summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp5762
1 files changed, 5762 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp b/contrib/llvm-project/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
new file mode 100644
index 000000000000..09b42811f786
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
@@ -0,0 +1,5762 @@
+//==- AArch64AsmParser.cpp - Parse AArch64 assembly to MCInst instructions -==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "MCTargetDesc/AArch64MCExpr.h"
+#include "MCTargetDesc/AArch64MCTargetDesc.h"
+#include "MCTargetDesc/AArch64TargetStreamer.h"
+#include "TargetInfo/AArch64TargetInfo.h"
+#include "AArch64InstrInfo.h"
+#include "Utils/AArch64BaseInfo.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCLinkerOptimizationHint.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCAsmParserExtension.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCParser/MCTargetAsmParser.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/MC/SubtargetFeature.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/SMLoc.h"
+#include "llvm/Support/TargetParser.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cctype>
+#include <cstdint>
+#include <cstdio>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+namespace {
+
+enum class RegKind {
+ Scalar,
+ NeonVector,
+ SVEDataVector,
+ SVEPredicateVector
+};
+
+enum RegConstraintEqualityTy {
+ EqualsReg,
+ EqualsSuperReg,
+ EqualsSubReg
+};
+
+class AArch64AsmParser : public MCTargetAsmParser {
+private:
+ StringRef Mnemonic; ///< Instruction mnemonic.
+
+ // Map of register aliases registers via the .req directive.
+ StringMap<std::pair<RegKind, unsigned>> RegisterReqs;
+
+ class PrefixInfo {
+ public:
+ static PrefixInfo CreateFromInst(const MCInst &Inst, uint64_t TSFlags) {
+ PrefixInfo Prefix;
+ switch (Inst.getOpcode()) {
+ case AArch64::MOVPRFX_ZZ:
+ Prefix.Active = true;
+ Prefix.Dst = Inst.getOperand(0).getReg();
+ break;
+ case AArch64::MOVPRFX_ZPmZ_B:
+ case AArch64::MOVPRFX_ZPmZ_H:
+ case AArch64::MOVPRFX_ZPmZ_S:
+ case AArch64::MOVPRFX_ZPmZ_D:
+ Prefix.Active = true;
+ Prefix.Predicated = true;
+ Prefix.ElementSize = TSFlags & AArch64::ElementSizeMask;
+ assert(Prefix.ElementSize != AArch64::ElementSizeNone &&
+ "No destructive element size set for movprfx");
+ Prefix.Dst = Inst.getOperand(0).getReg();
+ Prefix.Pg = Inst.getOperand(2).getReg();
+ break;
+ case AArch64::MOVPRFX_ZPzZ_B:
+ case AArch64::MOVPRFX_ZPzZ_H:
+ case AArch64::MOVPRFX_ZPzZ_S:
+ case AArch64::MOVPRFX_ZPzZ_D:
+ Prefix.Active = true;
+ Prefix.Predicated = true;
+ Prefix.ElementSize = TSFlags & AArch64::ElementSizeMask;
+ assert(Prefix.ElementSize != AArch64::ElementSizeNone &&
+ "No destructive element size set for movprfx");
+ Prefix.Dst = Inst.getOperand(0).getReg();
+ Prefix.Pg = Inst.getOperand(1).getReg();
+ break;
+ default:
+ break;
+ }
+
+ return Prefix;
+ }
+
+ PrefixInfo() : Active(false), Predicated(false) {}
+ bool isActive() const { return Active; }
+ bool isPredicated() const { return Predicated; }
+ unsigned getElementSize() const {
+ assert(Predicated);
+ return ElementSize;
+ }
+ unsigned getDstReg() const { return Dst; }
+ unsigned getPgReg() const {
+ assert(Predicated);
+ return Pg;
+ }
+
+ private:
+ bool Active;
+ bool Predicated;
+ unsigned ElementSize;
+ unsigned Dst;
+ unsigned Pg;
+ } NextPrefix;
+
+ AArch64TargetStreamer &getTargetStreamer() {
+ MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
+ return static_cast<AArch64TargetStreamer &>(TS);
+ }
+
+ SMLoc getLoc() const { return getParser().getTok().getLoc(); }
+
+ bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands);
+ void createSysAlias(uint16_t Encoding, OperandVector &Operands, SMLoc S);
+ AArch64CC::CondCode parseCondCodeString(StringRef Cond);
+ bool parseCondCode(OperandVector &Operands, bool invertCondCode);
+ unsigned matchRegisterNameAlias(StringRef Name, RegKind Kind);
+ bool parseRegister(OperandVector &Operands);
+ bool parseSymbolicImmVal(const MCExpr *&ImmVal);
+ bool parseNeonVectorList(OperandVector &Operands);
+ bool parseOptionalMulOperand(OperandVector &Operands);
+ bool parseOperand(OperandVector &Operands, bool isCondCode,
+ bool invertCondCode);
+
+ bool showMatchError(SMLoc Loc, unsigned ErrCode, uint64_t ErrorInfo,
+ OperandVector &Operands);
+
+ bool parseDirectiveArch(SMLoc L);
+ bool parseDirectiveArchExtension(SMLoc L);
+ bool parseDirectiveCPU(SMLoc L);
+ bool parseDirectiveInst(SMLoc L);
+
+ bool parseDirectiveTLSDescCall(SMLoc L);
+
+ bool parseDirectiveLOH(StringRef LOH, SMLoc L);
+ bool parseDirectiveLtorg(SMLoc L);
+
+ bool parseDirectiveReq(StringRef Name, SMLoc L);
+ bool parseDirectiveUnreq(SMLoc L);
+ bool parseDirectiveCFINegateRAState();
+ bool parseDirectiveCFIBKeyFrame();
+
+ bool validateInstruction(MCInst &Inst, SMLoc &IDLoc,
+ SmallVectorImpl<SMLoc> &Loc);
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) override;
+/// @name Auto-generated Match Functions
+/// {
+
+#define GET_ASSEMBLER_HEADER
+#include "AArch64GenAsmMatcher.inc"
+
+ /// }
+
+ OperandMatchResultTy tryParseScalarRegister(unsigned &Reg);
+ OperandMatchResultTy tryParseVectorRegister(unsigned &Reg, StringRef &Kind,
+ RegKind MatchKind);
+ OperandMatchResultTy tryParseOptionalShiftExtend(OperandVector &Operands);
+ OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands);
+ OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands);
+ OperandMatchResultTy tryParseSysReg(OperandVector &Operands);
+ OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands);
+ template <bool IsSVEPrefetch = false>
+ OperandMatchResultTy tryParsePrefetch(OperandVector &Operands);
+ OperandMatchResultTy tryParsePSBHint(OperandVector &Operands);
+ OperandMatchResultTy tryParseBTIHint(OperandVector &Operands);
+ OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands);
+ OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands);
+ template<bool AddFPZeroAsLiteral>
+ OperandMatchResultTy tryParseFPImm(OperandVector &Operands);
+ OperandMatchResultTy tryParseImmWithOptionalShift(OperandVector &Operands);
+ OperandMatchResultTy tryParseGPR64sp0Operand(OperandVector &Operands);
+ bool tryParseNeonVectorRegister(OperandVector &Operands);
+ OperandMatchResultTy tryParseVectorIndex(OperandVector &Operands);
+ OperandMatchResultTy tryParseGPRSeqPair(OperandVector &Operands);
+ template <bool ParseShiftExtend,
+ RegConstraintEqualityTy EqTy = RegConstraintEqualityTy::EqualsReg>
+ OperandMatchResultTy tryParseGPROperand(OperandVector &Operands);
+ template <bool ParseShiftExtend, bool ParseSuffix>
+ OperandMatchResultTy tryParseSVEDataVector(OperandVector &Operands);
+ OperandMatchResultTy tryParseSVEPredicateVector(OperandVector &Operands);
+ template <RegKind VectorKind>
+ OperandMatchResultTy tryParseVectorList(OperandVector &Operands,
+ bool ExpectMatch = false);
+ OperandMatchResultTy tryParseSVEPattern(OperandVector &Operands);
+
+public:
+ enum AArch64MatchResultTy {
+ Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY,
+#define GET_OPERAND_DIAGNOSTIC_TYPES
+#include "AArch64GenAsmMatcher.inc"
+ };
+ bool IsILP32;
+
+ AArch64AsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
+ const MCInstrInfo &MII, const MCTargetOptions &Options)
+ : MCTargetAsmParser(Options, STI, MII) {
+ IsILP32 = Options.getABIName() == "ilp32";
+ MCAsmParserExtension::Initialize(Parser);
+ MCStreamer &S = getParser().getStreamer();
+ if (S.getTargetStreamer() == nullptr)
+ new AArch64TargetStreamer(S);
+
+ // Alias .hword/.word/.[dx]word to the target-independent
+ // .2byte/.4byte/.8byte directives as they have the same form and
+ // semantics:
+ /// ::= (.hword | .word | .dword | .xword ) [ expression (, expression)* ]
+ Parser.addAliasForDirective(".hword", ".2byte");
+ Parser.addAliasForDirective(".word", ".4byte");
+ Parser.addAliasForDirective(".dword", ".8byte");
+ Parser.addAliasForDirective(".xword", ".8byte");
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
+ }
+
+ bool regsEqual(const MCParsedAsmOperand &Op1,
+ const MCParsedAsmOperand &Op2) const override;
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+ bool ParseDirective(AsmToken DirectiveID) override;
+ unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
+ unsigned Kind) override;
+
+ static bool classifySymbolRef(const MCExpr *Expr,
+ AArch64MCExpr::VariantKind &ELFRefKind,
+ MCSymbolRefExpr::VariantKind &DarwinRefKind,
+ int64_t &Addend);
+};
+
+/// AArch64Operand - Instances of this class represent a parsed AArch64 machine
+/// instruction.
+class AArch64Operand : public MCParsedAsmOperand {
+private:
+ enum KindTy {
+ k_Immediate,
+ k_ShiftedImm,
+ k_CondCode,
+ k_Register,
+ k_VectorList,
+ k_VectorIndex,
+ k_Token,
+ k_SysReg,
+ k_SysCR,
+ k_Prefetch,
+ k_ShiftExtend,
+ k_FPImm,
+ k_Barrier,
+ k_PSBHint,
+ k_BTIHint,
+ } Kind;
+
+ SMLoc StartLoc, EndLoc;
+
+ struct TokOp {
+ const char *Data;
+ unsigned Length;
+ bool IsSuffix; // Is the operand actually a suffix on the mnemonic.
+ };
+
+ // Separate shift/extend operand.
+ struct ShiftExtendOp {
+ AArch64_AM::ShiftExtendType Type;
+ unsigned Amount;
+ bool HasExplicitAmount;
+ };
+
+ struct RegOp {
+ unsigned RegNum;
+ RegKind Kind;
+ int ElementWidth;
+
+ // The register may be allowed as a different register class,
+ // e.g. for GPR64as32 or GPR32as64.
+ RegConstraintEqualityTy EqualityTy;
+
+ // In some cases the shift/extend needs to be explicitly parsed together
+ // with the register, rather than as a separate operand. This is needed
+ // for addressing modes where the instruction as a whole dictates the
+ // scaling/extend, rather than specific bits in the instruction.
+ // By parsing them as a single operand, we avoid the need to pass an
+ // extra operand in all CodeGen patterns (because all operands need to
+ // have an associated value), and we avoid the need to update TableGen to
+ // accept operands that have no associated bits in the instruction.
+ //
+ // An added benefit of parsing them together is that the assembler
+ // can give a sensible diagnostic if the scaling is not correct.
+ //
+ // The default is 'lsl #0' (HasExplicitAmount = false) if no
+ // ShiftExtend is specified.
+ ShiftExtendOp ShiftExtend;
+ };
+
+ struct VectorListOp {
+ unsigned RegNum;
+ unsigned Count;
+ unsigned NumElements;
+ unsigned ElementWidth;
+ RegKind RegisterKind;
+ };
+
+ struct VectorIndexOp {
+ unsigned Val;
+ };
+
+ struct ImmOp {
+ const MCExpr *Val;
+ };
+
+ struct ShiftedImmOp {
+ const MCExpr *Val;
+ unsigned ShiftAmount;
+ };
+
+ struct CondCodeOp {
+ AArch64CC::CondCode Code;
+ };
+
+ struct FPImmOp {
+ uint64_t Val; // APFloat value bitcasted to uint64_t.
+ bool IsExact; // describes whether parsed value was exact.
+ };
+
+ struct BarrierOp {
+ const char *Data;
+ unsigned Length;
+ unsigned Val; // Not the enum since not all values have names.
+ };
+
+ struct SysRegOp {
+ const char *Data;
+ unsigned Length;
+ uint32_t MRSReg;
+ uint32_t MSRReg;
+ uint32_t PStateField;
+ };
+
+ struct SysCRImmOp {
+ unsigned Val;
+ };
+
+ struct PrefetchOp {
+ const char *Data;
+ unsigned Length;
+ unsigned Val;
+ };
+
+ struct PSBHintOp {
+ const char *Data;
+ unsigned Length;
+ unsigned Val;
+ };
+
+ struct BTIHintOp {
+ const char *Data;
+ unsigned Length;
+ unsigned Val;
+ };
+
+ struct ExtendOp {
+ unsigned Val;
+ };
+
+ union {
+ struct TokOp Tok;
+ struct RegOp Reg;
+ struct VectorListOp VectorList;
+ struct VectorIndexOp VectorIndex;
+ struct ImmOp Imm;
+ struct ShiftedImmOp ShiftedImm;
+ struct CondCodeOp CondCode;
+ struct FPImmOp FPImm;
+ struct BarrierOp Barrier;
+ struct SysRegOp SysReg;
+ struct SysCRImmOp SysCRImm;
+ struct PrefetchOp Prefetch;
+ struct PSBHintOp PSBHint;
+ struct BTIHintOp BTIHint;
+ struct ShiftExtendOp ShiftExtend;
+ };
+
+ // Keep the MCContext around as the MCExprs may need manipulated during
+ // the add<>Operands() calls.
