diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp | 1422 |
1 files changed, 1422 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp new file mode 100644 index 000000000000..e26e6ce45db4 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp @@ -0,0 +1,1422 @@ +//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Implementation of the MC-JIT runtime dynamic linker. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ExecutionEngine/RuntimeDyld.h" +#include "RuntimeDyldCOFF.h" +#include "RuntimeDyldELF.h" +#include "RuntimeDyldImpl.h" +#include "RuntimeDyldMachO.h" +#include "llvm/Object/COFF.h" +#include "llvm/Object/ELFObjectFile.h" +#include "llvm/Support/MSVCErrorWorkarounds.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/MutexGuard.h" + +#include <future> + +using namespace llvm; +using namespace llvm::object; + +#define DEBUG_TYPE "dyld" + +namespace { + +enum RuntimeDyldErrorCode { + GenericRTDyldError = 1 +}; + +// FIXME: This class is only here to support the transition to llvm::Error. It +// will be removed once this transition is complete. Clients should prefer to +// deal with the Error value directly, rather than converting to error_code. +class RuntimeDyldErrorCategory : public std::error_category { +public: + const char *name() const noexcept override { return "runtimedyld"; } + + std::string message(int Condition) const override { + switch (static_cast<RuntimeDyldErrorCode>(Condition)) { + case GenericRTDyldError: return "Generic RuntimeDyld error"; + } + llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); + } +}; + +static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; + +} + +char RuntimeDyldError::ID = 0; + +void RuntimeDyldError::log(raw_ostream &OS) const { + OS << ErrMsg << "\n"; +} + +std::error_code RuntimeDyldError::convertToErrorCode() const { + return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); +} + +// Empty out-of-line virtual destructor as the key function. +RuntimeDyldImpl::~RuntimeDyldImpl() {} + +// Pin LoadedObjectInfo's vtables to this file. +void RuntimeDyld::LoadedObjectInfo::anchor() {} + +namespace llvm { + +void RuntimeDyldImpl::registerEHFrames() {} + +void RuntimeDyldImpl::deregisterEHFrames() { + MemMgr.deregisterEHFrames(); +} + +#ifndef NDEBUG +static void dumpSectionMemory(const SectionEntry &S, StringRef State) { + dbgs() << "----- Contents of section " << S.getName() << " " << State + << " -----"; + + if (S.getAddress() == nullptr) { + dbgs() << "\n <section not emitted>\n"; + return; + } + + const unsigned ColsPerRow = 16; + + uint8_t *DataAddr = S.getAddress(); + uint64_t LoadAddr = S.getLoadAddress(); + + unsigned StartPadding = LoadAddr & (ColsPerRow - 1); + unsigned BytesRemaining = S.getSize(); + + if (StartPadding) { + dbgs() << "\n" << format("0x%016" PRIx64, + LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; + while (StartPadding--) + dbgs() << " "; + } + + while (BytesRemaining > 0) { + if ((LoadAddr & (ColsPerRow - 1)) == 0) + dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; + + dbgs() << " " << format("%02x", *DataAddr); + + ++DataAddr; + ++LoadAddr; + --BytesRemaining; + } + + dbgs() << "\n"; +} +#endif + +// Resolve the relocations for all symbols we currently know about. +void RuntimeDyldImpl::resolveRelocations() { + MutexGuard locked(lock); + + // Print out the sections prior to relocation. + LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) + dumpSectionMemory(Sections[i], "before relocations");); + + // First, resolve relocations associated with external symbols. + if (auto Err = resolveExternalSymbols()) { + HasError = true; + ErrorStr = toString(std::move(Err)); + } + + resolveLocalRelocations(); + + // Print out sections after relocation. + LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) + dumpSectionMemory(Sections[i], "after relocations");); +} + +void RuntimeDyldImpl::resolveLocalRelocations() { + // Iterate over all outstanding relocations + for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { + // The Section here (Sections[i]) refers to the section in which the + // symbol for the relocation is located. The SectionID in the relocation + // entry provides the section to which the relocation will be applied. + int Idx = it->first; + uint64_t Addr = Sections[Idx].getLoadAddress(); + LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" + << format("%p", (uintptr_t)Addr) << "\n"); + resolveRelocationList(it->second, Addr); + } + Relocations.clear(); +} + +void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, + uint64_t TargetAddress) { + MutexGuard locked(lock); + for (unsigned i = 0, e = Sections.size(); i != e; ++i) { + if (Sections[i].getAddress() == LocalAddress) { + reassignSectionAddress(i, TargetAddress); + return; + } + } + llvm_unreachable("Attempting to remap address of unknown section!"); +} + +static Error getOffset(const SymbolRef &Sym, SectionRef Sec, + uint64_t &Result) { + Expected<uint64_t> AddressOrErr = Sym.getAddress(); + if (!AddressOrErr) + return AddressOrErr.takeError(); + Result = *AddressOrErr - Sec.getAddress(); + return Error::success(); +} + +Expected<RuntimeDyldImpl::ObjSectionToIDMap> +RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { + MutexGuard locked(lock); + + // Save information about our target + Arch = (Triple::ArchType)Obj.getArch(); + IsTargetLittleEndian = Obj.isLittleEndian(); + setMipsABI(Obj); + + // Compute the memory size required to load all sections to be loaded + // and pass this information to the memory manager + if (MemMgr.needsToReserveAllocationSpace()) { + uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; + uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; + if (auto Err = computeTotalAllocSize(Obj, + CodeSize, CodeAlign, + RODataSize, RODataAlign, + RWDataSize, RWDataAlign)) + return std::move(Err); + MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, + RWDataSize, RWDataAlign); + } + + // Used sections from the object file + ObjSectionToIDMap LocalSections; + + // Common symbols requiring allocation, with their sizes and alignments + CommonSymbolList CommonSymbolsToAllocate; + + uint64_t CommonSize = 0; + uint32_t CommonAlign = 0; + + // First, collect all weak and common symbols. We need to know if stronger + // definitions occur elsewhere. + JITSymbolResolver::LookupSet ResponsibilitySet; + { + JITSymbolResolver::LookupSet Symbols; + for (auto &Sym : Obj.symbols()) { + uint32_t Flags = Sym.getFlags(); + if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) { + // Get symbol name. + if (auto NameOrErr = Sym.getName()) + Symbols.insert(*NameOrErr); + else + return NameOrErr.takeError(); + } + } + + if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) + ResponsibilitySet = std::move(*ResultOrErr); + else + return ResultOrErr.takeError(); + } + + // Parse symbols + LLVM_DEBUG(dbgs() << "Parse symbols:\n"); + for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; + ++I) { + uint32_t Flags = I->getFlags(); + + // Skip undefined symbols. + if (Flags & SymbolRef::SF_Undefined) + continue; + + // Get the symbol type. + object::SymbolRef::Type SymType; + if (auto SymTypeOrErr = I->getType()) + SymType = *SymTypeOrErr; + else + return SymTypeOrErr.takeError(); + + // Get symbol name. + StringRef Name; + if (auto NameOrErr = I->getName()) + Name = *NameOrErr; + else + return NameOrErr.takeError(); + + // Compute JIT symbol flags. + auto JITSymFlags = getJITSymbolFlags(*I); + if (!JITSymFlags) + return JITSymFlags.takeError(); + + // If this is a weak definition, check to see if there's a strong one. + // If there is, skip this symbol (we won't be providing it: the strong + // definition will). If there's no strong definition, make this definition + // strong. + if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { + // First check whether there's already a definition in this instance. + if (GlobalSymbolTable.count(Name)) + continue; + + // If we're not responsible for this symbol, skip it. + if (!ResponsibilitySet.count(Name)) + continue; + + // Otherwise update the flags on the symbol to make this definition + // strong. + if (JITSymFlags->isWeak()) + *JITSymFlags &= ~JITSymbolFlags::Weak; + if (JITSymFlags->isCommon()) { + *JITSymFlags &= ~JITSymbolFlags::Common; + uint32_t Align = I->getAlignment(); + uint64_t Size = I->getCommonSize(); + if (!CommonAlign) + CommonAlign = Align; + CommonSize = alignTo(CommonSize, Align) + Size; + CommonSymbolsToAllocate.push_back(*I); + } + } + + if (Flags & SymbolRef::SF_Absolute && + SymType != object::SymbolRef::ST_File) { + uint64_t Addr = 0; + if (auto AddrOrErr = I->getAddress()) + Addr = *AddrOrErr; + else + return AddrOrErr.takeError(); + + unsigned SectionID = AbsoluteSymbolSection; + + LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name + << " SID: " << SectionID + << " Offset: " << format("%p", (uintptr_t)Addr) + << " flags: " << Flags << "\n"); + GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags); + } else if (SymType == object::SymbolRef::ST_Function || + SymType == object::SymbolRef::ST_Data || + SymType == object::SymbolRef::ST_Unknown || + SymType == object::SymbolRef::ST_Other) { + + section_iterator SI = Obj.section_end(); + if (auto SIOrErr = I->getSection()) + SI = *SIOrErr; + else + return SIOrErr.takeError(); + + if (SI == Obj.section_end()) + continue; + + // Get symbol offset. + uint64_t SectOffset; + if (auto Err = getOffset(*I, *SI, SectOffset)) + return std::move(Err); + + bool IsCode = SI->isText(); + unsigned SectionID; + if (auto SectionIDOrErr = + findOrEmitSection(Obj, *SI, IsCode, LocalSections)) + SectionID = *SectionIDOrErr; + else + return SectionIDOrErr.takeError(); + + LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name + << " SID: " << SectionID + << " Offset: " << format("%p", (uintptr_t)SectOffset) + << " flags: " << Flags << "\n"); + GlobalSymbolTable[Name] = + SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); + } + } + + // Allocate common symbols + if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, + CommonAlign)) + return std::move(Err); + + // Parse and process relocations + LLVM_DEBUG(dbgs() << "Parse relocations:\n"); + for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); + SI != SE; ++SI) { + StubMap Stubs; + section_iterator RelocatedSection = SI->getRelocatedSection(); + + if (RelocatedSection == SE) + continue; + + relocation_iterator I = SI->relocation_begin(); + relocation_iterator E = SI->relocation_end(); + + if (I == E && !ProcessAllSections) + continue; + + bool IsCode = RelocatedSection->isText(); + unsigned SectionID = 0; + if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, + LocalSections)) + SectionID = *SectionIDOrErr; + else + return SectionIDOrErr.takeError(); + + LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); + + for (; I != E;) + if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) + I = *IOrErr; + else + return IOrErr.takeError(); + + // If there is a NotifyStubEmitted callback set, call it to register any + // stubs created for this section. + if (NotifyStubEmitted) { + StringRef FileName = Obj.getFileName(); + StringRef SectionName = Sections[SectionID].getName(); + for (auto &KV : Stubs) { + + auto &VR = KV.first; + uint64_t StubAddr = KV.second; + + // If this is a named stub, just call NotifyStubEmitted. + if (VR.SymbolName) { + NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, + StubAddr); + continue; + } + + // Otherwise we will have to try a reverse lookup on the globla symbol