summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Linker/IRMover.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Linker/IRMover.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Linker/IRMover.cpp1543
1 files changed, 1543 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Linker/IRMover.cpp b/contrib/llvm-project/llvm/lib/Linker/IRMover.cpp
new file mode 100644
index 000000000000..37515d93ed50
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Linker/IRMover.cpp
@@ -0,0 +1,1543 @@
+//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Linker/IRMover.h"
+#include "LinkDiagnosticInfo.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+#include "llvm/IR/GVMaterializer.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/TypeFinder.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <utility>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// TypeMap implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class TypeMapTy : public ValueMapTypeRemapper {
+ /// This is a mapping from a source type to a destination type to use.
+ DenseMap<Type *, Type *> MappedTypes;
+
+ /// When checking to see if two subgraphs are isomorphic, we speculatively
+ /// add types to MappedTypes, but keep track of them here in case we need to
+ /// roll back.
+ SmallVector<Type *, 16> SpeculativeTypes;
+
+ SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
+
+ /// This is a list of non-opaque structs in the source module that are mapped
+ /// to an opaque struct in the destination module.
+ SmallVector<StructType *, 16> SrcDefinitionsToResolve;
+
+ /// This is the set of opaque types in the destination modules who are
+ /// getting a body from the source module.
+ SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
+
+public:
+ TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
+ : DstStructTypesSet(DstStructTypesSet) {}
+
+ IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
+ /// Indicate that the specified type in the destination module is conceptually
+ /// equivalent to the specified type in the source module.
+ void addTypeMapping(Type *DstTy, Type *SrcTy);
+
+ /// Produce a body for an opaque type in the dest module from a type
+ /// definition in the source module.
+ void linkDefinedTypeBodies();
+
+ /// Return the mapped type to use for the specified input type from the
+ /// source module.
+ Type *get(Type *SrcTy);
+ Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
+
+ void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
+
+ FunctionType *get(FunctionType *T) {
+ return cast<FunctionType>(get((Type *)T));
+ }
+
+private:
+ Type *remapType(Type *SrcTy) override { return get(SrcTy); }
+
+ bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
+};
+}
+
+void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
+ assert(SpeculativeTypes.empty());
+ assert(SpeculativeDstOpaqueTypes.empty());
+
+ // Check to see if these types are recursively isomorphic and establish a
+ // mapping between them if so.
+ if (!areTypesIsomorphic(DstTy, SrcTy)) {
+ // Oops, they aren't isomorphic. Just discard this request by rolling out
+ // any speculative mappings we've established.
+ for (Type *Ty : SpeculativeTypes)
+ MappedTypes.erase(Ty);
+
+ SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
+ SpeculativeDstOpaqueTypes.size());
+ for (StructType *Ty : SpeculativeDstOpaqueTypes)
+ DstResolvedOpaqueTypes.erase(Ty);
+ } else {
+ // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
+ // and all its descendants to lower amount of renaming in LLVM context
+ // Renaming occurs because we load all source modules to the same context
+ // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
+ // As a result we may get several different types in the destination
+ // module, which are in fact the same.
+ for (Type *Ty : SpeculativeTypes)
+ if (auto *STy = dyn_cast<StructType>(Ty))
+ if (STy->hasName())
+ STy->setName("");
+ }
+ SpeculativeTypes.clear();
+ SpeculativeDstOpaqueTypes.clear();
+}
+
+/// Recursively walk this pair of types, returning true if they are isomorphic,
+/// false if they are not.
+bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
+ // Two types with differing kinds are clearly not isomorphic.
+ if (DstTy->getTypeID() != SrcTy->getTypeID())
+ return false;
+
+ // If we have an entry in the MappedTypes table, then we have our answer.
+ Type *&Entry = MappedTypes[SrcTy];
+ if (Entry)
+ return Entry == DstTy;
+
+ // Two identical types are clearly isomorphic. Remember this
+ // non-speculatively.
+ if (DstTy == SrcTy) {
+ Entry = DstTy;
+ return true;
+ }
+
+ // Okay, we have two types with identical kinds that we haven't seen before.
+
+ // If this is an opaque struct type, special case it.
+ if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
+ // Mapping an opaque type to any struct, just keep the dest struct.
+ if (SSTy->isOpaque()) {
+ Entry = DstTy;
+ SpeculativeTypes.push_back(SrcTy);
+ return true;
+ }
+
+ // Mapping a non-opaque source type to an opaque dest. If this is the first
+ // type that we're mapping onto this destination type then we succeed. Keep
+ // the dest, but fill it in later. If this is the second (different) type
+ // that we're trying to map onto the same opaque type then we fail.
+ if (cast<StructType>(DstTy)->isOpaque()) {
+ // We can only map one source type onto the opaque destination type.
+ if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
+ return false;
+ SrcDefinitionsToResolve.push_back(SSTy);
+ SpeculativeTypes.push_back(SrcTy);
+ SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
+ Entry = DstTy;
+ return true;
+ }
+ }
+
+ // If the number of subtypes disagree between the two types, then we fail.
+ if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
+ return false;
+
+ // Fail if any of the extra properties (e.g. array size) of the type disagree.
+ if (isa<IntegerType>(DstTy))
+ return false; // bitwidth disagrees.
+ if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
+ if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
+ return false;
+ } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
+ if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
+ return false;
+ } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
+ StructType *SSTy = cast<StructType>(SrcTy);
+ if (DSTy->isLiteral() != SSTy->isLiteral() ||
+ DSTy->isPacked() != SSTy->isPacked())
+ return false;
+ } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
+ if (DSeqTy->getNumElements() !=
+ cast<SequentialType>(SrcTy)->getNumElements())
+ return false;
+ }
+
+ // Otherwise, we speculate that these two types will line up and recursively
+ // check the subelements.
+ Entry = DstTy;
+ SpeculativeTypes.push_back(SrcTy);
+
+ for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
+ if (!areTypesIsomorphic(DstTy->getContainedType(I),
+ SrcTy->getContainedType(I)))
+ return false;
+
+ // If everything seems to have lined up, then everything is great.
+ return true;
+}
+
+void TypeMapTy::linkDefinedTypeBodies() {
+ SmallVector<Type *, 16> Elements;
+ for (StructType *SrcSTy : SrcDefinitionsToResolve) {
+ StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
+ assert(DstSTy->isOpaque());
+
+ // Map the body of the source type over to a new body for the dest type.