+ MCContext &Ctx;
+
+public:
+ AArch64Operand(KindTy K, MCContext &Ctx) : Kind(K), Ctx(Ctx) {}
+
+ AArch64Operand(const AArch64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) {
+ Kind = o.Kind;
+ StartLoc = o.StartLoc;
+ EndLoc = o.EndLoc;
+ switch (Kind) {
+ case k_Token:
+ Tok = o.Tok;
+ break;
+ case k_Immediate:
+ Imm = o.Imm;
+ break;
+ case k_ShiftedImm:
+ ShiftedImm = o.ShiftedImm;
+ break;
+ case k_CondCode:
+ CondCode = o.CondCode;
+ break;
+ case k_FPImm:
+ FPImm = o.FPImm;
+ break;
+ case k_Barrier:
+ Barrier = o.Barrier;
+ break;
+ case k_Register:
+ Reg = o.Reg;
+ break;
+ case k_VectorList:
+ VectorList = o.VectorList;
+ break;
+ case k_VectorIndex:
+ VectorIndex = o.VectorIndex;
+ break;
+ case k_SysReg:
+ SysReg = o.SysReg;
+ break;
+ case k_SysCR:
+ SysCRImm = o.SysCRImm;
+ break;
+ case k_Prefetch:
+ Prefetch = o.Prefetch;
+ break;
+ case k_PSBHint:
+ PSBHint = o.PSBHint;
+ break;
+ case k_BTIHint:
+ BTIHint = o.BTIHint;
+ break;
+ case k_ShiftExtend:
+ ShiftExtend = o.ShiftExtend;
+ break;
+ }
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const override { return EndLoc; }
+
+ StringRef getToken() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ bool isTokenSuffix() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return Tok.IsSuffix;
+ }
+
+ const MCExpr *getImm() const {
+ assert(Kind == k_Immediate && "Invalid access!");
+ return Imm.Val;
+ }
+
+ const MCExpr *getShiftedImmVal() const {
+ assert(Kind == k_ShiftedImm && "Invalid access!");
+ return ShiftedImm.Val;
+ }
+
+ unsigned getShiftedImmShift() const {
+ assert(Kind == k_ShiftedImm && "Invalid access!");
+ return ShiftedImm.ShiftAmount;
+ }
+
+ AArch64CC::CondCode getCondCode() const {
+ assert(Kind == k_CondCode && "Invalid access!");
+ return CondCode.Code;
+ }
+
+ APFloat getFPImm() const {
+ assert (Kind == k_FPImm && "Invalid access!");
+ return APFloat(APFloat::IEEEdouble(), APInt(64, FPImm.Val, true));
+ }
+
+ bool getFPImmIsExact() const {
+ assert (Kind == k_FPImm && "Invalid access!");
+ return FPImm.IsExact;
+ }
+
+ unsigned getBarrier() const {
+ assert(Kind == k_Barrier && "Invalid access!");
+ return Barrier.Val;
+ }
+
+ StringRef getBarrierName() const {
+ assert(Kind == k_Barrier && "Invalid access!");
+ return StringRef(Barrier.Data, Barrier.Length);
+ }
+
+ unsigned getReg() const override {
+ assert(Kind == k_Register && "Invalid access!");
+ return Reg.RegNum;
+ }
+
+ RegConstraintEqualityTy getRegEqualityTy() const {
+ assert(Kind == k_Register && "Invalid access!");
+ return Reg.EqualityTy;
+ }
+
+ unsigned getVectorListStart() const {
+ assert(Kind == k_VectorList && "Invalid access!");
+ return VectorList.RegNum;
+ }
+
+ unsigned getVectorListCount() const {
+ assert(Kind == k_VectorList && "Invalid access!");
+ return VectorList.Count;
+ }
+
+ unsigned getVectorIndex() const {
+ assert(Kind == k_VectorIndex && "Invalid access!");
+ return VectorIndex.Val;
+ }
+
+ StringRef getSysReg() const {
+ assert(Kind == k_SysReg && "Invalid access!");
+ return StringRef(SysReg.Data, SysReg.Length);
+ }
+
+ unsigned getSysCR() const {
+ assert(Kind == k_SysCR && "Invalid access!");
+ return SysCRImm.Val;
+ }
+
+ unsigned getPrefetch() const {
+ assert(Kind == k_Prefetch && "Invalid access!");
+ return Prefetch.Val;
+ }
+
+ unsigned getPSBHint() const {
+ assert(Kind == k_PSBHint && "Invalid access!");
+ return PSBHint.Val;
+ }
+
+ StringRef getPSBHintName() const {
+ assert(Kind == k_PSBHint && "Invalid access!");
+ return StringRef(PSBHint.Data, PSBHint.Length);
+ }
+
+ unsigned getBTIHint() const {
+ assert(Kind == k_BTIHint && "Invalid access!");
+ return BTIHint.Val;
+ }
+
+ StringRef getBTIHintName() const {
+ assert(Kind == k_BTIHint && "Invalid access!");
+ return StringRef(BTIHint.Data, BTIHint.Length);
+ }
+
+ StringRef getPrefetchName() const {
+ assert(Kind == k_Prefetch && "Invalid access!");
+ return StringRef(Prefetch.Data, Prefetch.Length);
+ }
+
+ AArch64_AM::ShiftExtendType getShiftExtendType() const {
+ if (Kind == k_ShiftExtend)
+ return ShiftExtend.Type;
+ if (Kind == k_Register)
+ return Reg.ShiftExtend.Type;
+ llvm_unreachable("Invalid access!");
+ }
+
+ unsigned getShiftExtendAmount() const {
+ if (Kind == k_ShiftExtend)
+ return ShiftExtend.Amount;
+ if (Kind == k_Register)
+ return Reg.ShiftExtend.Amount;
+ llvm_unreachable("Invalid access!");
+ }
+
+ bool hasShiftExtendAmount() const {
+ if (Kind == k_ShiftExtend)
+ return ShiftExtend.HasExplicitAmount;
+ if (Kind == k_Register)
+ return Reg.ShiftExtend.HasExplicitAmount;
+ llvm_unreachable("Invalid access!");
+ }
+
+ bool isImm() const override { return Kind == k_Immediate; }
+ bool isMem() const override { return false; }
+
+ bool isUImm6() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= 0 && Val < 64);
+ }
+
+ template <int Width> bool isSImm() const { return isSImmScaled<Width, 1>(); }
+
+ template <int Bits, int Scale> DiagnosticPredicate isSImmScaled() const {
+ return isImmScaled<Bits, Scale>(true);
+ }
+
+ template <int Bits, int Scale> DiagnosticPredicate isUImmScaled() const {
+ return isImmScaled<Bits, Scale>(false);
+ }
+
+ template <int Bits, int Scale>
+ DiagnosticPredicate isImmScaled(bool Signed) const {
+ if (!isImm())
+ return DiagnosticPredicateTy::NoMatch;
+
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return DiagnosticPredicateTy::NoMatch;
+
+ int64_t MinVal, MaxVal;
+ if (Signed) {
+ int64_t Shift = Bits - 1;
+ MinVal = (int64_t(1) << Shift) * -Scale;
+ MaxVal = ((int64_t(1) << Shift) - 1) * Scale;
+ } else {
+ MinVal = 0;
+ MaxVal = ((int64_t(1) << Bits) - 1) * Scale;
+ }
+
+ int64_t Val = MCE->getValue();
+ if (Val >= MinVal && Val <= MaxVal && (Val % Scale) == 0)
+ return DiagnosticPredicateTy::Match;
+
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ DiagnosticPredicate isSVEPattern() const {
+ if (!isImm())
+ return DiagnosticPredicateTy::NoMatch;
+ auto *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return DiagnosticPredicateTy::NoMatch;
+ int64_t Val = MCE->getValue();
+ if (Val >= 0 && Val < 32)
+ return DiagnosticPredicateTy::Match;
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ bool isSymbolicUImm12Offset(const MCExpr *Expr) const {
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (!AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind,
+ Addend)) {
+ // If we don't understand the expression, assume the best and
+ // let the fixup and relocation code deal with it.
+ return true;
+ }
+
+ if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
+ ELFRefKind == AArch64MCExpr::VK_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_GOT_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_GOTTPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_SECREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_SECREL_HI12) {
+ // Note that we don't range-check the addend. It's adjusted modulo page
+ // size when converted, so there is no "out of range" condition when using
+ // @pageoff.
+ return true;
+ } else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF ||
+ DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) {
+ // @gotpageoff/@tlvppageoff can only be used directly, not with an addend.
+ return Addend == 0;
+ }
+
+ return false;
+ }
+
+ template <int Scale> bool isUImm12Offset() const {
+ if (!isImm())
+ return false;
+
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return isSymbolicUImm12Offset(getImm());
+
+ int64_t Val = MCE->getValue();
+ return (Val % Scale) == 0 && Val >= 0 && (Val / Scale) < 0x1000;
+ }
+
+ template <int N, int M>
+ bool isImmInRange() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ int64_t Val = MCE->getValue();
+ return (Val >= N && Val <= M);
+ }
+
+ // NOTE: Also used for isLogicalImmNot as anything that can be represented as
+ // a logical immediate can always be represented when inverted.
+ template <typename T>
+ bool isLogicalImm() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+
+ int64_t Val = MCE->getValue();
+ int64_t SVal = typename std::make_signed<T>::type(Val);
+ int64_t UVal = typename std::make_unsigned<T>::type(Val);
+ if (Val != SVal && Val != UVal)
+ return false;
+
+ return AArch64_AM::isLogicalImmediate(UVal, sizeof(T) * 8);
+ }
+
+ bool isShiftedImm() const { return Kind == k_ShiftedImm; }
+
+ /// Returns the immediate value as a pair of (imm, shift) if the immediate is
+ /// a shifted immediate by value 'Shift' or '0', or if it is an unshifted
+ /// immediate that can be shifted by 'Shift'.
+ template <unsigned Width>
+ Optional<std::pair<int64_t, unsigned> > getShiftedVal() const {
+ if (isShiftedImm() && Width == getShiftedImmShift())
+ if (auto *CE = dyn_cast<MCConstantExpr>(getShiftedImmVal()))
+ return std::make_pair(CE->getValue(), Width);
+
+ if (isImm())
+ if (auto *CE = dyn_cast<MCConstantExpr>(getImm())) {
+ int64_t Val = CE->getValue();
+ if ((Val != 0) && (uint64_t(Val >> Width) << Width) == uint64_t(Val))
+ return std::make_pair(Val >> Width, Width);
+ else
+ return std::make_pair(Val, 0u);
+ }
+
+ return {};
+ }
+
+ bool isAddSubImm() const {
+ if (!isShiftedImm() && !isImm())
+ return false;
+
+ const MCExpr *Expr;
+
+ // An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'.
+ if (isShiftedImm()) {
+ unsigned Shift = ShiftedImm.ShiftAmount;
+ Expr = ShiftedImm.Val;
+ if (Shift != 0 && Shift != 12)
+ return false;
+ } else {
+ Expr = getImm();
+ }
+
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind,
+ DarwinRefKind, Addend)) {
+ return DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF
+ || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF
+ || (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF && Addend == 0)
+ || ELFRefKind == AArch64MCExpr::VK_LO12
+ || ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12
+ || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12
+ || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC
+ || ELFRefKind == AArch64MCExpr::VK_TPREL_HI12
+ || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12
+ || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC
+ || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12
+ || ELFRefKind == AArch64MCExpr::VK_SECREL_HI12
+ || ELFRefKind == AArch64MCExpr::VK_SECREL_LO12;
+ }
+
+ // If it's a constant, it should be a real immediate in range.
+ if (auto ShiftedVal = getShiftedVal<12>())
+ return ShiftedVal->first >= 0 && ShiftedVal->first <= 0xfff;
+
+ // If it's an expression, we hope for the best and let the fixup/relocation
+ // code deal with it.
+ return true;
+ }
+
+ bool isAddSubImmNeg() const {
+ if (!isShiftedImm() && !isImm())
+ return false;
+
+ // Otherwise it should be a real negative immediate in range.
+ if (auto ShiftedVal = getShiftedVal<12>())
+ return ShiftedVal->first < 0 && -ShiftedVal->first <= 0xfff;
+
+ return false;
+ }
+
+ // Signed value in the range -128 to +127. For element widths of
+ // 16 bits or higher it may also be a signed multiple of 256 in the
+ // range -32768 to +32512.
+ // For element-width of 8 bits a range of -128 to 255 is accepted,
+ // since a copy of a byte can be either signed/unsigned.
+ template <typename T>
+ DiagnosticPredicate isSVECpyImm() const {
+ if (!isShiftedImm() && (!isImm() || !isa<MCConstantExpr>(getImm())))
+ return DiagnosticPredicateTy::NoMatch;
+
+ bool IsByte =
+ std::is_same<int8_t, typename std::make_signed<T>::type>::value;
+ if (auto ShiftedImm = getShiftedVal<8>())
+ if (!(IsByte && ShiftedImm->second) &&
+ AArch64_AM::isSVECpyImm<T>(uint64_t(ShiftedImm->first)
+ << ShiftedImm->second))
+ return DiagnosticPredicateTy::Match;
+
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ // Unsigned value in the range 0 to 255. For element widths of
+ // 16 bits or higher it may also be a signed multiple of 256 in the
+ // range 0 to 65280.
+ template <typename T> DiagnosticPredicate isSVEAddSubImm() const {
+ if (!isShiftedImm() && (!isImm() || !isa<MCConstantExpr>(getImm())))
+ return DiagnosticPredicateTy::NoMatch;
+
+ bool IsByte =
+ std::is_same<int8_t, typename std::make_signed<T>::type>::value;
+ if (auto ShiftedImm = getShiftedVal<8>())
+ if (!(IsByte && ShiftedImm->second) &&
+ AArch64_AM::isSVEAddSubImm<T>(ShiftedImm->first
+ << ShiftedImm->second))
+ return DiagnosticPredicateTy::Match;
+
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ template <typename T> DiagnosticPredicate isSVEPreferredLogicalImm() const {
+ if (isLogicalImm<T>() && !isSVECpyImm<T>())
+ return DiagnosticPredicateTy::Match;
+ return DiagnosticPredicateTy::NoMatch;
+ }
+
+ bool isCondCode() const { return Kind == k_CondCode; }
+
+ bool isSIMDImmType10() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return false;
+ return AArch64_AM::isAdvSIMDModImmType10(MCE->getValue());
+ }
+
+ template<int N>
+ bool isBranchTarget() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ return true;
+ int64_t Val = MCE->getValue();
+ if (Val & 0x3)
+ return false;
+ assert(N > 0 && "Branch target immediate cannot be 0 bits!");
+ return (Val >= -((1<<(N-1)) << 2) && Val <= (((1<<(N-1))-1) << 2));
+ }
+
+ bool
+ isMovWSymbol(ArrayRef<AArch64MCExpr::VariantKind> AllowedModifiers) const {
+ if (!isImm())
+ return false;
+
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (!AArch64AsmParser::classifySymbolRef(getImm(), ELFRefKind,
+ DarwinRefKind, Addend)) {
+ return false;
+ }
+ if (DarwinRefKind != MCSymbolRefExpr::VK_None)
+ return false;
+
+ for (unsigned i = 0; i != AllowedModifiers.size(); ++i) {
+ if (ELFRefKind == AllowedModifiers[i])
+ return true;
+ }
+
+ return false;
+ }
+
+ bool isMovZSymbolG3() const {
+ return isMovWSymbol(AArch64MCExpr::VK_ABS_G3);
+ }
+
+ bool isMovZSymbolG2() const {
+ return isMovWSymbol({AArch64MCExpr::VK_ABS_G2, AArch64MCExpr::VK_ABS_G2_S,
+ AArch64MCExpr::VK_TPREL_G2,
+ AArch64MCExpr::VK_DTPREL_G2});
+ }
+
+ bool isMovZSymbolG1() const {
+ return isMovWSymbol({
+ AArch64MCExpr::VK_ABS_G1, AArch64MCExpr::VK_ABS_G1_S,
+ AArch64MCExpr::VK_GOTTPREL_G1, AArch64MCExpr::VK_TPREL_G1,
+ AArch64MCExpr::VK_DTPREL_G1,
+ });
+ }
+
+ bool isMovZSymbolG0() const {
+ return isMovWSymbol({AArch64MCExpr::VK_ABS_G0, AArch64MCExpr::VK_ABS_G0_S,
+ AArch64MCExpr::VK_TPREL_G0,
+ AArch64MCExpr::VK_DTPREL_G0});
+ }
+
+ bool isMovKSymbolG3() const {
+ return isMovWSymbol(AArch64MCExpr::VK_ABS_G3);
+ }
+
+ bool isMovKSymbolG2() const {
+ return isMovWSymbol(AArch64MCExpr::VK_ABS_G2_NC);
+ }
+
+ bool isMovKSymbolG1() const {
+ return isMovWSymbol({AArch64MCExpr::VK_ABS_G1_NC,
+ AArch64MCExpr::VK_TPREL_G1_NC,
+ AArch64MCExpr::VK_DTPREL_G1_NC});
+ }
+
+ bool isMovKSymbolG0() const {
+ return isMovWSymbol(
+ {AArch64MCExpr::VK_ABS_G0_NC, AArch64MCExpr::VK_GOTTPREL_G0_NC,
+ AArch64MCExpr::VK_TPREL_G0_NC, AArch64MCExpr::VK_DTPREL_G0_NC});
+ }
+
+ template<int RegWidth, int Shift>
+ bool isMOVZMovAlias() const {
+ if (!isImm()) return false;
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ uint64_t Value = CE->getValue();
+
+ return AArch64_AM::isMOVZMovAlias(Value, Shift, RegWidth);
+ }
+
+ template<int RegWidth, int Shift>
+ bool isMOVNMovAlias() const {
+ if (!isImm()) return false;
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ uint64_t Value = CE->getValue();
+
+ return AArch64_AM::isMOVNMovAlias(Value, Shift, RegWidth);
+ }
+
+ bool isFPImm() const {
+ return Kind == k_FPImm &&
+ AArch64_AM::getFP64Imm(getFPImm().bitcastToAPInt()) != -1;
+ }
+
+ bool isBarrier() const { return Kind == k_Barrier; }
+ bool isSysReg() const { return Kind == k_SysReg; }
+
+ bool isMRSSystemRegister() const {
+ if (!isSysReg()) return false;
+
+ return SysReg.MRSReg != -1U;
+ }
+
+ bool isMSRSystemRegister() const {
+ if (!isSysReg()) return false;
+ return SysReg.MSRReg != -1U;
+ }
+
+ bool isSystemPStateFieldWithImm0_1() const {
+ if (!isSysReg()) return false;
+ return (SysReg.PStateField == AArch64PState::PAN ||
+ SysReg.PStateField == AArch64PState::DIT ||
+ SysReg.PStateField == AArch64PState::UAO ||
+ SysReg.PStateField == AArch64PState::SSBS);
+ }
+
+ bool isSystemPStateFieldWithImm0_15() const {
+ if (!isSysReg() || isSystemPStateFieldWithImm0_1()) return false;
+ return SysReg.PStateField != -1U;
+ }
+
+ bool isReg() const override {
+ return Kind == k_Register;
+ }
+
+ bool isScalarReg() const {
+ return Kind == k_Register && Reg.Kind == RegKind::Scalar;
+ }
+
+ bool isNeonVectorReg() const {
+ return Kind == k_Register && Reg.Kind == RegKind::NeonVector;
+ }
+
+ bool isNeonVectorRegLo() const {
+ return Kind == k_Register && Reg.Kind == RegKind::NeonVector &&
+ AArch64MCRegisterClasses[AArch64::FPR128_loRegClassID].contains(
+ Reg.RegNum);
+ }
+
+ template <unsigned Class> bool isSVEVectorReg() const {
+ RegKind RK;
+ switch (Class) {
+ case AArch64::ZPRRegClassID:
+ case AArch64::ZPR_3bRegClassID:
+ case AArch64::ZPR_4bRegClassID:
+ RK = RegKind::SVEDataVector;
+ break;
+ case AArch64::PPRRegClassID:
+ case AArch64::PPR_3bRegClassID:
+ RK = RegKind::SVEPredicateVector;
+ break;
+ default:
+ llvm_unreachable("Unsupport register class");
+ }
+
+ return (Kind == k_Register && Reg.Kind == RK) &&
+ AArch64MCRegisterClasses[Class].contains(getReg());
+ }
+
+ template <unsigned Class> bool isFPRasZPR() const {
+ return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
+ AArch64MCRegisterClasses[Class].contains(getReg());
+ }
+
+ template <int ElementWidth, unsigned Class>
+ DiagnosticPredicate isSVEPredicateVectorRegOfWidth() const {
+ if (Kind != k_Register || Reg.Kind != RegKind::SVEPredicateVector)
+ return DiagnosticPredicateTy::NoMatch;
+
+ if (isSVEVectorReg<Class>() && (Reg.ElementWidth == ElementWidth))
+ return DiagnosticPredicateTy::Match;
+
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ template <int ElementWidth, unsigned Class>
+ DiagnosticPredicate isSVEDataVectorRegOfWidth() const {
+ if (Kind != k_Register || Reg.Kind != RegKind::SVEDataVector)
+ return DiagnosticPredicateTy::NoMatch;
+
+ if (isSVEVectorReg<Class>() && Reg.ElementWidth == ElementWidth)
+ return DiagnosticPredicateTy::Match;
+
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ template <int ElementWidth, unsigned Class,
+ AArch64_AM::ShiftExtendType ShiftExtendTy, int ShiftWidth,
+ bool ShiftWidthAlwaysSame>
+ DiagnosticPredicate isSVEDataVectorRegWithShiftExtend() const {
+ auto VectorMatch = isSVEDataVectorRegOfWidth<ElementWidth, Class>();
+ if (!VectorMatch.isMatch())
+ return DiagnosticPredicateTy::NoMatch;
+
+ // Give a more specific diagnostic when the user has explicitly typed in
+ // a shift-amount that does not match what is expected, but for which
+ // there is also an unscaled addressing mode (e.g. sxtw/uxtw).