table. + for (auto &GSTMapEntry : GlobalSymbolTable) { + StringRef SymbolName = GSTMapEntry.first(); + auto &GSTEntry = GSTMapEntry.second; + if (GSTEntry.getSectionID() == VR.SectionID && + GSTEntry.getOffset() == VR.Offset) { + NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, + StubAddr); + break; + } + } + } + } + } + + // Process remaining sections + if (ProcessAllSections) { + LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); + for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); + SI != SE; ++SI) { + + /* Ignore already loaded sections */ + if (LocalSections.find(*SI) != LocalSections.end()) + continue; + + bool IsCode = SI->isText(); + if (auto SectionIDOrErr = + findOrEmitSection(Obj, *SI, IsCode, LocalSections)) + LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); + else + return SectionIDOrErr.takeError(); + } + } + + // Give the subclasses a chance to tie-up any loose ends. + if (auto Err = finalizeLoad(Obj, LocalSections)) + return std::move(Err); + +// for (auto E : LocalSections) +// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; + + return LocalSections; +} + +// A helper method for computeTotalAllocSize. +// Computes the memory size required to allocate sections with the given sizes, +// assuming that all sections are allocated with the given alignment +static uint64_t +computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, + uint64_t Alignment) { + uint64_t TotalSize = 0; + for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { + uint64_t AlignedSize = + (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; + TotalSize += AlignedSize; + } + return TotalSize; +} + +static bool isRequiredForExecution(const SectionRef Section) { + const ObjectFile *Obj = Section.getObject(); + if (isa<object::ELFObjectFileBase>(Obj)) + return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; + if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { + const coff_section *CoffSection = COFFObj->getCOFFSection(Section); + // Avoid loading zero-sized COFF sections. + // In PE files, VirtualSize gives the section size, and SizeOfRawData + // may be zero for sections with content. In Obj files, SizeOfRawData + // gives the section size, and VirtualSize is always zero. Hence + // the need to check for both cases below. + bool HasContent = + (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); + bool IsDiscardable = + CoffSection->Characteristics & + (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); + return HasContent && !IsDiscardable; + } + + assert(isa<MachOObjectFile>(Obj)); + return true; +} + +static bool isReadOnlyData(const SectionRef Section) { + const ObjectFile *Obj = Section.getObject(); + if (isa<object::ELFObjectFileBase>(Obj)) + return !(ELFSectionRef(Section).getFlags() & + (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); + if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) + return ((COFFObj->getCOFFSection(Section)->Characteristics & + (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA + | COFF::IMAGE_SCN_MEM_READ + | COFF::IMAGE_SCN_MEM_WRITE)) + == + (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA + | COFF::IMAGE_SCN_MEM_READ)); + + assert(isa<MachOObjectFile>(Obj)); + return false; +} + +static bool isZeroInit(const SectionRef Section) { + const ObjectFile *Obj = Section.getObject(); + if (isa<object::ELFObjectFileBase>(Obj)) + return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; + if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) + return COFFObj->getCOFFSection(Section)->Characteristics & + COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; + + auto *MachO = cast<MachOObjectFile>(Obj); + unsigned SectionType = MachO->getSectionType(Section); + return SectionType == MachO::S_ZEROFILL || + SectionType == MachO::S_GB_ZEROFILL; +} + +// Compute an upper bound of the memory size that is required to load all +// sections +Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, + uint64_t &CodeSize, + uint32_t &CodeAlign, + uint64_t &RODataSize, + uint32_t &RODataAlign, + uint64_t &RWDataSize, + uint32_t &RWDataAlign) { + // Compute the size of all sections required for execution + std::vector<uint64_t> CodeSectionSizes; + std::vector<uint64_t> ROSectionSizes; + std::vector<uint64_t> RWSectionSizes; + + // Collect sizes of all sections to be loaded; + // also determine the max alignment of all sections + for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); + SI != SE; ++SI) { + const SectionRef &Section = *SI; + + bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; + + // Consider only the sections that are required to be loaded for execution + if (IsRequired) { + uint64_t DataSize = Section.getSize(); + uint64_t Alignment64 = Section.getAlignment(); + unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; + bool IsCode = Section.isText(); + bool IsReadOnly = isReadOnlyData(Section); + + StringRef Name; + if (auto EC = Section.getName(Name)) + return errorCodeToError(EC); + + uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); + + uint64_t PaddingSize = 0; + if (Name == ".eh_frame") + PaddingSize += 4; + if (StubBufSize != 0) + PaddingSize += getStubAlignment() - 1; + + uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; + + // The .eh_frame section (at least on Linux) needs an extra four bytes + // padded + // with zeroes added at the end. For MachO objects, this section has a + // slightly different name, so this won't have any effect for MachO + // objects. + if (Name == ".eh_frame") + SectionSize += 4; + + if (!SectionSize) + SectionSize = 1; + + if (IsCode) { + CodeAlign = std::max(CodeAlign, Alignment); + CodeSectionSizes.push_back(SectionSize); + } else if (IsReadOnly) { + RODataAlign = std::max(RODataAlign, Alignment); + ROSectionSizes.push_back(SectionSize); + } else { + RWDataAlign = std::max(RWDataAlign, Alignment); + RWSectionSizes.push_back(SectionSize); + } + } + } + + // Compute Global Offset Table size. If it is not zero we + // also update alignment, which is equal to a size of a + // single GOT entry. + if (unsigned GotSize = computeGOTSize(Obj)) { + RWSectionSizes.push_back(GotSize); + RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); + } + + // Compute the size of all common symbols + uint64_t CommonSize = 0; + uint32_t CommonAlign = 1; + for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; + ++I) { + uint32_t Flags = I->getFlags(); + if (Flags & SymbolRef::SF_Common) { + // Add the common symbols to a list. We'll allocate them all below. + uint64_t Size = I->getCommonSize(); + uint32_t Align = I->getAlignment(); + // If this is the first common symbol, use its alignment as the alignment + // for the common symbols section. + if (CommonSize == 0) + CommonAlign = Align; + CommonSize = alignTo(CommonSize, Align) + Size; + } + } + if (CommonSize != 0) { + RWSectionSizes.push_back(CommonSize); + RWDataAlign = std::max(RWDataAlign, CommonAlign); + } + + // Compute the required allocation space for each different type of sections + // (code, read-only data, read-write data) assuming that all sections are + // allocated with the max alignment. Note that we cannot compute with the + // individual alignments of the sections, because then the required size + // depends on the order, in which the sections are allocated. + CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); + RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); + RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); + + return Error::success(); +} + +// compute GOT size +unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { + size_t GotEntrySize = getGOTEntrySize(); + if (!GotEntrySize) + return 0; + + size_t GotSize = 0; + for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); + SI != SE; ++SI) { + + for (const RelocationRef &Reloc : SI->relocations()) + if (relocationNeedsGot(Reloc)) + GotSize += GotEntrySize; + } + + return GotSize; +} + +// compute stub buffer size for the given section +unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, + const SectionRef &Section) { + unsigned StubSize = getMaxStubSize(); + if (StubSize == 0) { + return 0; + } + // FIXME: this is an inefficient way to handle this. We should computed the + // necessary section allocation size in loadObject by walking all the sections + // once. + unsigned StubBufSize = 0; + for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); + SI != SE; ++SI) { + section_iterator RelSecI = SI->getRelocatedSection(); + if (!(RelSecI == Section)) + continue; + + for (const RelocationRef &Reloc : SI->relocations()) + if (relocationNeedsStub(Reloc)) + StubBufSize += StubSize; + } + + // Get section data size and alignment + uint64_t DataSize = Section.getSize(); + uint64_t Alignment64 = Section.getAlignment(); + + // Add stubbuf size alignment + unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; + unsigned StubAlignment = getStubAlignment(); + unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); + if (StubAlignment > EndAlignment) + StubBufSize += StubAlignment - EndAlignment; + return StubBufSize; +} + +uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, + unsigned Size) const { + uint64_t Result = 0; + if (IsTargetLittleEndian) { + Src += Size - 1; + while (Size--) + Result = (Result << 8) | *Src--; + } else + while (Size--) + Result = (Result << 8) | *Src++; + + return Result; +} + +void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, + unsigned Size) const { + if (IsTargetLittleEndian) { + while (Size--) { + *Dst++ = Value & 0xFF; + Value >>= 8; + } + } else { + Dst += Size - 1; + while (Size--) { + *Dst-- = Value & 0xFF; + Value >>= 8; + } + } +} + +Expected<JITSymbolFlags> +RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { + return JITSymbolFlags::fromObjectSymbol(SR); +} + +Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, + CommonSymbolList &SymbolsToAllocate, + uint64_t CommonSize, + uint32_t CommonAlign) { + if (SymbolsToAllocate.empty()) + return Error::success(); + + // Allocate memory for the section + unsigned SectionID = Sections.size(); + uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, + "<common symbols>", false); + if (!Addr) + report_fatal_error("Unable to allocate memory for common symbols!"); + uint64_t Offset = 0; + Sections.push_back( + SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); + memset(Addr, 0, CommonSize); + + LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID + << " new addr: " << format("%p", Addr) + << " DataSize: " << CommonSize << "\n"); + + // Assign the address of each symbol + for (auto &Sym : SymbolsToAllocate) { + uint32_t Align = Sym.getAlignment(); + uint64_t Size = Sym.getCommonSize(); + StringRef Name; + if (auto NameOrErr = Sym.getName()) + Name = *NameOrErr; + else + return NameOrErr.takeError(); + if (Align) { + // This symbol has an alignment requirement. + uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); + Addr += AlignOffset; + Offset += AlignOffset; + } + auto JITSymFlags = getJITSymbolFlags(Sym); + + if (!JITSymFlags) + return JITSymFlags.takeError(); + + LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " + << format("%p", Addr) << "\n"); + GlobalSymbolTable[Name] = + SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); + Offset += Size; + Addr += Size; + } + + return Error::success(); +} + +Expected<unsigned> +RuntimeDyldImpl::emitSection(const ObjectFile &Obj, + const SectionRef &Section, + bool IsCode) { + StringRef data; + uint64_t Alignment64 = Section.getAlignment(); + + unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; + unsigned PaddingSize = 0; + unsigned StubBufSize = 0; + bool IsRequired = isRequiredForExecution(Section); + bool IsVirtual = Section.isVirtual(); + bool IsZeroInit = isZeroInit(Section); + bool IsReadOnly = isReadOnlyData(Section); + uint64_t DataSize = Section.getSize(); + + // An alignment of 0 (at least with ELF) is identical to an alignment of 1, + // while being more "polite". Other formats do not support 0-aligned sections + // anyway, so we should guarantee that the alignment is always at least 1. + Alignment = std::max(1u, Alignment); + + StringRef Name; + if (auto EC = Section.getName(Name)) + return errorCodeToError(EC); + + StubBufSize = computeSectionStubBufSize(Obj, Section); + + // The .eh_frame section (at least on Linux) needs an extra four bytes padded + // with zeroes added at the end. For MachO objects, this section has a + // slightly different name, so this won't have any effect for MachO objects. + if (Name == ".eh_frame") + PaddingSize = 4; + + uintptr_t Allocate; + unsigned SectionID = Sections.size(); + uint8_t *Addr; + const char *pData = nullptr; + + // If this section contains any bits (i.e. isn't a virtual or bss section), + // grab a reference to them. + if (!IsVirtual && !IsZeroInit) { + // In either case, set the location of the unrelocated section in memory, + // since we still process relocations for it even if we're not applying them. + if (Expected<StringRef> E = Section.getContents()) + data = *E; + else + return E.takeError(); + pData = data.data(); + } + + // If there are any stubs then the section alignment needs to be at least as + // high as stub alignment or padding calculations may by incorrect when the + // section is remapped. + if (StubBufSize != 0) { + Alignment = std::max(Alignment, getStubAlignment()); + PaddingSize += getStubAlignment() - 1; + } + + // Some sections, such as debug info, don't need to be loaded for execution. + // Process those only if explicitly requested. + if (IsRequired || ProcessAllSections) { + Allocate = DataSize + PaddingSize + StubBufSize; + if (!Allocate) + Allocate = 1; + Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, + Name) + : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, + Name, IsReadOnly); + if (!Addr) + report_fatal_error("Unable to allocate section memory!"); + + // Zero-initialize or copy the data from the image + if (IsZeroInit || IsVirtual) + memset(Addr, 0, DataSize); + else + memcpy(Addr, pData, DataSize); + + // Fill in any extra bytes we allocated for padding + if (PaddingSize != 0) { + memset(Addr + DataSize, 0, PaddingSize); + // Update the DataSize variable to include padding. + DataSize += PaddingSize; + + // Align DataSize to stub alignment if we have any stubs (PaddingSize will + // have been increased above to account for this). + if (StubBufSize > 0) + DataSize &= -(uint64_t)getStubAlignment(); + } + + LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " + << Name << " obj addr: " << format("%p", pData) + << " new addr: " << format("%p", Addr) << " DataSize: " + << DataSize << " StubBufSize: " << StubBufSize + << " Allocate: " << Allocate << "\n"); + } else { + // Even if we didn't load the section, we need to record an entry for it + // to handle later processing (and by 'handle' I mean don't do anything + // with these sections). + Allocate = 0; + Addr = nullptr; + LLVM_DEBUG( + dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name + << " obj addr: " << format("%p", data.data()) << " new addr: 0" + << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize + << " Allocate: " << Allocate << "\n"); + } + + Sections.push_back( + SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); + + // Debug info sections are linked as if their load address was zero + if (!IsRequired) + Sections.back().setLoadAddress(0); + + return SectionID; +} + +Expected<unsigned> +RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, + const SectionRef &Section, + bool IsCode, + ObjSectionToIDMap &LocalSections) { + + unsigned SectionID = 0; + ObjSectionToIDMap::iterator i = LocalSections.find(Section); + if (i != LocalSections.end()) + SectionID = i->second; + else { + if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) + SectionID = *SectionIDOrErr; + else + return SectionIDOrErr.takeError(); + LocalSections[Section] = SectionID; + } + return SectionID; +} + +void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, + unsigned SectionID) { + Relocations[SectionID].push_back(RE); +} + +void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, + StringRef SymbolName) { + // Relocation by symbol. If the symbol is found in the global symbol table, + // create an appropriate section relocation. Otherwise, add it to + // ExternalSymbolRelocations. + RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); + if (Loc == GlobalSymbolTable.end()) { + ExternalSymbolRelocations[SymbolName].push_back(RE); + } else { + // Copy the RE since we want to modify its addend. + RelocationEntry RECopy = RE; + const auto &SymInfo = Loc->second; + RECopy.Addend += SymInfo.getOffset(); + Relocations[SymInfo.getSectionID()].push_back(RECopy); + } +} + +uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, + unsigned AbiVariant) { + if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { + // This stub has to be able to access the full address space, + // since symbol lookup won't necessarily find a handy, in-range, + // PLT stub for functions which could be anywhere. + // Stub can use ip0 (== x16) to calculate address + writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> + writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> + writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> + writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> + writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 + + return Addr; + } else if (Arch == Triple::arm || Arch == Triple::armeb) { + // TODO: There is only ARM far stub now. We should add the Thumb stub, + // and stubs for branches Thumb - ARM and ARM - Thumb. + writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] + return Addr + 4; + } else if (IsMipsO32ABI || IsMipsN32ABI) { + // 0: 3c190000 lui t9,%hi(addr). + // 4: 27390000 addiu t9,t9,%lo(addr). + // 8: 03200008 jr t9. + // c: 00000000 nop. + const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; + const unsigned NopInstr = 0x0; + unsigned JrT9Instr = 0x03200008; + if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || + (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) + JrT9Instr = 0x03200009; + + writeBytesUnaligned(LuiT9Instr, Addr, 4); + writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); + writeBytesUnaligned(JrT9Instr, Addr + 8, 4); + writeBytesUnaligned(NopInstr, Addr + 12, 4); + return Addr; + } else if (IsMipsN64ABI) { + // 0: 3c190000 lui t9,%highest(addr). + // 4: 67390000 daddiu t9,t9,%higher(addr). + // 8: 0019CC38 dsll t9,t9,16. + // c: 67390000 daddiu t9,t9,%hi(addr). + // 10: 0019CC38 dsll t9,t9,16. + // 14: 67390000 daddiu t9,t9,%lo(addr). + // 18: 03200008 jr t9. + // 1c: 00000000 nop. + const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, + DsllT9Instr = 0x19CC38; + const unsigned NopInstr = 0x0; + unsigned JrT9Instr = 0x03200008; + if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) + JrT9Instr = 0x03200009; + + writeBytesUnaligned(LuiT9Instr, Addr, 4); + writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); + writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); + writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); + writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); + writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); + writeBytesUnaligned(JrT9Instr, Addr + 24, 4); + writeBytesUnaligned(NopInstr, Addr + 28, 4); + return Addr; + } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { + // Depending on which version of the ELF ABI is in use, we need to + // generate one of two variants of the stub. They both start with + // the same sequence to load the target address into r12. + writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) + writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) + writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 + writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) + writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) + if (AbiVariant == 2) { + // PowerPC64 stub ELFv2 ABI: The address points to the function itself. + // The address is already in r12 as required by the ABI. Branch to it. + writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) + writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 + writeInt32BE(Addr+28, 0x4E800420); // bctr + } else { + // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. + // Load the function address on r11 and sets it to control register. Also + // loads the function TOC in r2 and environment pointer to r11. + writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) + writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) + writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) + writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 + writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) + writeInt32BE(Addr+40, 0x4E800420); // bctr + } + return Addr; + } else if (Arch == Triple::systemz) { + writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 + writeInt16BE(Addr+2, 0x0000); + writeInt16BE(Addr+4, 0x0004); + writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 + // 8-byte address stored at Addr + 8 + return Addr; + } else if (Arch == Triple::x86_64) { + *Addr = 0xFF; // jmp + *(Addr+1) = 0x25; // rip + // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 + } else if (Arch == Triple::x86) { + *Addr = 0xE9; // 32-bit pc-relative jump. + } + return Addr; +} + +// Assign an address to a symbol name and resolve all the relocations +// associated with it. +void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, + uint64_t Addr) { + // The address to use for relocation resolution is not + // the address of the local section buffer. We must be doing + // a remote execution environment of some sort. Relocations can't + // be applied until all the sections have been moved. The client must + // trigger this with a call to MCJIT::finalize() or + // RuntimeDyld::resolveRelocations(). + // + // Addr is a uint64_t because we can't assume the pointer width + // of the target is the same as that of the host. Just use a generic + // "big enough" type. + LLVM_DEBUG( + dbgs() << "Reassigning address for section " << SectionID << " (" + << Sections[SectionID].getName() << "): " + << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) + << " -> " << format("0x%016" PRIx64, Addr) << "\n"); + Sections[SectionID].setLoadAddress(Addr); +} + +void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, + uint64_t Value) { + for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { + const RelocationEntry &RE = Relocs[i]; + // Ignore relocations for sections that were not loaded + if (Sections[RE.SectionID].getAddress() == nullptr) + continue; + resolveRelocation(RE, Value); + } +} + +void RuntimeDyldImpl::applyExternalSymbolRelocations( + const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { + while (!ExternalSymbolRelocations.empty()) { + + StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); + + StringRef Name = i->first(); + if (Name.size() == 0) { + // This is an absolute symbol, use an address of