+ Elements.resize(SrcSTy->getNumElements());
+ for (unsigned I = 0, E = Elements.size(); I != E; ++I)
+ Elements[I] = get(SrcSTy->getElementType(I));
+
+ DstSTy->setBody(Elements, SrcSTy->isPacked());
+ DstStructTypesSet.switchToNonOpaque(DstSTy);
+ }
+ SrcDefinitionsToResolve.clear();
+ DstResolvedOpaqueTypes.clear();
+}
+
+void TypeMapTy::finishType(StructType *DTy, StructType *STy,
+ ArrayRef<Type *> ETypes) {
+ DTy->setBody(ETypes, STy->isPacked());
+
+ // Steal STy's name.
+ if (STy->hasName()) {
+ SmallString<16> TmpName = STy->getName();
+ STy->setName("");
+ DTy->setName(TmpName);
+ }
+
+ DstStructTypesSet.addNonOpaque(DTy);
+}
+
+Type *TypeMapTy::get(Type *Ty) {
+ SmallPtrSet<StructType *, 8> Visited;
+ return get(Ty, Visited);
+}
+
+Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
+ // If we already have an entry for this type, return it.
+ Type **Entry = &MappedTypes[Ty];
+ if (*Entry)
+ return *Entry;
+
+ // These are types that LLVM itself will unique.
+ bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
+
+ if (!IsUniqued) {
+ StructType *STy = cast<StructType>(Ty);
+ // This is actually a type from the destination module, this can be reached
+ // when this type is loaded in another module, added to DstStructTypesSet,
+ // and then we reach the same type in another module where it has not been
+ // added to MappedTypes. (PR37684)
+ if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
+ DstStructTypesSet.hasType(STy))
+ return *Entry = STy;
+
+#ifndef NDEBUG
+ for (auto &Pair : MappedTypes) {
+ assert(!(Pair.first != Ty && Pair.second == Ty) &&
+ "mapping to a source type");
+ }
+#endif
+
+ if (!Visited.insert(STy).second) {
+ StructType *DTy = StructType::create(Ty->getContext());
+ return *Entry = DTy;
+ }
+ }
+
+ // If this is not a recursive type, then just map all of the elements and
+ // then rebuild the type from inside out.
+ SmallVector<Type *, 4> ElementTypes;
+
+ // If there are no element types to map, then the type is itself. This is
+ // true for the anonymous {} struct, things like 'float', integers, etc.
+ if (Ty->getNumContainedTypes() == 0 && IsUniqued)
+ return *Entry = Ty;
+
+ // Remap all of the elements, keeping track of whether any of them change.
+ bool AnyChange = false;
+ ElementTypes.resize(Ty->getNumContainedTypes());
+ for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
+ ElementTypes[I] = get(Ty->getContainedType(I), Visited);
+ AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
+ }
+
+ // If we found our type while recursively processing stuff, just use it.
+ Entry = &MappedTypes[Ty];
+ if (*Entry) {
+ if (auto *DTy = dyn_cast<StructType>(*Entry)) {
+ if (DTy->isOpaque()) {
+ auto *STy = cast<StructType>(Ty);
+ finishType(DTy, STy, ElementTypes);
+ }
+ }
+ return *Entry;
+ }
+
+ // If all of the element types mapped directly over and the type is not
+ // a named struct, then the type is usable as-is.
+ if (!AnyChange && IsUniqued)
+ return *Entry = Ty;
+
+ // Otherwise, rebuild a modified type.
+ switch (Ty->getTypeID()) {
+ default:
+ llvm_unreachable("unknown derived type to remap");
+ case Type::ArrayTyID:
+ return *Entry = ArrayType::get(ElementTypes[0],
+ cast<ArrayType>(Ty)->getNumElements());
+ case Type::VectorTyID:
+ return *Entry = VectorType::get(ElementTypes[0],
+ cast<VectorType>(Ty)->getNumElements());
+ case Type::PointerTyID:
+ return *Entry = PointerType::get(ElementTypes[0],
+ cast<PointerType>(Ty)->getAddressSpace());
+ case Type::FunctionTyID:
+ return *Entry = FunctionType::get(ElementTypes[0],
+ makeArrayRef(ElementTypes).slice(1),
+ cast<FunctionType>(Ty)->isVarArg());
+ case Type::StructTyID: {
+ auto *STy = cast<StructType>(Ty);
+ bool IsPacked = STy->isPacked();
+ if (IsUniqued)
+ return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
+
+ // If the type is opaque, we can just use it directly.
+ if (STy->isOpaque()) {
+ DstStructTypesSet.addOpaque(STy);
+ return *Entry = Ty;
+ }
+
+ if (StructType *OldT =
+ DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
+ STy->setName("");
+ return *Entry = OldT;
+ }
+
+ if (!AnyChange) {
+ DstStructTypesSet.addNonOpaque(STy);
+ return *Entry = Ty;
+ }
+
+ StructType *DTy = StructType::create(Ty->getContext());
+ finishType(DTy, STy, ElementTypes);
+ return *Entry = DTy;
+ }
+ }
+}
+
+LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
+ const Twine &Msg)
+ : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
+void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
+
+//===----------------------------------------------------------------------===//
+// IRLinker implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class IRLinker;
+
+/// Creates prototypes for functions that are lazily linked on the fly. This
+/// speeds up linking for modules with many/ lazily linked functions of which
+/// few get used.
+class GlobalValueMaterializer final : public ValueMaterializer {
+ IRLinker &TheIRLinker;
+
+public:
+ GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
+ Value *materialize(Value *V) override;
+};
+
+class LocalValueMaterializer final : public ValueMaterializer {
+ IRLinker &TheIRLinker;
+
+public:
+ LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
+ Value *materialize(Value *V) override;
+};
+
+/// Type of the Metadata map in \a ValueToValueMapTy.
+typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
+
+/// This is responsible for keeping track of the state used for moving data
+/// from SrcM to DstM.
+class IRLinker {
+ Module &DstM;
+ std::unique_ptr<Module> SrcM;
+
+ /// See IRMover::move().
+ std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
+
+ TypeMapTy TypeMap;
+ GlobalValueMaterializer GValMaterializer;
+ LocalValueMaterializer LValMaterializer;
+
+ /// A metadata map that's shared between IRLinker instances.