+ bool MatchShift = getShiftExtendAmount() == Log2_32(ShiftWidth / 8);
+ if (!MatchShift && (ShiftExtendTy == AArch64_AM::UXTW ||
+ ShiftExtendTy == AArch64_AM::SXTW) &&
+ !ShiftWidthAlwaysSame && hasShiftExtendAmount() && ShiftWidth == 8)
+ return DiagnosticPredicateTy::NoMatch;
+
+ if (MatchShift && ShiftExtendTy == getShiftExtendType())
+ return DiagnosticPredicateTy::Match;
+
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ bool isGPR32as64() const {
+ return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
+ AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(Reg.RegNum);
+ }
+
+ bool isGPR64as32() const {
+ return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
+ AArch64MCRegisterClasses[AArch64::GPR32RegClassID].contains(Reg.RegNum);
+ }
+
+ bool isWSeqPair() const {
+ return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
+ AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID].contains(
+ Reg.RegNum);
+ }
+
+ bool isXSeqPair() const {
+ return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
+ AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID].contains(
+ Reg.RegNum);
+ }
+
+ template<int64_t Angle, int64_t Remainder>
+ DiagnosticPredicate isComplexRotation() const {
+ if (!isImm()) return DiagnosticPredicateTy::NoMatch;
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return DiagnosticPredicateTy::NoMatch;
+ uint64_t Value = CE->getValue();
+
+ if (Value % Angle == Remainder && Value <= 270)
+ return DiagnosticPredicateTy::Match;
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ template <unsigned RegClassID> bool isGPR64() const {
+ return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
+ AArch64MCRegisterClasses[RegClassID].contains(getReg());
+ }
+
+ template <unsigned RegClassID, int ExtWidth>
+ DiagnosticPredicate isGPR64WithShiftExtend() const {
+ if (Kind != k_Register || Reg.Kind != RegKind::Scalar)
+ return DiagnosticPredicateTy::NoMatch;
+
+ if (isGPR64<RegClassID>() && getShiftExtendType() == AArch64_AM::LSL &&
+ getShiftExtendAmount() == Log2_32(ExtWidth / 8))
+ return DiagnosticPredicateTy::Match;
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ /// Is this a vector list with the type implicit (presumably attached to the
+ /// instruction itself)?
+ template <RegKind VectorKind, unsigned NumRegs>
+ bool isImplicitlyTypedVectorList() const {
+ return Kind == k_VectorList && VectorList.Count == NumRegs &&
+ VectorList.NumElements == 0 &&
+ VectorList.RegisterKind == VectorKind;
+ }
+
+ template <RegKind VectorKind, unsigned NumRegs, unsigned NumElements,
+ unsigned ElementWidth>
+ bool isTypedVectorList() const {
+ if (Kind != k_VectorList)
+ return false;
+ if (VectorList.Count != NumRegs)
+ return false;
+ if (VectorList.RegisterKind != VectorKind)
+ return false;
+ if (VectorList.ElementWidth != ElementWidth)
+ return false;
+ return VectorList.NumElements == NumElements;
+ }
+
+ template <int Min, int Max>
+ DiagnosticPredicate isVectorIndex() const {
+ if (Kind != k_VectorIndex)
+ return DiagnosticPredicateTy::NoMatch;
+ if (VectorIndex.Val >= Min && VectorIndex.Val <= Max)
+ return DiagnosticPredicateTy::Match;
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ bool isToken() const override { return Kind == k_Token; }
+
+ bool isTokenEqual(StringRef Str) const {
+ return Kind == k_Token && getToken() == Str;
+ }
+ bool isSysCR() const { return Kind == k_SysCR; }
+ bool isPrefetch() const { return Kind == k_Prefetch; }
+ bool isPSBHint() const { return Kind == k_PSBHint; }
+ bool isBTIHint() const { return Kind == k_BTIHint; }
+ bool isShiftExtend() const { return Kind == k_ShiftExtend; }
+ bool isShifter() const {
+ if (!isShiftExtend())
+ return false;
+
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
+ ST == AArch64_AM::ASR || ST == AArch64_AM::ROR ||
+ ST == AArch64_AM::MSL);
+ }
+
+ template <unsigned ImmEnum> DiagnosticPredicate isExactFPImm() const {
+ if (Kind != k_FPImm)
+ return DiagnosticPredicateTy::NoMatch;
+
+ if (getFPImmIsExact()) {
+ // Lookup the immediate from table of supported immediates.
+ auto *Desc = AArch64ExactFPImm::lookupExactFPImmByEnum(ImmEnum);
+ assert(Desc && "Unknown enum value");
+
+ // Calculate its FP value.
+ APFloat RealVal(APFloat::IEEEdouble());
+ if (RealVal.convertFromString(Desc->Repr, APFloat::rmTowardZero) !=
+ APFloat::opOK)
+ llvm_unreachable("FP immediate is not exact");
+
+ if (getFPImm().bitwiseIsEqual(RealVal))
+ return DiagnosticPredicateTy::Match;
+ }
+
+ return DiagnosticPredicateTy::NearMatch;
+ }
+
+ template <unsigned ImmA, unsigned ImmB>
+ DiagnosticPredicate isExactFPImm() const {
+ DiagnosticPredicate Res = DiagnosticPredicateTy::NoMatch;
+ if ((Res = isExactFPImm<ImmA>()))
+ return DiagnosticPredicateTy::Match;
+ if ((Res = isExactFPImm<ImmB>()))
+ return DiagnosticPredicateTy::Match;
+ return Res;
+ }
+
+ bool isExtend() const {
+ if (!isShiftExtend())
+ return false;
+
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return (ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB ||
+ ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH ||
+ ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW ||
+ ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
+ ET == AArch64_AM::LSL) &&
+ getShiftExtendAmount() <= 4;
+ }
+
+ bool isExtend64() const {
+ if (!isExtend())
+ return false;
+ // Make sure the extend expects a 32-bit source register.
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB ||
+ ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH ||
+ ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW;
+ }
+
+ bool isExtendLSL64() const {
+ if (!isExtend())
+ return false;
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return (ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
+ ET == AArch64_AM::LSL) &&
+ getShiftExtendAmount() <= 4;
+ }
+
+ template<int Width> bool isMemXExtend() const {
+ if (!isExtend())
+ return false;
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return (ET == AArch64_AM::LSL || ET == AArch64_AM::SXTX) &&
+ (getShiftExtendAmount() == Log2_32(Width / 8) ||
+ getShiftExtendAmount() == 0);
+ }
+
+ template<int Width> bool isMemWExtend() const {
+ if (!isExtend())
+ return false;
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ return (ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW) &&
+ (getShiftExtendAmount() == Log2_32(Width / 8) ||
+ getShiftExtendAmount() == 0);
+ }
+
+ template <unsigned width>
+ bool isArithmeticShifter() const {
+ if (!isShifter())
+ return false;
+
+ // An arithmetic shifter is LSL, LSR, or ASR.
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
+ ST == AArch64_AM::ASR) && getShiftExtendAmount() < width;
+ }
+
+ template <unsigned width>
+ bool isLogicalShifter() const {
+ if (!isShifter())
+ return false;
+
+ // A logical shifter is LSL, LSR, ASR or ROR.
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
+ ST == AArch64_AM::ASR || ST == AArch64_AM::ROR) &&
+ getShiftExtendAmount() < width;
+ }
+
+ bool isMovImm32Shifter() const {
+ if (!isShifter())
+ return false;
+
+ // A MOVi shifter is LSL of 0, 16, 32, or 48.
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ if (ST != AArch64_AM::LSL)
+ return false;
+ uint64_t Val = getShiftExtendAmount();
+ return (Val == 0 || Val == 16);
+ }
+
+ bool isMovImm64Shifter() const {
+ if (!isShifter())
+ return false;
+
+ // A MOVi shifter is LSL of 0 or 16.
+ AArch64_AM::ShiftExtendType ST = getShiftExtendType();
+ if (ST != AArch64_AM::LSL)
+ return false;
+ uint64_t Val = getShiftExtendAmount();
+ return (Val == 0 || Val == 16 || Val == 32 || Val == 48);
+ }
+
+ bool isLogicalVecShifter() const {
+ if (!isShifter())
+ return false;
+
+ // A logical vector shifter is a left shift by 0, 8, 16, or 24.
+ unsigned Shift = getShiftExtendAmount();
+ return getShiftExtendType() == AArch64_AM::LSL &&
+ (Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24);
+ }
+
+ bool isLogicalVecHalfWordShifter() const {
+ if (!isLogicalVecShifter())
+ return false;
+
+ // A logical vector shifter is a left shift by 0 or 8.
+ unsigned Shift = getShiftExtendAmount();
+ return getShiftExtendType() == AArch64_AM::LSL &&
+ (Shift == 0 || Shift == 8);
+ }
+
+ bool isMoveVecShifter() const {
+ if (!isShiftExtend())
+ return false;
+
+ // A logical vector shifter is a left shift by 8 or 16.
+ unsigned Shift = getShiftExtendAmount();
+ return getShiftExtendType() == AArch64_AM::MSL &&
+ (Shift == 8 || Shift == 16);
+ }
+
+ // Fallback unscaled operands are for aliases of LDR/STR that fall back
+ // to LDUR/STUR when the offset is not legal for the former but is for
+ // the latter. As such, in addition to checking for being a legal unscaled
+ // address, also check that it is not a legal scaled address. This avoids
+ // ambiguity in the matcher.
+ template<int Width>
+ bool isSImm9OffsetFB() const {
+ return isSImm<9>() && !isUImm12Offset<Width / 8>();
+ }
+
+ bool isAdrpLabel() const {
+ // Validation was handled during parsing, so we just sanity check that
+ // something didn't go haywire.
+ if (!isImm())
+ return false;
+
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
+ int64_t Val = CE->getValue();
+ int64_t Min = - (4096 * (1LL << (21 - 1)));
+ int64_t Max = 4096 * ((1LL << (21 - 1)) - 1);
+ return (Val % 4096) == 0 && Val >= Min && Val <= Max;
+ }
+
+ return true;
+ }
+
+ bool isAdrLabel() const {
+ // Validation was handled during parsing, so we just sanity check that
+ // something didn't go haywire.
+ if (!isImm())
+ return false;
+
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
+ int64_t Val = CE->getValue();
+ int64_t Min = - (1LL << (21 - 1));
+ int64_t Max = ((1LL << (21 - 1)) - 1);
+ return Val >= Min && Val <= Max;
+ }
+
+ return true;
+ }
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediates when possible. Null MCExpr = 0.
+ if (!Expr)
+ Inst.addOperand(MCOperand::createImm(0));
+ else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::createImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::createExpr(Expr));
+ }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getReg()));
+ }
+
+ void addGPR32as64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(
+ AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(getReg()));
+
+ const MCRegisterInfo *RI = Ctx.getRegisterInfo();
+ uint32_t Reg = RI->getRegClass(AArch64::GPR32RegClassID).getRegister(
+ RI->getEncodingValue(getReg()));
+
+ Inst.addOperand(MCOperand::createReg(Reg));
+ }
+
+ void addGPR64as32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(
+ AArch64MCRegisterClasses[AArch64::GPR32RegClassID].contains(getReg()));
+
+ const MCRegisterInfo *RI = Ctx.getRegisterInfo();
+ uint32_t Reg = RI->getRegClass(AArch64::GPR64RegClassID).getRegister(
+ RI->getEncodingValue(getReg()));
+
+ Inst.addOperand(MCOperand::createReg(Reg));
+ }
+
+ template <int Width>
+ void addFPRasZPRRegOperands(MCInst &Inst, unsigned N) const {
+ unsigned Base;
+ switch (Width) {
+ case 8: Base = AArch64::B0; break;
+ case 16: Base = AArch64::H0; break;
+ case 32: Base = AArch64::S0; break;
+ case 64: Base = AArch64::D0; break;
+ case 128: Base = AArch64::Q0; break;
+ default:
+ llvm_unreachable("Unsupported width");
+ }
+ Inst.addOperand(MCOperand::createReg(AArch64::Z0 + getReg() - Base));
+ }
+
+ void addVectorReg64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(
+ AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
+ Inst.addOperand(MCOperand::createReg(AArch64::D0 + getReg() - AArch64::Q0));
+ }
+
+ void addVectorReg128Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(
+ AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
+ Inst.addOperand(MCOperand::createReg(getReg()));
+ }
+
+ void addVectorRegLoOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getReg()));
+ }
+
+ enum VecListIndexType {
+ VecListIdx_DReg = 0,
+ VecListIdx_QReg = 1,
+ VecListIdx_ZReg = 2,
+ };
+
+ template <VecListIndexType RegTy, unsigned NumRegs>
+ void addVectorListOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ static const unsigned FirstRegs[][5] = {
+ /* DReg */ { AArch64::Q0,
+ AArch64::D0, AArch64::D0_D1,
+ AArch64::D0_D1_D2, AArch64::D0_D1_D2_D3 },
+ /* QReg */ { AArch64::Q0,
+ AArch64::Q0, AArch64::Q0_Q1,
+ AArch64::Q0_Q1_Q2, AArch64::Q0_Q1_Q2_Q3 },
+ /* ZReg */ { AArch64::Z0,
+ AArch64::Z0, AArch64::Z0_Z1,
+ AArch64::Z0_Z1_Z2, AArch64::Z0_Z1_Z2_Z3 }
+ };
+
+ assert((RegTy != VecListIdx_ZReg || NumRegs <= 4) &&
+ " NumRegs must be <= 4 for ZRegs");
+
+ unsigned FirstReg = FirstRegs[(unsigned)RegTy][NumRegs];
+ Inst.addOperand(MCOperand::createReg(FirstReg + getVectorListStart() -
+ FirstRegs[(unsigned)RegTy][0]));
+ }
+
+ void addVectorIndexOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createImm(getVectorIndex()));
+ }
+
+ template <unsigned ImmIs0, unsigned ImmIs1>
+ void addExactFPImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(bool(isExactFPImm<ImmIs0, ImmIs1>()) && "Invalid operand");
+ Inst.addOperand(MCOperand::createImm(bool(isExactFPImm<ImmIs1>())));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // If this is a pageoff symrefexpr with an addend, adjust the addend
+ // to be only the page-offset portion. Otherwise, just add the expr
+ // as-is.