zero. + LLVM_DEBUG(dbgs() << "Resolving absolute relocations." + << "\n"); + RelocationList &Relocs = i->second; + resolveRelocationList(Relocs, 0); + } else { + uint64_t Addr = 0; + JITSymbolFlags Flags; + RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); + if (Loc == GlobalSymbolTable.end()) { + auto RRI = ExternalSymbolMap.find(Name); + assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); + Addr = RRI->second.getAddress(); + Flags = RRI->second.getFlags(); + // The call to getSymbolAddress may have caused additional modules to + // be loaded, which may have added new entries to the + // ExternalSymbolRelocations map. Consquently, we need to update our + // iterator. This is also why retrieval of the relocation list + // associated with this symbol is deferred until below this point. + // New entries may have been added to the relocation list. + i = ExternalSymbolRelocations.find(Name); + } else { + // We found the symbol in our global table. It was probably in a + // Module that we loaded previously. + const auto &SymInfo = Loc->second; + Addr = getSectionLoadAddress(SymInfo.getSectionID()) + + SymInfo.getOffset(); + Flags = SymInfo.getFlags(); + } + + // FIXME: Implement error handling that doesn't kill the host program! + if (!Addr) + report_fatal_error("Program used external function '" + Name + + "' which could not be resolved!"); + + // If Resolver returned UINT64_MAX, the client wants to handle this symbol + // manually and we shouldn't resolve its relocations. + if (Addr != UINT64_MAX) { + + // Tweak the address based on the symbol flags if necessary. + // For example, this is used by RuntimeDyldMachOARM to toggle the low bit + // if the target symbol is Thumb. + Addr = modifyAddressBasedOnFlags(Addr, Flags); + + LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" + << format("0x%lx", Addr) << "\n"); + // This list may have been updated when we called getSymbolAddress, so + // don't change this code to get the list earlier. + RelocationList &Relocs = i->second; + resolveRelocationList(Relocs, Addr); + } + } + + ExternalSymbolRelocations.erase(i); + } +} + +Error RuntimeDyldImpl::resolveExternalSymbols() { + StringMap<JITEvaluatedSymbol> ExternalSymbolMap; + + // Resolution can trigger emission of more symbols, so iterate until + // we've resolved *everything*. + { + JITSymbolResolver::LookupSet ResolvedSymbols; + + while (true) { + JITSymbolResolver::LookupSet NewSymbols; + + for (auto &RelocKV : ExternalSymbolRelocations) { + StringRef Name = RelocKV.first(); + if (!Name.empty() && !GlobalSymbolTable.count(Name) && + !ResolvedSymbols.count(Name)) + NewSymbols.insert(Name); + } + + if (NewSymbols.empty()) + break; + +#ifdef _MSC_VER + using ExpectedLookupResult = + MSVCPExpected<JITSymbolResolver::LookupResult>; +#else + using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; +#endif + + auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); + auto NewSymbolsF = NewSymbolsP->get_future(); + Resolver.lookup(NewSymbols, + [=](Expected<JITSymbolResolver::LookupResult> Result) { + NewSymbolsP->set_value(std::move(Result)); + }); + + auto NewResolverResults = NewSymbolsF.get(); + + if (!NewResolverResults) + return NewResolverResults.takeError(); + + assert(NewResolverResults->size() == NewSymbols.size() && + "Should have errored on unresolved symbols"); + + for (auto &RRKV : *NewResolverResults) { + assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); + ExternalSymbolMap.insert(RRKV); + ResolvedSymbols.insert(RRKV.first); + } + } + } + + applyExternalSymbolRelocations(ExternalSymbolMap); + + return Error::success(); +} + +void RuntimeDyldImpl::finalizeAsync( + std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted, + std::unique_ptr<MemoryBuffer> UnderlyingBuffer) { + + // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have + // c++14. + auto SharedUnderlyingBuffer = + std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer)); + auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); + auto PostResolveContinuation = + [SharedThis, OnEmitted, SharedUnderlyingBuffer]( + Expected<JITSymbolResolver::LookupResult> Result) { + if (!Result) { + OnEmitted(Result.takeError()); + return; + } + + /// Copy the result into a StringMap, where the keys are held by value. + StringMap<JITEvaluatedSymbol> Resolved; + for (auto &KV : *Result) + Resolved[KV.first] = KV.second; + + SharedThis->applyExternalSymbolRelocations(Resolved); + SharedThis->resolveLocalRelocations(); + SharedThis->registerEHFrames(); + std::string ErrMsg; + if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) + OnEmitted(make_error<StringError>(std::move(ErrMsg), + inconvertibleErrorCode())); + else + OnEmitted(Error::success()); + }; + + JITSymbolResolver::LookupSet Symbols; + + for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { + StringRef Name = RelocKV.first(); + assert(!Name.empty() && "Symbol has no name?"); + assert(!SharedThis->GlobalSymbolTable.count(Name) && + "Name already processed. RuntimeDyld instances can not be re-used " + "when finalizing with finalizeAsync."); + Symbols.insert(Name); + } + + if (!Symbols.empty()) { + SharedThis->Resolver.lookup(Symbols, PostResolveContinuation); + } else + PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); +} + +//===----------------------------------------------------------------------===// +// RuntimeDyld class implementation + +uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( + const object::SectionRef &Sec) const { + + auto I = ObjSecToIDMap.find(Sec); + if (I != ObjSecToIDMap.end()) + return RTDyld.Sections[I->second].getLoadAddress(); + + return 0; +} + +void RuntimeDyld::MemoryManager::anchor() {} +void JITSymbolResolver::anchor() {} +void