+ MDMapT &SharedMDs;
+
+ /// Mapping of values from what they used to be in Src, to what they are now
+ /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
+ /// due to the use of Value handles which the Linker doesn't actually need,
+ /// but this allows us to reuse the ValueMapper code.
+ ValueToValueMapTy ValueMap;
+ ValueToValueMapTy AliasValueMap;
+
+ DenseSet<GlobalValue *> ValuesToLink;
+ std::vector<GlobalValue *> Worklist;
+ std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
+
+ void maybeAdd(GlobalValue *GV) {
+ if (ValuesToLink.insert(GV).second)
+ Worklist.push_back(GV);
+ }
+
+ /// Whether we are importing globals for ThinLTO, as opposed to linking the
+ /// source module. If this flag is set, it means that we can rely on some
+ /// other object file to define any non-GlobalValue entities defined by the
+ /// source module. This currently causes us to not link retained types in
+ /// debug info metadata and module inline asm.
+ bool IsPerformingImport;
+
+ /// Set to true when all global value body linking is complete (including
+ /// lazy linking). Used to prevent metadata linking from creating new
+ /// references.
+ bool DoneLinkingBodies = false;
+
+ /// The Error encountered during materialization. We use an Optional here to
+ /// avoid needing to manage an unconsumed success value.
+ Optional<Error> FoundError;
+ void setError(Error E) {
+ if (E)
+ FoundError = std::move(E);
+ }
+
+ /// Most of the errors produced by this module are inconvertible StringErrors.
+ /// This convenience function lets us return one of those more easily.
+ Error stringErr(const Twine &T) {
+ return make_error<StringError>(T, inconvertibleErrorCode());
+ }
+
+ /// Entry point for mapping values and alternate context for mapping aliases.
+ ValueMapper Mapper;
+ unsigned AliasMCID;
+
+ /// Handles cloning of a global values from the source module into
+ /// the destination module, including setting the attributes and visibility.
+ GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
+
+ void emitWarning(const Twine &Message) {
+ SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
+ }
+
+ /// Given a global in the source module, return the global in the
+ /// destination module that is being linked to, if any.
+ GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
+ // If the source has no name it can't link. If it has local linkage,
+ // there is no name match-up going on.
+ if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
+ return nullptr;
+
+ // Otherwise see if we have a match in the destination module's symtab.
+ GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
+ if (!DGV)
+ return nullptr;
+
+ // If we found a global with the same name in the dest module, but it has
+ // internal linkage, we are really not doing any linkage here.
+ if (DGV->hasLocalLinkage())
+ return nullptr;
+
+ // Otherwise, we do in fact link to the destination global.
+ return DGV;
+ }
+
+ void computeTypeMapping();
+
+ Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
+ const GlobalVariable *SrcGV);
+
+ /// Given the GlobaValue \p SGV in the source module, and the matching
+ /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
+ /// into the destination module.
+ ///
+ /// Note this code may call the client-provided \p AddLazyFor.
+ bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
+ Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
+
+ Error linkModuleFlagsMetadata();
+
+ void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
+ Error linkFunctionBody(Function &Dst, Function &Src);
+ void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
+ Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
+
+ /// Replace all types in the source AttributeList with the
+ /// corresponding destination type.
+ AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
+
+ /// Functions that take care of cloning a specific global value type
+ /// into the destination module.
+ GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
+ Function *copyFunctionProto(const Function *SF);
+ GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
+
+ /// Perform "replace all uses with" operations. These work items need to be
+ /// performed as part of materialization, but we postpone them to happen after
+ /// materialization is done. The materializer called by ValueMapper is not
+ /// expected to delete constants, as ValueMapper is holding pointers to some
+ /// of them, but constant destruction may be indirectly triggered by RAUW.
+ /// Hence, the need to move this out of the materialization call chain.
+ void flushRAUWWorklist();
+
+ /// When importing for ThinLTO, prevent importing of types listed on
+ /// the DICompileUnit that we don't need a copy of in the importing
+ /// module.
+ void prepareCompileUnitsForImport();
+ void linkNamedMDNodes();
+
+public:
+ IRLinker(Module &DstM, MDMapT &SharedMDs,
+ IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
+ ArrayRef<GlobalValue *> ValuesToLink,
+ std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
+ bool IsPerformingImport)
+ : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
+ TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
+ SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
+ Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
+ &GValMaterializer),
+ AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
+ &LValMaterializer)) {
+ ValueMap.getMDMap() = std::move(SharedMDs);
+ for (GlobalValue *GV : ValuesToLink)
+ maybeAdd(GV);
+ if (IsPerformingImport)
+ prepareCompileUnitsForImport();
+ }
+ ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
+
+ Error run();
+ Value *materialize(Value *V, bool ForAlias);
+};
+}
+
+/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
+/// table. This is good for all clients except for us. Go through the trouble
+/// to force this back.
+static void forceRenaming(GlobalValue *GV, StringRef Name) {
+ // If the global doesn't force its name or if it already has the right name,
+ // there is nothing for us to do.
+ if (GV->hasLocalLinkage() || GV->getName() == Name)
+ return;
+
+ Module *M = GV->getParent();
+
+ // If there is a conflict, rename the conflict.
+ if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
+ GV->takeName(ConflictGV);
+ ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
+ assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
+ } else {
+ GV->setName(Name); // Force the name back
+ }
+}
+
+Value *GlobalValueMaterializer::materialize(Value *SGV) {
+ return TheIRLinker.materialize(SGV, false);
+}
+
+Value *LocalValueMaterializer::materialize(Value *SGV) {
+ return TheIRLinker.materialize(SGV, true);
+}
+
+Value *IRLinker::materialize(Value *V, bool ForAlias) {
+ auto *SGV = dyn_cast<GlobalValue>(V);
+ if (!SGV)
+ return nullptr;
+
+ Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
+ if (!NewProto) {
+ setError(NewProto.takeError());
+ return nullptr;
+ }
+ if (!*NewProto)
+ return nullptr;
+
+ GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
+ if (!New)
+ return *NewProto;
+
+ // If we already created the body, just return.