+ addExpr(Inst, getImm());
+ }
+
+ template <int Shift>
+ void addImmWithOptionalShiftOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ if (auto ShiftedVal = getShiftedVal<Shift>()) {
+ Inst.addOperand(MCOperand::createImm(ShiftedVal->first));
+ Inst.addOperand(MCOperand::createImm(ShiftedVal->second));
+ } else if (isShiftedImm()) {
+ addExpr(Inst, getShiftedImmVal());
+ Inst.addOperand(MCOperand::createImm(getShiftedImmShift()));
+ } else {
+ addExpr(Inst, getImm());
+ Inst.addOperand(MCOperand::createImm(0));
+ }
+ }
+
+ template <int Shift>
+ void addImmNegWithOptionalShiftOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ if (auto ShiftedVal = getShiftedVal<Shift>()) {
+ Inst.addOperand(MCOperand::createImm(-ShiftedVal->first));
+ Inst.addOperand(MCOperand::createImm(ShiftedVal->second));
+ } else
+ llvm_unreachable("Not a shifted negative immediate");
+ }
+
+ void addCondCodeOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createImm(getCondCode()));
+ }
+
+ void addAdrpLabelOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE)
+ addExpr(Inst, getImm());
+ else
+ Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 12));
+ }
+
+ void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+
+ template<int Scale>
+ void addUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+
+ if (!MCE) {
+ Inst.addOperand(MCOperand::createExpr(getImm()));
+ return;
+ }
+ Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale));
+ }
+
+ void addUImm6Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::createImm(MCE->getValue()));
+ }
+
+ template <int Scale>
+ void addImmScaledOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale));
+ }
+
+ template <typename T>
+ void addLogicalImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ typename std::make_unsigned<T>::type Val = MCE->getValue();
+ uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8);
+ Inst.addOperand(MCOperand::createImm(encoding));
+ }
+
+ template <typename T>
+ void addLogicalImmNotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ typename std::make_unsigned<T>::type Val = ~MCE->getValue();
+ uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8);
+ Inst.addOperand(MCOperand::createImm(encoding));
+ }
+
+ void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ uint64_t encoding = AArch64_AM::encodeAdvSIMDModImmType10(MCE->getValue());
+ Inst.addOperand(MCOperand::createImm(encoding));
+ }
+
+ void addBranchTarget26Operands(MCInst &Inst, unsigned N) const {
+ // Branch operands don't encode the low bits, so shift them off
+ // here. If it's a label, however, just put it on directly as there's
+ // not enough information now to do anything.
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE) {
+ addExpr(Inst, getImm());
+ return;
+ }
+ assert(MCE && "Invalid constant immediate operand!");
+ Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
+ }
+
+ void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const {
+ // Branch operands don't encode the low bits, so shift them off
+ // here. If it's a label, however, just put it on directly as there's
+ // not enough information now to do anything.
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE) {
+ addExpr(Inst, getImm());
+ return;
+ }
+ assert(MCE && "Invalid constant immediate operand!");
+ Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
+ }
+
+ void addBranchTarget14Operands(MCInst &Inst, unsigned N) const {
+ // Branch operands don't encode the low bits, so shift them off
+ // here. If it's a label, however, just put it on directly as there's
+ // not enough information now to do anything.
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
+ if (!MCE) {
+ addExpr(Inst, getImm());
+ return;
+ }
+ assert(MCE && "Invalid constant immediate operand!");
+ Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
+ }
+
+ void addFPImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createImm(
+ AArch64_AM::getFP64Imm(getFPImm().bitcastToAPInt())));
+ }
+
+ void addBarrierOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createImm(getBarrier()));
+ }
+
+ void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::createImm(SysReg.MRSReg));
+ }
+
+ void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::createImm(SysReg.MSRReg));
+ }
+
+ void addSystemPStateFieldWithImm0_1Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::createImm(SysReg.PStateField));
+ }
+
+ void addSystemPStateFieldWithImm0_15Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::createImm(SysReg.PStateField));
+ }
+
+ void addSysCROperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createImm(getSysCR()));
+ }
+
+ void addPrefetchOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createImm(getPrefetch()));
+ }
+
+ void addPSBHintOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createImm(getPSBHint()));
+ }
+
+ void addBTIHintOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createImm(getBTIHint()));
+ }
+
+ void addShifterOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ unsigned Imm =
+ AArch64_AM::getShifterImm(getShiftExtendType(), getShiftExtendAmount());
+ Inst.addOperand(MCOperand::createImm(Imm));
+ }
+
+ void addExtendOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTW;
+ unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
+ Inst.addOperand(MCOperand::createImm(Imm));
+ }
+
+ void addExtend64Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTX;
+ unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
+ Inst.addOperand(MCOperand::createImm(Imm));
+ }
+
+ void addMemExtendOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
+ Inst.addOperand(MCOperand::createImm(IsSigned));
+ Inst.addOperand(MCOperand::createImm(getShiftExtendAmount() != 0));
+ }
+
+ // For 8-bit load/store instructions with a register offset, both the
+ // "DoShift" and "NoShift" variants have a shift of 0. Because of this,
+ // they're disambiguated by whether the shift was explicit or implicit rather
+ // than its size.
+ void addMemExtend8Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ AArch64_AM::ShiftExtendType ET = getShiftExtendType();
+ bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
+ Inst.addOperand(MCOperand::createImm(IsSigned));
+ Inst.addOperand(MCOperand::createImm(hasShiftExtendAmount()));
+ }
+
+ template<int Shift>
+ void addMOVZMovAliasOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
+ uint64_t Value = CE->getValue();
+ Inst.addOperand(MCOperand::createImm((Value >> Shift) & 0xffff));
+ }
+
+ template<int Shift>
+ void addMOVNMovAliasOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
+ uint64_t Value = CE->getValue();
+ Inst.addOperand(MCOperand::createImm((~Value >> Shift) & 0xffff));
+ }
+
+ void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::createImm(MCE->getValue() / 90));
+ }
+
+ void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::createImm((MCE->getValue() - 90) / 180));
+ }
+
+ void print(raw_ostream &OS) const override;
+
+ static std::unique_ptr<AArch64Operand>
+ CreateToken(StringRef Str, bool IsSuffix, SMLoc S, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Token, Ctx);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->Tok.IsSuffix = IsSuffix;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateReg(unsigned RegNum, RegKind Kind, SMLoc S, SMLoc E, MCContext &Ctx,
+ RegConstraintEqualityTy EqTy = RegConstraintEqualityTy::EqualsReg,
+ AArch64_AM::ShiftExtendType ExtTy = AArch64_AM::LSL,
+ unsigned ShiftAmount = 0,
+ unsigned HasExplicitAmount = false) {
+ auto Op = make_unique<AArch64Operand>(k_Register, Ctx);
+ Op->Reg.RegNum = RegNum;
+ Op->Reg.Kind = Kind;
+ Op->Reg.ElementWidth = 0;
+ Op->Reg.EqualityTy = EqTy;
+ Op->Reg.ShiftExtend.Type = ExtTy;
+ Op->Reg.ShiftExtend.Amount = ShiftAmount;
+ Op->Reg.ShiftExtend.HasExplicitAmount = HasExplicitAmount;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateVectorReg(unsigned RegNum, RegKind Kind, unsigned ElementWidth,
+ SMLoc S, SMLoc E, MCContext &Ctx,
+ AArch64_AM::ShiftExtendType ExtTy = AArch64_AM::LSL,
+ unsigned ShiftAmount = 0,
+ unsigned HasExplicitAmount = false) {
+ assert((Kind == RegKind::NeonVector || Kind == RegKind::SVEDataVector ||
+ Kind == RegKind::SVEPredicateVector) &&
+ "Invalid vector kind");
+ auto Op = CreateReg(RegNum, Kind, S, E, Ctx, EqualsReg, ExtTy, ShiftAmount,
+ HasExplicitAmount);
+ Op->Reg.ElementWidth = ElementWidth;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateVectorList(unsigned RegNum, unsigned Count, unsigned NumElements,
+ unsigned ElementWidth, RegKind RegisterKind, SMLoc S, SMLoc E,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_VectorList, Ctx);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.NumElements = NumElements;
+ Op->VectorList.ElementWidth = ElementWidth;
+ Op->VectorList.RegisterKind = RegisterKind;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_VectorIndex, Ctx);
+ Op->VectorIndex.Val = Idx;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateImm(const MCExpr *Val, SMLoc S,
+ SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Immediate, Ctx);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateShiftedImm(const MCExpr *Val,
+ unsigned ShiftAmount,
+ SMLoc S, SMLoc E,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_ShiftedImm, Ctx);
+ Op->ShiftedImm .Val = Val;
+ Op->ShiftedImm.ShiftAmount = ShiftAmount;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateCondCode(AArch64CC::CondCode Code, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_CondCode, Ctx);
+ Op->CondCode.Code = Code;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateFPImm(APFloat Val, bool IsExact, SMLoc S, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_FPImm, Ctx);
+ Op->FPImm.Val = Val.bitcastToAPInt().getSExtValue();
+ Op->FPImm.IsExact = IsExact;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateBarrier(unsigned Val,
+ StringRef Str,
+ SMLoc S,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Barrier, Ctx);
+ Op->Barrier.Val = Val;
+ Op->Barrier.Data = Str.data();
+ Op->Barrier.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateSysReg(StringRef Str, SMLoc S,
+ uint32_t MRSReg,
+ uint32_t MSRReg,
+ uint32_t PStateField,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_SysReg, Ctx);
+ Op->SysReg.Data = Str.data();
+ Op->SysReg.Length = Str.size();
+ Op->SysReg.MRSReg = MRSReg;
+ Op->SysReg.MSRReg = MSRReg;
+ Op->SysReg.PStateField = PStateField;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateSysCR(unsigned Val, SMLoc S,
+ SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_SysCR, Ctx);
+ Op->SysCRImm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreatePrefetch(unsigned Val,
+ StringRef Str,
+ SMLoc S,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_Prefetch, Ctx);
+ Op->Prefetch.Val = Val;
+ Op->Barrier.Data = Str.data();
+ Op->Barrier.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreatePSBHint(unsigned Val,
+ StringRef Str,
+ SMLoc S,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_PSBHint, Ctx);
+ Op->PSBHint.Val = Val;
+ Op->PSBHint.Data = Str.data();
+ Op->PSBHint.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand> CreateBTIHint(unsigned Val,
+ StringRef Str,
+ SMLoc S,
+ MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_BTIHint, Ctx);
+ Op->BTIHint.Val = Val << 1 | 32;
+ Op->BTIHint.Data = Str.data();
+ Op->BTIHint.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static std::unique_ptr<AArch64Operand>
+ CreateShiftExtend(AArch64_AM::ShiftExtendType ShOp, unsigned Val,
+ bool HasExplicitAmount, SMLoc S, SMLoc E, MCContext &Ctx) {
+ auto Op = make_unique<AArch64Operand>(k_ShiftExtend, Ctx);
+ Op->ShiftExtend.Type = ShOp;
+ Op->ShiftExtend.Amount = Val;
+ Op->ShiftExtend.HasExplicitAmount = HasExplicitAmount;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+};
+
+} // end anonymous namespace.
+
+void AArch64Operand::print(raw_ostream &OS) const {
+ switch (Kind) {
+ case k_FPImm:
+ OS << "<fpimm " << getFPImm().bitcastToAPInt().getZExtValue();
+ if (!getFPImmIsExact())
+ OS << " (inexact)";
+ OS << ">";
+ break;
+ case k_Barrier: {
+ StringRef Name = getBarrierName();
+ if (!Name.empty())
+ OS << "<barrier " << Name << ">";
+ else
+ OS << "<barrier invalid #" << getBarrier() << ">";
+ break;
+ }
+ case k_Immediate:
+ OS << *getImm();
+ break;
+ case k_ShiftedImm: {
+ unsigned Shift = getShiftedImmShift();
+ OS << "<shiftedimm ";
+ OS << *getShiftedImmVal();
+ OS << ", lsl #" << AArch64_AM::getShiftValue(Shift) << ">";
+ break;
+ }
+ case k_CondCode:
+ OS << "<condcode " << getCondCode() << ">";
+ break;
+ case k_VectorList: {
+ OS << "<vectorlist ";
+ unsigned Reg = getVectorListStart();
+ for (unsigned i = 0, e = getVectorListCount(); i != e; ++i)
+ OS << Reg + i << " ";
+ OS << ">";
+ break;
+ }
+ case k_VectorIndex:
+ OS << "<vectorindex " << getVectorIndex() << ">";
+ break;
+ case k_SysReg:
+ OS << "<sysreg: " << getSysReg() << '>';
+ break;
+ case k_Token:
+ OS << "'" << getToken() << "'";
+ break;
+ case k_SysCR:
+ OS << "c" << getSysCR();
+ break;
+ case k_Prefetch: {
+ StringRef Name = getPrefetchName();
+ if (!Name.empty())
+ OS << "<prfop " << Name << ">";
+ else
+ OS << "<prfop invalid #" << getPrefetch() << ">";
+ break;
+ }
+ case k_PSBHint:
+ OS << getPSBHintName();
+ break;
+ case k_Register:
+ OS << "<register " << getReg() << ">";
+ if (!getShiftExtendAmount() && !hasShiftExtendAmount())
+ break;
+ LLVM_FALLTHROUGH;
+ case k_BTIHint:
+ OS << getBTIHintName();
+ break;
+ case k_ShiftExtend:
+ OS << "<" << AArch64_AM::getShiftExtendName(getShiftExtendType()) << " #"
+ << getShiftExtendAmount();
+ if (!hasShiftExtendAmount())
+ OS << "<imp>";
+ OS << '>';
+ break;
+ }
+}
+
+/// @name Auto-generated Match Functions
+/// {
+
+static unsigned MatchRegisterName(StringRef Name);
+
+/// }
+
+static unsigned MatchNeonVectorRegName(StringRef Name) {
+ return StringSwitch<unsigned>(Name.lower())
+ .Case("v0", AArch64::Q0)
+ .Case("v1", AArch64::Q1)
+ .Case("v2", AArch64::Q2)
+ .Case("v3", AArch64::Q3)
+ .Case("v4", AArch64::Q4)
+ .Case("v5", AArch64::Q5)
+ .Case("v6", AArch64::Q6)
+ .Case("v7", AArch64::Q7)
+ .Case("v8", AArch64::Q8)
+ .Case("v9", AArch64::Q9)
+ .Case("v10", AArch64::Q10)
+ .Case("v11", AArch64::Q11)
+ .Case("v12", AArch64::Q12)
+ .Case("v13", AArch64::Q13)
+ .Case("v14", AArch64::Q14)
+ .Case("v15", AArch64::Q15)
+ .Case("v16", AArch64::Q16)
+ .Case("v17", AArch64::Q17)
+ .Case("v18", AArch64::Q18)
+ .Case("v19", AArch64::Q19)
+ .Case("v20", AArch64::Q20)
+ .Case("v21", AArch64::Q21)
+ .Case("v22", AArch64::Q22)
+ .Case("v23", AArch64::Q23)
+ .Case("v24", AArch64::Q24)
+ .Case("v25", AArch64::Q25)
+ .Case("v26", AArch64::Q26)
+ .Case("v27", AArch64::Q27)
+ .Case("v28", AArch64::Q28)
+ .Case("v29", AArch64::Q29)
+ .Case("v30", AArch64::Q30)
+ .Case("v31", AArch64::Q31)
+ .Default(0);
+}
+
+/// Returns an optional pair of (#elements, element-width) if Suffix
+/// is a valid vector kind. Where the number of elements in a vector
+/// or the vector width is implicit or explicitly unknown (but still a
+/// valid suffix kind), 0 is used.
