpcode()) { + case ISD::SCALAR_TO_VECTOR: { + if (!DemandedElts[0]) { + KnownUndef.setAllBits(); + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + } + KnownUndef.setHighBits(NumElts - 1); + break; + } + case ISD::BITCAST: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + + // We only handle vectors here. + // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? + if (!SrcVT.isVector()) + break; + + // Fast handling of 'identity' bitcasts. + unsigned NumSrcElts = SrcVT.getVectorNumElements(); + if (NumSrcElts == NumElts) + return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, + KnownZero, TLO, Depth + 1); + + APInt SrcZero, SrcUndef; + APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); + + // Bitcast from 'large element' src vector to 'small element' vector, we + // must demand a source element if any DemandedElt maps to it. + if ((NumElts % NumSrcElts) == 0) { + unsigned Scale = NumElts / NumSrcElts; + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) + SrcDemandedElts.setBit(i / Scale); + + if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, + TLO, Depth + 1)) + return true; + + // Try calling SimplifyDemandedBits, converting demanded elts to the bits + // of the large element. + // TODO - bigendian once we have test coverage. + if (TLO.DAG.getDataLayout().isLittleEndian()) { + unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); + APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) { + unsigned Ofs = (i % Scale) * EltSizeInBits; + SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); + } + + KnownBits Known; + if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) + return true; + } + + // If the src element is zero/undef then all the output elements will be - + // only demanded elements are guaranteed to be correct. + for (unsigned i = 0; i != NumSrcElts; ++i) { + if (SrcDemandedElts[i]) { + if (SrcZero[i]) + KnownZero.setBits(i * Scale, (i + 1) * Scale); + if (SrcUndef[i]) + KnownUndef.setBits(i * Scale, (i + 1) * Scale); + } + } + } + + // Bitcast from 'small element' src vector to 'large element' vector, we + // demand all smaller source elements covered by the larger demanded element + // of this vector. + if ((NumSrcElts % NumElts) == 0) { + unsigned Scale = NumSrcElts / NumElts; + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) + SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); + + if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, + TLO, Depth + 1)) + return true; + + // If all the src elements covering an output element are zero/undef, then + // the output element will be as well, assuming it was demanded. + for (unsigned i = 0; i != NumElts; ++i) { + if (DemandedElts[i]) { + if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) + KnownZero.setBit(i); + if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) + KnownUndef.setBit(i); + } + } + } + break; + } + case ISD::BUILD_VECTOR: { + // Check all elements and simplify any unused elements with UNDEF. + if (!DemandedElts.isAllOnesValue()) { + // Don't simplify BROADCASTS. + if (llvm::any_of(Op->op_values(), + [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { + SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); + bool Updated = false; + for (unsigned i = 0; i != NumElts; ++i) { + if (!DemandedElts[i] && !Ops[i].isUndef()) { + Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); + KnownUndef.setBit(i); + Updated = true; + } + } + if (Updated) + return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); + } + } + for (unsigned i = 0; i != NumElts; ++i) { + SDValue SrcOp = Op.getOperand(i); + if (SrcOp.isUndef()) { + KnownUndef.setBit(i); + } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && + (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { + KnownZero.setBit(i); + } + } + break; + } + case ISD::CONCAT_VECTORS: { + EVT SubVT = Op.getOperand(0).getValueType(); + unsigned NumSubVecs = Op.getNumOperands(); + unsigned NumSubElts = SubVT.getVectorNumElements(); + for (unsigned i = 0; i != NumSubVecs; ++i) { + SDValue SubOp = Op.getOperand(i); + APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); + APInt SubUndef, SubZero; + if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, + Depth + 1)) + return true; + KnownUndef.insertBits(SubUndef, i * NumSubElts); + KnownZero.insertBits(SubZero, i * NumSubElts); + } + break; + } + case ISD::INSERT_SUBVECTOR: { + if (!isa<ConstantSDNode>(Op.getOperand(2))) + break; + SDValue Base = Op.getOperand(0); + SDValue Sub = Op.getOperand(1); + EVT SubVT = Sub.getValueType(); + unsigned NumSubElts = SubVT.getVectorNumElements(); + const APInt &Idx = Op.getConstantOperandAPInt(2); + if (Idx.ugt(NumElts - NumSubElts)) + break; + unsigned SubIdx = Idx.getZExtValue(); + APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); + APInt SubUndef, SubZero; + if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, + Depth + 1)) + return true; + APInt BaseElts = DemandedElts; + BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); + if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, + Depth + 1)) + return true; + KnownUndef.insertBits(SubUndef, SubIdx); + KnownZero.insertBits(SubZero, SubIdx); + break; + } + case ISD::EXTRACT_SUBVECTOR: { + SDValue Src = Op.getOperand(0); + ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { + // Offset the demanded elts by the subvector index. + uint64_t Idx = SubIdx->getZExtValue(); + APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); + APInt SrcUndef, SrcZero; + if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, + Depth + 1)) + return true; + KnownUndef = SrcUndef.extractBits(NumElts, Idx); + KnownZero = SrcZero.extractBits(NumElts, Idx); + } + break; + } + case ISD::INSERT_VECTOR_ELT: { + SDValue Vec = Op.getOperand(0); + SDValue Scl = Op.getOperand(1); + auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + + // For a legal, constant insertion index, if we don't need this insertion + // then strip it, else remove it from the demanded elts. + if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { + unsigned Idx = CIdx->getZExtValue(); + if (!DemandedElts[Idx]) + return TLO.CombineTo(Op, Vec); + + APInt DemandedVecElts(DemandedElts); + DemandedVecElts.clearBit(Idx); + if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, + KnownZero, TLO, Depth + 1)) + return true; + + KnownUndef.clearBit(Idx); + if (Scl.isUndef()) + KnownUndef.setBit(Idx); + + KnownZero.clearBit(Idx); + if (isNullConstant(Scl) || isNullFPConstant(Scl)) + KnownZero.setBit(Idx); + break; + } + + APInt VecUndef, VecZero; + if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, + Depth + 1)) + return true; + // Without knowing the insertion index we can't set KnownUndef/KnownZero. + break; + } + case ISD::VSELECT: { + // Try to transform the select condition based on the current demanded + // elements. + // TODO: If a condition element is undef, we can choose from one arm of the + // select (and if one arm is undef, then we can propagate that to the + // result). + // TODO - add support for constant vselect masks (see IR version of this). + APInt UnusedUndef, UnusedZero; + if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, + UnusedZero, TLO, Depth + 1)) + return true; + + // See if we can simplify either vselect operand. + APInt DemandedLHS(DemandedElts); + APInt DemandedRHS(DemandedElts); + APInt UndefLHS, ZeroLHS; + APInt UndefRHS, ZeroRHS; + if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, + ZeroLHS, TLO, Depth + 1)) + return true; + if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, + ZeroRHS, TLO, Depth + 1)) + return true; + + KnownUndef = UndefLHS & UndefRHS; + KnownZero = ZeroLHS & ZeroRHS; + break; + } + case ISD::VECTOR_SHUFFLE: { + ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); + + // Collect demanded elements from shuffle operands.. + APInt DemandedLHS(NumElts, 0); + APInt DemandedRHS(NumElts, 0); + for (unsigned i = 0; i != NumElts; ++i) { + int M = ShuffleMask[i]; + if (M < 0 || !DemandedElts[i]) + continue; + assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); + if (M < (int)NumElts) + DemandedLHS.setBit(M); + else + DemandedRHS.setBit(M - NumElts); + } + + // See if we can simplify either shuffle operand. + APInt UndefLHS, ZeroLHS; + APInt UndefRHS, ZeroRHS; + if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, + ZeroLHS, TLO, Depth + 1)) + return true; + if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, + ZeroRHS, TLO, Depth + 1)) + return true; + + // Simplify mask using undef elements from LHS/RHS. + bool Updated = false; + bool IdentityLHS = true, IdentityRHS = true; + SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); + for (unsigned i = 0; i != NumElts; ++i) { + int &M = NewMask[i]; + if (M < 0) + continue; + if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || + (M >= (int)NumElts && UndefRHS[M - NumElts])) { + Updated = true; + M = -1; + } + IdentityLHS &= (M < 0) || (M == (int)i); + IdentityRHS &= (M < 0) || ((M - NumElts) == i); + } + + // Update legal shuffle masks based on demanded elements if it won't reduce + // to Identity which can cause premature removal of the shuffle mask. + if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && + isShuffleMaskLegal(NewMask, VT)) + return TLO.CombineTo(Op, + TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), + Op.getOperand(1), NewMask)); + + // Propagate undef/zero elements from LHS/RHS. + for (unsigned i = 0; i != NumElts; ++i) { + int M = ShuffleMask[i]; + if (M < 0) { + KnownUndef.setBit(i); + } else if (M < (int)NumElts) { + if (UndefLHS[M]) + KnownUndef.setBit(i); + if (ZeroLHS[M]) + KnownZero.setBit(i); + } else { + if (UndefRHS[M - NumElts]) + KnownUndef.setBit(i); + if (ZeroRHS[M - NumElts]) + KnownZero.setBit(i); + } + } + break; + } + case ISD::ANY_EXTEND_VECTOR_INREG: + case ISD::SIGN_EXTEND_VECTOR_INREG: + case ISD::ZERO_EXTEND_VECTOR_INREG: { + APInt SrcUndef, SrcZero; + SDValue Src = Op.getOperand(0); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); + if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, + Depth + 1)) + return true; + KnownZero = SrcZero.zextOrTrunc(NumElts); + KnownUndef = SrcUndef.zextOrTrunc(NumElts); + + if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && + Op.getValueSizeInBits() == Src.getValueSizeInBits() && + DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { + // aext - if we just need the bottom element then we can bitcast. + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); + } + + if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { + // zext(undef) upper bits are guaranteed to be zero. + if (DemandedElts.isSubsetOf(KnownUndef)) + return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); + KnownUndef.clearAllBits(); + } + break; + } + + // TODO: There are more binop opcodes that could be handled here - MUL, MIN, + // MAX, saturated math, etc. + case ISD::OR: + case ISD::XOR: + case ISD::ADD: + case ISD::SUB: + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: { + APInt UndefRHS, ZeroRHS; + if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, + ZeroRHS, TLO, Depth + 1)) + return true; + APInt UndefLHS, ZeroLHS; + if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, + ZeroLHS, TLO, Depth + 1)) + return true; + + KnownZero = ZeroLHS & ZeroRHS; + KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); + break; + } + case ISD::SHL: + case ISD::SRL: + case ISD::SRA: + case ISD::ROTL: + case ISD::ROTR: { + APInt UndefRHS, ZeroRHS; + if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, + ZeroRHS, TLO, Depth + 1)) + return true; + APInt UndefLHS, ZeroLHS; + if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, + ZeroLHS, TLO, Depth + 1)) + return true; + + KnownZero = ZeroLHS; + KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? + break; + } + case ISD::MUL: + case ISD::AND: { + APInt SrcUndef, SrcZero; + if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, + SrcZero, TLO, Depth + 1)) + return true; + if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, + KnownZero, TLO, Depth + 1)) + return true; + + // If either side has a zero element, then the result element is zero, even + // if the other is an UNDEF. + // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros + // and then handle 'and' nodes with the rest of the binop opcodes. + KnownZero |= SrcZero; + KnownUndef &= SrcUndef; + KnownUndef &= ~KnownZero; + break; + } + case ISD::TRUNCATE: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, + KnownZero, TLO, Depth + 1)) + return true; + + if (Op.getOpcode() == ISD::ZERO_EXTEND) { + // zext(undef) upper bits are guaranteed to be zero. + if (DemandedElts.isSubsetOf(KnownUndef)) + return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); + KnownUndef.clearAllBits(); + } + break; + default: { + if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { + if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, + KnownZero, TLO, Depth)) + return true; + } else { + KnownBits Known; + APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); + if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, + TLO, Depth, AssumeSingleUse)) + return true; + } + break; + } + } + assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); + + // Constant fold all undef cases. + // TODO: Handle zero cases as well. + if (DemandedElts.isSubsetOf(KnownUndef)) + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + + return false; +} + +/// Determine which of the bits specified in Mask are known to be either zero or +/// one and return them in the Known. +void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use MaskedValueIsZero if you don't know whether Op" + " is a target node!"); + Known.resetAll(); +} + +void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth) const { + assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); + + if (unsigned Align = DAG.InferPtrAlignment(Op)) { + // The low bits are known zero if the pointer is aligned. + Known.Zero.setLowBits(Log2_32(Align)); + } +} + +/// This method can be implemented by targets that want to expose additional +/// information about sign bits to the DAG Combiner. +unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, + const APInt &, + const SelectionDAG &, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use ComputeNumSignBits if you don't know whether Op" + " is a target node!"); + return 1; +} + +bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( + SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, + TargetLoweringOpt &TLO, unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use SimplifyDemandedVectorElts if you don't know whether Op" + " is a target node!"); + return false; +} + +bool TargetLowering::SimplifyDemandedBitsForTargetNode( + SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, + KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use SimplifyDemandedBits if you don't know whether Op" + " is a target node!"); + computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); + return false; +} + +const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { + return nullptr; +} + +bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, + const SelectionDAG &DAG, + bool SNaN, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use isKnownNeverNaN if you don't know whether Op" + " is a target node!"); + return false; +} + +// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must +// work with truncating build vectors and vectors with elements of less than +// 8 bits. +bool TargetLowering::isConstTrueVal(const SDNode *N) const { + if (!N) + return false; + + APInt CVal; + if (auto *CN = dyn_cast<ConstantSDNode>(N)) { + CVal = CN->getAPIntValue(); + } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { + auto *CN = BV->getConstantSplatNode(); + if (!CN) + return false; + + // If this is a truncating build vector, truncate the splat value. + // Otherwise, we may fail to match the expected values below. + unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); + CVal = CN->getAPIntValue(); + if (BVEltWidth < CVal.getBitWidth()) + CVal = CVal.trunc(BVEltWidth); + } else { + return false; + } + + switch (getBooleanContents(N->getValueType(0))) { + case UndefinedBooleanContent: + return CVal[0]; + case ZeroOrOneBooleanContent: + return CVal.isOneValue(); + case ZeroOrNegativeOneBooleanContent: + return CVal.isAllOnesValue(); + } + + llvm_unreachable("Invalid boolean contents"); +} + +bool TargetLowering::isConstFalseVal(const SDNode *N) const { + if (!N) + return false; + + const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); + if (!CN) { + const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); + if (!BV) + return false; + + // Only interested in constant splats, we don't care about undef + // elements in identifying boolean constants and getConstantSplatNode + // returns NULL if all ops are undef; + CN = BV->getConstantSplatNode(); + if (!CN) + return false; + } + + if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) + return !CN->getAPIntValue()[0]; + + return CN->isNullValue(); +} + +bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, + bool SExt) const { + if (VT == MVT::i1) + return N->isOne(); + + TargetLowering::BooleanContent Cnt = getBooleanContents(VT); + switch (Cnt) { + case TargetLowering::ZeroOrOneBooleanContent: + // An extended value of 1 is always true, unless its original type is i1, + // in which case it will be sign extended to -1. + return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); + case TargetLowering::UndefinedBooleanContent: + case TargetLowering::ZeroOrNegativeOneBooleanContent: + return N->isAllOnesValue() && SExt; + } + llvm_unreachable("Unexpected enumeration."); +} + +/// This helper function of SimplifySetCC tries to optimize the comparison when +/// either operand of the SetCC node is a bitwise-and instruction. +SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, const SDLoc &DL, + DAGCombinerInfo &DCI) const { + // Match these patterns in any of their permutations: + // (X & Y) == Y + // (X & Y) != Y + if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) + std::swap(N0, N1); + + EVT OpVT = N0.getValueType(); + if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || + (Cond != ISD::SETEQ && Cond != ISD::SETNE)) + return SDValue(); + + SDValue X, Y; + if (N0.getOperand(0) == N1) { + X = N0.getOperand(1); + Y = N0.getOperand(0); + } else if (N0.getOperand(1) == N1) { + X = N0.getOperand(0); + Y = N0.getOperand(1); + } else { + return SDValue(); + } + + SelectionDAG &DAG = DCI.DAG; + SDValue Zero = DAG.getConstant(0, DL, OpVT); + if (DAG.isKnownToBeAPowerOfTwo(Y)) { + // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. + // Note that where Y is variable and is known to have at most one bit set + // (for example, if it is Z & 1) we cannot do this; the expressions are not + // equivalent when Y == 0. + Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(Cond, N0.getSimpleValueType())) + return DAG.getSetCC(DL, VT, N0, Zero, Cond); + } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { + // If the target supports an 'and-not' or 'and-complement' logic operation, + // try to use that to make a comparison operation more efficient. + // But don't do this transform if the mask is a single bit because there are + // more efficient ways to deal with that case (for example, 'bt' on x86 or + // 'rlwinm' on PPC). + + // Bail out if the compare operand that we want to turn into a zero is + // already a zero (otherwise, infinite loop). + auto *YConst = dyn_cast<ConstantSDNode>(Y); + if (YConst && YConst->isNullValue()) + return SDValue(); + + // Transform this into: ~X & Y == 0. + SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); + SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); + return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); + } + + return SDValue(); +} + +/// There are multiple IR patterns that could be checking whether certain +/// truncation of a signed number would be lossy or not. The pattern which is +/// best at IR level, may not lower optimally. Thus, we want to unfold it. +/// We are looking for the following pattern: (KeptBits is a constant) +/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) +/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. +/// KeptBits also can't be 1, that would have been folded to %x dstcond 0 +/// We will unfold it into the natural trunc+sext pattern: +/// ((%x << C) a>> C) dstcond %x +/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) +SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( + EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, + const SDLoc &DL) const { + // We must be comparing with a constant. + ConstantSDNode *C1; + if (!