LegacyJITSymbolResolver::anchor() {} + +RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, + JITSymbolResolver &Resolver) + : MemMgr(MemMgr), Resolver(Resolver) { + // FIXME: There's a potential issue lurking here if a single instance of + // RuntimeDyld is used to load multiple objects. The current implementation + // associates a single memory manager with a RuntimeDyld instance. Even + // though the public class spawns a new 'impl' instance for each load, + // they share a single memory manager. This can become a problem when page + // permissions are applied. + Dyld = nullptr; + ProcessAllSections = false; +} + +RuntimeDyld::~RuntimeDyld() {} + +static std::unique_ptr<RuntimeDyldCOFF> +createRuntimeDyldCOFF( + Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, + JITSymbolResolver &Resolver, bool ProcessAllSections, + RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { + std::unique_ptr<RuntimeDyldCOFF> Dyld = + RuntimeDyldCOFF::create(Arch, MM, Resolver); + Dyld->setProcessAllSections(ProcessAllSections); + Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); + return Dyld; +} + +static std::unique_ptr<RuntimeDyldELF> +createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, + JITSymbolResolver &Resolver, bool ProcessAllSections, + RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { + std::unique_ptr<RuntimeDyldELF> Dyld = + RuntimeDyldELF::create(Arch, MM, Resolver); + Dyld->setProcessAllSections(ProcessAllSections); + Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); + return Dyld; +} + +static std::unique_ptr<RuntimeDyldMachO> +createRuntimeDyldMachO( + Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, + JITSymbolResolver &Resolver, + bool ProcessAllSections, + RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { + std::unique_ptr<RuntimeDyldMachO> Dyld = + RuntimeDyldMachO::create(Arch, MM, Resolver); + Dyld->setProcessAllSections(ProcessAllSections); + Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); + return Dyld; +} + +std::unique_ptr<RuntimeDyld::LoadedObjectInfo> +RuntimeDyld::loadObject(const ObjectFile &Obj) { + if (!Dyld) { + if (Obj.isELF()) + Dyld = + createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), + MemMgr, Resolver, ProcessAllSections, + std::move(NotifyStubEmitted)); + else if (Obj.isMachO()) + Dyld = createRuntimeDyldMachO( + static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, + ProcessAllSections, std::move(NotifyStubEmitted)); + else if (Obj.isCOFF()) + Dyld = createRuntimeDyldCOFF( + static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, + ProcessAllSections, std::move(NotifyStubEmitted)); + else + report_fatal_error("Incompatible object format!"); + } + + if (!Dyld->isCompatibleFile(Obj)) + report_fatal_error("Incompatible object format!"); + + auto LoadedObjInfo = Dyld->loadObject(Obj); + MemMgr.notifyObjectLoaded(*this, Obj); + return LoadedObjInfo; +} + +void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { + if (!Dyld) + return nullptr; + return Dyld->getSymbolLocalAddress(Name); +} + +unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { + assert(Dyld && "No RuntimeDyld instance attached"); + return Dyld->getSymbolSectionID(Name); +} + +JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { + if (!Dyld) + return nullptr; + return Dyld->getSymbol(Name); +} + +std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { + if (!Dyld) + return std::map<StringRef, JITEvaluatedSymbol>(); + return Dyld->getSymbolTable(); +} + +void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } + +void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { + Dyld->reassignSectionAddress(SectionID, Addr); +} + +void RuntimeDyld::mapSectionAddress(const void *LocalAddress, + uint64_t TargetAddress) { + Dyld->mapSectionAddress(LocalAddress, TargetAddress); +} + +bool RuntimeDyld::hasError() { return Dyld->hasError(); } + +StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } + +void RuntimeDyld::finalizeWithMemoryManagerLocking() { + bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; + MemMgr.FinalizationLocked = true; + resolveRelocations(); + registerEHFrames(); + if (!MemoryFinalizationLocked) { + MemMgr.finalizeMemory(); + MemMgr.FinalizationLocked = false; + } +} + +StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { + assert(Dyld && "No Dyld instance attached"); + return Dyld->getSectionContent(SectionID); +} + +uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { + assert(Dyld && "No Dyld instance attached"); + return Dyld->getSectionLoadAddress(SectionID); +} + +void RuntimeDyld::registerEHFrames() { + if (Dyld) + Dyld->registerEHFrames(); +} + +void RuntimeDyld::deregisterEHFrames() { + if (Dyld) + Dyld->deregisterEHFrames(); +} +// FIXME: Kill this with fire once we have a new JIT linker: this is only here +// so that we can re-use RuntimeDyld's implementation without twisting the +// interface any further for ORC's purposes. +void jitLinkForORC(object::ObjectFile &Obj, + std::unique_ptr<MemoryBuffer> UnderlyingBuffer, + RuntimeDyld::MemoryManager &MemMgr, + JITSymbolResolver &Resolver, bool ProcessAllSections, + std::function<Error( + std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj, + std::map<StringRef, JITEvaluatedSymbol>)> + OnLoaded, + std::function<void(Error)> OnEmitted) { + + RuntimeDyld RTDyld(MemMgr, Resolver); + RTDyld.setProcessAllSections(ProcessAllSections); + + auto Info = RTDyld.loadObject(Obj); + + if (RTDyld.hasError()) { + OnEmitted(make_error<StringError>(RTDyld.getErrorString(), + inconvertibleErrorCode())); + return; + } + + if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable())) + OnEmitted(std::move(Err)); + + RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), + std::move(UnderlyingBuffer)); +} + +} // end namespace llvm |