+static Optional<std::pair<int, int>> parseVectorKind(StringRef Suffix,
+ RegKind VectorKind) {
+ std::pair<int, int> Res = {-1, -1};
+
+ switch (VectorKind) {
+ case RegKind::NeonVector:
+ Res =
+ StringSwitch<std::pair<int, int>>(Suffix.lower())
+ .Case("", {0, 0})
+ .Case(".1d", {1, 64})
+ .Case(".1q", {1, 128})
+ // '.2h' needed for fp16 scalar pairwise reductions
+ .Case(".2h", {2, 16})
+ .Case(".2s", {2, 32})
+ .Case(".2d", {2, 64})
+ // '.4b' is another special case for the ARMv8.2a dot product
+ // operand
+ .Case(".4b", {4, 8})
+ .Case(".4h", {4, 16})
+ .Case(".4s", {4, 32})
+ .Case(".8b", {8, 8})
+ .Case(".8h", {8, 16})
+ .Case(".16b", {16, 8})
+ // Accept the width neutral ones, too, for verbose syntax. If those
+ // aren't used in the right places, the token operand won't match so
+ // all will work out.
+ .Case(".b", {0, 8})
+ .Case(".h", {0, 16})
+ .Case(".s", {0, 32})
+ .Case(".d", {0, 64})
+ .Default({-1, -1});
+ break;
+ case RegKind::SVEPredicateVector:
+ case RegKind::SVEDataVector:
+ Res = StringSwitch<std::pair<int, int>>(Suffix.lower())
+ .Case("", {0, 0})
+ .Case(".b", {0, 8})
+ .Case(".h", {0, 16})
+ .Case(".s", {0, 32})
+ .Case(".d", {0, 64})
+ .Case(".q", {0, 128})
+ .Default({-1, -1});
+ break;
+ default:
+ llvm_unreachable("Unsupported RegKind");
+ }
+
+ if (Res == std::make_pair(-1, -1))
+ return Optional<std::pair<int, int>>();
+
+ return Optional<std::pair<int, int>>(Res);
+}
+
+static bool isValidVectorKind(StringRef Suffix, RegKind VectorKind) {
+ return parseVectorKind(Suffix, VectorKind).hasValue();
+}
+
+static unsigned matchSVEDataVectorRegName(StringRef Name) {
+ return StringSwitch<unsigned>(Name.lower())
+ .Case("z0", AArch64::Z0)
+ .Case("z1", AArch64::Z1)
+ .Case("z2", AArch64::Z2)
+ .Case("z3", AArch64::Z3)
+ .Case("z4", AArch64::Z4)
+ .Case("z5", AArch64::Z5)
+ .Case("z6", AArch64::Z6)
+ .Case("z7", AArch64::Z7)
+ .Case("z8", AArch64::Z8)
+ .Case("z9", AArch64::Z9)
+ .Case("z10", AArch64::Z10)
+ .Case("z11", AArch64::Z11)
+ .Case("z12", AArch64::Z12)
+ .Case("z13", AArch64::Z13)
+ .Case("z14", AArch64::Z14)
+ .Case("z15", AArch64::Z15)
+ .Case("z16", AArch64::Z16)
+ .Case("z17", AArch64::Z17)
+ .Case("z18", AArch64::Z18)
+ .Case("z19", AArch64::Z19)
+ .Case("z20", AArch64::Z20)
+ .Case("z21", AArch64::Z21)
+ .Case("z22", AArch64::Z22)
+ .Case("z23", AArch64::Z23)
+ .Case("z24", AArch64::Z24)
+ .Case("z25", AArch64::Z25)
+ .Case("z26", AArch64::Z26)
+ .Case("z27", AArch64::Z27)
+ .Case("z28", AArch64::Z28)
+ .Case("z29", AArch64::Z29)
+ .Case("z30", AArch64::Z30)
+ .Case("z31", AArch64::Z31)
+ .Default(0);
+}
+
+static unsigned matchSVEPredicateVectorRegName(StringRef Name) {
+ return StringSwitch<unsigned>(Name.lower())
+ .Case("p0", AArch64::P0)
+ .Case("p1", AArch64::P1)
+ .Case("p2", AArch64::P2)
+ .Case("p3", AArch64::P3)
+ .Case("p4", AArch64::P4)
+ .Case("p5", AArch64::P5)
+ .Case("p6", AArch64::P6)
+ .Case("p7", AArch64::P7)
+ .Case("p8", AArch64::P8)
+ .Case("p9", AArch64::P9)
+ .Case("p10", AArch64::P10)
+ .Case("p11", AArch64::P11)
+ .Case("p12", AArch64::P12)
+ .Case("p13", AArch64::P13)
+ .Case("p14", AArch64::P14)
+ .Case("p15", AArch64::P15)
+ .Default(0);
+}
+
+bool AArch64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
+ SMLoc &EndLoc) {
+ StartLoc = getLoc();
+ auto Res = tryParseScalarRegister(RegNo);
+ EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ return Res != MatchOperand_Success;
+}
+
+// Matches a register name or register alias previously defined by '.req'
+unsigned AArch64AsmParser::matchRegisterNameAlias(StringRef Name,
+ RegKind Kind) {
+ unsigned RegNum = 0;
+ if ((RegNum = matchSVEDataVectorRegName(Name)))
+ return Kind == RegKind::SVEDataVector ? RegNum : 0;
+
+ if ((RegNum = matchSVEPredicateVectorRegName(Name)))
+ return Kind == RegKind::SVEPredicateVector ? RegNum : 0;
+
+ if ((RegNum = MatchNeonVectorRegName(Name)))
+ return Kind == RegKind::NeonVector ? RegNum : 0;
+
+ // The parsed register must be of RegKind Scalar
+ if ((RegNum = MatchRegisterName(Name)))
+ return Kind == RegKind::Scalar ? RegNum : 0;
+
+ if (!RegNum) {
+ // Handle a few common aliases of registers.
+ if (auto RegNum = StringSwitch<unsigned>(Name.lower())
+ .Case("fp", AArch64::FP)
+ .Case("lr", AArch64::LR)
+ .Case("x31", AArch64::XZR)
+ .Case("w31", AArch64::WZR)
+ .Default(0))
+ return Kind == RegKind::Scalar ? RegNum : 0;
+
+ // Check for aliases registered via .req. Canonicalize to lower case.
+ // That's more consistent since register names are case insensitive, and
+ // it's how the original entry was passed in from MC/MCParser/AsmParser.
+ auto Entry = RegisterReqs.find(Name.lower());
+ if (Entry == RegisterReqs.end())
+ return 0;
+
+ // set RegNum if the match is the right kind of register
+ if (Kind == Entry->getValue().first)
+ RegNum = Entry->getValue().second;
+ }
+ return RegNum;
+}
+
+/// tryParseScalarRegister - Try to parse a register name. The token must be an
+/// Identifier when called, and if it is a register name the token is eaten and
+/// the register is added to the operand list.
+OperandMatchResultTy
+AArch64AsmParser::tryParseScalarRegister(unsigned &RegNum) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ std::string lowerCase = Tok.getString().lower();
+ unsigned Reg = matchRegisterNameAlias(lowerCase, RegKind::Scalar);
+ if (Reg == 0)
+ return MatchOperand_NoMatch;
+
+ RegNum = Reg;
+ Parser.Lex(); // Eat identifier token.
+ return MatchOperand_Success;
+}
+
+/// tryParseSysCROperand - Try to parse a system instruction CR operand name.
+OperandMatchResultTy
+AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = getLoc();
+
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Error(S, "Expected cN operand where 0 <= N <= 15");
+ return MatchOperand_ParseFail;
+ }
+
+ StringRef Tok = Parser.getTok().getIdentifier();
+ if (Tok[0] != 'c' && Tok[0] != 'C') {
+ Error(S, "Expected cN operand where 0 <= N <= 15");
+ return MatchOperand_ParseFail;
+ }
+
+ uint32_t CRNum;
+ bool BadNum = Tok.drop_front().getAsInteger(10, CRNum);
+ if (BadNum || CRNum > 15) {
+ Error(S, "Expected cN operand where 0 <= N <= 15");
+ return MatchOperand_ParseFail;
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(
+ AArch64Operand::CreateSysCR(CRNum, S, getLoc(), getContext()));
+ return MatchOperand_Success;
+}
+
+/// tryParsePrefetch - Try to parse a prefetch operand.
+template <bool IsSVEPrefetch>
+OperandMatchResultTy
+AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = getLoc();
+ const AsmToken &Tok = Parser.getTok();
+
+ auto LookupByName = [](StringRef N) {
+ if (IsSVEPrefetch) {
+ if (auto Res = AArch64SVEPRFM::lookupSVEPRFMByName(N))
+ return Optional<unsigned>(Res->Encoding);
+ } else if (auto Res = AArch64PRFM::lookupPRFMByName(N))
+ return Optional<unsigned>(Res->Encoding);
+ return Optional<unsigned>();
+ };
+
+ auto LookupByEncoding = [](unsigned E) {
+ if (IsSVEPrefetch) {
+ if (auto Res = AArch64SVEPRFM::lookupSVEPRFMByEncoding(E))
+ return Optional<StringRef>(Res->Name);
+ } else if (auto Res = AArch64PRFM::lookupPRFMByEncoding(E))
+ return Optional<StringRef>(Res->Name);
+ return Optional<StringRef>();
+ };
+ unsigned MaxVal = IsSVEPrefetch ? 15 : 31;
+
+ // Either an identifier for named values or a 5-bit immediate.
+ // Eat optional hash.
+ if (parseOptionalToken(AsmToken::Hash) ||
+ Tok.is(AsmToken::Integer)) {
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return MatchOperand_ParseFail;
+
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ TokError("immediate value expected for prefetch operand");
+ return MatchOperand_ParseFail;
+ }
+ unsigned prfop = MCE->getValue();
+ if (prfop > MaxVal) {
+ TokError("prefetch operand out of range, [0," + utostr(MaxVal) +
+ "] expected");
+ return MatchOperand_ParseFail;
+ }
+
+ auto PRFM = LookupByEncoding(MCE->getValue());
+ Operands.push_back(AArch64Operand::CreatePrefetch(
+ prfop, PRFM.getValueOr(""), S, getContext()));
+ return MatchOperand_Success;
+ }
+
+ if (Tok.isNot(AsmToken::Identifier)) {
+ TokError("prefetch hint expected");
+ return MatchOperand_ParseFail;
+ }
+
+ auto PRFM = LookupByName(Tok.getString());
+ if (!PRFM) {
+ TokError("prefetch hint expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(AArch64Operand::CreatePrefetch(
+ *PRFM, Tok.getString(), S, getContext()));
+ return MatchOperand_Success;
+}
+
+/// tryParsePSBHint - Try to parse a PSB operand, mapped to Hint command
+OperandMatchResultTy
+AArch64AsmParser::tryParsePSBHint(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ TokError("invalid operand for instruction");
+ return MatchOperand_ParseFail;
+ }
+
+ auto PSB = AArch64PSBHint::lookupPSBByName(Tok.getString());
+ if (!PSB) {
+ TokError("invalid operand for instruction");
+ return MatchOperand_ParseFail;
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(AArch64Operand::CreatePSBHint(
+ PSB->Encoding, Tok.getString(), S, getContext()));
+ return MatchOperand_Success;
+}
+
+/// tryParseBTIHint - Try to parse a BTI operand, mapped to Hint command
+OperandMatchResultTy
+AArch64AsmParser::tryParseBTIHint(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ TokError("invalid operand for instruction");
+ return MatchOperand_ParseFail;
+ }
+
+ auto BTI = AArch64BTIHint::lookupBTIByName(Tok.getString());
+ if (!BTI) {
+ TokError("invalid operand for instruction");
+ return MatchOperand_ParseFail;
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(AArch64Operand::CreateBTIHint(
+ BTI->Encoding, Tok.getString(), S, getContext()));
+ return MatchOperand_Success;
+}
+
+/// tryParseAdrpLabel - Parse and validate a source label for the ADRP
+/// instruction.
+OperandMatchResultTy
+AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = getLoc();
+ const MCExpr *Expr = nullptr;
+
+ if (Parser.getTok().is(AsmToken::Hash)) {
+ Parser.Lex(); // Eat hash token.
+ }
+
+ if (parseSymbolicImmVal(Expr))
+ return MatchOperand_ParseFail;
+
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
+ if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
+ ELFRefKind == AArch64MCExpr::VK_INVALID) {
+ // No modifier was specified at all; this is the syntax for an ELF basic
+ // ADRP relocation (unfortunately).
+ Expr =
+ AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_PAGE, getContext());
+ } else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE ||
+ DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) &&
+ Addend != 0) {
+ Error(S, "gotpage label reference not allowed an addend");
+ return MatchOperand_ParseFail;
+ } else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE &&
+ DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE &&
+ DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE &&
+ ELFRefKind != AArch64MCExpr::VK_ABS_PAGE_NC &&
+ ELFRefKind != AArch64MCExpr::VK_GOT_PAGE &&
+ ELFRefKind != AArch64MCExpr::VK_GOTTPREL_PAGE &&
+ ELFRefKind != AArch64MCExpr::VK_TLSDESC_PAGE) {
+ // The operand must be an @page or @gotpage qualified symbolref.
+ Error(S, "page or gotpage label reference expected");
+ return MatchOperand_ParseFail;
+ }
+ }
+
+ // We have either a label reference possibly with addend or an immediate. The
+ // addend is a raw value here. The linker will adjust it to only reference the
+ // page.
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
+
+ return MatchOperand_Success;
+}
+
+/// tryParseAdrLabel - Parse and validate a source label for the ADR
+/// instruction.
+OperandMatchResultTy
+AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) {
+ SMLoc S = getLoc();
+ const MCExpr *Expr = nullptr;
+
+ // Leave anything with a bracket to the default for SVE
+ if (getParser().getTok().is(AsmToken::LBrac))
+ return MatchOperand_NoMatch;
+
+ if (getParser().getTok().is(AsmToken::Hash))
+ getParser().Lex(); // Eat hash token.
+
+ if (parseSymbolicImmVal(Expr))
+ return MatchOperand_ParseFail;
+
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
+ if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
+ ELFRefKind == AArch64MCExpr::VK_INVALID) {
+ // No modifier was specified at all; this is the syntax for an ELF basic
+ // ADR relocation (unfortunately).
+ Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS, getContext());
+ } else {
+ Error(S, "unexpected adr label");
+ return MatchOperand_ParseFail;
+ }
+ }
+
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
+ return MatchOperand_Success;
+}
+
+/// tryParseFPImm - A floating point immediate expression operand.
+template<bool AddFPZeroAsLiteral>
+OperandMatchResultTy
+AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = getLoc();
+
+ bool Hash = parseOptionalToken(AsmToken::Hash);
+
+ // Handle negation, as that still comes through as a separate token.
+ bool isNegative = parseOptionalToken(AsmToken::Minus);
+
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Real) && !Tok.is(AsmToken::Integer)) {
+ if (!Hash)
+ return MatchOperand_NoMatch;
+ TokError("invalid floating point immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ // Parse hexadecimal representation.
+ if (Tok.is(AsmToken::Integer) && Tok.getString().startswith("0x")) {
+ if (Tok.getIntVal() > 255 || isNegative) {
+ TokError("encoded floating point value out of range");
+ return MatchOperand_ParseFail;
+ }
+
+ APFloat F((double)AArch64_AM::getFPImmFloat(Tok.getIntVal()));
+ Operands.push_back(
+ AArch64Operand::CreateFPImm(F, true, S, getContext()));
+ } else {
+ // Parse FP representation.
+ APFloat RealVal(APFloat::IEEEdouble());
+ auto Status =
+ RealVal.convertFromString(Tok.getString(), APFloat::rmTowardZero);
+ if (isNegative)
+ RealVal.changeSign();
+
+ if (AddFPZeroAsLiteral && RealVal.isPosZero()) {
+ Operands.push_back(
+ AArch64Operand::CreateToken("#0", false, S, getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateToken(".0", false, S, getContext()));
+ } else
+ Operands.push_back(AArch64Operand::CreateFPImm(
+ RealVal, Status == APFloat::opOK, S, getContext()));
+ }
+
+ Parser.Lex(); // Eat the token.
+
+ return MatchOperand_Success;
+}
+
+/// tryParseImmWithOptionalShift - Parse immediate operand, optionally with
+/// a shift suffix, for example '#1, lsl #12'.
+OperandMatchResultTy
+AArch64AsmParser::tryParseImmWithOptionalShift(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = getLoc();
+
+ if (Parser.getTok().is(AsmToken::Hash))
+ Parser.Lex(); // Eat '#'
+ else if (Parser.getTok().isNot(AsmToken::Integer))
+ // Operand should start from # or should be integer, emit error otherwise.