(C1 = dyn_cast<ConstantSDNode>(N1))) + return SDValue(); + + // N0 should be: add %x, (1 << (KeptBits-1)) + if (N0->getOpcode() != ISD::ADD) + return SDValue(); + + // And we must be 'add'ing a constant. + ConstantSDNode *C01; + if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) + return SDValue(); + + SDValue X = N0->getOperand(0); + EVT XVT = X.getValueType(); + + // Validate constants ... + + APInt I1 = C1->getAPIntValue(); + + ISD::CondCode NewCond; + if (Cond == ISD::CondCode::SETULT) { + NewCond = ISD::CondCode::SETEQ; + } else if (Cond == ISD::CondCode::SETULE) { + NewCond = ISD::CondCode::SETEQ; + // But need to 'canonicalize' the constant. + I1 += 1; + } else if (Cond == ISD::CondCode::SETUGT) { + NewCond = ISD::CondCode::SETNE; + // But need to 'canonicalize' the constant. + I1 += 1; + } else if (Cond == ISD::CondCode::SETUGE) { + NewCond = ISD::CondCode::SETNE; + } else + return SDValue(); + + APInt I01 = C01->getAPIntValue(); + + auto checkConstants = [&I1, &I01]() -> bool { + // Both of them must be power-of-two, and the constant from setcc is bigger. + return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); + }; + + if (checkConstants()) { + // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 + } else { + // What if we invert constants? (and the target predicate) + I1.negate(); + I01.negate(); + NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); + if (!checkConstants()) + return SDValue(); + // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 + } + + // They are power-of-two, so which bit is set? + const unsigned KeptBits = I1.logBase2(); + const unsigned KeptBitsMinusOne = I01.logBase2(); + + // Magic! + if (KeptBits != (KeptBitsMinusOne + 1)) + return SDValue(); + assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); + + // We don't want to do this in every single case. + SelectionDAG &DAG = DCI.DAG; + if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( + XVT, KeptBits)) + return SDValue(); + + const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; + assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); + + // Unfold into: ((%x << C) a>> C) cond %x + // Where 'cond' will be either 'eq' or 'ne'. + SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); + SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); + SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); + SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); + + return T2; +} + +/// Try to fold an equality comparison with a {add/sub/xor} binary operation as +/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to +/// handle the commuted versions of these patterns. +SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, const SDLoc &DL, + DAGCombinerInfo &DCI) const { + unsigned BOpcode = N0.getOpcode(); + assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && + "Unexpected binop"); + assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); + + // (X + Y) == X --> Y == 0 + // (X - Y) == X --> Y == 0 + // (X ^ Y) == X --> Y == 0 + SelectionDAG &DAG = DCI.DAG; + EVT OpVT = N0.getValueType(); + SDValue X = N0.getOperand(0); + SDValue Y = N0.getOperand(1); + if (X == N1) + return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); + + if (Y != N1) + return SDValue(); + + // (X + Y) == Y --> X == 0 + // (X ^ Y) == Y --> X == 0 + if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) + return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); + + // The shift would not be valid if the operands are boolean (i1). + if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) + return SDValue(); + + // (X - Y) == Y --> X == Y << 1 + EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), + !DCI.isBeforeLegalize()); + SDValue One = DAG.getConstant(1, DL, ShiftVT); + SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(YShl1.getNode()); + return DAG.getSetCC(DL, VT, X, YShl1, Cond); +} + +/// Try to simplify a setcc built with the specified operands and cc. If it is +/// unable to simplify it, return a null SDValue. +SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, bool foldBooleans, + DAGCombinerInfo &DCI, + const SDLoc &dl) const { + SelectionDAG &DAG = DCI.DAG; + EVT OpVT = N0.getValueType(); + + // Constant fold or commute setcc. + if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) + return Fold; + + // Ensure that the constant occurs on the RHS and fold constant comparisons. + // TODO: Handle non-splat vector constants. All undef causes trouble. + ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); + if (isConstOrConstSplat(N0) && + (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) + return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); + + // If we have a subtract with the same 2 non-constant operands as this setcc + // -- but in reverse order -- then try to commute the operands of this setcc + // to match. A matching pair of setcc (cmp) and sub may be combined into 1 + // instruction on some targets. + if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && + (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && + DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && + !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) + return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); + + if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { + const APInt &C1 = N1C->getAPIntValue(); + + // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an + // equality comparison, then we're just comparing whether X itself is + // zero. + if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && + N0.getOperand(0).getOpcode() == ISD::CTLZ && + N0.getOperand(1).getOpcode() == ISD::Constant) { + const APInt &ShAmt = N0.getConstantOperandAPInt(1); + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + ShAmt == Log2_32(N0.getValueSizeInBits())) { + if ((C1 == 0) == (Cond == ISD::SETEQ)) { + // (srl (ctlz x), 5) == 0 -> X != 0 + // (srl (ctlz x), 5) != 1 -> X != 0 + Cond = ISD::SETNE; + } else { + // (srl (ctlz x), 5) != 0 -> X == 0 + // (srl (ctlz x), 5) == 1 -> X == 0 + Cond = ISD::SETEQ; + } + SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); + return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), + Zero, Cond); + } + } + + SDValue CTPOP = N0; + // Look through truncs that don't change the value of a ctpop. + if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) + CTPOP = N0.getOperand(0); + + if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && + (N0 == CTPOP || + N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { + EVT CTVT = CTPOP.getValueType(); + SDValue CTOp = CTPOP.getOperand(0); + + // (ctpop x) u< 2 -> (x & x-1) == 0 + // (ctpop x) u> 1 -> (x & x-1) != 0 + if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ + SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, + DAG.getConstant(1, dl, CTVT)); + SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); + ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; + return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); + } + + // If ctpop is not supported, expand a power-of-2 comparison based on it. + if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) + // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) + SDValue Zero = DAG.getConstant(0, dl, CTVT); + SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); + ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true); + SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); + SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); + SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); + SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); + unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; + return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); + } + } + + // (zext x) == C --> x == (trunc C) + // (sext x) == C --> x == (trunc C) + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + DCI.isBeforeLegalize() && N0->hasOneUse()) { + unsigned MinBits = N0.getValueSizeInBits(); + SDValue PreExt; + bool Signed = false; + if (N0->getOpcode() == ISD::ZERO_EXTEND) { + // ZExt + MinBits = N0->getOperand(0).getValueSizeInBits(); + PreExt = N0->getOperand(0); + } else if (N0->getOpcode() == ISD::AND) { + // DAGCombine turns costly ZExts into ANDs + if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) + if ((C->getAPIntValue()+1).isPowerOf2()) { + MinBits = C->getAPIntValue().countTrailingOnes(); + PreExt = N0->getOperand(0); + } + } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { + // SExt + MinBits = N0->getOperand(0).getValueSizeInBits(); + PreExt = N0->getOperand(0); + Signed = true; + } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { + // ZEXTLOAD / SEXTLOAD + if (LN0->getExtensionType() == ISD::ZEXTLOAD) { + MinBits = LN0->getMemoryVT().getSizeInBits(); + PreExt = N0; + } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { + Signed = true; + MinBits = LN0->getMemoryVT().getSizeInBits(); + PreExt = N0; + } + } + + // Figure out how many bits we need to preserve this constant. + unsigned ReqdBits = Signed ? + C1.getBitWidth() - C1.getNumSignBits() + 1 : + C1.getActiveBits(); + + // Make sure we're not losing bits from the constant. + if (MinBits > 0 && + MinBits < C1.getBitWidth() && + MinBits >= ReqdBits) { + EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); + if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { + // Will get folded away. + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); + if (MinBits == 1 && C1 == 1) + // Invert the condition. + return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); + return DAG.getSetCC(dl, VT, Trunc, C, Cond); + } + + // If truncating the setcc operands is not desirable, we can still + // simplify the expression in some cases: + // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) + // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) + // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) + // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) + // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) + // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) + SDValue TopSetCC = N0->getOperand(0); + unsigned N0Opc = N0->getOpcode(); + bool SExt = (N0Opc == ISD::SIGN_EXTEND); + if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && + TopSetCC.getOpcode() == ISD::SETCC && + (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && + (isConstFalseVal(N1C) || + isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { + + bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || + (!N1C->isNullValue() && Cond == ISD::SETNE); + + if (!Inverse) + return TopSetCC; + + ISD::CondCode InvCond = ISD::getSetCCInverse( + cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), + TopSetCC.getOperand(0).getValueType().isInteger()); + return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), + TopSetCC.getOperand(1), + InvCond); + } + } + } + + // If the LHS is '(and load, const)', the RHS is 0, the test is for + // equality or unsigned, and all 1 bits of the const are in the same + // partial word, see if we can shorten the load. + if (DCI.isBeforeLegalize() && + !ISD::isSignedIntSetCC(Cond) && + N0.getOpcode() == ISD::AND && C1 == 0 && + N0.getNode()->hasOneUse() && + isa<LoadSDNode>(N0.getOperand(0)) && + N0.getOperand(0).getNode()->hasOneUse() && + isa<ConstantSDNode>(N0.getOperand(1))) { + LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); + APInt bestMask; + unsigned bestWidth = 0, bestOffset = 0; + if (!Lod->isVolatile() && Lod->isUnindexed()) { + unsigned origWidth = N0.getValueSizeInBits(); + unsigned maskWidth = origWidth; + // We can narrow (e.g.) 16-bit extending loads on 32-bit target to + // 8 bits, but have to be careful... + if (Lod->getExtensionType() != ISD::NON_EXTLOAD) + origWidth = Lod->getMemoryVT().getSizeInBits(); + const APInt &Mask = N0.getConstantOperandAPInt(1); + for (unsigned width = origWidth / 2; width>=8; width /= 2) { + APInt newMask = APInt::getLowBitsSet(maskWidth, width); + for (unsigned offset=0; offset<origWidth/width; offset++) { + if (Mask.isSubsetOf(newMask)) { + if (DAG.getDataLayout().isLittleEndian()) + bestOffset = (uint64_t)offset * (width/8); + else + bestOffset = (origWidth/width - offset - 1) * (width/8); + bestMask = Mask.lshr(offset * (width/8) * 8); + bestWidth = width; + break; + } + newMask <<= width; + } + } + } + if (bestWidth) { + EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); + if (newVT.isRound() && + shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { + EVT PtrType = Lod->getOperand(1).getValueType(); + SDValue Ptr = Lod->getBasePtr(); + if (bestOffset != 0) + Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), + DAG.getConstant(bestOffset, dl, PtrType)); + unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); + SDValue NewLoad = DAG.getLoad( + newVT, dl, Lod->getChain(), Ptr, + Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); + return DAG.getSetCC(dl, VT, + DAG.getNode(ISD::AND, dl, newVT, NewLoad, + DAG.getConstant(bestMask.trunc(bestWidth), + dl, newVT)), + DAG.getConstant(0LL, dl, newVT), Cond); + } + } + } + + // If the LHS is a ZERO_EXTEND, perform the comparison on the input. + if (N0.getOpcode() == ISD::ZERO_EXTEND) { + unsigned InSize = N0.getOperand(0).getValueSizeInBits(); + + // If the comparison constant has bits in the upper part, the + // zero-extended value could never match. + if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), + C1.getBitWidth() - InSize))) { + switch (Cond) { + case ISD::SETUGT: + case ISD::SETUGE: + case ISD::SETEQ: + return DAG.getConstant(0, dl, VT); + case ISD::SETULT: + case ISD::SETULE: + case ISD::SETNE: + return DAG.getConstant(1, dl, VT); + case ISD::SETGT: + case ISD::SETGE: + // True if the sign bit of C1 is set. + return DAG.getConstant(C1.isNegative(), dl, VT); + case ISD::SETLT: + case ISD::SETLE: + // True if the sign bit of C1 isn't set. + return DAG.getConstant(C1.isNonNegative(), dl, VT); + default: + break; + } + } + + // Otherwise, we can perform the comparison with the low bits. + switch (Cond) { + case ISD::SETEQ: + case ISD::SETNE: + case ISD::SETUGT: + case ISD::SETUGE: + case ISD::SETULT: + case ISD::SETULE: { + EVT newVT = N0.getOperand(0).getValueType(); + if (DCI.isBeforeLegalizeOps() || + (isOperationLegal(ISD::SETCC, newVT) && + isCondCodeLegal(Cond, newVT.getSimpleVT()))) { + EVT NewSetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); + SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); + + SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), + NewConst, Cond); + return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); + } + break; + } + default: + break; // todo, be more careful with signed comparisons + } + } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); + unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); + EVT ExtDstTy = N0.getValueType(); + unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); + + // If the constant doesn't fit into the number of bits for the source of + // the sign extension, it is impossible for both sides to be equal. + if (C1.getMinSignedBits() > ExtSrcTyBits) + return DAG.getConstant(Cond == ISD::SETNE, dl, VT); + + SDValue ZextOp; + EVT Op0Ty = N0.getOperand(0).getValueType(); + if (Op0Ty == ExtSrcTy) { + ZextOp = N0.getOperand(0); + } else { + APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); + ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), + DAG.getConstant(Imm, dl, Op0Ty)); + } + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(ZextOp.getNode()); + // Otherwise, make this a use of a zext. + return DAG.getSetCC(dl, VT, ZextOp, + DAG.getConstant(C1 & APInt::getLowBitsSet( + ExtDstTyBits, + ExtSrcTyBits), + dl, ExtDstTy), + Cond); + } else if ((N1C->isNullValue() || N1C->isOne()) && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC + if (N0.getOpcode() == ISD::SETCC && + isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { + bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); + if (TrueWhenTrue) + return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); + // Invert the condition. + ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); + CC = ISD::getSetCCInverse(CC, + N0.getOperand(0).getValueType().isInteger()); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); + } + + if ((N0.getOpcode() == ISD::XOR || + (N0.getOpcode() == ISD::AND && + N0.getOperand(0).getOpcode() == ISD::XOR && + N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && + isa<ConstantSDNode>(N0.getOperand(1)) && + cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { + // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We + // can only do this if the top bits are known zero. + unsigned BitWidth = N0.getValueSizeInBits(); + if (DAG.MaskedValueIsZero(N0, + APInt::getHighBitsSet(BitWidth, + BitWidth-1))) { + // Okay, get the un-inverted input value. + SDValue Val; + if (N0.getOpcode() == ISD::XOR) { + Val = N0.getOperand(0); + } else { + assert(N0.getOpcode() == ISD::AND && + N0.getOperand(0).getOpcode() == ISD::XOR); + // ((X^1)&1)^1 -> X & 1 + Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), + N0.getOperand(0).getOperand(0), + N0.getOperand(1)); + } + + return DAG.getSetCC(dl, VT, Val, N1, + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + } else if (N1C->isOne() && + (VT == MVT::i1 || + getBooleanContents(N0->getValueType(0)) == + ZeroOrOneBooleanContent)) { + SDValue Op0 = N0; + if (Op0.getOpcode() == ISD::TRUNCATE) + Op0 = Op0.getOperand(0); + + if ((Op0.getOpcode() == ISD::XOR) && + Op0.getOperand(0).getOpcode() == ISD::SETCC && + Op0.getOperand(1).getOpcode() == ISD::SETCC) { + // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) + Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; + return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), + Cond); + } + if (Op0.getOpcode() == ISD::AND && + isa<ConstantSDNode>(Op0.getOperand(1)) && + cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { + // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. + if (Op0.getValueType().bitsGT(VT)) + Op0 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), + DAG.getConstant(1, dl, VT)); + else if (Op0.getValueType().bitsLT(VT)) + Op0 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), + DAG.getConstant(1, dl, VT)); + + return DAG.getSetCC(dl, VT, Op0, + DAG.getConstant(0, dl, Op0.getValueType()), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + if (Op0.getOpcode() == ISD::AssertZext && + cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) + return DAG.getSetCC(dl, VT, Op0, + DAG.getConstant(0, dl, Op0.getValueType()), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + } + + // Given: + // icmp eq/ne (urem %x, %y), 0 + // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': + // icmp eq/ne %x, 0 + if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); + KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); + if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); + } + + if (SDValue V = + optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) + return V; + } + + // These simplifications apply to splat vectors as well. + // TODO: Handle more splat vector cases. + if (auto *N1C = isConstOrConstSplat(N1)) { + const APInt &C1 = N1C->getAPIntValue(); + + APInt MinVal, MaxVal; + unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); + if (ISD::isSignedIntSetCC(Cond)) { + MinVal = APInt::getSignedMinValue(OperandBitSize); + MaxVal = APInt::getSignedMaxValue(OperandBitSize); + } else { + MinVal = APInt::getMinValue(OperandBitSize); + MaxVal = APInt::getMaxValue(OperandBitSize); + } + + // Canonicalize GE/LE comparisons to use GT/LT comparisons. + if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { + // X >= MIN --> true + if (C1 == MinVal) + return DAG.getBoolConstant(true, dl, VT, OpVT); + + if (!VT.isVector()) { // TODO: Support this for vectors. + // X >= C0 --> X > (C0 - 1) + APInt C = C1 - 1; + ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; + if ((DCI.isBeforeLegalizeOps() || + isCondCodeLegal(NewCC, VT.getSimpleVT())) && + (!N1C->isOpaque() || (C.getBitWidth() <= 64 && + isLegalICmpImmediate(C.getSExtValue())))) { + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(C, dl, N1.getValueType()), + NewCC); + } + } + } + + if (Cond == ISD::SETLE || Cond == ISD::SETULE) { + // X <= MAX --> true + if (C1 == MaxVal) + return DAG.getBoolConstant(true, dl, VT, OpVT); + + // X <= C0 --> X < (C0 + 1) + if (!VT.isVector()) { // TODO: Support this for vectors. + APInt C = C1 + 1; + ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; + if ((DCI.isBeforeLegalizeOps() || + isCondCodeLegal(NewCC, VT.getSimpleVT())) && + (!N1C->isOpaque() || (C.getBitWidth() <= 64 && + isLegalICmpImmediate(C.getSExtValue())))) { + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(C, dl, N1.getValueType()), + NewCC); + } + } + } + + if (Cond == ISD::SETLT || Cond == ISD::SETULT) { + if (C1 == MinVal) + return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false + + // TODO: Support this for vectors after legalize ops. + if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { + // Canonicalize setlt X, Max --> setne X, Max + if (C1 == MaxVal) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); + + // If we have setult X, 1, turn it into seteq X, 0 + if (C1 == MinVal+1) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(MinVal, dl, N0.getValueType()), + ISD::SETEQ); + } + } + + if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { + if (C1 == MaxVal) + return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false + + // TODO: Support this for vectors after legalize ops. + if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { + // Canonicalize setgt X, Min --> setne X, Min + if (C1 == MinVal) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); + + // If we have setugt X, Max-1, turn it into seteq X, Max + if (C1 == MaxVal-1) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(MaxVal, dl, N0.getValueType()), + ISD::SETEQ); + } + } + + // If we have "setcc X, C0", check to see if we can shrink the immediate + // by changing cc. + // TODO: Support this for vectors after legalize ops. + if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { + // SETUGT X, SINTMAX -> SETLT X, 0 + if (Cond == ISD::SETUGT && + C1 == APInt::getSignedMaxValue(OperandBitSize)) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(0, dl, N1.getValueType()), + ISD::SETLT); + + // SETULT X, SINTMIN -> SETGT X, -1 + if (Cond == ISD::SETULT && + C1 == APInt::getSignedMinValue(OperandBitSize)) { + SDValue ConstMinusOne = + DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, + N1.getValueType()); + return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); + } + } + } + + // Back to non-vector simplifications. + // TODO: Can we do these for vector splats? + if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { + const APInt &C1 = N1C->getAPIntValue(); + + // Fold bit comparisons when we can. + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + (VT == N0.getValueType() || + (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && + N0.getOpcode() == ISD::AND) { + auto &DL = DAG.getDataLayout(); + if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, + !DCI.isBeforeLegalize()); + if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 + // Perform the xform if the AND RHS is a single bit. + if (AndRHS->getAPIntValue().isPowerOf2()) { + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, + DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, + ShiftTy))); + } + } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { + // (X & 8) == 8 --> (X & 8) >> 3 + // Perform the xform if C1 is a single bit. + if (C1.isPowerOf2()) { + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, + DAG.getConstant(C1.logBase2(), dl, + ShiftTy))); + } + } + } + } + + if (C1.getMinSignedBits() <= 64 && + !isLegalICmpImmediate(C1.getSExtValue())) { + // (X & -256) == 256 -> (X >> 8) == 1 + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getOpcode() == ISD::AND && N0.hasOneUse()) { + if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + const APInt &AndRHSC = AndRHS->getAPIntValue(); + if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { + unsigned ShiftBits = AndRHSC.countTrailingZeros(); + auto &DL = DAG.getDataLayout(); + EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, + !DCI.isBeforeLegalize()); + EVT CmpTy = N0.getValueType(); + SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), + DAG.getConstant(ShiftBits, dl, + ShiftTy)); + SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); + return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); + } + } + } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || + Cond == ISD::SETULE || Cond == ISD::SETUGT) { + bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); + // X < 0x100000000 -> (X >> 32) < 1 + // X >= 0x100000000 -> (X >> 32) >= 1 + // X <= 0x0ffffffff -> (X >> 32) < 1 + // X > 0x0ffffffff -> (X >> 32) >= 1 + unsigned ShiftBits; + APInt NewC = C1; + ISD::CondCode NewCond = Cond; + if (AdjOne) { + ShiftBits = C1.countTrailingOnes(); + NewC = NewC + 1; + NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; + } else { + ShiftBits = C1.countTrailingZeros(); + } + NewC.lshrInPlace(ShiftBits); + if (ShiftBits && NewC.getMinSignedBits() <= 64 && + isLegalICmpImmediate(NewC.getSExtValue())) { + auto &DL = DAG.getDataLayout(); + EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, + !DCI.isBeforeLegalize()); + EVT CmpTy = N0.getValueType(); + SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, + DAG.getConstant(ShiftBits, dl, ShiftTy)); + SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); + return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); + } + } + } + } + + if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { + auto *CFP = cast<ConstantFPSDNode>(N1); + assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); + + // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the + // constant if knowing that the operand is non-nan is enough. We prefer to + // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to + // materialize 0.0. + if (Cond == ISD::SETO || Cond == ISD::SETUO) + return DAG.getSetCC(dl, VT, N0, N0, Cond); + + // setcc (fneg x), C -> setcc swap(pred) x, -C + if (N0.getOpcode() == ISD::FNEG) { + ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { + SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); + return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); + } + } + + // If the condition is not legal, see if we can find an equivalent one + // which is legal. + if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { + // If the comparison was an awkward floating-point == or != and one of + // the comparison operands is infinity or negative infinity, convert the + // condition to a less-awkward <= or >=. + if (CFP->getValueAPF().isInfinity()) { + if (CFP->getValueAPF().isNegative()) { + if (Cond == ISD::SETOEQ && + isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); + if (Cond == ISD::SETUEQ && + isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); + if (Cond == ISD::SETUNE && + isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); + if (Cond == ISD::SETONE && + isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); + } else { + if (Cond == ISD::SETOEQ && + isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); + if (Cond == ISD::SETUEQ && + isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); + if (Cond == ISD::SETUNE && + isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); + if (Cond == ISD::SETONE && + isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); + } + } + } + } + + if (N0 == N1) { + // The sext(setcc()) => setcc() optimization relies on the appropriate + // constant being emitted. + assert(!N0.getValueType().isInteger() && + "Integer types should be handled by FoldSetCC"); + + bool EqTrue = ISD::isTrueWhenEqual(Cond); + unsigned UOF = ISD::getUnorderedFlavor(Cond); + if (UOF == 2) // FP operators that are undefined on NaNs. + return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); + if (UOF == unsigned(EqTrue)) + return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); + // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO + // if it is not already. + ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; + if (NewCond != Cond && + (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(NewCond, N0.getSimpleValueType()))) + return DAG.getSetCC(dl, VT, N0, N1, NewCond); + } + + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getValueType().isInteger()) { + if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || + N0.getOpcode() == ISD::XOR) { + // Simplify (X+Y) == (X+Z) --> Y == Z + if (N0.getOpcode() == N1.getOpcode()) { + if (N0.getOperand(0) == N1.getOperand(0)) + return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); + if (N0.getOperand(1) == N1.getOperand(1)) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); + if (isCommutativeBinOp(N0.getOpcode())) { + // If X op Y == Y op X, try other combinations. + if (N0.getOperand(0) == N1.getOperand(1)) + return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), + Cond); + if (N0.getOperand(1) == N1.getOperand(0)) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), + Cond); + } + } + + // If RHS is a legal immediate value for a compare instruction, we need + // to be careful about increasing register pressure needlessly. + bool LegalRHSImm = false; + + if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { + if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + // Turn (X+C1) == C2 --> X == C2-C1 + if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { + return DAG.getSetCC(dl, VT, N0.getOperand(0), + DAG.getConstant(RHSC->getAPIntValue()- + LHSR->getAPIntValue(), + dl, N0.getValueType()), Cond); + } + + // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. + if (N0.getOpcode() == ISD::XOR) + // If we know that all of the inverted bits are zero, don't bother + // performing the inversion. + if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) + return + DAG.getSetCC(dl, VT, N0.getOperand(0), + DAG.getConstant(LHSR->getAPIntValue() ^ + RHSC->getAPIntValue(), + dl, N0.getValueType()), + Cond); + } + + // Turn (C1-X) == C2 --> X == C1-C2 + if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { + if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { + return + DAG.getSetCC(dl, VT, N0.getOperand(1), + DAG.getConstant(SUBC->getAPIntValue() - + RHSC->getAPIntValue(), + dl, N0.getValueType()), + Cond); + } + } + + // Could RHSC fold directly into a compare? + if (RHSC->getValueType(0).getSizeInBits() <= 64) + LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); + } + + // (X+Y) == X --> Y == 0 and similar folds. + // Don't do this if X is an immediate that can fold into a cmp + // instruction and X+Y has other uses. It could be an induction variable + // chain, and the transform would increase register pressure. + if (!LegalRHSImm || N0.hasOneUse()) + if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) + return V; + } + + if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || + N1.getOpcode() == ISD::XOR) + if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) + return V; + + if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) + return V; + } + + // Fold remainder of division by a constant. + if (N0.getOpcode() == ISD::UREM && N0.hasOneUse() && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + + // When division is cheap or optimizing for minimum size, + // fall through to DIVREM creation by skipping this fold. + if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) + if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) + return Folded; + } + + // Fold away ALL boolean setcc's. + if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { + SDValue Temp; + switch (Cond) { + default: llvm_unreachable("Unknown integer setcc!"); + case ISD::SETEQ: // X == Y -> ~(X^Y) + Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); + N0 = DAG.getNOT(dl, Temp, OpVT); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETNE: // X != Y --> (X^Y) + N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); + break; + case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y + case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y + Temp = DAG.getNOT(dl, N0, OpVT); + N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X + case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X + Temp = DAG.getNOT(dl, N1, OpVT); + N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y + case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y + Temp = DAG.getNOT(dl, N0, OpVT); + N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X + case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X + Temp = DAG.getNOT(dl, N1, OpVT); + N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); + break; + } + if (VT.getScalarType() != MVT::i1) { + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(N0.getNode()); + // FIXME: If running after legalize, we probably can't do this. + ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); + N0 = DAG.getNode(ExtendCode, dl, VT, N0); + } + return N0; + } + + // Could not fold it. + return SDValue(); +} + +/// Returns true (and the GlobalValue and the offset) if the node is a +/// GlobalAddress + offset. +bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, + int64_t &Offset) const { + + SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); + + if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { + GA = GASD->getGlobal(); + Offset += GASD->getOffset(); + return true; + } + + if (N->getOpcode() == ISD::ADD) { + SDValue N1 = N->getOperand(0); + SDValue N2 = N->getOperand(1); + if (isGAPlusOffset(N1.getNode(), GA, Offset)) { + if (auto *V = dyn_cast<ConstantSDNode>(N2)) { + Offset += V->getSExtValue(); + return true; + } + } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { + if (auto *V = dyn_cast<ConstantSDNode>(N1)) { + Offset += V->getSExtValue(); + return true; + } + } + } + + return false; +} + +SDValue TargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + // Default implementation: no optimization. + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Inline Assembler Implementation Methods +//===----------------------------------------------------------------------===// + +TargetLowering::ConstraintType +TargetLowering::getConstraintType(StringRef Constraint) const { + unsigned S = Constraint.size(); + + if (S == 1) { + switch (Constraint[0]) { + default: break; + case 'r': + return C_RegisterClass; + case 'm': // memory + case 