+ if (auto *F = dyn_cast<Function>(New)) {
+ if (!F->isDeclaration())
+ return New;
+ } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
+ if (V->hasInitializer() || V->hasAppendingLinkage())
+ return New;
+ } else {
+ auto *A = cast<GlobalAlias>(New);
+ if (A->getAliasee())
+ return New;
+ }
+
+ // When linking a global for an alias, it will always be linked. However we
+ // need to check if it was not already scheduled to satisfy a reference from a
+ // regular global value initializer. We know if it has been schedule if the
+ // "New" GlobalValue that is mapped here for the alias is the same as the one
+ // already mapped. If there is an entry in the ValueMap but the value is
+ // different, it means that the value already had a definition in the
+ // destination module (linkonce for instance), but we need a new definition
+ // for the alias ("New" will be different.
+ if (ForAlias && ValueMap.lookup(SGV) == New)
+ return New;
+
+ if (ForAlias || shouldLink(New, *SGV))
+ setError(linkGlobalValueBody(*New, *SGV));
+
+ return New;
+}
+
+/// Loop through the global variables in the src module and merge them into the
+/// dest module.
+GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
+ // No linking to be performed or linking from the source: simply create an
+ // identical version of the symbol over in the dest module... the
+ // initializer will be filled in later by LinkGlobalInits.
+ GlobalVariable *NewDGV =
+ new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
+ SGVar->isConstant(), GlobalValue::ExternalLinkage,
+ /*init*/ nullptr, SGVar->getName(),
+ /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
+ SGVar->getType()->getAddressSpace());
+ NewDGV->setAlignment(SGVar->getAlignment());
+ NewDGV->copyAttributesFrom(SGVar);
+ return NewDGV;
+}
+
+AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
+ for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
+ if (Attrs.hasAttribute(i, Attribute::ByVal)) {
+ Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType();
+ if (!Ty)
+ continue;
+
+ Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal);
+ Attrs = Attrs.addAttribute(
+ C, i, Attribute::getWithByValType(C, TypeMap.get(Ty)));
+ }
+ }
+ return Attrs;
+}
+
+/// Link the function in the source module into the destination module if
+/// needed, setting up mapping information.
+Function *IRLinker::copyFunctionProto(const Function *SF) {
+ // If there is no linkage to be performed or we are linking from the source,
+ // bring SF over.
+ auto *F =
+ Function::Create(TypeMap.get(SF->getFunctionType()),
+ GlobalValue::ExternalLinkage, SF->getName(), &DstM);
+ F->copyAttributesFrom(SF);
+ F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
+ return F;
+}
+
+/// Set up prototypes for any aliases that come over from the source module.
+GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
+ // If there is no linkage to be performed or we're linking from the source,
+ // bring over SGA.
+ auto *Ty = TypeMap.get(SGA->getValueType());
+ auto *GA =
+ GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
+ GlobalValue::ExternalLinkage, SGA->getName(), &DstM);
+ GA->copyAttributesFrom(SGA);
+ return GA;
+}
+
+GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
+ bool ForDefinition) {
+ GlobalValue *NewGV;
+ if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
+ NewGV = copyGlobalVariableProto(SGVar);
+ } else if (auto *SF = dyn_cast<Function>(SGV)) {
+ NewGV = copyFunctionProto(SF);
+ } else {
+ if (ForDefinition)
+ NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
+ else if (SGV->getValueType()->isFunctionTy())
+ NewGV =
+ Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
+ GlobalValue::ExternalLinkage, SGV->getName(), &DstM);
+ else
+ NewGV = new GlobalVariable(
+ DstM, TypeMap.get(SGV->getValueType()),
+ /*isConstant*/ false, GlobalValue::ExternalLinkage,
+ /*init*/ nullptr, SGV->getName(),
+ /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
+ SGV->getType()->getAddressSpace());
+ }
+
+ if (ForDefinition)
+ NewGV->setLinkage(SGV->getLinkage());
+ else if (SGV->hasExternalWeakLinkage())
+ NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
+
+ if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
+ // Metadata for global variables and function declarations is copied eagerly.
+ if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
+ NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
+ }
+
+ // Remove these copied constants in case this stays a declaration, since
+ // they point to the source module. If the def is linked the values will
+ // be mapped in during linkFunctionBody.
+ if (auto *NewF = dyn_cast<Function>(NewGV)) {
+ NewF->setPersonalityFn(nullptr);
+ NewF->setPrefixData(nullptr);
+ NewF->setPrologueData(nullptr);
+ }
+
+ return NewGV;
+}
+
+static StringRef getTypeNamePrefix(StringRef Name) {
+ size_t DotPos = Name.rfind('.');
+ return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
+ !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
+ ? Name
+ : Name.substr(0, DotPos);
+}
+
+/// Loop over all of the linked values to compute type mappings. For example,
+/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
+/// types 'Foo' but one got renamed when the module was loaded into the same
+/// LLVMContext.
+void IRLinker::computeTypeMapping() {
+ for (GlobalValue &SGV : SrcM->globals()) {
+ GlobalValue *DGV = getLinkedToGlobal(&SGV);
+ if (!DGV)
+ continue;
+
+ if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
+ continue;
+ }
+
+ // Unify the element type of appending arrays.
+ ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
+ ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
+ TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
+ }
+
+ for (GlobalValue &SGV : *SrcM)
+ if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
+
+ for (GlobalValue &SGV : SrcM->aliases())
+ if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
+
+ // Incorporate types by name, scanning all the types in the source module.
+ // At this point, the destination module may have a type "%foo = { i32 }" for
+ // example. When the source module got loaded into the same LLVMContext, if
+ // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
+ std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
+ for (StructType *ST : Types) {
+ if (!ST->hasName())
+ continue;
+
+ if (TypeMap.DstStructTypesSet.hasType(ST)) {
+ // This is actually a type from the destination module.
+ // getIdentifiedStructTypes() can have found it by walking debug info
+ // metadata nodes, some of which get linked by name when ODR Type Uniquing
+ // is enabled on the Context, from the source to the destination module.
+ continue;
+ }
+
+ auto STTypePrefix = getTypeNamePrefix(ST->getName());
+ if (STTypePrefix.size()== ST->getName().size())
+ continue;
+
+ // Check to see if the destination module has a struct with the prefix name.