+ return MatchOperand_NoMatch;
+
+ const MCExpr *Imm = nullptr;
+ if (parseSymbolicImmVal(Imm))
+ return MatchOperand_ParseFail;
+ else if (Parser.getTok().isNot(AsmToken::Comma)) {
+ SMLoc E = Parser.getTok().getLoc();
+ Operands.push_back(
+ AArch64Operand::CreateImm(Imm, S, E, getContext()));
+ return MatchOperand_Success;
+ }
+
+ // Eat ','
+ Parser.Lex();
+
+ // The optional operand must be "lsl #N" where N is non-negative.
+ if (!Parser.getTok().is(AsmToken::Identifier) ||
+ !Parser.getTok().getIdentifier().equals_lower("lsl")) {
+ Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ // Eat 'lsl'
+ Parser.Lex();
+
+ parseOptionalToken(AsmToken::Hash);
+
+ if (Parser.getTok().isNot(AsmToken::Integer)) {
+ Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t ShiftAmount = Parser.getTok().getIntVal();
+
+ if (ShiftAmount < 0) {
+ Error(Parser.getTok().getLoc(), "positive shift amount required");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat the number
+
+ // Just in case the optional lsl #0 is used for immediates other than zero.
+ if (ShiftAmount == 0 && Imm != nullptr) {
+ SMLoc E = Parser.getTok().getLoc();
+ Operands.push_back(AArch64Operand::CreateImm(Imm, S, E, getContext()));
+ return MatchOperand_Success;
+ }
+
+ SMLoc E = Parser.getTok().getLoc();
+ Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount,
+ S, E, getContext()));
+ return MatchOperand_Success;
+}
+
+/// parseCondCodeString - Parse a Condition Code string.
+AArch64CC::CondCode AArch64AsmParser::parseCondCodeString(StringRef Cond) {
+ AArch64CC::CondCode CC = StringSwitch<AArch64CC::CondCode>(Cond.lower())
+ .Case("eq", AArch64CC::EQ)
+ .Case("ne", AArch64CC::NE)
+ .Case("cs", AArch64CC::HS)
+ .Case("hs", AArch64CC::HS)
+ .Case("cc", AArch64CC::LO)
+ .Case("lo", AArch64CC::LO)
+ .Case("mi", AArch64CC::MI)
+ .Case("pl", AArch64CC::PL)
+ .Case("vs", AArch64CC::VS)
+ .Case("vc", AArch64CC::VC)
+ .Case("hi", AArch64CC::HI)
+ .Case("ls", AArch64CC::LS)
+ .Case("ge", AArch64CC::GE)
+ .Case("lt", AArch64CC::LT)
+ .Case("gt", AArch64CC::GT)
+ .Case("le", AArch64CC::LE)
+ .Case("al", AArch64CC::AL)
+ .Case("nv", AArch64CC::NV)
+ .Default(AArch64CC::Invalid);
+
+ if (CC == AArch64CC::Invalid &&
+ getSTI().getFeatureBits()[AArch64::FeatureSVE])
+ CC = StringSwitch<AArch64CC::CondCode>(Cond.lower())
+ .Case("none", AArch64CC::EQ)
+ .Case("any", AArch64CC::NE)
+ .Case("nlast", AArch64CC::HS)
+ .Case("last", AArch64CC::LO)
+ .Case("first", AArch64CC::MI)
+ .Case("nfrst", AArch64CC::PL)
+ .Case("pmore", AArch64CC::HI)
+ .Case("plast", AArch64CC::LS)
+ .Case("tcont", AArch64CC::GE)
+ .Case("tstop", AArch64CC::LT)
+ .Default(AArch64CC::Invalid);
+
+ return CC;
+}
+
+/// parseCondCode - Parse a Condition Code operand.
+bool AArch64AsmParser::parseCondCode(OperandVector &Operands,
+ bool invertCondCode) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
+
+ StringRef Cond = Tok.getString();
+ AArch64CC::CondCode CC = parseCondCodeString(Cond);
+ if (CC == AArch64CC::Invalid)
+ return TokError("invalid condition code");
+ Parser.Lex(); // Eat identifier token.
+
+ if (invertCondCode) {
+ if (CC == AArch64CC::AL || CC == AArch64CC::NV)
+ return TokError("condition codes AL and NV are invalid for this instruction");
+ CC = AArch64CC::getInvertedCondCode(AArch64CC::CondCode(CC));
+ }
+
+ Operands.push_back(
+ AArch64Operand::CreateCondCode(CC, S, getLoc(), getContext()));
+ return false;
+}
+
+/// tryParseOptionalShift - Some operands take an optional shift argument. Parse
+/// them if present.
+OperandMatchResultTy
+AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ std::string LowerID = Tok.getString().lower();
+ AArch64_AM::ShiftExtendType ShOp =
+ StringSwitch<AArch64_AM::ShiftExtendType>(LowerID)
+ .Case("lsl", AArch64_AM::LSL)
+ .Case("lsr", AArch64_AM::LSR)
+ .Case("asr", AArch64_AM::ASR)
+ .Case("ror", AArch64_AM::ROR)
+ .Case("msl", AArch64_AM::MSL)
+ .Case("uxtb", AArch64_AM::UXTB)
+ .Case("uxth", AArch64_AM::UXTH)
+ .Case("uxtw", AArch64_AM::UXTW)
+ .Case("uxtx", AArch64_AM::UXTX)
+ .Case("sxtb", AArch64_AM::SXTB)
+ .Case("sxth", AArch64_AM::SXTH)
+ .Case("sxtw", AArch64_AM::SXTW)
+ .Case("sxtx", AArch64_AM::SXTX)
+ .Default(AArch64_AM::InvalidShiftExtend);
+
+ if (ShOp == AArch64_AM::InvalidShiftExtend)
+ return MatchOperand_NoMatch;
+
+ SMLoc S = Tok.getLoc();
+ Parser.Lex();
+
+ bool Hash = parseOptionalToken(AsmToken::Hash);
+
+ if (!Hash && getLexer().isNot(AsmToken::Integer)) {
+ if (ShOp == AArch64_AM::LSL || ShOp == AArch64_AM::LSR ||
+ ShOp == AArch64_AM::ASR || ShOp == AArch64_AM::ROR ||
+ ShOp == AArch64_AM::MSL) {
+ // We expect a number here.
+ TokError("expected #imm after shift specifier");
+ return MatchOperand_ParseFail;
+ }
+
+ // "extend" type operations don't need an immediate, #0 is implicit.
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(
+ AArch64Operand::CreateShiftExtend(ShOp, 0, false, S, E, getContext()));
+ return MatchOperand_Success;
+ }
+
+ // Make sure we do actually have a number, identifier or a parenthesized
+ // expression.
+ SMLoc E = Parser.getTok().getLoc();
+ if (!Parser.getTok().is(AsmToken::Integer) &&
+ !Parser.getTok().is(AsmToken::LParen) &&
+ !Parser.getTok().is(AsmToken::Identifier)) {
+ Error(E, "expected integer shift amount");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return MatchOperand_ParseFail;
+
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ Error(E, "expected constant '#imm' after shift specifier");
+ return MatchOperand_ParseFail;
+ }
+
+ E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateShiftExtend(
+ ShOp, MCE->getValue(), true, S, E, getContext()));
+ return MatchOperand_Success;
+}
+
+static const struct Extension {
+ const char *Name;
+ const FeatureBitset Features;
+} ExtensionMap[] = {
+ {"crc", {AArch64::FeatureCRC}},
+ {"sm4", {AArch64::FeatureSM4}},
+ {"sha3", {AArch64::FeatureSHA3}},
+ {"sha2", {AArch64::FeatureSHA2}},
+ {"aes", {AArch64::FeatureAES}},
+ {"crypto", {AArch64::FeatureCrypto}},
+ {"fp", {AArch64::FeatureFPARMv8}},
+ {"simd", {AArch64::FeatureNEON}},
+ {"ras", {AArch64::FeatureRAS}},
+ {"lse", {AArch64::FeatureLSE}},
+ {"predres", {AArch64::FeaturePredRes}},
+ {"ccdp", {AArch64::FeatureCacheDeepPersist}},
+ {"mte", {AArch64::FeatureMTE}},
+ {"tlb-rmi", {AArch64::FeatureTLB_RMI}},
+ {"pan-rwv", {AArch64::FeaturePAN_RWV}},
+ {"ccpp", {AArch64::FeatureCCPP}},
+ {"sve", {AArch64::FeatureSVE}},
+ {"sve2", {AArch64::FeatureSVE2}},
+ {"sve2-aes", {AArch64::FeatureSVE2AES}},
+ {"sve2-sm4", {AArch64::FeatureSVE2SM4}},
+ {"sve2-sha3", {AArch64::FeatureSVE2SHA3}},
+ {"sve2-bitperm", {AArch64::FeatureSVE2BitPerm}},
+ // FIXME: Unsupported extensions
+ {"pan", {}},
+ {"lor", {}},
+ {"rdma", {}},
+ {"profile", {}},
+};
+
+static void setRequiredFeatureString(FeatureBitset FBS, std::string &Str) {
+ if (FBS[AArch64::HasV8_1aOps])
+ Str += "ARMv8.1a";
+ else if (FBS[AArch64::HasV8_2aOps])
+ Str += "ARMv8.2a";
+ else if (FBS[AArch64::HasV8_3aOps])
+ Str += "ARMv8.3a";
+ else if (FBS[AArch64::HasV8_4aOps])
+ Str += "ARMv8.4a";
+ else if (FBS[AArch64::HasV8_5aOps])
+ Str += "ARMv8.5a";
+ else {
+ auto ext = std::find_if(std::begin(ExtensionMap),
+ std::end(ExtensionMap),
+ [&](const Extension& e)
+ // Use & in case multiple features are enabled
+ { return (FBS & e.Features) != FeatureBitset(); }
+ );
+
+ Str += ext != std::end(ExtensionMap) ? ext->Name : "(unknown)";
+ }
+}
+
+void AArch64AsmParser::createSysAlias(uint16_t Encoding, OperandVector &Operands,
+ SMLoc S) {
+ const uint16_t Op2 = Encoding & 7;
+ const uint16_t Cm = (Encoding & 0x78) >> 3;
+ const uint16_t Cn = (Encoding & 0x780) >> 7;
+ const uint16_t Op1 = (Encoding & 0x3800) >> 11;
+
+ const MCExpr *Expr = MCConstantExpr::create(Op1, getContext());
+
+ Operands.push_back(
+ AArch64Operand::CreateImm(Expr, S, getLoc(), getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateSysCR(Cn, S, getLoc(), getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateSysCR(Cm, S, getLoc(), getContext()));
+ Expr = MCConstantExpr::create(Op2, getContext());
+ Operands.push_back(
+ AArch64Operand::CreateImm(Expr, S, getLoc(), getContext()));
+}
+
+/// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for
+/// the SYS instruction. Parse them specially so that we create a SYS MCInst.
+bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc,
+ OperandVector &Operands) {
+ if (Name.find('.') != StringRef::npos)
+ return TokError("invalid operand");
+
+ Mnemonic = Name;
+ Operands.push_back(
+ AArch64Operand::CreateToken("sys", false, NameLoc, getContext()));
+
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ StringRef Op = Tok.getString();
+ SMLoc S = Tok.getLoc();
+
+ if (Mnemonic == "ic") {
+ const AArch64IC::IC *IC = AArch64IC::lookupICByName(Op);
+ if (!IC)
+ return TokError("invalid operand for IC instruction");
+ else if (!IC->haveFeatures(getSTI().getFeatureBits())) {
+ std::string Str("IC " + std::string(IC->Name) + " requires ");
+ setRequiredFeatureString(IC->getRequiredFeatures(), Str);
+ return TokError(Str.c_str());
+ }
+ createSysAlias(IC->Encoding, Operands, S);
+ } else if (Mnemonic == "dc") {
+ const AArch64DC::DC *DC = AArch64DC::lookupDCByName(Op);
+ if (!DC)
+ return TokError("invalid operand for DC instruction");
+ else if (!DC->haveFeatures(getSTI().getFeatureBits())) {
+ std::string Str("DC " + std::string(DC->Name) + " requires ");
+ setRequiredFeatureString(DC->getRequiredFeatures(), Str);
+ return TokError(Str.c_str());
+ }
+ createSysAlias(DC->Encoding, Operands, S);
+ } else if (Mnemonic == "at") {
+ const AArch64AT::AT *AT = AArch64AT::lookupATByName(Op);
+ if (!AT)
+ return TokError("invalid operand for AT instruction");
+ else if (!AT->haveFeatures(getSTI().getFeatureBits())) {
+ std::string Str("AT " + std::string(AT->Name) + " requires ");
+ setRequiredFeatureString(AT->getRequiredFeatures(), Str);
+ return TokError(Str.c_str());
+ }
+ createSysAlias(AT->Encoding, Operands, S);
+ } else if (Mnemonic == "tlbi") {
+ const AArch64TLBI::TLBI *TLBI = AArch64TLBI::lookupTLBIByName(Op);
+ if (!TLBI)
+ return TokError("invalid operand for TLBI instruction");
+ else if (!TLBI->haveFeatures(getSTI().getFeatureBits())) {
+ std::string Str("TLBI " + std::string(TLBI->Name) + " requires ");
+ setRequiredFeatureString(TLBI->getRequiredFeatures(), Str);
+ return TokError(Str.c_str());
+ }
+ createSysAlias(TLBI->Encoding, Operands, S);
+ } else if (Mnemonic == "cfp" || Mnemonic == "dvp" || Mnemonic == "cpp") {
+ const AArch64PRCTX::PRCTX *PRCTX = AArch64PRCTX::lookupPRCTXByName(Op);
+ if (!PRCTX)
+ return TokError("invalid operand for prediction restriction instruction");
+ else if (!PRCTX->haveFeatures(getSTI().getFeatureBits())) {
+ std::string Str(
+ Mnemonic.upper() + std::string(PRCTX->Name) + " requires ");
+ setRequiredFeatureString(PRCTX->getRequiredFeatures(), Str);
+ return TokError(Str.c_str());
+ }
+ uint16_t PRCTX_Op2 =
+ Mnemonic == "cfp" ? 4 :
+ Mnemonic == "dvp" ? 5 :
+ Mnemonic == "cpp" ? 7 :
+ 0;
+ assert(PRCTX_Op2 && "Invalid mnemonic for prediction restriction instruction");
+ createSysAlias(PRCTX->Encoding << 3 | PRCTX_Op2 , Operands, S);
+ }
+
+ Parser.Lex(); // Eat operand.
+
+ bool ExpectRegister = (Op.lower().find("all") == StringRef::npos);
+ bool HasRegister = false;
+
+ // Check for the optional register operand.
+ if (parseOptionalToken(AsmToken::Comma)) {
+ if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands))
+ return TokError("expected register operand");
+ HasRegister = true;
+ }
+
+ if (ExpectRegister && !HasRegister)
+ return TokError("specified " + Mnemonic + " op requires a register");
+ else if (!ExpectRegister && HasRegister)
+ return TokError("specified " + Mnemonic + " op does not use a register");
+
+ if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
+ return true;
+
+ return false;
+}
+
+OperandMatchResultTy
+AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+
+ if (Mnemonic == "tsb" && Tok.isNot(AsmToken::Identifier)) {
+ TokError("'csync' operand expected");
+ return MatchOperand_ParseFail;
+ // Can be either a #imm style literal or an option name
+ } else if (parseOptionalToken(AsmToken::Hash) || Tok.is(AsmToken::Integer)) {
+ // Immediate operand.