'o': // offsetable + case 'V': // not offsetable + return C_Memory; + case 'n': // Simple Integer + case 'E': // Floating Point Constant + case 'F': // Floating Point Constant + return C_Immediate; + case 'i': // Simple Integer or Relocatable Constant + case 's': // Relocatable Constant + case 'p': // Address. + case 'X': // Allow ANY value. + case 'I': // Target registers. + case 'J': + case 'K': + case 'L': + case 'M': + case 'N': + case 'O': + case 'P': + case '<': + case '>': + return C_Other; + } + } + + if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { + if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" + return C_Memory; + return C_Register; + } + return C_Unknown; +} + +/// Try to replace an X constraint, which matches anything, with another that +/// has more specific requirements based on the type of the corresponding +/// operand. +const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { + if (ConstraintVT.isInteger()) + return "r"; + if (ConstraintVT.isFloatingPoint()) + return "f"; // works for many targets + return nullptr; +} + +SDValue TargetLowering::LowerAsmOutputForConstraint( + SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, + SelectionDAG &DAG) const { + return SDValue(); +} + +/// Lower the specified operand into the Ops vector. +/// If it is invalid, don't add anything to Ops. +void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + + if (Constraint.length() > 1) return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; + case 'X': // Allows any operand; labels (basic block) use this. + if (Op.getOpcode() == ISD::BasicBlock || + Op.getOpcode() == ISD::TargetBlockAddress) { + Ops.push_back(Op); + return; + } + LLVM_FALLTHROUGH; + case 'i': // Simple Integer or Relocatable Constant + case 'n': // Simple Integer + case 's': { // Relocatable Constant + + GlobalAddressSDNode *GA; + ConstantSDNode *C; + BlockAddressSDNode *BA; + uint64_t Offset = 0; + + // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), + // etc., since getelementpointer is variadic. We can't use + // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible + // while in this case the GA may be furthest from the root node which is + // likely an ISD::ADD. + while (1) { + if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { + Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), + GA->getValueType(0), + Offset + GA->getOffset())); + return; + } else if ((C = dyn_cast<ConstantSDNode>(Op)) && + ConstraintLetter != 's') { + // gcc prints these as sign extended. Sign extend value to 64 bits + // now; without this it would get ZExt'd later in + // ScheduleDAGSDNodes::EmitNode, which is very generic. + bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; + BooleanContent BCont = getBooleanContents(MVT::i64); + ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) + : ISD::SIGN_EXTEND; + int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() + : C->getSExtValue(); + Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, + SDLoc(C), MVT::i64)); + return; + } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && + ConstraintLetter != 'n') { + Ops.push_back(DAG.getTargetBlockAddress( + BA->getBlockAddress(), BA->getValueType(0), + Offset + BA->getOffset(), BA->getTargetFlags())); + return; + } else { + const unsigned OpCode = Op.getOpcode(); + if (OpCode == ISD::ADD || OpCode == ISD::SUB) { + if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) + Op = Op.getOperand(1); + // Subtraction is not commutative. + else if (OpCode == ISD::ADD && + (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) + Op = Op.getOperand(0); + else + return; + Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); + continue; + } + } + return; + } + break; + } + } +} + +std::pair<unsigned, const TargetRegisterClass *> +TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, + StringRef Constraint, + MVT VT) const { + if (Constraint.empty() || Constraint[0] != '{') + return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); + assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); + + // Remove the braces from around the name. + StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); + + std::pair<unsigned, const TargetRegisterClass *> R = + std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); + + // Figure out which register class contains this reg. + for (const TargetRegisterClass *RC : RI->regclasses()) { + // If none of the value types for this register class are valid, we + // can't use it. For example, 64-bit reg classes on 32-bit targets. + if (!isLegalRC(*RI, *RC)) + continue; + + for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); + I != E; ++I) { + if (RegName.equals_lower(RI->getRegAsmName(*I))) { + std::pair<unsigned, const TargetRegisterClass *> S = + std::make_pair(*I, RC); + + // If this register class has the requested value type, return it, + // otherwise keep searching and return the first class found + // if no other is found which explicitly has the requested type. + if (RI->isTypeLegalForClass(*RC, VT)) + return S; + if (!R.second) + R = S; + } + } + } + + return R; +} + +//===----------------------------------------------------------------------===// +// Constraint Selection. + +/// Return true of this is an input operand that is a matching constraint like +/// "4". +bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { + assert(!ConstraintCode.empty() && "No known constraint!"); + return isdigit(static_cast<unsigned char>(ConstraintCode[0])); +} + +/// If this is an input matching constraint, this method returns the output +/// operand it matches. +unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { + assert(!ConstraintCode.empty() && "No known constraint!"); + return atoi(ConstraintCode.c_str()); +} + +/// Split up the constraint string from the inline assembly value into the +/// specific constraints and their prefixes, and also tie in the associated +/// operand values. +/// If this returns an empty vector, and if the constraint string itself +/// isn't empty, there was an error parsing. +TargetLowering::AsmOperandInfoVector +TargetLowering::ParseConstraints(const DataLayout &DL, + const TargetRegisterInfo *TRI, + ImmutableCallSite CS) const { + /// Information about all of the constraints. + AsmOperandInfoVector ConstraintOperands; + const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); + unsigned maCount = 0; // Largest number of multiple alternative constraints. + + // Do a prepass over the constraints, canonicalizing them, and building up the + // ConstraintOperands list. + unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. + unsigned ResNo = 0; // ResNo - The result number of the next output. + + for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { + ConstraintOperands.emplace_back(std::move(CI)); + AsmOperandInfo &OpInfo = ConstraintOperands.back(); + + // Update multiple alternative constraint count. + if (OpInfo.multipleAlternatives.size() > maCount) + maCount = OpInfo.multipleAlternatives.size(); + + OpInfo.ConstraintVT = MVT::Other; + + // Compute the value type for each operand. + switch (OpInfo.Type) { + case InlineAsm::isOutput: + // Indirect outputs just consume an argument. + if (OpInfo.isIndirect) { + OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); + break; + } + + // The return value of the call is this value. As such, there is no + // corresponding argument. + assert(!CS.getType()->isVoidTy() && + "Bad inline asm!"); + if (StructType *STy = dyn_cast<StructType>(CS.getType())) { + OpInfo.ConstraintVT = + getSimpleValueType(DL, STy->getElementType(ResNo)); + } else { + assert(ResNo == 0 && "Asm only has one result!"); + OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); + } + ++ResNo; + break; + case InlineAsm::isInput: + OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); + break; + case InlineAsm::isClobber: + // Nothing to do. + break; + } + + if (OpInfo.CallOperandVal) { + llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); + if (OpInfo.isIndirect) { + llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); + if (!PtrTy) + report_fatal_error("Indirect operand for inline asm not a pointer!"); + OpTy = PtrTy->getElementType(); + } + + // Look for vector wrapped in a struct. e.g. { <16 x i8> }. + if (StructType *STy = dyn_cast<StructType>(OpTy)) + if (STy->getNumElements() == 1) + OpTy = STy->getElementType(0); + + // If OpTy is not a single value, it may be a struct/union that we + // can tile with integers. + if (!OpTy->isSingleValueType() && OpTy->isSized()) { + unsigned BitSize = DL.getTypeSizeInBits(OpTy); + switch (BitSize) { + default: break; + case 1: + case 8: + case 16: + case 32: + case 64: + case 128: + OpInfo.ConstraintVT = + MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); + break; + } + } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { + unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); + OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); + } else { + OpInfo.ConstraintVT = MVT::getVT(OpTy, true); + } + } + } + + // If we have multiple alternative constraints, select the best alternative. + if (!ConstraintOperands.empty()) { + if (maCount) { + unsigned bestMAIndex = 0; + int bestWeight = -1; + // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. + int weight = -1; + unsigned maIndex; + // Compute the sums of the weights for each alternative, keeping track + // of the best (highest weight) one so far. + for (maIndex = 0; maIndex < maCount; ++maIndex) { + int weightSum = 0; + for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); + cIndex != eIndex; ++cIndex) { + AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; + if (OpInfo.Type == InlineAsm::isClobber) + continue; + + // If this is an output operand with a matching input operand, + // look up the matching input. If their types mismatch, e.g. one + // is an integer, the other is floating point, or their sizes are + // different, flag it as an maCantMatch. + if (OpInfo.hasMatchingInput()) { + AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (OpInfo.ConstraintVT.getSizeInBits() != + Input.ConstraintVT.getSizeInBits())) { + weightSum = -1; // Can't match. + break; + } + } + } + weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); + if (weight == -1) { + weightSum = -1; + break; + } + weightSum += weight; + } + // Update best. + if (weightSum > bestWeight) { + bestWeight = weightSum; + bestMAIndex = maIndex; + } + } + + // Now select chosen alternative in each constraint. + for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); + cIndex != eIndex; ++cIndex) { + AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; + if (cInfo.Type == InlineAsm::isClobber) + continue; + cInfo.selectAlternative(bestMAIndex); + } + } + } + + // Check and hook up tied operands, choose constraint code to use. + for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); + cIndex != eIndex; ++cIndex) { + AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; + + // If this is an output operand with a matching input operand, look up the + // matching input. If their types mismatch, e.g. one is an integer, the + // other is floating point, or their sizes are different, flag it as an + // error. + if (OpInfo.hasMatchingInput()) { + AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + std::pair<unsigned, const TargetRegisterClass *> MatchRC = + getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + std::pair<unsigned, const TargetRegisterClass *> InputRC = + getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, + Input.ConstraintVT); + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (MatchRC.second != InputRC.second)) { + report_fatal_error("Unsupported asm: input constraint" + " with a matching output constraint of" + " incompatible type!"); + } + } + } + } + + return ConstraintOperands; +} + +/// Return an integer indicating how general CT is. +static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { + switch (CT) { + case TargetLowering::C_Immediate: + case TargetLowering::C_Other: + case TargetLowering::C_Unknown: + return 0; + case TargetLowering::C_Register: + return 1; + case TargetLowering::C_RegisterClass: + return 2; + case TargetLowering::C_Memory: + return 3; + } + llvm_unreachable("Invalid constraint type"); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + TargetLowering::getMultipleConstraintMatchWeight( + AsmOperandInfo &info, int maIndex) const { + InlineAsm::ConstraintCodeVector *rCodes; + if (maIndex >= (int)info.multipleAlternatives.size()) + rCodes = &info.Codes; + else + rCodes = &info.multipleAlternatives[maIndex].Codes; + ConstraintWeight BestWeight = CW_Invalid; + + // Loop over the options, keeping track of the most general one. + for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { + ConstraintWeight weight = + getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); + if (weight > BestWeight) + BestWeight = weight; + } + + return BestWeight; +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + TargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + // Look at the constraint type. + switch (*constraint) { + case 'i': // immediate integer. + case 'n': // immediate integer with a known value. + if (isa<ConstantInt>(CallOperandVal)) + weight = CW_Constant; + break; + case 's': // non-explicit intregal immediate. + if (isa<GlobalValue>(CallOperandVal)) + weight = CW_Constant; + break; + case 'E': // immediate float if host format. + case 'F': // immediate float. + if (isa<ConstantFP>(CallOperandVal)) + weight = CW_Constant; + break; + case '<': // memory operand with autodecrement. + case '>': // memory operand with autoincrement. + case 'm': // memory operand. + case 'o': // offsettable memory operand + case 'V': // non-offsettable memory operand + weight = CW_Memory; + break; + case 'r': // general register. + case 'g': // general register, memory operand or immediate integer. + // note: Clang converts "g" to "imr". + if (CallOperandVal->getType()->isIntegerTy()) + weight = CW_Register; + break; + case 'X': // any operand. + default: + weight = CW_Default; + break; + } + return weight; +} + +/// If there are multiple different constraints that we could pick for this +/// operand (e.g. "imr") try to pick the 'best' one. +/// This is somewhat tricky: constraints fall into four classes: +/// Other -> immediates and magic values +/// Register -> one specific register +/// RegisterClass -> a group of regs +/// Memory -> memory +/// Ideally, we would pick the most specific constraint possible: if we have +/// something that fits into a register, we would pick it. The problem here +/// is that if we have something that could either be in a register or in +/// memory that use of the register could cause selection of *other* +/// operands to fail: they might only succeed if we pick memory. Because of +/// this the heuristic we use is: +/// +/// 1) If there is an 'other' constraint, and if the operand is valid for +/// that constraint, use it. This makes us take advantage of 'i' +/// constraints when available. +/// 2) Otherwise, pick the most general constraint present. This prefers +/// 'm' over 'r', for example. +/// +static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, + const TargetLowering &TLI, + SDValue Op, SelectionDAG *DAG) { + assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); + unsigned BestIdx = 0; + TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; + int BestGenerality = -1; + + // Loop over the options, keeping track of the most general one. + for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { + TargetLowering::ConstraintType CType = + TLI.getConstraintType(OpInfo.Codes[i]); + + // If this is an 'other' or 'immediate' constraint, see if the operand is + // valid for it. For example, on X86 we might have an 'rI' constraint. If + // the operand is an integer in the range [0..31] we want to use I (saving a + // load of a register), otherwise we must use 'r'. + if ((CType == TargetLowering::C_Other || + CType == TargetLowering::C_Immediate) && Op.getNode()) { + assert(OpInfo.Codes[i].size() == 1 && + "Unhandled multi-letter 'other' constraint"); + std::vector<SDValue> ResultOps; + TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], + ResultOps, *DAG); + if (!ResultOps.empty()) { + BestType = CType; + BestIdx = i; + break; + } + } + + // Things with matching constraints can only be registers, per gcc + // documentation. This mainly affects "g" constraints. + if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) + continue; + + // This constraint letter is more general than the previous one, use it. + int Generality = getConstraintGenerality(CType); + if (Generality > BestGenerality) { + BestType = CType; + BestIdx = i; + BestGenerality = Generality; + } + } + + OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; + OpInfo.ConstraintType = BestType; +} + +/// Determines the constraint code and constraint type to use for the specific +/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. +void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, + SDValue Op, + SelectionDAG *DAG) const { + assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); + + // Single-letter constraints ('r') are very common. + if (OpInfo.Codes.size() == 1) { + OpInfo.ConstraintCode = OpInfo.Codes[0]; + OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); + } else { + ChooseConstraint(OpInfo, *this, Op, DAG); + } + + // 'X' matches anything. + if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { + // Labels and constants are handled elsewhere ('X' is the only thing + // that matches labels). For Functions, the type here is the type of + // the result, which is not what we want to look at; leave them alone. + Value *v = OpInfo.CallOperandVal; + if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { + OpInfo.CallOperandVal = v; + return; + } + + if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) + return; + + // Otherwise, try to resolve it to something we know about by looking at + // the actual operand type. + if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { + OpInfo.ConstraintCode = Repl; + OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); + } + } +} + +/// Given an exact SDIV by a constant, create a multiplication +/// with the multiplicative inverse of the constant. +static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, + const SDLoc &dl, SelectionDAG &DAG, + SmallVectorImpl<SDNode *> &Created) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + + bool UseSRA = false; + SmallVector<SDValue, 16> Shifts, Factors; + + auto BuildSDIVPattern = [&](ConstantSDNode *C) { + if (C->isNullValue()) + return false; + APInt Divisor = C->getAPIntValue(); + unsigned Shift = Divisor.countTrailingZeros(); + if (Shift) { + Divisor.ashrInPlace(Shift); + UseSRA = true; + } + // Calculate the multiplicative inverse, using Newton's method. + APInt t; + APInt Factor = Divisor; + while ((t = Divisor * Factor) != 1) + Factor *= APInt(Divisor.getBitWidth(), 2) - t; + Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); + Factors.push_back(DAG.getConstant(Factor, dl, SVT)); + return true; + }; + + // Collect all magic values from the build vector. + if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) + return SDValue(); + + SDValue Shift, Factor; + if (VT.isVector()) { + Shift = DAG.getBuildVector(ShVT, dl, Shifts); + Factor = DAG.getBuildVector(VT, dl, Factors); + } else { + Shift = Shifts[0]; + Factor = Factors[0]; + } + + SDValue Res = Op0; + + // Shift the value upfront if it is even, so the LSB is one. + if (UseSRA) { + // TODO: For UDIV use SRL instead of SRA. + SDNodeFlags Flags; + Flags.setExact(true); + Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); + Created.push_back(Res.getNode()); + } + + return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); +} + +SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, + SelectionDAG &DAG, + SmallVectorImpl<SDNode *> &Created) const { + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.isIntDivCheap(N->getValueType(0), Attr)) + return SDValue(N, 0); // Lower SDIV as SDIV + return SDValue(); +} + +/// Given an ISD::SDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number. +/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". +SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, + bool IsAfterLegalization, + SmallVectorImpl<SDNode *> &Created) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + unsigned EltBits = VT.getScalarSizeInBits(); + + // Check to see if we can do this. + // FIXME: We should be more aggressive here. + if (!isTypeLegal(VT)) + return SDValue(); + + // If the sdiv has an 'exact' bit we can use a simpler lowering. + if (N->getFlags().hasExact()) + return BuildExactSDIV(*this, N, dl, DAG, Created); + + SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; + + auto BuildSDIVPattern = [&](ConstantSDNode *C) { + if (C->isNullValue()) + return false; + + const APInt &Divisor = C->getAPIntValue(); + APInt::ms magics = Divisor.magic(); + int NumeratorFactor = 0; + int ShiftMask = -1; + + if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { + // If d is +1/-1, we just multiply the numerator by +1/-1. + NumeratorFactor = Divisor.getSExtValue(); + magics.m = 0; + magics.s = 0; + ShiftMask = 0; + } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { + // If d > 0 and m < 0, add the numerator. + NumeratorFactor = 1; + } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { + // If d < 0 and m > 0, subtract the numerator. + NumeratorFactor = -1; + } + + MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); + Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); + Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); + ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); + return true; + }; + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // Collect the shifts / magic values from each element. + if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) + return SDValue(); + + SDValue MagicFactor, Factor, Shift, ShiftMask; + if (VT.isVector()) { + MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); + Factor = DAG.getBuildVector(VT, dl, Factors); + Shift = DAG.getBuildVector(ShVT, dl, Shifts); + ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); + } else { + MagicFactor = MagicFactors[0]; + Factor = Factors[0]; + Shift = Shifts[0]; + ShiftMask = ShiftMasks[0]; + } + + // Multiply the numerator (operand 0) by the magic value. + // FIXME: We should support doing a MUL in a wider type. + SDValue Q; + if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) + : isOperationLegalOrCustom(ISD::MULHS, VT)) + Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); + else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) + : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { + SDValue LoHi = + DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); + Q = SDValue(LoHi.getNode(), 1); + } else + return SDValue(); // No mulhs or equivalent. + Created.push_back(Q.getNode()); + + // (Optionally) Add/subtract the numerator using Factor. + Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); + Created.push_back(Factor.getNode()); + Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); + Created.push_back(Q.getNode()); + + // Shift right algebraic by shift value. + Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); + Created.push_back(Q.getNode()); + + // Extract the sign bit, mask it and add it to the quotient. + SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); + SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); + Created.push_back(T.getNode()); + T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); + Created.push_back(T.getNode()); + return DAG.getNode(ISD::ADD, dl, VT, Q, T); +} + +/// Given an ISD::UDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number. +/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". +SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, + bool IsAfterLegalization, + SmallVectorImpl<SDNode *> &Created) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + unsigned EltBits = VT.getScalarSizeInBits(); + + // Check to see if we can do this. + // FIXME: We should be more aggressive here. + if (!isTypeLegal(VT)) + return SDValue(); + + bool UseNPQ = false; + SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; + + auto BuildUDIVPattern = [&](ConstantSDNode *C) { + if (C->isNullValue()) + return false; + // FIXME: We should use a narrower constant when the upper + // bits are known to be zero. + APInt Divisor = C->getAPIntValue(); + APInt::mu magics = Divisor.magicu(); + unsigned PreShift = 0, PostShift = 0; + + // If the divisor is even, we can avoid using the expensive fixup by + // shifting the divided value upfront. + if (magics.a != 0 && !Divisor[0]) { + PreShift = Divisor.countTrailingZeros(); + // Get magic number for the shifted divisor. + magics = Divisor.lshr(PreShift).magicu(PreShift); + assert(magics.a == 0 && "Should use cheap fixup now"); + } + + APInt Magic = magics.m; + + unsigned SelNPQ; + if (magics.a == 0 || Divisor.isOneValue()) { + assert(magics.s < Divisor.getBitWidth() && + "We shouldn't generate an undefined shift!"); + PostShift = magics.s; + SelNPQ = false; + } else { + PostShift = magics.s - 1; + SelNPQ = true; + } + + PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); + MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); + NPQFactors.push_back( + DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) + : APInt::getNullValue(EltBits), + dl, SVT)); + PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); + UseNPQ |= SelNPQ; + return true; + }; + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // Collect the shifts/magic values from each element. + if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) + return SDValue(); + + SDValue PreShift, PostShift, MagicFactor, NPQFactor; + if (VT.isVector()) { + PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); + MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); + NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); + PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); + } else { + PreShift = PreShifts[0]; + MagicFactor = MagicFactors[0]; + PostShift = PostShifts[0]; + } + + SDValue Q = N0; + Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); + Created.push_back(Q.getNode()); + + // FIXME: We should support doing a MUL in a wider type. + auto GetMULHU = [&](SDValue X, SDValue Y) { + if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) + : isOperationLegalOrCustom(ISD::MULHU, VT)) + return DAG.getNode(ISD::MULHU, dl, VT, X, Y); + if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) + : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { + SDValue LoHi = + DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); + return SDValue(LoHi.getNode(), 1); + } + return SDValue(); // No mulhu or equivalent + }; + + // Multiply the numerator (operand 0) by the magic value. + Q = GetMULHU(Q, MagicFactor); + if (!Q) + return SDValue(); + + Created.push_back(Q.getNode()); + + if (UseNPQ) { + SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); + Created.push_back(NPQ.getNode()); + + // For vectors we might have a mix of non-NPQ/NPQ paths, so use + // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. + if (VT.isVector()) + NPQ = GetMULHU(NPQ, NPQFactor); + else + NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); + + Created.push_back(NPQ.getNode()); + + Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); + Created.push_back(Q.getNode()); + } + + Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); + Created.push_back(Q.getNode()); + + SDValue One = DAG.getConstant(1, dl, VT); + SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); + return DAG.getSelect(dl, VT, IsOne, N0, Q); +} + +/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE +/// where the divisor is constant and the comparison target is zero, +/// return a DAG expression that will generate the same comparison result +/// using only multiplications, additions and shifts/rotations. +/// Ref: "Hacker's Delight" 10-17. +SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, + SDValue CompTargetNode, + ISD::CondCode Cond, + DAGCombinerInfo &DCI, + const SDLoc &DL) const { + SmallVector<SDNode *, 2> Built; + if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, + DCI, DL, Built)) { + for (SDNode *N : Built) + DCI.AddToWorklist(N); + return Folded; + } + + return SDValue(); +} + +SDValue +TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, + SDValue CompTargetNode, ISD::CondCode Cond, + DAGCombinerInfo &DCI, const SDLoc &DL, + SmallVectorImpl<SDNode *> &Created) const { + // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) + // - D must be constant with D = D0 * 2^K where D0 is odd and D0 != 1 + // - P is the multiplicative inverse of D0 modulo 2^W + // - Q = floor((2^W - 1) / D0) + // where W is the width of the common type of N and D. + assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + "Only applicable for (in)equality comparisons."); + + EVT VT = REMNode.getValueType(); + + // If MUL is unavailable, we cannot proceed in any case. + if (!isOperationLegalOrCustom(ISD::MUL, VT)) + return SDValue(); + + // TODO: Add non-uniform constant support. + ConstantSDNode *Divisor = isConstOrConstSplat(REMNode->getOperand(1)); + ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); + if (!Divisor || !CompTarget || Divisor->isNullValue() || + !CompTarget->isNullValue()) + return SDValue(); + + const APInt &D = Divisor->getAPIntValue(); + + // Decompose D into D0 * 2^K + unsigned K = D.countTrailingZeros(); + bool DivisorIsEven = (K != 0); + APInt D0 = D.lshr(K); + + // The fold is invalid when D0 == 1. + // This is reachable because visitSetCC happens before visitREM. + if (D0.isOneValue()) + return SDValue(); + + // P = inv(D0, 2^W) + // 2^W requires W + 1 bits, so we have to extend and then truncate. + unsigned W = D.getBitWidth(); + APInt P = D0.zext(W + 1) + .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) + .trunc(W); + assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable + assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); + + // Q = floor((2^W - 1) / D) + APInt Q = APInt::getAllOnesValue(W).udiv(D); + + SelectionDAG &DAG = DCI.DAG; + + SDValue PVal = DAG.getConstant(P, DL, VT); + SDValue QVal = DAG.getConstant(Q, DL, VT); + // (mul N, P) + SDValue Op1 = DAG.getNode(ISD::MUL, DL, VT, REMNode->getOperand(0), PVal); + Created.push_back(Op1.getNode()); + + // Rotate right only if D was even. + if (DivisorIsEven) { + // We need ROTR to do this. + if (!isOperationLegalOrCustom(ISD::ROTR, VT)) + return SDValue(); + SDValue ShAmt = + DAG.getConstant(K, DL, getShiftAmountTy(VT, DAG.getDataLayout())); + SDNodeFlags Flags; + Flags.setExact(true); + // UREM: (rotr (mul N, P), K) + Op1 = DAG.getNode(ISD::ROTR, DL, VT, Op1, ShAmt, Flags); + Created.push_back(Op1.getNode()); + } + + // UREM: (setule/setugt (rotr (mul N, P), K), Q) + return DAG.getSetCC(DL, SETCCVT, Op1, QVal, + ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); +} + +bool TargetLowering:: +verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { + if (!isa<ConstantSDNode>(Op.getOperand(0))) { + DAG.getContext()->emitError("argument to '__builtin_return_address' must " + "be a constant integer"); + return true; + } + + return false; +} + +//===----------------------------------------------------------------------===// +// Legalization Utilities +//===----------------------------------------------------------------------===// + +bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, + SDValue LHS, SDValue RHS, + SmallVectorImpl<SDValue> &Result, + EVT HiLoVT, SelectionDAG &DAG, + MulExpansionKind Kind, SDValue LL, + SDValue LH, SDValue RL, SDValue RH) const { + assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || + Opcode == ISD::SMUL_LOHI); + + bool HasMULHS = (Kind == MulExpansionKind::Always) || + isOperationLegalOrCustom(ISD::MULHS, HiLoVT); + bool HasMULHU = (Kind == MulExpansionKind::Always) || + isOperationLegalOrCustom(ISD::MULHU, HiLoVT); + bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || + isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); + bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || + isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); + + if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) + return false; + + unsigned OuterBitSize = VT.getScalarSizeInBits(); + unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); + unsigned LHSSB = DAG.ComputeNumSignBits(LHS); + unsigned RHSSB = DAG.ComputeNumSignBits(RHS); + + // LL, LH, RL, and RH must be either all NULL or all set to a value. + assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || + (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); + + SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); + auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, + bool Signed) -> bool { + if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { + Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); + Hi = SDValue(Lo.getNode(), 1); + return true; + } + if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { + Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); + Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); + return true; + } + return false; + }; + + SDValue Lo, Hi; + + if (!LL.getNode() && !RL.getNode() && + isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { + LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); + RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); + } + + if (!LL.getNode()) + return false; + + APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); + if (DAG.MaskedValueIsZero(LHS, HighMask) && + DAG.MaskedValueIsZero(RHS, HighMask)) { + // The inputs are both zero-extended. + if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { + Result.push_back(Lo); + Result.push_back(Hi); + if (Opcode != ISD::MUL) { + SDValue Zero = DAG.getConstant(0, dl, HiLoVT); + Result.push_back(Zero); + Result.push_back(Zero); + } + return true; + } + } + + if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && + RHSSB > InnerBitSize) { + // The input values are both sign-extended. + // TODO non-MUL case? + if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { + Result.push_back(Lo); + Result.push_back(Hi); + return true; + } + } + + unsigned ShiftAmount = OuterBitSize - InnerBitSize; + EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); + if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { + // FIXME getShiftAmountTy does not always return a sensible result when VT + // is an illegal type, and so the type may be too small to fit the shift + // amount. Override it with i32. The shift will have to be legalized. + ShiftAmountTy = MVT::i32; + } + SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); + + if (!LH.getNode() && !RH.getNode() && + isOperationLegalOrCustom(ISD::SRL, VT) && + isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { + LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); + LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); + RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); + RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); + } + + if (!LH.getNode()) + return false; + + if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) + return false; + + Result.push_back(Lo); + + if (Opcode == ISD::MUL) { + RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); + LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); + Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); + Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); + Result.push_back(Hi); + return true; + } + + // Compute the full width result. + auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { + Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); + Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); + Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); + return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); + }; + + SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); + if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) + return false; + + // This is effectively the add part of a multiply-add of half-sized operands, + // so it cannot overflow. + Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); + + if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) + return false; + + SDValue Zero = DAG.getConstant(0, dl, HiLoVT); + EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + + bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && + isOperationLegalOrCustom(ISD::ADDE, VT)); + if (UseGlue) + Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, + Merge(Lo, Hi)); + else + Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, + Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); + + SDValue Carry = Next.getValue(1); + Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); + Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); + + if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) + return false; + + if (UseGlue) + Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, + Carry); + else + Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, + Zero, Carry); + + Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); + + if (Opcode == ISD::SMUL_LOHI) { + SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, + DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); + Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); + + NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, + DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); + Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); + } + + Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); + Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); + Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); + return true; +} + +bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, + SelectionDAG &DAG, MulExpansionKind Kind, + SDValue LL, SDValue LH, SDValue RL, + SDValue RH) const { + SmallVector<SDValue, 2> Result; + bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, + N->getOperand(0), N->getOperand(1), Result, HiLoVT, + DAG, Kind, LL, LH, RL, RH); + if (Ok) { + assert(Result.size() == 2); + Lo = Result[0]; + Hi = Result[1]; + } + return Ok; +} + +bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + EVT VT = Node->getValueType(0); + + if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || + !isOperationLegalOrCustom(ISD::SRL, VT) || + !isOperationLegalOrCustom(ISD::SUB, VT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) + return false; + + // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) + // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) + SDValue X = Node->getOperand(0); + SDValue Y = Node->getOperand(1); + SDValue Z = Node->getOperand(2); + + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + bool IsFSHL = Node->getOpcode() == ISD::FSHL; + SDLoc DL(SDValue(Node, 0)); + + EVT ShVT = Z.getValueType(); + SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); + SDValue Zero = DAG.getConstant(0, DL, ShVT); + + SDValue ShAmt; + if (isPowerOf2_32(EltSizeInBits)) { + SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); + ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); + } else { + ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); + } + + SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); + SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); + SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); + SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); + + // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, + // and that is undefined. We must compare and select to avoid UB. + EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); + + // For fshl, 0-shift returns the 1st arg (X). + // For fshr, 0-shift returns the 2nd arg (Y). + SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); + Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); + return true; +} + +// TODO: Merge with expandFunnelShift. +bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + EVT VT = Node->getValueType(0); + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + bool IsLeft = Node->getOpcode() == ISD::ROTL; + SDValue Op0 = Node->getOperand(0); + SDValue Op1 = Node->getOperand(1); + SDLoc DL(SDValue(Node, 0)); + + EVT ShVT = Op1.getValueType(); + SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); + + // If a rotate in the other direction is legal, use it. + unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; + if (isOperationLegal(RevRot, VT)) { + SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); + Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); + return true; + } + + if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || + !isOperationLegalOrCustom(ISD::SRL, VT) || + !isOperationLegalOrCustom(ISD::SUB, VT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || + !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) + return false; + + // Otherwise, + // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) + // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) + // + assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && + "Expecting the type bitwidth to be a power of 2"); + unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; + unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; + SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); + SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); + SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); + SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); + Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), + DAG.getNode(HsOpc, DL, VT, Op0, And1)); + return true; +} + +bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + SDValue Src = Node->getOperand(0); + EVT SrcVT = Src.getValueType(); + EVT DstVT = Node->getValueType(0); + SDLoc dl(SDValue(Node, 0)); + + // FIXME: Only f32 to i64 conversions are supported. + if (SrcVT != MVT::f32 || DstVT != MVT::i64) + return false; + + // Expand f32 -> i64 conversion + // This algorithm comes from compiler-rt's implementation of fixsfdi: + // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c + unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); + EVT IntVT = SrcVT.changeTypeToInteger(); + EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); + + SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); + SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); + SDValue Bias = DAG.getConstant(127, dl, IntVT); + SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); + SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); + SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); + + SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); + + SDValue ExponentBits = DAG.getNode( + ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), + DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); + SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); + + SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, + DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), + DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); + Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); + + SDValue R = DAG.getNode(ISD::OR, dl, IntVT, + DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), + DAG.getConstant(0x00800000, dl, IntVT)); + + R = DAG.getZExtOrTrunc(R, dl, DstVT); + + R = DAG.getSelectCC( + dl, Exponent, ExponentLoBit, + DAG.getNode(ISD::SHL, dl, DstVT, R, + DAG.getZExtOrTrunc( + DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), + dl, IntShVT)), + DAG.getNode(ISD::SRL, dl, DstVT, R, + DAG.getZExtOrTrunc( + DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), + dl, IntShVT)), + ISD::SETGT); + + SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, + DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); + + Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), + DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); + return true; +} + +bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + SDLoc dl(SDValue(Node, 0)); + SDValue Src = Node->getOperand(0); + + EVT SrcVT = Src.getValueType(); + EVT DstVT = Node->getValueType(0); + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); + + // Only expand vector types if we have the appropriate vector bit operations. + if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || + !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) + return false; + + // If the maximum float value is smaller then the signed integer range, + // the destination signmask can't be represented by the float, so we can + // just use FP_TO_SINT directly. + const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); + APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); + APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); + if (APFloat::opOverflow & + APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { + Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); + return true; + } + + SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); + SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); + + bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); + if (Strict) { + // Expand based on maximum range of FP_TO_SINT, if the value exceeds the + // signmask then offset (the result of which should be fully representable). + // Sel = Src < 0x8000000000000000 + // Val = select Sel, Src, Src - 0x8000000000000000 + // Ofs = select Sel, 0, 0x8000000000000000 + // Result = fp_to_sint(Val) ^ Ofs + + // TODO: Should any fast-math-flags be set for the FSUB? + SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, + DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); + SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), + DAG.getConstant(SignMask, dl, DstVT)); + Result = DAG.getNode(ISD::XOR, dl, DstVT, + DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); + } else { + // Expand based on maximum range of FP_TO_SINT: + // True = fp_to_sint(Src) + // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) + // Result = select (Src < 0x8000000000000000), True, False + + SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); + // TODO: Should any fast-math-flags be set for the FSUB? + SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, + DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); + False = DAG.getNode(ISD::XOR, dl, DstVT, False, + DAG.getConstant(SignMask, dl, DstVT)); + Result = DAG.getSelect(dl, DstVT, Sel, True, False); + } + return true; +} + +bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + SDValue Src = Node->getOperand(0); + EVT SrcVT = Src.getValueType(); + EVT DstVT = Node->getValueType(0); + + if (SrcVT.getScalarType() != MVT::i64) + return false; + + SDLoc dl(SDValue(Node, 0)); + EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); + + if (DstVT.getScalarType() == MVT::f32) { + // Only expand vector types if we have the appropriate vector bit + // operations. + if (SrcVT.isVector() && + (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || + !isOperationLegalOrCustom(ISD::FADD, DstVT) || + !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || + !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) + return false; + + // For unsigned conversions, convert them to signed conversions using the + // algorithm from the x86_64 __floatundidf in compiler_rt. + SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); + + SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); + SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); + SDValue AndConst = DAG.getConstant(1, dl, SrcVT); + SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); + SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); + + SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); + SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); + + // TODO: This really should be implemented using a branch rather than a + // select. We happen to get lucky and machinesink does the right + // thing most of the time. This would be a good candidate for a + // pseudo-op, or, even better, for whole-function isel. + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); + + SDValue SignBitTest = DAG.getSetCC( + dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); + Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); + return true; + } + + if (DstVT.getScalarType() == MVT::f64) { + // Only expand vector types if we have the appropriate vector bit + // operations. + if (SrcVT.isVector() && + (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || + !isOperationLegalOrCustom(ISD::FADD, DstVT) || + !isOperationLegalOrCustom(ISD::FSUB, DstVT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || + !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) + return false; + + // Implementation of unsigned i64 to f64 following the algorithm in + // __floatundidf in compiler_rt. This implementation has the advantage + // of performing rounding correctly, both in the default rounding mode + // and in all alternate rounding modes. + SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); + SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( + BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); + SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); + SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); + SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); + + SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); + SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); + SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); + SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); + SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); + SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); + SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); + Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); + return true; + } + + return false; +} + +SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, + SelectionDAG &DAG) const { + SDLoc dl(Node); + unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? + ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; + EVT VT = Node->getValueType(0); + if (isOperationLegalOrCustom(NewOp, VT)) { + SDValue Quiet0 = Node->getOperand(0); + SDValue Quiet1 = Node->getOperand(1); + + if (!Node->getFlags().hasNoNaNs()) { + // Insert canonicalizes if it's possible we need to quiet to get correct + // sNaN behavior. + if (!DAG.isKnownNeverSNaN(Quiet0)) { + Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, + Node->getFlags()); + } + if (!DAG.isKnownNeverSNaN(Quiet1)) { + Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, + Node->getFlags()); + } + } + + return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); + } + + // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that + // instead if there are no NaNs. + if (Node->getFlags().hasNoNaNs()) { + unsigned IEEE2018Op = + Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; + if (isOperationLegalOrCustom(IEEE2018Op, VT)) { + return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), + Node->getOperand(1), Node->getFlags()); + } + } + + return SDValue(); +} + +bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Op = Node->getOperand(0); + unsigned Len = VT.getScalarSizeInBits(); + assert(VT.isInteger() && "CTPOP not implemented for this type."); + + // TODO: Add support for irregular type lengths. + if (!(Len <= 128 && Len % 8 == 0)) + return false; + + // Only expand vector types if we have the appropriate vector bit operations. + if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || + !isOperationLegalOrCustom(ISD::SUB, VT) || + !isOperationLegalOrCustom(ISD::SRL, VT) || + (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || + !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) + return false; + + // This is the "best" algorithm from + // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel + SDValue Mask55 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); + SDValue Mask33 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); + SDValue Mask0F = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); + SDValue Mask01 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); + + // v = v - ((v >> 1) & 0x55555555...) + Op = DAG.getNode(ISD::SUB, dl, VT, Op, + DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRL, dl, VT, Op, + DAG.getConstant(1, dl, ShVT)), + Mask55)); + // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) + Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), + DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRL, dl, VT, Op, + DAG.getConstant(2, dl, ShVT)), + Mask33)); + // v = (v + (v >> 4)) & 0x0F0F0F0F... + Op = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::ADD, dl, VT, Op, + DAG.getNode(ISD::SRL, dl, VT, Op, + DAG.getConstant(4, dl, ShVT))), + Mask0F); + // v = (v * 0x01010101...) >> (Len - 8) + if (Len > 8) + Op = + DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), + DAG.getConstant(Len - 8, dl, ShVT)); + + Result = Op; + return true; +} + +bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Op = Node->getOperand(0); + unsigned NumBitsPerElt = VT.getScalarSizeInBits(); + + // If the non-ZERO_UNDEF version is supported we can use that instead. + if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && + isOperationLegalOrCustom(ISD::CTLZ, VT)) { + Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); + return true; + } + + // If the ZERO_UNDEF version is supported use that and handle the zero case. + if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); + Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, + DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); + return true; + } + + // Only expand vector types if we have the appropriate vector bit operations. + if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || + !isOperationLegalOrCustom(ISD::CTPOP, VT) || + !isOperationLegalOrCustom(ISD::SRL, VT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) + return false; + + // for now, we do this: + // x = x | (x >> 1); + // x = x | (x >> 2); + // ... + // x = x | (x >>16); + // x = x | (x >>32); // for 64-bit input + // return popcount(~x); + // + // Ref: "Hacker's Delight" by Henry Warren + for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { + SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); + Op = DAG.getNode(ISD::OR, dl, VT, Op, + DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); + } + Op = DAG.getNOT(dl, Op, VT); + Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); + return true; +} + +bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + SDValue Op = Node->getOperand(0); + unsigned NumBitsPerElt = VT.getScalarSizeInBits(); + + // If the non-ZERO_UNDEF version is supported we can use that instead. + if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && + isOperationLegalOrCustom(ISD::CTTZ, VT)) { + Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); + return true; + } + + // If the ZERO_UNDEF version is supported use that and handle the zero case. + if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); + Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, + DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); + return true; + } + + // Only expand vector types if we have the appropriate vector bit operations. + if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || + (!isOperationLegalOrCustom(ISD::CTPOP, VT) && + !isOperationLegalOrCustom(ISD::CTLZ, VT)) || + !isOperationLegalOrCustom(ISD::SUB, VT) || + !