+ StructType *DST = DstM.getTypeByName(STTypePrefix);
+ if (!DST)
+ continue;
+
+ // Don't use it if this actually came from the source module. They're in
+ // the same LLVMContext after all. Also don't use it unless the type is
+ // actually used in the destination module. This can happen in situations
+ // like this:
+ //
+ // Module A Module B
+ // -------- --------
+ // %Z = type { %A } %B = type { %C.1 }
+ // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
+ // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
+ // %C = type { i8* } %B.3 = type { %C.1 }
+ //
+ // When we link Module B with Module A, the '%B' in Module B is
+ // used. However, that would then use '%C.1'. But when we process '%C.1',
+ // we prefer to take the '%C' version. So we are then left with both
+ // '%C.1' and '%C' being used for the same types. This leads to some
+ // variables using one type and some using the other.
+ if (TypeMap.DstStructTypesSet.hasType(DST))
+ TypeMap.addTypeMapping(DST, ST);
+ }
+
+ // Now that we have discovered all of the type equivalences, get a body for
+ // any 'opaque' types in the dest module that are now resolved.
+ TypeMap.linkDefinedTypeBodies();
+}
+
+static void getArrayElements(const Constant *C,
+ SmallVectorImpl<Constant *> &Dest) {
+ unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
+
+ for (unsigned i = 0; i != NumElements; ++i)
+ Dest.push_back(C->getAggregateElement(i));
+}
+
+/// If there were any appending global variables, link them together now.
+Expected<Constant *>
+IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
+ const GlobalVariable *SrcGV) {
+ Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
+ ->getElementType();
+
+ // FIXME: This upgrade is done during linking to support the C API. Once the
+ // old form is deprecated, we should move this upgrade to
+ // llvm::UpgradeGlobalVariable() and simplify the logic here and in
+ // Mapper::mapAppendingVariable() in ValueMapper.cpp.
+ StringRef Name = SrcGV->getName();
+ bool IsNewStructor = false;
+ bool IsOldStructor = false;
+ if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
+ if (cast<StructType>(EltTy)->getNumElements() == 3)
+ IsNewStructor = true;
+ else
+ IsOldStructor = true;
+ }
+
+ PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
+ if (IsOldStructor) {
+ auto &ST = *cast<StructType>(EltTy);
+ Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
+ EltTy = StructType::get(SrcGV->getContext(), Tys, false);
+ }
+
+ uint64_t DstNumElements = 0;
+ if (DstGV) {
+ ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
+ DstNumElements = DstTy->getNumElements();
+
+ if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
+ return stringErr(
+ "Linking globals named '" + SrcGV->getName() +
+ "': can only link appending global with another appending "
+ "global!");
+
+ // Check to see that they two arrays agree on type.
+ if (EltTy != DstTy->getElementType())
+ return stringErr("Appending variables with different element types!");
+ if (DstGV->isConstant() != SrcGV->isConstant())
+ return stringErr("Appending variables linked with different const'ness!");
+
+ if (DstGV->getAlignment() != SrcGV->getAlignment())
+ return stringErr(
+ "Appending variables with different alignment need to be linked!");
+
+ if (DstGV->getVisibility() != SrcGV->getVisibility())
+ return stringErr(
+ "Appending variables with different visibility need to be linked!");
+
+ if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
+ return stringErr(
+ "Appending variables with different unnamed_addr need to be linked!");
+
+ if (DstGV->getSection() != SrcGV->getSection())
+ return stringErr(
+ "Appending variables with different section name need to be linked!");
+ }
+
+ SmallVector<Constant *, 16> SrcElements;
+ getArrayElements(SrcGV->getInitializer(), SrcElements);
+
+ if (IsNewStructor) {
+ auto It = remove_if(SrcElements, [this](Constant *E) {
+ auto *Key =
+ dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
+ if (!Key)
+ return false;
+ GlobalValue *DGV = getLinkedToGlobal(Key);
+ return !shouldLink(DGV, *Key);
+ });
+ SrcElements.erase(It, SrcElements.end());
+ }
+ uint64_t NewSize = DstNumElements + SrcElements.size();
+ ArrayType *NewType = ArrayType::get(EltTy, NewSize);
+
+ // Create the new global variable.
+ GlobalVariable *NG = new GlobalVariable(
+ DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
+ /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
+ SrcGV->getType()->getAddressSpace());
+
+ NG->copyAttributesFrom(SrcGV);
+ forceRenaming(NG, SrcGV->getName());
+
+ Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
+
+ Mapper.scheduleMapAppendingVariable(*NG,
+ DstGV ? DstGV->getInitializer() : nullptr,
+ IsOldStructor, SrcElements);
+
+ // Replace any uses of the two global variables with uses of the new
+ // global.
+ if (DstGV) {
+ RAUWWorklist.push_back(
+ std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
+ }
+
+ return Ret;
+}
+
+bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
+ if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
+ return true;
+
+ if (DGV && !DGV->isDeclarationForLinker())
+ return false;
+
+ if (SGV.isDeclaration() || DoneLinkingBodies)
+ return false;
+
+ // Callback to the client to give a chance to lazily add the Global to the
+ // list of value to link.
+ bool LazilyAdded = false;
+ AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
+ maybeAdd(&GV);
+ LazilyAdded = true;
+ });
+ return LazilyAdded;
+}
+
+Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
+ bool ForAlias) {
+ GlobalValue *DGV = getLinkedToGlobal(SGV);
+
+ bool ShouldLink = shouldLink(DGV, *SGV);
+
+ // just missing from map
+ if (ShouldLink) {
+ auto I = ValueMap.find(SGV);
+ if (I != ValueMap.end())
+ return cast<Constant>(I->second);
+
+ I = AliasValueMap.find(SGV);
+ if (I != AliasValueMap.end())
+ return cast<Constant>(I->second);
+ }
+
+ if (!ShouldLink && ForAlias)
+ DGV = nullptr;
+
+ // Handle the ultra special appending linkage case first.
+ assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
+ if (SGV->hasAppendingLinkage())
+ return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
+ cast<GlobalVariable>(SGV));
+
+ GlobalValue *NewGV;
+ if (DGV && !ShouldLink) {
+ NewGV = DGV;
+ } else {
+ // If we are done linking global value bodies (i.e. we are performing
+ // metadata linking), don't link in the global value due to this
+ // reference, simply map it to null.