+ const MCExpr *ImmVal;
+ SMLoc ExprLoc = getLoc();
+ if (getParser().parseExpression(ImmVal))
+ return MatchOperand_ParseFail;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ Error(ExprLoc, "immediate value expected for barrier operand");
+ return MatchOperand_ParseFail;
+ }
+ if (MCE->getValue() < 0 || MCE->getValue() > 15) {
+ Error(ExprLoc, "barrier operand out of range");
+ return MatchOperand_ParseFail;
+ }
+ auto DB = AArch64DB::lookupDBByEncoding(MCE->getValue());
+ Operands.push_back(AArch64Operand::CreateBarrier(
+ MCE->getValue(), DB ? DB->Name : "", ExprLoc, getContext()));
+ return MatchOperand_Success;
+ }
+
+ if (Tok.isNot(AsmToken::Identifier)) {
+ TokError("invalid operand for instruction");
+ return MatchOperand_ParseFail;
+ }
+
+ auto TSB = AArch64TSB::lookupTSBByName(Tok.getString());
+ // The only valid named option for ISB is 'sy'
+ auto DB = AArch64DB::lookupDBByName(Tok.getString());
+ if (Mnemonic == "isb" && (!DB || DB->Encoding != AArch64DB::sy)) {
+ TokError("'sy' or #imm operand expected");
+ return MatchOperand_ParseFail;
+ // The only valid named option for TSB is 'csync'
+ } else if (Mnemonic == "tsb" && (!TSB || TSB->Encoding != AArch64TSB::csync)) {
+ TokError("'csync' operand expected");
+ return MatchOperand_ParseFail;
+ } else if (!DB && !TSB) {
+ TokError("invalid barrier option name");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(AArch64Operand::CreateBarrier(
+ DB ? DB->Encoding : TSB->Encoding, Tok.getString(), getLoc(), getContext()));
+ Parser.Lex(); // Consume the option
+
+ return MatchOperand_Success;
+}
+
+OperandMatchResultTy
+AArch64AsmParser::tryParseSysReg(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ int MRSReg, MSRReg;
+ auto SysReg = AArch64SysReg::lookupSysRegByName(Tok.getString());
+ if (SysReg && SysReg->haveFeatures(getSTI().getFeatureBits())) {
+ MRSReg = SysReg->Readable ? SysReg->Encoding : -1;
+ MSRReg = SysReg->Writeable ? SysReg->Encoding : -1;
+ } else
+ MRSReg = MSRReg = AArch64SysReg::parseGenericRegister(Tok.getString());
+
+ auto PState = AArch64PState::lookupPStateByName(Tok.getString());
+ unsigned PStateImm = -1;
+ if (PState && PState->haveFeatures(getSTI().getFeatureBits()))
+ PStateImm = PState->Encoding;
+
+ Operands.push_back(
+ AArch64Operand::CreateSysReg(Tok.getString(), getLoc(), MRSReg, MSRReg,
+ PStateImm, getContext()));
+ Parser.Lex(); // Eat identifier
+
+ return MatchOperand_Success;
+}
+
+/// tryParseNeonVectorRegister - Parse a vector register operand.
+bool AArch64AsmParser::tryParseNeonVectorRegister(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ if (Parser.getTok().isNot(AsmToken::Identifier))
+ return true;
+
+ SMLoc S = getLoc();
+ // Check for a vector register specifier first.
+ StringRef Kind;
+ unsigned Reg;
+ OperandMatchResultTy Res =
+ tryParseVectorRegister(Reg, Kind, RegKind::NeonVector);
+ if (Res != MatchOperand_Success)
+ return true;
+
+ const auto &KindRes = parseVectorKind(Kind, RegKind::NeonVector);
+ if (!KindRes)
+ return true;
+
+ unsigned ElementWidth = KindRes->second;
+ Operands.push_back(
+ AArch64Operand::CreateVectorReg(Reg, RegKind::NeonVector, ElementWidth,
+ S, getLoc(), getContext()));
+
+ // If there was an explicit qualifier, that goes on as a literal text
+ // operand.
+ if (!Kind.empty())
+ Operands.push_back(
+ AArch64Operand::CreateToken(Kind, false, S, getContext()));
+
+ return tryParseVectorIndex(Operands) == MatchOperand_ParseFail;
+}
+
+OperandMatchResultTy
+AArch64AsmParser::tryParseVectorIndex(OperandVector &Operands) {
+ SMLoc SIdx = getLoc();
+ if (parseOptionalToken(AsmToken::LBrac)) {
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return MatchOperand_NoMatch;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE) {
+ TokError("immediate value expected for vector index");
+ return MatchOperand_ParseFail;;
+ }
+
+ SMLoc E = getLoc();
+
+ if (parseToken(AsmToken::RBrac, "']' expected"))
+ return MatchOperand_ParseFail;;
+
+ Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx,
+ E, getContext()));
+ return MatchOperand_Success;
+ }
+
+ return MatchOperand_NoMatch;
+}
+
+// tryParseVectorRegister - Try to parse a vector register name with
+// optional kind specifier. If it is a register specifier, eat the token
+// and return it.
+OperandMatchResultTy
+AArch64AsmParser::tryParseVectorRegister(unsigned &Reg, StringRef &Kind,
+ RegKind MatchKind) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ StringRef Name = Tok.getString();
+ // If there is a kind specifier, it's separated from the register name by
+ // a '.'.
+ size_t Start = 0, Next = Name.find('.');
+ StringRef Head = Name.slice(Start, Next);
+ unsigned RegNum = matchRegisterNameAlias(Head, MatchKind);
+
+ if (RegNum) {
+ if (Next != StringRef::npos) {
+ Kind = Name.slice(Next, StringRef::npos);
+ if (!isValidVectorKind(Kind, MatchKind)) {
+ TokError("invalid vector kind qualifier");
+ return MatchOperand_ParseFail;
+ }
+ }
+ Parser.Lex(); // Eat the register token.
+
+ Reg = RegNum;
+ return MatchOperand_Success;
+ }
+
+ return MatchOperand_NoMatch;
+}
+
+/// tryParseSVEPredicateVector - Parse a SVE predicate register operand.
+OperandMatchResultTy
+AArch64AsmParser::tryParseSVEPredicateVector(OperandVector &Operands) {
+ // Check for a SVE predicate register specifier first.
+ const SMLoc S = getLoc();
+ StringRef Kind;
+ unsigned RegNum;
+ auto Res = tryParseVectorRegister(RegNum, Kind, RegKind::SVEPredicateVector);
+ if (Res != MatchOperand_Success)
+ return Res;
+
+ const auto &KindRes = parseVectorKind(Kind, RegKind::SVEPredicateVector);
+ if (!KindRes)
+ return MatchOperand_NoMatch;
+
+ unsigned ElementWidth = KindRes->second;
+ Operands.push_back(AArch64Operand::CreateVectorReg(
+ RegNum, RegKind::SVEPredicateVector, ElementWidth, S,
+ getLoc(), getContext()));
+
+ // Not all predicates are followed by a '/m' or '/z'.
+ MCAsmParser &Parser = getParser();
+ if (Parser.getTok().isNot(AsmToken::Slash))
+ return MatchOperand_Success;
+
+ // But when they do they shouldn't have an element type suffix.
+ if (!Kind.empty()) {
+ Error(S, "not expecting size suffix");
+ return MatchOperand_ParseFail;
+ }
+
+ // Add a literal slash as operand
+ Operands.push_back(
+ AArch64Operand::CreateToken("/" , false, getLoc(), getContext()));
+
+ Parser.Lex(); // Eat the slash.
+
+ // Zeroing or merging?
+ auto Pred = Parser.getTok().getString().lower();
+ if (Pred != "z" && Pred != "m") {
+ Error(getLoc(), "expecting 'm' or 'z' predication");
+ return MatchOperand_ParseFail;
+ }
+
+ // Add zero/merge token.
+ const char *ZM = Pred == "z" ? "z" : "m";
+ Operands.push_back(
+ AArch64Operand::CreateToken(ZM, false, getLoc(), getContext()));
+
+ Parser.Lex(); // Eat zero/merge token.
+ return MatchOperand_Success;
+}
+
+/// parseRegister - Parse a register operand.
+bool AArch64AsmParser::parseRegister(OperandVector &Operands) {
+ // Try for a Neon vector register.
+ if (!tryParseNeonVectorRegister(Operands))
+ return false;
+
+ // Otherwise try for a scalar register.
+ if (tryParseGPROperand<false>(Operands) == MatchOperand_Success)
+ return false;
+
+ return true;
+}
+
+bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) {
+ MCAsmParser &Parser = getParser();
+ bool HasELFModifier = false;
+ AArch64MCExpr::VariantKind RefKind;
+
+ if (parseOptionalToken(AsmToken::Colon)) {
+ HasELFModifier = true;
+
+ if (Parser.getTok().isNot(AsmToken::Identifier))
+ return TokError("expect relocation specifier in operand after ':'");
+
+ std::string LowerCase = Parser.getTok().getIdentifier().lower();
+ RefKind = StringSwitch<AArch64MCExpr::VariantKind>(LowerCase)
+ .Case("lo12", AArch64MCExpr::VK_LO12)
+ .Case("abs_g3", AArch64MCExpr::VK_ABS_G3)
+ .Case("abs_g2", AArch64MCExpr::VK_ABS_G2)
+ .Case("abs_g2_s", AArch64MCExpr::VK_ABS_G2_S)
+ .Case("abs_g2_nc", AArch64MCExpr::VK_ABS_G2_NC)
+ .Case("abs_g1", AArch64MCExpr::VK_ABS_G1)
+ .Case("abs_g1_s", AArch64MCExpr::VK_ABS_G1_S)
+ .Case("abs_g1_nc", AArch64MCExpr::VK_ABS_G1_NC)
+ .Case("abs_g0", AArch64MCExpr::VK_ABS_G0)
+ .Case("abs_g0_s", AArch64MCExpr::VK_ABS_G0_S)
+ .Case("abs_g0_nc", AArch64MCExpr::VK_ABS_G0_NC)
+ .Case("dtprel_g2", AArch64MCExpr::VK_DTPREL_G2)
+ .Case("dtprel_g1", AArch64MCExpr::VK_DTPREL_G1)
+ .Case("dtprel_g1_nc", AArch64MCExpr::VK_DTPREL_G1_NC)
+ .Case("dtprel_g0", AArch64MCExpr::VK_DTPREL_G0)
+ .Case("dtprel_g0_nc", AArch64MCExpr::VK_DTPREL_G0_NC)
+ .Case("dtprel_hi12", AArch64MCExpr::VK_DTPREL_HI12)
+ .Case("dtprel_lo12", AArch64MCExpr::VK_DTPREL_LO12)
+ .Case("dtprel_lo12_nc", AArch64MCExpr::VK_DTPREL_LO12_NC)
+ .Case("pg_hi21_nc", AArch64MCExpr::VK_ABS_PAGE_NC)
+ .Case("tprel_g2", AArch64MCExpr::VK_TPREL_G2)
+ .Case("tprel_g1", AArch64MCExpr::VK_TPREL_G1)
+ .Case("tprel_g1_nc", AArch64MCExpr::VK_TPREL_G1_NC)
+ .Case("tprel_g0", AArch64MCExpr::VK_TPREL_G0)
+ .Case("tprel_g0_nc", AArch64MCExpr::VK_TPREL_G0_NC)
+ .Case("tprel_hi12", AArch64MCExpr::VK_TPREL_HI12)
+ .Case("tprel_lo12", AArch64MCExpr::VK_TPREL_LO12)
+ .Case("tprel_lo12_nc", AArch64MCExpr::VK_TPREL_LO12_NC)
+ .Case("tlsdesc_lo12", AArch64MCExpr::VK_TLSDESC_LO12)
+ .Case("got", AArch64MCExpr::VK_GOT_PAGE)
+ .Case("got_lo12", AArch64MCExpr::VK_GOT_LO12)
+ .Case("gottprel", AArch64MCExpr::VK_GOTTPREL_PAGE)
+ .Case("gottprel_lo12", AArch64MCExpr::VK_GOTTPREL_LO12_NC)
+ .Case("gottprel_g1", AArch64MCExpr::VK_GOTTPREL_G1)
+ .Case("gottprel_g0_nc", AArch64MCExpr::VK_GOTTPREL_G0_NC)
+ .Case("tlsdesc", AArch64MCExpr::VK_TLSDESC_PAGE)
+ .Case("secrel_lo12", AArch64MCExpr::VK_SECREL_LO12)
+ .Case("secrel_hi12", AArch64MCExpr::VK_SECREL_HI12)
+ .Default(AArch64MCExpr::VK_INVALID);
+
+ if (RefKind == AArch64MCExpr::VK_INVALID)
+ return TokError("expect relocation specifier in operand after ':'");
+
+ Parser.Lex(); // Eat identifier
+
+ if (parseToken(AsmToken::Colon, "expect ':' after relocation specifier"))
+ return true;
+ }
+
+ if (getParser().parseExpression(ImmVal))
+ return true;
+
+ if (HasELFModifier)
+ ImmVal = AArch64MCExpr::create(ImmVal, RefKind, getContext());
+
+ return false;
+}
+
+template <RegKind VectorKind>
+OperandMatchResultTy
+AArch64AsmParser::tryParseVectorList(OperandVector &Operands,
+ bool ExpectMatch) {
+ MCAsmParser &Parser = getParser();
+ if (!Parser.getTok().is(AsmToken::LCurly))
+ return MatchOperand_NoMatch;
+
+ // Wrapper around parse function
+ auto ParseVector = [this, &Parser](unsigned &Reg, StringRef &Kind, SMLoc Loc,
+ bool NoMatchIsError) {
+ auto RegTok = Parser.getTok();
+ auto ParseRes = tryParseVectorRegister(Reg, Kind, VectorKind);
+ if (ParseRes == MatchOperand_Success) {
+ if (parseVectorKind(Kind, VectorKind))
+ return ParseRes;
+ llvm_unreachable("Expected a valid vector kind");
+ }
+
+ if (RegTok.isNot(AsmToken::Identifier) ||
+ ParseRes == MatchOperand_ParseFail ||
+ (ParseRes == MatchOperand_NoMatch && NoMatchIsError)) {
+ Error(Loc, "vector register expected");
+ return MatchOperand_ParseFail;
+ }
+
+ return MatchOperand_NoMatch;
+ };
+
+ SMLoc S = getLoc();
+ auto LCurly = Parser.getTok();
+ Parser.Lex(); // Eat left bracket token.
+
+ StringRef Kind;
+ unsigned FirstReg;
+ auto ParseRes = ParseVector(FirstReg, Kind, getLoc(), ExpectMatch);
+
+ // Put back the original left bracket if there was no match, so that
+ // different types of list-operands can be matched (e.g. SVE, Neon).
+ if (ParseRes == MatchOperand_NoMatch)
+ Parser.getLexer().UnLex(LCurly);
+
+ if (ParseRes != MatchOperand_Success)
+ return ParseRes;
+
+ int64_t PrevReg = FirstReg;
+ unsigned Count = 1;
+
+ if (parseOptionalToken(AsmToken::Minus)) {
+ SMLoc Loc = getLoc();
+ StringRef NextKind;
+
+ unsigned Reg;
+ ParseRes = ParseVector(Reg, NextKind, getLoc(), true);
+ if (ParseRes != MatchOperand_Success)
+ return ParseRes;
+
+ // Any Kind suffices must match on all regs in the list.
+ if (Kind != NextKind) {
+ Error(Loc, "mismatched register size suffix");
+ return MatchOperand_ParseFail;
+ }
+
+ unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg);
+
+ if (Space == 0 || Space > 3) {
+ Error(Loc, "invalid number of vectors");
+ return MatchOperand_ParseFail;
+ }
+
+ Count += Space;
+ }
+ else {
+ while (parseOptionalToken(AsmToken::Comma)) {
+ SMLoc Loc = getLoc();
+ StringRef NextKind;
+ unsigned Reg;
+ ParseRes = ParseVector(Reg, NextKind, getLoc(), true);
+ if (ParseRes != MatchOperand_Success)
+ return ParseRes;
+
+ // Any Kind suffices must match on all regs in the list.
+ if (Kind != NextKind) {
+ Error(Loc, "mismatched register size suffix");
+ return MatchOperand_ParseFail;
+ }
+
+ // Registers must be incremental (with wraparound at 31)
+ if (getContext().getRegisterInfo()->getEncodingValue(Reg) !=
+ (getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32) {
+ Error(Loc, "registers must be sequential");
+ return MatchOperand_ParseFail;
+ }
+
+ PrevReg = Reg;
+ ++Count;
+ }
+ }
+
+ if (parseToken(AsmToken::RCurly, "'}' expected"))
+ return MatchOperand_ParseFail;
+
+ if (Count > 4) {
+ Error(S, "invalid number of vectors");
+ return MatchOperand_ParseFail;
+ }
+
+ unsigned NumElements = 0;
+ unsigned ElementWidth = 0;
+ if (!Kind.empty()) {
+ if (const auto &VK = parseVectorKind(Kind, VectorKind))
+ std::tie(NumElements, ElementWidth) = *VK;
+ }
+
+ Operands.push_back(AArch64Operand::CreateVectorList(
+ FirstReg, Count, NumElements, ElementWidth, VectorKind, S, getLoc(),
+ getContext()));
+
+ return MatchOperand_Success;
+}
+
+/// parseNeonVectorList - Parse a vector list operand for AdvSIMD instructions.
