summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp1015
1 files changed, 1015 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp b/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
new file mode 100644
index 000000000000..301bf72d5239
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
@@ -0,0 +1,1015 @@
+//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64ExpandImm.h"
+#include "AArch64TargetTransformInfo.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/BasicTTIImpl.h"
+#include "llvm/CodeGen/CostTable.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Debug.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64tti"
+
+static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
+ cl::init(true), cl::Hidden);
+
+bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
+ const Function *Callee) const {
+ const TargetMachine &TM = getTLI()->getTargetMachine();
+
+ const FeatureBitset &CallerBits =
+ TM.getSubtargetImpl(*Caller)->getFeatureBits();
+ const FeatureBitset &CalleeBits =
+ TM.getSubtargetImpl(*Callee)->getFeatureBits();
+
+ // Inline a callee if its target-features are a subset of the callers
+ // target-features.
+ return (CallerBits & CalleeBits) == CalleeBits;
+}
+
+/// Calculate the cost of materializing a 64-bit value. This helper
+/// method might only calculate a fraction of a larger immediate. Therefore it
+/// is valid to return a cost of ZERO.
+int AArch64TTIImpl::getIntImmCost(int64_t Val) {
+ // Check if the immediate can be encoded within an instruction.
+ if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
+ return 0;
+
+ if (Val < 0)
+ Val = ~Val;
+
+ // Calculate how many moves we will need to materialize this constant.
+ SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
+ AArch64_IMM::expandMOVImm(Val, 64, Insn);
+ return Insn.size();
+}
+
+/// Calculate the cost of materializing the given constant.
+int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ // Sign-extend all constants to a multiple of 64-bit.
+ APInt ImmVal = Imm;
+ if (BitSize & 0x3f)
+ ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
+
+ // Split the constant into 64-bit chunks and calculate the cost for each
+ // chunk.
+ int Cost = 0;
+ for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
+ APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
+ int64_t Val = Tmp.getSExtValue();
+ Cost += getIntImmCost(Val);
+ }
+ // We need at least one instruction to materialze the constant.
+ return std::max(1, Cost);
+}
+
+int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
+ const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TTI::TCC_Free;
+
+ unsigned ImmIdx = ~0U;
+ switch (Opcode) {
+ default:
+ return TTI::TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr.
+ if (Idx == 0)
+ return 2 * TTI::TCC_Basic;
+ return TTI::TCC_Free;
+ case Instruction::Store:
+ ImmIdx = 0;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ ImmIdx = 1;
+ break;
+ // Always return TCC_Free for the shift value of a shift instruction.
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Idx == 1)
+ return TTI::TCC_Free;
+ break;
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ case Instruction::BitCast:
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Select:
+ case Instruction::Ret:
+ case Instruction::Load:
+ break;
+ }
+
+ if (Idx == ImmIdx) {
+ int NumConstants = (BitSize + 63) / 64;
+ int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TTI::TCC_Basic)
+ ? static_cast<int>(TTI::TCC_Free)
+ : Cost;
+ }
+ return AArch64TTIImpl::getIntImmCost(Imm, Ty);
+}
+
+int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TTI::TCC_Free;
+
+ switch (IID) {
+ default:
+ return TTI::TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ if (Idx == 1) {
+ int NumConstants = (BitSize + 63) / 64;
+ int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TTI::TCC_Basic)
+ ? static_cast<int>(TTI::TCC_Free)
+ : Cost;
+ }
+ break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ }
+ return AArch64TTIImpl::getIntImmCost(Imm, Ty);
+}
+
+TargetTransformInfo::PopcntSupportKind
+AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ if (TyWidth == 32 || TyWidth == 64)
+ return TTI::PSK_FastHardware;
+ // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
+ return TTI::PSK_Software;
+}
+
+bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
+ ArrayRef<const Value *> Args) {
+
+ // A helper that returns a vector type from the given type. The number of
+ // elements in type Ty determine the vector width.
+ auto toVectorTy = [&](Type *ArgTy) {
+ return VectorType::get(ArgTy->getScalarType(),
+ DstTy->getVectorNumElements());
+ };
+
+ // Exit early if DstTy is not a vector type whose elements are at least
+ // 16-bits wide.