+ if (DoneLinkingBodies)
+ return nullptr;
+
+ NewGV = copyGlobalValueProto(SGV, ShouldLink || ForAlias);
+ if (ShouldLink || !ForAlias)
+ forceRenaming(NewGV, SGV->getName());
+ }
+
+ // Overloaded intrinsics have overloaded types names as part of their
+ // names. If we renamed overloaded types we should rename the intrinsic
+ // as well.
+ if (Function *F = dyn_cast<Function>(NewGV))
+ if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
+ NewGV = Remangled.getValue();
+
+ if (ShouldLink || ForAlias) {
+ if (const Comdat *SC = SGV->getComdat()) {
+ if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
+ Comdat *DC = DstM.getOrInsertComdat(SC->getName());
+ DC->setSelectionKind(SC->getSelectionKind());
+ GO->setComdat(DC);
+ }
+ }
+ }
+
+ if (!ShouldLink && ForAlias)
+ NewGV->setLinkage(GlobalValue::InternalLinkage);
+
+ Constant *C = NewGV;
+ // Only create a bitcast if necessary. In particular, with
+ // DebugTypeODRUniquing we may reach metadata in the destination module
+ // containing a GV from the source module, in which case SGV will be
+ // the same as DGV and NewGV, and TypeMap.get() will assert since it
+ // assumes it is being invoked on a type in the source module.
+ if (DGV && NewGV != SGV) {
+ C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ NewGV, TypeMap.get(SGV->getType()));
+ }
+
+ if (DGV && NewGV != DGV) {
+ // Schedule "replace all uses with" to happen after materializing is
+ // done. It is not safe to do it now, since ValueMapper may be holding
+ // pointers to constants that will get deleted if RAUW runs.
+ RAUWWorklist.push_back(std::make_pair(
+ DGV,
+ ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
+ }
+
+ return C;
+}
+
+/// Update the initializers in the Dest module now that all globals that may be
+/// referenced are in Dest.
+void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
+ // Figure out what the initializer looks like in the dest module.
+ Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
+}
+
+/// Copy the source function over into the dest function and fix up references
+/// to values. At this point we know that Dest is an external function, and
+/// that Src is not.
+Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
+ assert(Dst.isDeclaration() && !Src.isDeclaration());
+
+ // Materialize if needed.
+ if (Error Err = Src.materialize())
+ return Err;
+
+ // Link in the operands without remapping.
+ if (Src.hasPrefixData())
+ Dst.setPrefixData(Src.getPrefixData());
+ if (Src.hasPrologueData())
+ Dst.setPrologueData(Src.getPrologueData());
+ if (Src.hasPersonalityFn())
+ Dst.setPersonalityFn(Src.getPersonalityFn());
+
+ // Copy over the metadata attachments without remapping.
+ Dst.copyMetadata(&Src, 0);
+
+ // Steal arguments and splice the body of Src into Dst.
+ Dst.stealArgumentListFrom(Src);
+ Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
+
+ // Everything has been moved over. Remap it.
+ Mapper.scheduleRemapFunction(Dst);
+ return Error::success();
+}
+
+void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
+ Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
+}
+
+Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
+ if (auto *F = dyn_cast<Function>(&Src))
+ return linkFunctionBody(cast<Function>(Dst), *F);
+ if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
+ linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
+ return Error::success();
+ }
+ linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
+ return Error::success();
+}
+
+void IRLinker::flushRAUWWorklist() {
+ for (const auto Elem : RAUWWorklist) {
+ GlobalValue *Old;
+ Value *New;
+ std::tie(Old, New) = Elem;
+
+ Old->replaceAllUsesWith(New);
+ Old->eraseFromParent();
+ }
+ RAUWWorklist.clear();
+}
+
+void IRLinker::prepareCompileUnitsForImport() {
+ NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
+ if (!SrcCompileUnits)
+ return;
+ // When importing for ThinLTO, prevent importing of types listed on
+ // the DICompileUnit that we don't need a copy of in the importing
+ // module. They will be emitted by the originating module.
+ for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
+ auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
+ assert(CU && "Expected valid compile unit");
+ // Enums, macros, and retained types don't need to be listed on the
+ // imported DICompileUnit. This means they will only be imported
+ // if reached from the mapped IR. Do this by setting their value map
+ // entries to nullptr, which will automatically prevent their importing
+ // when reached from the DICompileUnit during metadata mapping.
+ ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
+ ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
+ ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
+ // The original definition (or at least its debug info - if the variable is
+ // internalized an optimized away) will remain in the source module, so
+ // there's no need to import them.
+ // If LLVM ever does more advanced optimizations on global variables
+ // (removing/localizing write operations, for instance) that can track
+ // through debug info, this decision may need to be revisited - but do so
+ // with care when it comes to debug info size. Emitting small CUs containing
+ // only a few imported entities into every destination module may be very
+ // size inefficient.
+ ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
+
+ // Imported entities only need to be mapped in if they have local
+ // scope, as those might correspond to an imported entity inside a
+ // function being imported (any locally scoped imported entities that
+ // don't end up referenced by an imported function will not be emitted
+ // into the object). Imported entities not in a local scope
+ // (e.g. on the namespace) only need to be emitted by the originating
+ // module. Create a list of the locally scoped imported entities, and
+ // replace the source CUs imported entity list with the new list, so
+ // only those are mapped in.
+ // FIXME: Locally-scoped imported entities could be moved to the
+ // functions they are local to instead of listing them on the CU, and
+ // we would naturally only link in those needed by function importing.
+ SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
+ bool ReplaceImportedEntities = false;
+ for (auto *IE : CU->getImportedEntities()) {
+ DIScope *Scope = IE->getScope();
+ assert(Scope && "Invalid Scope encoding!");
+ if (isa<DILocalScope>(Scope))
+ AllImportedModules.emplace_back(IE);
+ else
+ ReplaceImportedEntities = true;
+ }
+ if (ReplaceImportedEntities) {
+ if (!AllImportedModules.empty())
+ CU->replaceImportedEntities(MDTuple::get(
+ CU->getContext(),
+ SmallVector<Metadata *, 16>(AllImportedModules.begin(),
+ AllImportedModules.end())));
+ else
+ // If there were no local scope imported entities, we can map
+ // the whole list to nullptr.
+ ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
+ }
+ }
+}
+
+/// Insert all of the named MDNodes in Src into the Dest module.
+void IRLinker::linkNamedMDNodes() {
+ const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
+ for (const NamedMDNode &NMD : SrcM->named_metadata()) {
+ // Don't link module flags here. Do them separately.