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || + !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) + return false; + + // for now, we use: { return popcount(~x & (x - 1)); } + // unless the target has ctlz but not ctpop, in which case we use: + // { return 32 - nlz(~x & (x-1)); } + // Ref: "Hacker's Delight" by Henry Warren + SDValue Tmp = DAG.getNode( + ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), + DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); + + // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. + if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { + Result = + DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), + DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); + return true; + } + + Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); + return true; +} + +bool TargetLowering::expandABS(SDNode *N, SDValue &Result, + SelectionDAG &DAG) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Op = N->getOperand(0); + + // Only expand vector types if we have the appropriate vector operations. + if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || + !isOperationLegalOrCustom(ISD::ADD, VT) || + !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) + return false; + + SDValue Shift = + DAG.getNode(ISD::SRA, dl, VT, Op, + DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); + SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); + Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); + return true; +} + +SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, + SelectionDAG &DAG) const { + SDLoc SL(LD); + SDValue Chain = LD->getChain(); + SDValue BasePTR = LD->getBasePtr(); + EVT SrcVT = LD->getMemoryVT(); + ISD::LoadExtType ExtType = LD->getExtensionType(); + + unsigned NumElem = SrcVT.getVectorNumElements(); + + EVT SrcEltVT = SrcVT.getScalarType(); + EVT DstEltVT = LD->getValueType(0).getScalarType(); + + unsigned Stride = SrcEltVT.getSizeInBits() / 8; + assert(SrcEltVT.isByteSized()); + + SmallVector<SDValue, 8> Vals; + SmallVector<SDValue, 8> LoadChains; + + for (unsigned Idx = 0; Idx < NumElem; ++Idx) { + SDValue ScalarLoad = + DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, + LD->getPointerInfo().getWithOffset(Idx * Stride), + SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), + LD->getMemOperand()->getFlags(), LD->getAAInfo()); + + BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); + + Vals.push_back(ScalarLoad.getValue(0)); + LoadChains.push_back(ScalarLoad.getValue(1)); + } + + SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); + SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); + + return DAG.getMergeValues({Value, NewChain}, SL); +} + +SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, + SelectionDAG &DAG) const { + SDLoc SL(ST); + + SDValue Chain = ST->getChain(); + SDValue BasePtr = ST->getBasePtr(); + SDValue Value = ST->getValue(); + EVT StVT = ST->getMemoryVT(); + + // The type of the data we want to save + EVT RegVT = Value.getValueType(); + EVT RegSclVT = RegVT.getScalarType(); + + // The type of data as saved in memory. + EVT MemSclVT = StVT.getScalarType(); + + EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); + unsigned NumElem = StVT.getVectorNumElements(); + + // A vector must always be stored in memory as-is, i.e. without any padding + // between the elements, since various code depend on it, e.g. in the + // handling of a bitcast of a vector type to int, which may be done with a + // vector store followed by an integer load. A vector that does not have + // elements that are byte-sized must therefore be stored as an integer + // built out of the extracted vector elements. + if (!MemSclVT.isByteSized()) { + unsigned NumBits = StVT.getSizeInBits(); + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); + + SDValue CurrVal = DAG.getConstant(0, SL, IntVT); + + for (unsigned Idx = 0; Idx < NumElem; ++Idx) { + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, + DAG.getConstant(Idx, SL, IdxVT)); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); + SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); + unsigned ShiftIntoIdx = + (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); + SDValue ShiftAmount = + DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); + SDValue ShiftedElt = + DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); + CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); + } + + return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), + ST->getAlignment(), ST->getMemOperand()->getFlags(), + ST->getAAInfo()); + } + + // Store Stride in bytes + unsigned Stride = MemSclVT.getSizeInBits() / 8; + assert(Stride && "Zero stride!"); + // Extract each of the elements from the original vector and save them into + // memory individually. + SmallVector<SDValue, 8> Stores; + for (unsigned Idx = 0; Idx < NumElem; ++Idx) { + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, + DAG.getConstant(Idx, SL, IdxVT)); + + SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); + + // This scalar TruncStore may be illegal, but we legalize it later. + SDValue Store = DAG.getTruncStore( + Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), + MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), + ST->getMemOperand()->getFlags(), ST->getAAInfo()); + + Stores.push_back(Store); + } + + return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); +} + +std::pair<SDValue, SDValue> +TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { + assert(LD->getAddressingMode() == ISD::UNINDEXED && + "unaligned indexed loads not implemented!"); + SDValue Chain = LD->getChain(); + SDValue Ptr = LD->getBasePtr(); + EVT VT = LD->getValueType(0); + EVT LoadedVT = LD->getMemoryVT(); + SDLoc dl(LD); + auto &MF = DAG.getMachineFunction(); + + if (VT.isFloatingPoint() || VT.isVector()) { + EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); + if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { + if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && + LoadedVT.isVector()) { + // Scalarize the load and let the individual components be handled. + SDValue Scalarized = scalarizeVectorLoad(LD, DAG); + if (Scalarized->getOpcode() == ISD::MERGE_VALUES) + return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); + return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); + } + + // Expand to a (misaligned) integer load of the same size, + // then bitconvert to floating point or vector. + SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, + LD->getMemOperand()); + SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); + if (LoadedVT != VT) + Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : + ISD::ANY_EXTEND, dl, VT, Result); + + return std::make_pair(Result, newLoad.getValue(1)); + } + + // Copy the value to a (aligned) stack slot using (unaligned) integer + // loads and stores, then do a (aligned) load from the stack slot. + MVT RegVT = getRegisterType(*DAG.getContext(), intVT); + unsigned LoadedBytes = LoadedVT.getStoreSize(); + unsigned RegBytes = RegVT.getSizeInBits() / 8; + unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; + + // Make sure the stack slot is also aligned for the register type. + SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); + auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); + SmallVector<SDValue, 8> Stores; + SDValue StackPtr = StackBase; + unsigned Offset = 0; + + EVT PtrVT = Ptr.getValueType(); + EVT StackPtrVT = StackPtr.getValueType(); + + SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); + SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); + + // Do all but one copies using the full register width. + for (unsigned i = 1; i < NumRegs; i++) { + // Load one integer register's worth from the original location. + SDValue Load = DAG.getLoad( + RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), + MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + // Follow the load with a store to the stack slot. Remember the store. + Stores.push_back(DAG.getStore( + Load.getValue(1), dl, Load, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); + // Increment the pointers. + Offset += RegBytes; + + Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); + StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); + } + + // The last copy may be partial. Do an extending load. + EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), + 8 * (LoadedBytes - Offset)); + SDValue Load = + DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, + LD->getPointerInfo().getWithOffset(Offset), MemVT, + MinAlign(LD->getAlignment(), Offset), + LD->getMemOperand()->getFlags(), LD->getAAInfo()); + // Follow the load with a store to the stack slot. Remember the store. + // On big-endian machines this requires a truncating store to ensure + // that the bits end up in the right place. + Stores.push_back(DAG.getTruncStore( + Load.getValue(1), dl, Load, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); + + // The order of the stores doesn't matter - say it with a TokenFactor. + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); + + // Finally, perform the original load only redirected to the stack slot. + Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, + MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), + LoadedVT); + + // Callers expect a MERGE_VALUES node. + return std::make_pair(Load, TF); + } + + assert(LoadedVT.isInteger() && !LoadedVT.isVector() && + "Unaligned load of unsupported type."); + + // Compute the new VT that is half the size of the old one. This is an + // integer MVT. + unsigned NumBits = LoadedVT.getSizeInBits(); + EVT NewLoadedVT; + NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); + NumBits >>= 1; + + unsigned Alignment = LD->getAlignment(); + unsigned IncrementSize = NumBits / 8; + ISD::LoadExtType HiExtType = LD->getExtensionType(); + + // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. + if (HiExtType == ISD::NON_EXTLOAD) + HiExtType = ISD::ZEXTLOAD; + + // Load the value in two parts + SDValue Lo, Hi; + if (DAG.getDataLayout().isLittleEndian()) { + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), + NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + + Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); + Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, + LD->getPointerInfo().getWithOffset(IncrementSize), + NewLoadedVT, MinAlign(Alignment, IncrementSize), + LD->getMemOperand()->getFlags(), LD->getAAInfo()); + } else { + Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), + NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + + Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, + LD->getPointerInfo().getWithOffset(IncrementSize), + NewLoadedVT, MinAlign(Alignment, IncrementSize), + LD->getMemOperand()->getFlags(), LD->getAAInfo()); + } + + // aggregate the two parts + SDValue ShiftAmount = + DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), + DAG.getDataLayout())); + SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); + Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); + + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + return std::make_pair(Result, TF); +} + +SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, + SelectionDAG &DAG) const { + assert(ST->getAddressingMode() == ISD::UNINDEXED && + "unaligned indexed stores not implemented!"); + SDValue Chain = ST->getChain(); + SDValue Ptr = ST->getBasePtr(); + SDValue Val = ST->getValue(); + EVT VT = Val.getValueType(); + int Alignment = ST->getAlignment(); + auto &MF = DAG.getMachineFunction(); + EVT StoreMemVT = ST->getMemoryVT(); + + SDLoc dl(ST); + if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { + EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); + if (isTypeLegal(intVT)) { + if (!isOperationLegalOrCustom(ISD::STORE, intVT) && + StoreMemVT.isVector()) { + // Scalarize the store and let the individual components be handled. + SDValue Result = scalarizeVectorStore(ST, DAG); + return Result; + } + // Expand to a bitconvert of the value to the integer type of the + // same size, then a (misaligned) int store. + // FIXME: Does not handle truncating floating point stores! + SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); + Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), + Alignment, ST->getMemOperand()->getFlags()); + return Result; + } + // Do a (aligned) store to a stack slot, then copy from the stack slot + // to the final destination using (unaligned) integer loads and stores. + MVT RegVT = getRegisterType( + *DAG.getContext(), + EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); + EVT PtrVT = Ptr.getValueType(); + unsigned StoredBytes = StoreMemVT.getStoreSize(); + unsigned RegBytes = RegVT.getSizeInBits() / 8; + unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; + + // Make sure the stack slot is also aligned for the register type. + SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); + auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + + // Perform the original store, only redirected to the stack slot. + SDValue Store = DAG.getTruncStore( + Chain, dl, Val, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); + + EVT StackPtrVT = StackPtr.getValueType(); + + SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); + SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); + SmallVector<SDValue, 8> Stores; + unsigned Offset = 0; + + // Do all but one copies using the full register width. + for (unsigned i = 1; i < NumRegs; i++) { + // Load one integer register's worth from the stack slot. + SDValue Load = DAG.getLoad( + RegVT, dl, Store, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); + // Store it to the final location. Remember the store. + Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, + ST->getPointerInfo().getWithOffset(Offset), + MinAlign(ST->getAlignment(), Offset), + ST->getMemOperand()->getFlags())); + // Increment the pointers. + Offset += RegBytes; + StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); + Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); + } + + // The last store may be partial. Do a truncating store. On big-endian + // machines this requires an extending load from the stack slot to ensure + // that the bits are in the right place. + EVT LoadMemVT = + EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); + + // Load from the stack slot. + SDValue Load = DAG.getExtLoad( + ISD::EXTLOAD, dl, RegVT, Store, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); + + Stores.push_back( + DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, + ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, + MinAlign(ST->getAlignment(), Offset), + ST->getMemOperand()->getFlags(), ST->getAAInfo())); + // The order of the stores doesn't matter - say it with a TokenFactor. + SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); + return Result; + } + + assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && + "Unaligned store of unknown type."); + // Get the half-size VT + EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); + int NumBits = NewStoredVT.getSizeInBits(); + int IncrementSize = NumBits / 8; + + // Divide the stored value in two parts. + SDValue ShiftAmount = DAG.getConstant( + NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); + SDValue Lo = Val; + SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); + + // Store the two parts + SDValue Store1, Store2; + Store1 = DAG.getTruncStore(Chain, dl, + DAG.getDataLayout().isLittleEndian() ? Lo : Hi, + Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, + ST->getMemOperand()->getFlags()); + + Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); + Alignment = MinAlign(Alignment, IncrementSize); + Store2 = DAG.getTruncStore( + Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, + ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, + ST->getMemOperand()->getFlags(), ST->getAAInfo()); + + SDValue Result = + DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); + return Result; +} + +SDValue +TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, + const SDLoc &DL, EVT DataVT, + SelectionDAG &DAG, + bool IsCompressedMemory) const { + SDValue Increment; + EVT AddrVT = Addr.getValueType(); + EVT MaskVT = Mask.getValueType(); + assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && + "Incompatible types of Data and Mask"); + if (IsCompressedMemory) { + // Incrementing the pointer according to number of '1's in the mask. + EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); + SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); + if (MaskIntVT.getSizeInBits() < 32) { + MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); + MaskIntVT = MVT::i32; + } + + // Count '1's with POPCNT. + Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); + Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); + // Scale is an element size in bytes. + SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, + AddrVT); + Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); + } else + Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); + + return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); +} + +static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, + SDValue Idx, + EVT VecVT, + const SDLoc &dl) { + if (isa<ConstantSDNode>(Idx)) + return Idx; + + EVT IdxVT = Idx.getValueType(); + unsigned NElts = VecVT.getVectorNumElements(); + if (isPowerOf2_32(NElts)) { + APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), + Log2_32(NElts)); + return DAG.getNode(ISD::AND, dl, IdxVT, Idx, + DAG.getConstant(Imm, dl, IdxVT)); + } + + return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, + DAG.getConstant(NElts - 1, dl, IdxVT)); +} + +SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, + SDValue VecPtr, EVT VecVT, + SDValue Index) const { + SDLoc dl(Index); + // Make sure the index type is big enough to compute in. + Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); + + EVT EltVT = VecVT.getVectorElementType(); + + // Calculate the element offset and add it to the pointer. + unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. + assert(EltSize * 8 == EltVT.getSizeInBits() && + "Converting bits to bytes lost precision"); + + Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); + + EVT