+ if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
+ return false;
+
+ // Determine if the operation has a widening variant. We consider both the
+ // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
+ // instructions.
+ //
+ // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
+ // verify that their extending operands are eliminated during code
+ // generation.
+ switch (Opcode) {
+ case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
+ case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
+ break;
+ default:
+ return false;
+ }
+
+ // To be a widening instruction (either the "wide" or "long" versions), the
+ // second operand must be a sign- or zero extend having a single user. We
+ // only consider extends having a single user because they may otherwise not
+ // be eliminated.
+ if (Args.size() != 2 ||
+ (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
+ !Args[1]->hasOneUse())
+ return false;
+ auto *Extend = cast<CastInst>(Args[1]);
+
+ // Legalize the destination type and ensure it can be used in a widening
+ // operation.
+ auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
+ unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
+ if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
+ return false;
+
+ // Legalize the source type and ensure it can be used in a widening
+ // operation.
+ Type *SrcTy = toVectorTy(Extend->getSrcTy());
+ auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
+ unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
+ if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
+ return false;
+
+ // Get the total number of vector elements in the legalized types.
+ unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
+ unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();
+
+ // Return true if the legalized types have the same number of vector elements
+ // and the destination element type size is twice that of the source type.
+ return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
+}
+
+int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+ const Instruction *I) {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // If the cast is observable, and it is used by a widening instruction (e.g.,
+ // uaddl, saddw, etc.), it may be free.
+ if (I && I->hasOneUse()) {
+ auto *SingleUser = cast<Instruction>(*I->user_begin());
+ SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
+ if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
+ // If the cast is the second operand, it is free. We will generate either
+ // a "wide" or "long" version of the widening instruction.
+ if (I == SingleUser->getOperand(1))
+ return 0;
+ // If the cast is not the second operand, it will be free if it looks the
+ // same as the second operand. In this case, we will generate a "long"
+ // version of the widening instruction.
+ if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
+ if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
+ cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
+ return 0;
+ }
+ }
+
+ EVT SrcTy = TLI->getValueType(DL, Src);
+ EVT DstTy = TLI->getValueType(DL, Dst);
+
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+
+ static const TypeConversionCostTblEntry
+ ConversionTbl[] = {
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
+
+ // The number of shll instructions for the extension.
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
+
+ // LowerVectorINT_TO_FP:
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+
+ // Complex: to v2f32
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
+
+ // Complex: to v4f32
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+
+ // Complex: to v8f32
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
+
+ // Complex: to v16f32
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
+
+ // Complex: to v2f64
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+
+
+ // LowerVectorFP_TO_INT
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
+
+ // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
+
+ // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
+ { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
+
+ // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
+ };
+
+ if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+}
+
+int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
+ VectorType *VecTy,
+ unsigned Index) {
+
+ // Make sure we were given a valid extend opcode.
+ assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
+ "Invalid opcode");
+
+ // We are extending an element we extract from a vector, so the source type
+ // of the extend is the element type of the vector.
+ auto *Src = VecTy->getElementType();
+
+ // Sign- and zero-extends are for integer types only.
+ assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
+
+ // Get the cost for the extract. We compute the cost (if any) for the extend
+ // below.
+ auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
+
+ // Legalize the types.
+ auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
+ auto DstVT = TLI->getValueType(DL, Dst);
+ auto SrcVT = TLI->getValueType(DL, Src);
+
+ // If the resulting type is still a vector and the destination type is legal,
+ // we may get the extension for free. If not, get the default cost for the
+ // extend.
+ if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
+ return Cost + getCastInstrCost(Opcode, Dst, Src);
+
+ // The destination type should be larger than the element type. If not, get
+ // the default cost for the extend.
+ if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
+ return Cost + getCastInstrCost(Opcode, Dst, Src);
+
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Opcode should be either SExt or ZExt");
+
+ // For sign-extends, we only need a smov, which performs the extension
+ // automatically.
+ case Instruction::SExt:
+ return Cost;
+
+ // For zero-extends, the extend is performed automatically by a umov unless
+ // the destination type is i64 and the element type is i8 or i16.