+ if (&NMD == SrcModFlags)
+ continue;
+ NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
+ // Add Src elements into Dest node.
+ for (const MDNode *Op : NMD.operands())
+ DestNMD->addOperand(Mapper.mapMDNode(*Op));
+ }
+}
+
+/// Merge the linker flags in Src into the Dest module.
+Error IRLinker::linkModuleFlagsMetadata() {
+ // If the source module has no module flags, we are done.
+ const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
+ if (!SrcModFlags)
+ return Error::success();
+
+ // If the destination module doesn't have module flags yet, then just copy
+ // over the source module's flags.
+ NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
+ if (DstModFlags->getNumOperands() == 0) {
+ for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
+ DstModFlags->addOperand(SrcModFlags->getOperand(I));
+
+ return Error::success();
+ }
+
+ // First build a map of the existing module flags and requirements.
+ DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
+ SmallSetVector<MDNode *, 16> Requirements;
+ for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
+ MDNode *Op = DstModFlags->getOperand(I);
+ ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
+ MDString *ID = cast<MDString>(Op->getOperand(1));
+
+ if (Behavior->getZExtValue() == Module::Require) {
+ Requirements.insert(cast<MDNode>(Op->getOperand(2)));
+ } else {
+ Flags[ID] = std::make_pair(Op, I);
+ }
+ }
+
+ // Merge in the flags from the source module, and also collect its set of
+ // requirements.
+ for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
+ MDNode *SrcOp = SrcModFlags->getOperand(I);
+ ConstantInt *SrcBehavior =
+ mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
+ MDString *ID = cast<MDString>(SrcOp->getOperand(1));
+ MDNode *DstOp;
+ unsigned DstIndex;
+ std::tie(DstOp, DstIndex) = Flags.lookup(ID);
+ unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
+
+ // If this is a requirement, add it and continue.
+ if (SrcBehaviorValue == Module::Require) {
+ // If the destination module does not already have this requirement, add
+ // it.
+ if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
+ DstModFlags->addOperand(SrcOp);
+ }
+ continue;
+ }
+
+ // If there is no existing flag with this ID, just add it.
+ if (!DstOp) {
+ Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
+ DstModFlags->addOperand(SrcOp);
+ continue;
+ }
+
+ // Otherwise, perform a merge.
+ ConstantInt *DstBehavior =
+ mdconst::extract<ConstantInt>(DstOp->getOperand(0));
+ unsigned DstBehaviorValue = DstBehavior->getZExtValue();
+
+ auto overrideDstValue = [&]() {
+ DstModFlags->setOperand(DstIndex, SrcOp);
+ Flags[ID].first = SrcOp;
+ };
+
+ // If either flag has override behavior, handle it first.
+ if (DstBehaviorValue == Module::Override) {
+ // Diagnose inconsistent flags which both have override behavior.
+ if (SrcBehaviorValue == Module::Override &&
+ SrcOp->getOperand(2) != DstOp->getOperand(2))
+ return stringErr("linking module flags '" + ID->getString() +
+ "': IDs have conflicting override values in '" +
+ SrcM->getModuleIdentifier() + "' and '" +
+ DstM.getModuleIdentifier() + "'");
+ continue;
+ } else if (SrcBehaviorValue == Module::Override) {
+ // Update the destination flag to that of the source.
+ overrideDstValue();
+ continue;
+ }
+
+ // Diagnose inconsistent merge behavior types.
+ if (SrcBehaviorValue != DstBehaviorValue)
+ return stringErr("linking module flags '" + ID->getString() +
+ "': IDs have conflicting behaviors in '" +
+ SrcM->getModuleIdentifier() + "' and '" +
+ DstM.getModuleIdentifier() + "'");
+
+ auto replaceDstValue = [&](MDNode *New) {
+ Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
+ MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
+ DstModFlags->setOperand(DstIndex, Flag);
+ Flags[ID].first = Flag;
+ };
+
+ // Perform the merge for standard behavior types.
+ switch (SrcBehaviorValue) {
+ case Module::Require:
+ case Module::Override:
+ llvm_unreachable("not possible");
+ case Module::Error: {
+ // Emit an error if the values differ.
+ if (SrcOp->getOperand(2) != DstOp->getOperand(2))
+ return stringErr("linking module flags '" + ID->getString() +
+ "': IDs have conflicting values in '" +
+ SrcM->getModuleIdentifier() + "' and '" +
+ DstM.getModuleIdentifier() + "'");
+ continue;
+ }
+ case Module::Warning: {
+ // Emit a warning if the values differ.
+ if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
+ std::string str;
+ raw_string_ostream(str)
+ << "linking module flags '" << ID->getString()
+ << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
+ << "' from " << SrcM->getModuleIdentifier() << " with '"
+ << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
+ << ')';
+ emitWarning(str);
+ }
+ continue;
+ }
+ case Module::Max: {
+ ConstantInt *DstValue =
+ mdconst::extract<ConstantInt>(DstOp->getOperand(2));
+ ConstantInt *SrcValue =
+ mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
+ if (SrcValue->getZExtValue() > DstValue->getZExtValue())
+ overrideDstValue();
+ break;
+ }
+ case Module::Append: {
+ MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
+ MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
+ SmallVector<Metadata *, 8> MDs;
+ MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
+ MDs.append(DstValue->op_begin(), DstValue->op_end());
+ MDs.append(SrcValue->op_begin(), SrcValue->op_end());
+
+ replaceDstValue(MDNode::get(DstM.getContext(), MDs));
+ break;
+ }
+ case Module::AppendUnique: {
+ SmallSetVector<Metadata *, 16> Elts;
+ MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
+ MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
+ Elts.insert(DstValue->op_begin(), DstValue->op_end());
+ Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
+
+ replaceDstValue(MDNode::get(DstM.getContext(),
+ makeArrayRef(Elts.begin(), Elts.end())));
+ break;
+ }
+ }
+ }
+
+ // Check all of the requirements.
+ for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
+ MDNode *Requirement = Requirements[I];
+ MDString *Flag = cast<MDString>(Requirement->getOperand(0));
+ Metadata *ReqValue = Requirement->getOperand(1);
+
+ MDNode *Op = Flags[Flag].first;
+ if (!Op || Op->getOperand(2) != ReqValue)
+ return stringErr("linking module flags '" + Flag->getString() +
+ "': does not have the required value");
+ }
+ return Error::success();
+}
+
+/// Return InlineAsm adjusted with target-specific directives if required.