IdxVT = Index.getValueType(); + + Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, + DAG.getConstant(EltSize, dl, IdxVT)); + return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); +} + +//===----------------------------------------------------------------------===// +// Implementation of Emulated TLS Model +//===----------------------------------------------------------------------===// + +SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, + SelectionDAG &DAG) const { + // Access to address of TLS varialbe xyz is lowered to a function call: + // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); + SDLoc dl(GA); + + ArgListTy Args; + ArgListEntry Entry; + std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); + Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); + StringRef EmuTlsVarName(NameString); + GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); + assert(EmuTlsVar && "Cannot find EmuTlsVar "); + Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); + Entry.Ty = VoidPtrType; + Args.push_back(Entry); + + SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); + CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); + std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); + + // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. + // At last for X86 targets, maybe good for other targets too? + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setAdjustsStack(true); // Is this only for X86 target? + MFI.setHasCalls(true); + + assert((GA->getOffset() == 0) && + "Emulated TLS must have zero offset in GlobalAddressSDNode"); + return CallResult.first; +} + +SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, + SelectionDAG &DAG) const { + assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); + if (!isCtlzFast()) + return SDValue(); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SDLoc dl(Op); + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + if (C->isNullValue() && CC == ISD::SETEQ) { + EVT VT = Op.getOperand(0).getValueType(); + SDValue Zext = Op.getOperand(0); + if (VT.bitsLT(MVT::i32)) { + VT = MVT::i32; + Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); + } + unsigned Log2b = Log2_32(VT.getSizeInBits()); + SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); + SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, + DAG.getConstant(Log2b, dl, MVT::i32)); + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); + } + } + return SDValue(); +} + +SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { + unsigned Opcode = Node->getOpcode(); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + EVT VT = LHS.getValueType(); + SDLoc dl(Node); + + assert(VT == RHS.getValueType() && "Expected operands to be the same type"); + assert(VT.isInteger() && "Expected operands to be integers"); + + // usub.sat(a, b) -> umax(a, b) - b + if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { + SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); + return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); + } + + if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { + SDValue InvRHS = DAG.getNOT(dl, RHS, VT); + SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); + return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); + } + + unsigned OverflowOp; + switch (Opcode) { + case ISD::SADDSAT: + OverflowOp = ISD::SADDO; + break; + case ISD::UADDSAT: + OverflowOp = ISD::UADDO; + break; + case ISD::SSUBSAT: + OverflowOp = ISD::SSUBO; + break; + case ISD::USUBSAT: + OverflowOp = ISD::USUBO; + break; + default: + llvm_unreachable("Expected method to receive signed or unsigned saturation " + "addition or subtraction node."); + } + + unsigned BitWidth = LHS.getScalarValueSizeInBits(); + EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), + LHS, RHS); + SDValue SumDiff = Result.getValue(0); + SDValue Overflow = Result.getValue(1); + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); + + if (Opcode == ISD::UADDSAT) { + if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { + // (LHS + RHS) | OverflowMask + SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); + return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); + } + // Overflow ? 0xffff.... : (LHS + RHS) + return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); + } else if (Opcode == ISD::USUBSAT) { + if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { + // (LHS - RHS) & ~OverflowMask + SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); + SDValue Not = DAG.getNOT(dl, OverflowMask, VT); + return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); + } + // Overflow ? 0 : (LHS - RHS) + return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); + } else { + // SatMax -> Overflow && SumDiff < 0 + // SatMin -> Overflow && SumDiff >= 0 + APInt MinVal = APInt::getSignedMinValue(BitWidth); + APInt MaxVal = APInt::getSignedMaxValue(BitWidth); + SDValue SatMin = DAG.getConstant(MinVal, dl, VT); + SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); + SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); + Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); + return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); + } +} + +SDValue +TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { + assert((Node->getOpcode() == ISD::SMULFIX || + Node->getOpcode() == ISD::UMULFIX || + Node->getOpcode() == ISD::SMULFIXSAT) && + "Expected a fixed point multiplication opcode"); + + SDLoc dl(Node); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + EVT VT = LHS.getValueType(); + unsigned Scale = Node->getConstantOperandVal(2); + bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT; + EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + unsigned VTSize = VT.getScalarSizeInBits(); + + if (!Scale) { + // [us]mul.fix(a, b, 0) -> mul(a, b) + if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) { + return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); + } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) { + SDValue Result = + DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); + SDValue Product = Result.getValue(0); + SDValue Overflow = Result.getValue(1); + SDValue Zero = DAG.getConstant(0, dl, VT); + + APInt MinVal = APInt::getSignedMinValue(VTSize); + APInt MaxVal = APInt::getSignedMaxValue(VTSize); + SDValue SatMin = DAG.getConstant(MinVal, dl, VT); + SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); + SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); + Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); + return DAG.getSelect(dl, VT, Overflow, Result, Product); + } + } + + bool Signed = + Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT; + assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && + "Expected scale to be less than the number of bits if signed or at " + "most the number of bits if unsigned."); + assert(LHS.getValueType() == RHS.getValueType() && + "Expected both operands to be the same type"); + + // Get the upper and lower bits of the result. + SDValue Lo, Hi; + unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; + unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; + if (isOperationLegalOrCustom(LoHiOp, VT)) { + SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); + Lo = Result.getValue(0); + Hi = Result.getValue(1); + } else if (isOperationLegalOrCustom(HiOp, VT)) { + Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); + Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); + } else if (VT.isVector()) { + return SDValue(); + } else { + report_fatal_error("Unable to expand fixed point multiplication."); + } + + if (Scale == VTSize) + // Result is just the top half since we'd be shifting by the width of the + // operand. + return Hi; + + // The result will need to be shifted right by the scale since both operands + // are scaled. The result is given to us in 2 halves, so we only want part of + // both in the result. + EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, + DAG.getConstant(Scale, dl, ShiftTy)); + if (!Saturating) + return Result; + + unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign + SDValue HiMask = + DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT); + SDValue LoMask = DAG.getConstant( + APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT); + APInt MaxVal = APInt::getSignedMaxValue(VTSize); + APInt MinVal = APInt::getSignedMinValue(VTSize); + + Result = DAG.getSelectCC(dl, Hi, LoMask, + DAG.getConstant(MaxVal, dl, VT), Result, + ISD::SETGT); + return DAG.getSelectCC(dl, Hi, HiMask, + DAG.getConstant(MinVal, dl, VT), Result, + ISD::SETLT); +} + +void TargetLowering::expandUADDSUBO( + SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { + SDLoc dl(Node); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + bool IsAdd = Node->getOpcode() == ISD::UADDO; + + // If ADD/SUBCARRY is legal, use that instead. + unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; + if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { + SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); + SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), + { LHS, RHS, CarryIn }); + Result = SDValue(NodeCarry.getNode(), 0); + Overflow = SDValue(NodeCarry.getNode(), 1); + return; + } + + Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, + LHS.getValueType(), LHS, RHS); + + EVT ResultType = Node->getValueType(1); + EVT SetCCType = getSetCCResultType( + DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); + ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; + SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); + Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); +} + +void TargetLowering::expandSADDSUBO( + SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { + SDLoc dl(Node); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + bool IsAdd = Node->getOpcode() == ISD::SADDO; + + Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, + LHS.getValueType(), LHS, RHS); + + EVT ResultType = Node->getValueType(1); + EVT OType = getSetCCResultType( + DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); + + // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. + unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; + if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { + SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); + SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); + Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); + return; + } + + SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); + + // LHSSign -> LHS >= 0 + // RHSSign -> RHS >= 0 + // SumSign -> Result >= 0 + // + // Add: + // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) + // Sub: + // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) + SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); + SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); + SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, + IsAdd ? ISD::SETEQ : ISD::SETNE); + + SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE); + SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); + + SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); + Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType); +} + +bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, + SDValue &Overflow, SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + bool isSigned = Node->getOpcode() == ISD::SMULO; + + // For power-of-two multiplications we can use a simpler shift expansion. + if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { + const APInt &C = RHSC->getAPIntValue(); + // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } + if (C.isPowerOf2()) { + // smulo(x, signed_min) is same as umulo(x, signed_min). + bool UseArithShift = isSigned && !C.isMinSignedValue(); + EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); + Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); + Overflow = DAG.getSetCC(dl, SetCCVT, + DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, + dl, VT, Result, ShiftAmt), + LHS, ISD::SETNE); + return true; + } + } + + EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); + if (VT.isVector()) + WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, + VT.getVectorNumElements()); + + SDValue BottomHalf; + SDValue TopHalf; + static const unsigned Ops[2][3] = + { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, + { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; + if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { + BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); + TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); + } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { + BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, + RHS); + TopHalf = BottomHalf.getValue(1); + } else if (isTypeLegal(WideVT)) { + LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); + RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); + SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); + BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); + SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, + getShiftAmountTy(WideVT, DAG.getDataLayout())); + TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); + } else { + if (VT.isVector()) + return false; + + // We can fall back to a libcall with an illegal type for the MUL if we + // have a libcall big enough. + // Also, we can fall back to a division in some cases, but that's a big + // performance hit in the general case. + RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; + if (WideVT == MVT::i16) + LC = RTLIB::MUL_I16; + else if (WideVT == MVT::i32) + LC = RTLIB::MUL_I32; + else if (WideVT == MVT::i64) + LC = RTLIB::MUL_I64; + else if (WideVT == MVT::i128) + LC = RTLIB::MUL_I128; + assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); + + SDValue HiLHS; + SDValue HiRHS; + if (isSigned) { + // The high part is obtained by SRA'ing all but one of the bits of low + // part. + unsigned LoSize = VT.getSizeInBits(); + HiLHS = + DAG.getNode(ISD::SRA, dl, VT, LHS, + DAG.getConstant(LoSize - 1, dl, + getPointerTy(DAG.getDataLayout()))); + HiRHS = + DAG.getNode(ISD::SRA, dl, VT, RHS, + DAG.getConstant(LoSize - 1, dl, + getPointerTy(DAG.getDataLayout()))); + } else { + HiLHS = DAG.getConstant(0, dl, VT); + HiRHS = DAG.getConstant(0, dl, VT); + } + + // Here we're passing the 2 arguments explicitly as 4 arguments that are + // pre-lowered to the correct types. This all depends upon WideVT not + // being a legal type for the architecture and thus has to be split to + // two arguments. + SDValue Ret; + if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { + // Halves of WideVT are packed into registers in different order + // depending on platform endianness. This is usually handled by + // the C calling convention, but we can't defer to it in + // the legalizer. + SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; + Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, + /* doesNotReturn */ false, /* isReturnValueUsed */ true, + /* isPostTypeLegalization */ true).first; + } else { + SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; + Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, + /* doesNotReturn */ false, /* isReturnValueUsed */ true, + /* isPostTypeLegalization */ true).first; + } + assert(Ret.getOpcode() == ISD::MERGE_VALUES && + "Ret value is a collection of constituent nodes holding result."); + if (DAG.getDataLayout().isLittleEndian()) { + // Same as above. + BottomHalf = Ret.getOperand(0); + TopHalf = Ret.getOperand(1); + } else { + BottomHalf = Ret.getOperand(1); + TopHalf = Ret.getOperand(0); + } + } + + Result = BottomHalf; + if (isSigned) { + SDValue ShiftAmt = DAG.getConstant( + VT.getScalarSizeInBits() - 1, dl, + getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); + SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); + Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); + } else { + Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, + DAG.getConstant(0, dl, VT), ISD::SETNE); + } + + // Truncate the result if SetCC returns a larger type than needed. + EVT RType = Node->getValueType(1); + if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) + Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); + + assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && + "Unexpected result type for S/UMULO legalization"); + return true; +} + +SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { + SDLoc dl(Node); + bool NoNaN = Node->getFlags().hasNoNaNs(); + unsigned BaseOpcode = 0; + switch (Node->getOpcode()) { + default: llvm_unreachable("Expected VECREDUCE opcode"); + case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; + case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; + case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; + case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; + case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; + case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; + case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; + case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; + case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; + case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; + case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; + case ISD::VECREDUCE_FMAX: + BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; + break; + case ISD::VECREDUCE_FMIN: + BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; + break; + } + + SDValue Op = Node->getOperand(0); + EVT VT = Op.getValueType(); + + // Try to use a shuffle reduction for power of two vectors. + if (VT.isPow2VectorType()) { + while (VT.getVectorNumElements() > 1) { + EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); + if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) + break; + + SDValue Lo, Hi; + std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); + Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); + VT = HalfVT; + } + } + + EVT EltVT = VT.getVectorElementType(); + unsigned NumElts = VT.getVectorNumElements(); + + SmallVector<SDValue, 8> Ops; + DAG.ExtractVectorElements(Op, Ops, 0, NumElts); + + SDValue Res = Ops[0]; + for (unsigned i = 1; i < NumElts; i++) + Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); + + // Result type may be wider than element type. + if (EltVT != Node->getValueType(0)) + Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); + return Res; +} |