+ case Instruction::ZExt:
+ if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
+ return Cost;
+ }
+
+ // If we are unable to perform the extend for free, get the default cost.
+ return Cost + getCastInstrCost(Opcode, Dst, Src);
+}
+
+int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) {
+ assert(Val->isVectorTy() && "This must be a vector type");
+
+ if (Index != -1U) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
+
+ // This type is legalized to a scalar type.
+ if (!LT.second.isVector())
+ return 0;
+
+ // The type may be split. Normalize the index to the new type.
+ unsigned Width = LT.second.getVectorNumElements();
+ Index = Index % Width;
+
+ // The element at index zero is already inside the vector.
+ if (Index == 0)
+ return 0;
+ }
+
+ // All other insert/extracts cost this much.
+ return ST->getVectorInsertExtractBaseCost();
+}
+
+int AArch64TTIImpl::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
+ TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+ // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
+ // add in the widening overhead specified by the sub-target. Since the
+ // extends feeding widening instructions are performed automatically, they
+ // aren't present in the generated code and have a zero cost. By adding a
+ // widening overhead here, we attach the total cost of the combined operation
+ // to the widening instruction.
+ int Cost = 0;
+ if (isWideningInstruction(Ty, Opcode, Args))
+ Cost += ST->getWideningBaseCost();
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+
+ switch (ISD) {
+ default:
+ return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo);
+ case ISD::SDIV:
+ if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
+ // On AArch64, scalar signed division by constants power-of-two are
+ // normally expanded to the sequence ADD + CMP + SELECT + SRA.
+ // The OperandValue properties many not be same as that of previous
+ // operation; conservatively assume OP_None.
+ Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ return Cost;
+ }
+ LLVM_FALLTHROUGH;
+ case ISD::UDIV:
+ if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
+ auto VT = TLI->getValueType(DL, Ty);
+ if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
+ // Vector signed division by constant are expanded to the
+ // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
+ // to MULHS + SUB + SRL + ADD + SRL.
+ int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
+ Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
+ Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
+ Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
+ }
+ }
+
+ Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo);
+ if (Ty->isVectorTy()) {
+ // On AArch64, vector divisions are not supported natively and are
+ // expanded into scalar divisions of each pair of elements.
+ Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
+ Opd2Info, Opd1PropInfo, Opd2PropInfo);
+ Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
+ Opd2Info, Opd1PropInfo, Opd2PropInfo);
+ // TODO: if one of the arguments is scalar, then it's not necessary to
+ // double the cost of handling the vector elements.
+ Cost += Cost;
+ }
+ return Cost;
+
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::XOR:
+ case ISD::OR:
+ case ISD::AND:
+ // These nodes are marked as 'custom' for combining purposes only.
+ // We know that they are legal. See LowerAdd in ISelLowering.
+ return (Cost + 1) * LT.first;
+ }
+}
+
+int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
+ const SCEV *Ptr) {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+ int MaxMergeDistance = 64;
+
+ if (Ty->isVectorTy() && SE &&
+ !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
+ return NumVectorInstToHideOverhead;
+
+ // In many cases the address computation is not merged into the instruction
+ // addressing mode.
+ return 1;
+}
+
+int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy, const Instruction *I) {
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ // We don't lower some vector selects well that are wider than the register
+ // width.
+ if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
+ // We would need this many instructions to hide the scalarization happening.
+ const int AmortizationCost = 20;
+ static const TypeConversionCostTblEntry
+ VectorSelectTbl[] = {
+ { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
+ { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
+ };
+
+ EVT SelCondTy = TLI->getValueType(DL, CondTy);
+ EVT SelValTy = TLI->getValueType(DL, ValTy);
+ if (SelCondTy.isSimple() && SelValTy.isSimple()) {
+ if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
+ SelCondTy.getSimpleVT(),
+ SelValTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+ }
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
+}
+
+AArch64TTIImpl::TTI::MemCmpExpansionOptions
+AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
+ TTI::MemCmpExpansionOptions Options;
+ Options.AllowOverlappingLoads = !ST->requiresStrictAlign();
+ Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
+ Options.NumLoadsPerBlock = Options.MaxNumLoads;
+ // TODO: Though vector loads usually perform well on AArch64, in some targets
+ // they may wake up the FP unit, which raises the power consumption. Perhaps
+ // they could be used with no holds barred (-O3).