+/// For ARM and Thumb, we have to add directives to select the appropriate ISA
+/// to support mixing module-level inline assembly from ARM and Thumb modules.
+static std::string adjustInlineAsm(const std::string &InlineAsm,
+ const Triple &Triple) {
+ if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
+ return ".text\n.balign 2\n.thumb\n" + InlineAsm;
+ if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
+ return ".text\n.balign 4\n.arm\n" + InlineAsm;
+ return InlineAsm;
+}
+
+Error IRLinker::run() {
+ // Ensure metadata materialized before value mapping.
+ if (SrcM->getMaterializer())
+ if (Error Err = SrcM->getMaterializer()->materializeMetadata())
+ return Err;
+
+ // Inherit the target data from the source module if the destination module
+ // doesn't have one already.
+ if (DstM.getDataLayout().isDefault())
+ DstM.setDataLayout(SrcM->getDataLayout());
+
+ if (SrcM->getDataLayout() != DstM.getDataLayout()) {
+ emitWarning("Linking two modules of different data layouts: '" +
+ SrcM->getModuleIdentifier() + "' is '" +
+ SrcM->getDataLayoutStr() + "' whereas '" +
+ DstM.getModuleIdentifier() + "' is '" +
+ DstM.getDataLayoutStr() + "'\n");
+ }
+
+ // Copy the target triple from the source to dest if the dest's is empty.
+ if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
+ DstM.setTargetTriple(SrcM->getTargetTriple());
+
+ Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
+
+ if (!SrcM->getTargetTriple().empty()&&
+ !SrcTriple.isCompatibleWith(DstTriple))
+ emitWarning("Linking two modules of different target triples: " +
+ SrcM->getModuleIdentifier() + "' is '" +
+ SrcM->getTargetTriple() + "' whereas '" +
+ DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
+ "'\n");
+
+ DstM.setTargetTriple(SrcTriple.merge(DstTriple));
+
+ // Append the module inline asm string.
+ if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
+ std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
+ SrcTriple);
+ if (DstM.getModuleInlineAsm().empty())
+ DstM.setModuleInlineAsm(SrcModuleInlineAsm);
+ else
+ DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
+ SrcModuleInlineAsm);
+ }
+
+ // Loop over all of the linked values to compute type mappings.
+ computeTypeMapping();
+
+ std::reverse(Worklist.begin(), Worklist.end());
+ while (!Worklist.empty()) {
+ GlobalValue *GV = Worklist.back();
+ Worklist.pop_back();
+
+ // Already mapped.
+ if (ValueMap.find(GV) != ValueMap.end() ||
+ AliasValueMap.find(GV) != AliasValueMap.end())
+ continue;
+
+ assert(!GV->isDeclaration());
+ Mapper.mapValue(*GV);
+ if (FoundError)
+ return std::move(*FoundError);
+ flushRAUWWorklist();
+ }
+
+ // Note that we are done linking global value bodies. This prevents
+ // metadata linking from creating new references.
+ DoneLinkingBodies = true;
+ Mapper.addFlags(RF_NullMapMissingGlobalValues);
+
+ // Remap all of the named MDNodes in Src into the DstM module. We do this
+ // after linking GlobalValues so that MDNodes that reference GlobalValues
+ // are properly remapped.
+ linkNamedMDNodes();
+
+ // Merge the module flags into the DstM module.
+ return linkModuleFlagsMetadata();
+}
+
+IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
+ : ETypes(E), IsPacked(P) {}
+
+IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
+ : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
+
+bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
+ return IsPacked == That.IsPacked && ETypes == That.ETypes;
+}
+
+bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
+ return !this->operator==(That);
+}
+
+StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
+ return DenseMapInfo<StructType *>::getEmptyKey();
+}
+
+StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
+ return DenseMapInfo<StructType *>::getTombstoneKey();
+}
+
+unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
+ return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
+ Key.IsPacked);
+}
+
+unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
+ return getHashValue(KeyTy(ST));
+}
+
+bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
+ const StructType *RHS) {
+ if (RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return false;
+ return LHS == KeyTy(RHS);
+}
+
+bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
+ const StructType *RHS) {
+ if (RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return LHS == RHS;
+ return KeyTy(LHS) == KeyTy(RHS);
+}
+
+void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
+ assert(!Ty->isOpaque());
+ NonOpaqueStructTypes.insert(Ty);
+}
+
+void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
+ assert(!Ty->isOpaque());
+ NonOpaqueStructTypes.insert(Ty);
+ bool Removed = OpaqueStructTypes.erase(Ty);
+ (void)Removed;
+ assert(Removed);
+}
+
+void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
+ assert(Ty->isOpaque());
+ OpaqueStructTypes.insert(Ty);
+}
+
+StructType *
+IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
+ bool IsPacked) {
+ IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
+ auto I = NonOpaqueStructTypes.find_as(Key);
+ return I == NonOpaqueStructTypes.end() ? nullptr : *I;
+}
+
+bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
+ if (Ty->isOpaque())
+ return OpaqueStructTypes.count(Ty);
+ auto I = NonOpaqueStructTypes.find(Ty);
+ return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
+}
+
+IRMover::IRMover(Module &M) : Composite(M) {
+ TypeFinder StructTypes;
+ StructTypes.run(M, /* OnlyNamed */ false);
+ for (StructType *Ty : StructTypes) {
+ if (Ty->isOpaque())
+ IdentifiedStructTypes.addOpaque(Ty);
+ else
+ IdentifiedStructTypes.addNonOpaque(Ty);
+ }
+ // Self-map metadatas in the destination module. This is needed when
+ // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
+ // destination module may be reached from the source module.
+ for (auto *MD : StructTypes.getVisitedMetadata()) {
+ SharedMDs[MD].reset(const_cast<MDNode *>(MD));
+ }
+}
+
+Error IRMover::move(
+ std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
+ std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
+ bool IsPerformingImport) {
+ IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
+ std::move(Src), ValuesToLink, std::move(AddLazyFor),
+ IsPerformingImport);
+ Error E = TheIRLinker.run();
+ Composite.dropTriviallyDeadConstantArrays();
+ return E;
+}