+ Options.LoadSizes = {8, 4, 2, 1};
+ return Options;
+}
+
+int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
+ unsigned Alignment, unsigned AddressSpace,
+ const Instruction *I) {
+ auto LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+ if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
+ LT.second.is128BitVector() && Alignment < 16) {
+ // Unaligned stores are extremely inefficient. We don't split all
+ // unaligned 128-bit stores because the negative impact that has shown in
+ // practice on inlined block copy code.
+ // We make such stores expensive so that we will only vectorize if there
+ // are 6 other instructions getting vectorized.
+ const int AmortizationCost = 6;
+
+ return LT.first * 2 * AmortizationCost;
+ }
+
+ if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
+ unsigned ProfitableNumElements;
+ if (Opcode == Instruction::Store)
+ // We use a custom trunc store lowering so v.4b should be profitable.
+ ProfitableNumElements = 4;
+ else
+ // We scalarize the loads because there is not v.4b register and we
+ // have to promote the elements to v.2.
+ ProfitableNumElements = 8;
+
+ if (Ty->getVectorNumElements() < ProfitableNumElements) {
+ unsigned NumVecElts = Ty->getVectorNumElements();
+ unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
+ // We generate 2 instructions per vector element.
+ return NumVectorizableInstsToAmortize * NumVecElts * 2;
+ }
+ }
+
+ return LT.first;
+}
+
+int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+ unsigned Factor,
+ ArrayRef<unsigned> Indices,
+ unsigned Alignment,
+ unsigned AddressSpace,
+ bool UseMaskForCond,
+ bool UseMaskForGaps) {
+ assert(Factor >= 2 && "Invalid interleave factor");
+ assert(isa<VectorType>(VecTy) && "Expect a vector type");
+
+ if (!UseMaskForCond && !UseMaskForGaps &&
+ Factor <= TLI->getMaxSupportedInterleaveFactor()) {
+ unsigned NumElts = VecTy->getVectorNumElements();
+ auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
+
+ // ldN/stN only support legal vector types of size 64 or 128 in bits.
+ // Accesses having vector types that are a multiple of 128 bits can be
+ // matched to more than one ldN/stN instruction.
+ if (NumElts % Factor == 0 &&
+ TLI->isLegalInterleavedAccessType(SubVecTy, DL))
+ return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
+ }
+
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace,
+ UseMaskForCond, UseMaskForGaps);
+}
+
+int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
+ int Cost = 0;
+ for (auto *I : Tys) {
+ if (!I->isVectorTy())
+ continue;
+ if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
+ Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
+ getMemoryOpCost(Instruction::Load, I, 128, 0);
+ }
+ return Cost;
+}
+
+unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
+ return ST->getMaxInterleaveFactor();
+}
+
+// For Falkor, we want to avoid having too many strided loads in a loop since
+// that can exhaust the HW prefetcher resources. We adjust the unroller
+// MaxCount preference below to attempt to ensure unrolling doesn't create too
+// many strided loads.
+static void
+getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+ TargetTransformInfo::UnrollingPreferences &UP) {
+ enum { MaxStridedLoads = 7 };
+ auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
+ int StridedLoads = 0;
+ // FIXME? We could make this more precise by looking at the CFG and
+ // e.g. not counting loads in each side of an if-then-else diamond.
+ for (const auto BB : L->blocks()) {
+ for (auto &I : *BB) {
+ LoadInst *LMemI = dyn_cast<LoadInst>(&I);
+ if (!LMemI)
+ continue;
+
+ Value *PtrValue = LMemI->getPointerOperand();
+ if (L->isLoopInvariant(PtrValue))
+ continue;
+
+ const SCEV *LSCEV = SE.getSCEV(PtrValue);
+ const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
+ if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
+ continue;
+
+ // FIXME? We could take pairing of unrolled load copies into account
+ // by looking at the AddRec, but we would probably have to limit this
+ // to loops with no stores or other memory optimization barriers.
+ ++StridedLoads;
+ // We've seen enough strided loads that seeing more won't make a
+ // difference.
+ if (StridedLoads > MaxStridedLoads / 2)
+ return StridedLoads;
+ }
+ }
+ return StridedLoads;
+ };
+
+ int StridedLoads = countStridedLoads(L, SE);
+ LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
+ << " strided loads\n");
+ // Pick the largest power of 2 unroll count that won't result in too many
+ // strided loads.
+ if (StridedLoads) {
+ UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
+ LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
+ << UP.MaxCount << '\n');
+ }
+}
+
+void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+ TTI::UnrollingPreferences &UP) {
+ // Enable partial unrolling and runtime unrolling.
+ BaseT::getUnrollingPreferences(L, SE, UP);
+
+ // For inner loop, it is more likely to be a hot one, and the runtime check
+ // can be promoted out from LICM pass, so the overhead is less, let's try
+ // a larger threshold to unroll more loops.
+ if (L->getLoopDepth() > 1)
+ UP.PartialThreshold *= 2;
+
+ // Disable partial & runtime unrolling on -Os.
+ UP.PartialOptSizeThreshold = 0;
+
+ if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
+ EnableFalkorHWPFUnrollFix)
+ getFalkorUnrollingPreferences(L, SE, UP);
+}
+
+Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+ Type *ExpectedType) {
+ switch (Inst->getIntrinsicID()) {
+ default:
+ return nullptr;
+ case Intrinsic::aarch64_neon_st2:
+ case Intrinsic::aarch64_neon_st3:
+ case Intrinsic::aarch64_neon_st4: {
+ // Create a struct type
+ StructType *ST = dyn_cast<StructType>(ExpectedType);
+ if (!ST)
+ return nullptr;
+ unsigned NumElts = Inst->getNumArgOperands() - 1;
+ if (ST->getNumElements() != NumElts)
+ return nullptr;
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
+ return nullptr;
+ }
+ Value *Res = UndefValue::get(ExpectedType);
+ IRBuilder<> Builder(Inst);
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ Value *L = Inst->getArgOperand(i);
+ Res = Builder.CreateInsertValue(Res, L, i);
+ }
+ return Res;
+ }
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_ld4:
+ if (Inst->getType() == ExpectedType)
+ return Inst;
+ return nullptr;
+ }
+}
+
+bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
+ MemIntrinsicInfo &Info) {
+ switch (Inst->getIntrinsicID()) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_ld4:
+ Info.ReadMem = true;
+ Info.WriteMem = false;
+ Info.PtrVal = Inst->getArgOperand(0);
+ break;
+ case Intrinsic::aarch64_neon_st2:
+ case Intrinsic::aarch64_neon_st3:
+ case Intrinsic::aarch64_neon_st4:
+ Info.ReadMem = false;
+ Info.WriteMem = true;
+ Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
+ break;
+ }
+
+ switch (Inst->getIntrinsicID()) {
+ default:
+ return false;
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_st2:
+ Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
+ break;
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_st3:
+ Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
+ break;
+ case Intrinsic::aarch64_neon_ld4:
+ case Intrinsic::aarch64_neon_st4:
+ Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
+ break;
+ }
+ return true;
+}
+
+/// See if \p I should be considered for address type promotion. We check if \p
+/// I is a sext with right type and used in memory accesses. If it used in a
+/// "complex" getelementptr, we allow it to be promoted without finding other
+/// sext instructions that sign extended the same initial value. A getelementptr
+/// is considered as "complex" if it has more than 2 operands.
+bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
+ const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
+ bool Considerable = false;
+ AllowPromotionWithoutCommonHeader = false;
+ if (!isa<SExtInst>(&I))
+ return false;
+ Type *ConsideredSExtType =
+ Type::getInt64Ty(I.getParent()->getParent()->getContext());
+ if (I.getType() != ConsideredSExtType)
+ return false;
+ // See if the sext is the one with the right type and used in at least one
+ // GetElementPtrInst.
+ for (const User *U : I.users()) {
+ if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
+ Considerable = true;
+ // A getelementptr is considered as "complex" if it has more than 2
+ // operands. We will promote a SExt used in such complex GEP as we
+ // expect some computation to be merged if they are done on 64 bits.
+ if (GEPInst->getNumOperands() > 2) {
+ AllowPromotionWithoutCommonHeader = true;
+ break;
+ }
+ }
+ }
+ return Considerable;
+}
+
+unsigned AArch64TTIImpl::getCacheLineSize() {
+ return ST->getCacheLineSize();
+}
+
+unsigned AArch64TTIImpl::getPrefetchDistance() {
+ return ST->getPrefetchDistance();
+}
+
+unsigned AArch64TTIImpl::getMinPrefetchStride() {
+ return ST->getMinPrefetchStride();
+}
+
+unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
+ return ST->getMaxPrefetchIterationsAhead();
+}
+
+bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
+ TTI::ReductionFlags Flags) const {
+ assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
+ unsigned ScalarBits = Ty->getScalarSizeInBits();
+ switch (Opcode) {
+ case Instruction::FAdd:
+ case Instruction::FMul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Mul:
+ return false;
+ case Instruction::Add:
+ return ScalarBits * Ty->getVectorNumElements() >= 128;
+ case Instruction::ICmp:
+ return (ScalarBits < 64) &&
+ (ScalarBits * Ty->getVectorNumElements() >= 128);
+ case Instruction::FCmp:
+ return Flags.NoNaN;
+ default:
+ llvm_unreachable("Unhandled reduction opcode");
+ }
+ return false;
+}
+
+int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
+ bool IsPairwiseForm) {
+
+ if (IsPairwiseForm)
+ return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+ MVT MTy = LT.second;
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // Horizontal adds can use the 'addv' instruction. We model the cost of these
+ // instructions as normal vector adds. This is the only arithmetic vector
+ // reduction operation for which we have an instruction.
+ static const CostTblEntry CostTblNoPairwise[]{
+ {ISD::ADD, MVT::v8i8, 1},
+ {ISD::ADD, MVT::v16i8, 1},
+ {ISD::ADD, MVT::v4i16, 1},
+ {ISD::ADD, MVT::v8i16, 1},
+ {ISD::ADD, MVT::v4i32, 1},
+ };
+
+ if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
+}
+
+int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
+ if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
+ Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) {
+ static const CostTblEntry ShuffleTbl[] = {
+ // Broadcast shuffle kinds can be performed with 'dup'.
+ { TTI::SK_Broadcast, MVT::v8i8, 1 },
+ { TTI::SK_Broadcast, MVT::v16i8, 1 },
+ { TTI::SK_Broadcast, MVT::v4i16, 1 },
+ { TTI::SK_Broadcast, MVT::v8i16, 1 },
+ { TTI::SK_Broadcast, MVT::v2i32, 1 },
+ { TTI::SK_Broadcast, MVT::v4i32, 1 },
+ { TTI::SK_Broadcast, MVT::v2i64, 1 },
+ { TTI::SK_Broadcast, MVT::v2f32, 1 },
+ { TTI::SK_Broadcast, MVT::v4f32, 1 },
+ { TTI::SK_Broadcast, MVT::v2f64, 1 },
+ // Transpose shuffle kinds can be performed with 'trn1/trn2' and
+ // 'zip1/zip2' instructions.
+ { TTI::SK_Transpose, MVT::v8i8, 1 },
+ { TTI::SK_Transpose, MVT::v16i8, 1 },
+ { TTI::SK_Transpose, MVT::v4i16, 1 },
+ { TTI::SK_Transpose, MVT::v8i16, 1 },
+ { TTI::SK_Transpose, MVT::v2i32, 1 },
+ { TTI::SK_Transpose, MVT::v4i32, 1 },
+ { TTI::SK_Transpose, MVT::v2i64, 1 },
+ { TTI::SK_Transpose, MVT::v2f32, 1 },
+ { TTI::SK_Transpose, MVT::v4f32, 1 },
+ { TTI::SK_Transpose, MVT::v2f64, 1 },
+ // Select shuffle kinds.
+ // TODO: handle vXi8/vXi16.
+ { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
+ { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
+ { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
+ { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
+ { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
+ { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
+ // PermuteSingleSrc shuffle kinds.
+ // TODO: handle vXi8/vXi16.
+ { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
+ { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
+ { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
+ { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
+ { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
+ { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
+ };
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+ if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+}