+bool AArch64AsmParser::parseNeonVectorList(OperandVector &Operands) {
+ auto ParseRes = tryParseVectorList<RegKind::NeonVector>(Operands, true);
+ if (ParseRes != MatchOperand_Success)
+ return true;
+
+ return tryParseVectorIndex(Operands) == MatchOperand_ParseFail;
+}
+
+OperandMatchResultTy
+AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) {
+ SMLoc StartLoc = getLoc();
+
+ unsigned RegNum;
+ OperandMatchResultTy Res = tryParseScalarRegister(RegNum);
+ if (Res != MatchOperand_Success)
+ return Res;
+
+ if (!parseOptionalToken(AsmToken::Comma)) {
+ Operands.push_back(AArch64Operand::CreateReg(
+ RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext()));
+ return MatchOperand_Success;
+ }
+
+ parseOptionalToken(AsmToken::Hash);
+
+ if (getParser().getTok().isNot(AsmToken::Integer)) {
+ Error(getLoc(), "index must be absent or #0");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal) || !isa<MCConstantExpr>(ImmVal) ||
+ cast<MCConstantExpr>(ImmVal)->getValue() != 0) {
+ Error(getLoc(), "index must be absent or #0");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(AArch64Operand::CreateReg(
+ RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext()));
+ return MatchOperand_Success;
+}
+
+template <bool ParseShiftExtend, RegConstraintEqualityTy EqTy>
+OperandMatchResultTy
+AArch64AsmParser::tryParseGPROperand(OperandVector &Operands) {
+ SMLoc StartLoc = getLoc();
+
+ unsigned RegNum;
+ OperandMatchResultTy Res = tryParseScalarRegister(RegNum);
+ if (Res != MatchOperand_Success)
+ return Res;
+
+ // No shift/extend is the default.
+ if (!ParseShiftExtend || getParser().getTok().isNot(AsmToken::Comma)) {
+ Operands.push_back(AArch64Operand::CreateReg(
+ RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext(), EqTy));
+ return MatchOperand_Success;
+ }
+
+ // Eat the comma
+ getParser().Lex();
+
+ // Match the shift
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> ExtOpnd;
+ Res = tryParseOptionalShiftExtend(ExtOpnd);
+ if (Res != MatchOperand_Success)
+ return Res;
+
+ auto Ext = static_cast<AArch64Operand*>(ExtOpnd.back().get());
+ Operands.push_back(AArch64Operand::CreateReg(
+ RegNum, RegKind::Scalar, StartLoc, Ext->getEndLoc(), getContext(), EqTy,
+ Ext->getShiftExtendType(), Ext->getShiftExtendAmount(),
+ Ext->hasShiftExtendAmount()));
+
+ return MatchOperand_Success;
+}
+
+bool AArch64AsmParser::parseOptionalMulOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+
+ // Some SVE instructions have a decoration after the immediate, i.e.
+ // "mul vl". We parse them here and add tokens, which must be present in the
+ // asm string in the tablegen instruction.
+ bool NextIsVL = Parser.getLexer().peekTok().getString().equals_lower("vl");
+ bool NextIsHash = Parser.getLexer().peekTok().is(AsmToken::Hash);
+ if (!Parser.getTok().getString().equals_lower("mul") ||
+ !(NextIsVL || NextIsHash))
+ return true;
+
+ Operands.push_back(
+ AArch64Operand::CreateToken("mul", false, getLoc(), getContext()));
+ Parser.Lex(); // Eat the "mul"
+
+ if (NextIsVL) {
+ Operands.push_back(
+ AArch64Operand::CreateToken("vl", false, getLoc(), getContext()));
+ Parser.Lex(); // Eat the "vl"
+ return false;
+ }
+
+ if (NextIsHash) {
+ Parser.Lex(); // Eat the #
+ SMLoc S = getLoc();
+
+ // Parse immediate operand.
+ const MCExpr *ImmVal;
+ if (!Parser.parseExpression(ImmVal))
+ if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal)) {
+ Operands.push_back(AArch64Operand::CreateImm(
+ MCConstantExpr::create(MCE->getValue(), getContext()), S, getLoc(),
+ getContext()));
+ return MatchOperand_Success;
+ }
+ }
+
+ return Error(getLoc(), "expected 'vl' or '#<imm>'");
+}
+
+/// parseOperand - Parse a arm instruction operand. For now this parses the
+/// operand regardless of the mnemonic.
+bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
+ bool invertCondCode) {
+ MCAsmParser &Parser = getParser();
+
+ OperandMatchResultTy ResTy =
+ MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/ true);
+
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach.
+ if (ResTy == MatchOperand_Success)
+ return false;
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ // Nothing custom, so do general case parsing.
+ SMLoc S, E;
+ switch (getLexer().getKind()) {
+ default: {
+ SMLoc S = getLoc();
+ const MCExpr *Expr;
+ if (parseSymbolicImmVal(Expr))
+ return Error(S, "invalid operand");
+
+ SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
+ return false;
+ }
+ case AsmToken::LBrac: {
+ SMLoc Loc = Parser.getTok().getLoc();
+ Operands.push_back(AArch64Operand::CreateToken("[", false, Loc,
+ getContext()));
+ Parser.Lex(); // Eat '['
+
+ // There's no comma after a '[', so we can parse the next operand
+ // immediately.
+ return parseOperand(Operands, false, false);
+ }
+ case AsmToken::LCurly:
+ return parseNeonVectorList(Operands);
+ case AsmToken::Identifier: {
+ // If we're expecting a Condition Code operand, then just parse that.
+ if (isCondCode)
+ return parseCondCode(Operands, invertCondCode);
+
+ // If it's a register name, parse it.
+ if (!parseRegister(Operands))
+ return false;
+
+ // See if this is a "mul vl" decoration or "mul #<int>" operand used
+ // by SVE instructions.
+ if (!parseOptionalMulOperand(Operands))
+ return false;
+
+ // This could be an optional "shift" or "extend" operand.
+ OperandMatchResultTy GotShift = tryParseOptionalShiftExtend(Operands);
+ // We can only continue if no tokens were eaten.
+ if (GotShift != MatchOperand_NoMatch)
+ return GotShift;
+
+ // This was not a register so parse other operands that start with an
+ // identifier (like labels) as expressions and create them as immediates.
+ const MCExpr *IdVal;
+ S = getLoc();
+ if (getParser().parseExpression(IdVal))
+ return true;
+ E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(IdVal, S, E, getContext()));
+ return false;
+ }
+ case AsmToken::Integer:
+ case AsmToken::Real:
+ case AsmToken::Hash: {
+ // #42 -> immediate.
+ S = getLoc();
+
+ parseOptionalToken(AsmToken::Hash);
+
+ // Parse a negative sign
+ bool isNegative = false;
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ isNegative = true;
+ // We need to consume this token only when we have a Real, otherwise
+ // we let parseSymbolicImmVal take care of it
+ if (Parser.getLexer().peekTok().is(AsmToken::Real))
+ Parser.Lex();
+ }
+
+ // The only Real that should come through here is a literal #0.0 for
+ // the fcmp[e] r, #0.0 instructions. They expect raw token operands,
+ // so convert the value.
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.is(AsmToken::Real)) {
+ APFloat RealVal(APFloat::IEEEdouble(), Tok.getString());
+ uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
+ if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" &&
+ Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" &&
+ Mnemonic != "fcmlt" && Mnemonic != "fcmne")
+ return TokError("unexpected floating point literal");
+ else if (IntVal != 0 || isNegative)
+ return TokError("expected floating-point constant #0.0");
+ Parser.Lex(); // Eat the token.
+
+ Operands.push_back(
+ AArch64Operand::CreateToken("#0", false, S, getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateToken(".0", false, S, getContext()));
+ return false;
+ }
+
+ const MCExpr *ImmVal;
+ if (parseSymbolicImmVal(ImmVal))
+ return true;
+
+ E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ Operands.push_back(AArch64Operand::CreateImm(ImmVal, S, E, getContext()));
+ return false;
+ }
+ case AsmToken::Equal: {
+ SMLoc Loc = getLoc();
+ if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
+ return TokError("unexpected token in operand");
+ Parser.Lex(); // Eat '='
+ const MCExpr *SubExprVal;
+ if (getParser().parseExpression(SubExprVal))
+ return true;
+
+ if (Operands.size() < 2 ||
+ !static_cast<AArch64Operand &>(*Operands[1]).isScalarReg())
+ return Error(Loc, "Only valid when first operand is register");
+
+ bool IsXReg =
+ AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Operands[1]->getReg());
+
+ MCContext& Ctx = getContext();
+ E = SMLoc::getFromPointer(Loc.getPointer() - 1);
+ // If the op is an imm and can be fit into a mov, then replace ldr with mov.
+ if (isa<MCConstantExpr>(SubExprVal)) {
+ uint64_t Imm = (cast<MCConstantExpr>(SubExprVal))->getValue();
+ uint32_t ShiftAmt = 0, MaxShiftAmt = IsXReg ? 48 : 16;
+ while(Imm > 0xFFFF && countTrailingZeros(Imm) >= 16) {
+ ShiftAmt += 16;
+ Imm >>= 16;
+ }
+ if (ShiftAmt <= MaxShiftAmt && Imm <= 0xFFFF) {
+ Operands[0] = AArch64Operand::CreateToken("movz", false, Loc, Ctx);
+ Operands.push_back(AArch64Operand::CreateImm(
+ MCConstantExpr::create(Imm, Ctx), S, E, Ctx));
+ if (ShiftAmt)
+ Operands.push_back(AArch64Operand::CreateShiftExtend(AArch64_AM::LSL,
+ ShiftAmt, true, S, E, Ctx));
+ return false;
+ }
+ APInt Simm = APInt(64, Imm << ShiftAmt);
+ // check if the immediate is an unsigned or signed 32-bit int for W regs
+ if (!IsXReg && !(Simm.isIntN(32) || Simm.isSignedIntN(32)))
+ return Error(Loc, "Immediate too large for register");
+ }
+ // If it is a label or an imm that cannot fit in a movz, put it into CP.
+ const MCExpr *CPLoc =
+ getTargetStreamer().addConstantPoolEntry(SubExprVal, IsXReg ? 8 : 4, Loc);
+ Operands.push_back(AArch64Operand::CreateImm(CPLoc, S, E, Ctx));
+ return false;
+ }
+ }
+}
+
+bool AArch64AsmParser::regsEqual(const MCParsedAsmOperand &Op1,
+ const MCParsedAsmOperand &Op2) const {
+ auto &AOp1 = static_cast<const AArch64Operand&>(Op1);
+ auto &AOp2 = static_cast<const AArch64Operand&>(Op2);
+ if (AOp1.getRegEqualityTy() == RegConstraintEqualityTy::EqualsReg &&
+ AOp2.getRegEqualityTy() == RegConstraintEqualityTy::EqualsReg)
+ return MCTargetAsmParser::regsEqual(Op1, Op2);
+
+ assert(AOp1.isScalarReg() && AOp2.isScalarReg() &&
+ "Testing equality of non-scalar registers not supported");
+
+ // Check if a registers match their sub/super register classes.
+ if (AOp1.getRegEqualityTy() == EqualsSuperReg)
+ return getXRegFromWReg(Op1.getReg()) == Op2.getReg();
+ if (AOp1.getRegEqualityTy() == EqualsSubReg)
+ return getWRegFromXReg(Op1.getReg()) == Op2.getReg();
+ if (AOp2.getRegEqualityTy() == EqualsSuperReg)
+ return getXRegFromWReg(Op2.getReg()) == Op1.getReg();
+ if (AOp2.getRegEqualityTy() == EqualsSubReg)
+ return getWRegFromXReg(Op2.getReg()) == Op1.getReg();
+
+ return false;
+}
+
+/// ParseInstruction - Parse an AArch64 instruction mnemonic followed by its
+/// operands.
+bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info,
+ StringRef Name, SMLoc NameLoc,
+ OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ Name = StringSwitch<StringRef>(Name.lower())
+ .Case("beq", "b.eq")
+ .Case("bne", "b.ne")
+ .Case("bhs", "b.hs")
+ .Case("bcs", "b.cs")
+ .Case("blo", "b.lo")
+ .Case("bcc", "b.cc")
+ .Case("bmi", "b.mi")
+ .Case("bpl", "b.pl")
+ .Case("bvs", "b.vs")
+ .Case("bvc", "b.vc")
+ .Case("bhi", "b.hi")
+ .Case("bls", "b.ls")
+ .Case("bge", "b.ge")
+ .Case("blt", "b.lt")
+ .Case("bgt", "b.gt")
+ .Case("ble", "b.le")
+ .Case("bal", "b.al")
+ .Case("bnv", "b.nv")
+ .Default(Name);
+
+ // First check for the AArch64-specific .req directive.
+ if (Parser.getTok().is(AsmToken::Identifier) &&
+ Parser.getTok().getIdentifier() == ".req") {
+ parseDirectiveReq(Name, NameLoc);
+ // We always return 'error' for this, as we're done with this
+ // statement and don't need to match the 'instruction."
+ return true;
+ }
+
+ // Create the leading tokens for the mnemonic, split by '.' characters.
+ size_t Start = 0, Next = Name.find('.');
+ StringRef Head = Name.slice(Start, Next);
+
+ // IC, DC, AT, TLBI and Prediction invalidation instructions are aliases for
+ // the SYS instruction.
+ if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi" ||
+ Head == "cfp" || Head == "dvp" || Head == "cpp")
+ return parseSysAlias(Head, NameLoc, Operands);
+
+ Operands.push_back(
+ AArch64Operand::CreateToken(Head, false, NameLoc, getContext()));
+ Mnemonic = Head;
+
+ // Handle condition codes for a branch mnemonic
+ if (Head == "b" && Next != StringRef::npos) {
+ Start = Next;
+ Next = Name.find('.', Start + 1);
+ Head = Name.slice(Start + 1, Next);
+
+ SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
+ (Head.data() - Name.data()));
+ AArch64CC::CondCode CC = parseCondCodeString(Head);
+ if (CC == AArch64CC::Invalid)
+ return Error(SuffixLoc, "invalid condition code");
+ Operands.push_back(
+ AArch64Operand::CreateToken(".", true, SuffixLoc, getContext()));
+ Operands.push_back(
+ AArch64Operand::CreateCondCode(CC, NameLoc, NameLoc, getContext()));
+ }
+
+ // Add the remaining tokens in the mnemonic.
+ while (Next != StringRef::npos) {
+ Start = Next;
+ Next = Name.find('.', Start + 1);
+ Head = Name.slice(Start, Next);
+ SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
+ (Head.data() - Name.data()) + 1);
+ Operands.push_back(
+ AArch64Operand::CreateToken(Head, true, SuffixLoc, getContext()));
+ }
+
+ // Conditional compare instructions have a Condition Code operand, which needs
+ // to be parsed and an immediate operand created.
+ bool condCodeFourthOperand =
+ (Head == "ccmp" || Head == "ccmn" || Head == "fccmp" ||
+ Head == "fccmpe" || Head == "fcsel" || Head == "csel" ||
+ Head == "csinc" || Head == "csinv" || Head == "csneg");
+
+ // These instructions are aliases to some of the conditional select
+ // instructions. However, the condition code is inverted in the aliased
+ // instruction.
+ //
+ // FIXME: Is this the correct way to handle these? Or should the parser
+ // generate the aliased instructions directly?
+ bool condCodeSecondOperand = (Head == "cset" || Head == "csetm");
+ bool condCodeThirdOperand =
+ (Head == "cinc" || Head == "cinv" || Head == "cneg");
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+
+ unsigned N = 1;
+ do {
+ // Parse and remember the operand.
+ if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) ||
+ (N == 3 && condCodeThirdOperand) ||
+ (N == 2 && condCodeSecondOperand),
+ condCodeSecondOperand || condCodeThirdOperand)) {
+ return true;
+ }
+
+ // After successfully parsing some operands there are two special cases to
+ // consider (i.e. notional operands not separated by commas). Both are due
+ // to memory specifiers:
+ // + An RBrac will end an address for load/store/prefetch
+ // + An '!' will indicate a pre-indexed operation.
+ //
+ // It's someone else's responsibility to make sure these tokens are sane
+ // in the given context!
+
+ SMLoc RLoc = Parser.getTok().getLoc();
+ if (parseOptionalToken(AsmToken::RBrac))
+ Operands.push_back(
+ AArch64Operand::CreateToken("]", false, RLoc, getContext()));
+ SMLoc ELoc = Parser.getTok().getLoc();
+ if (parseOptionalToken(AsmToken::Exclaim))
+ Operands.push_back(
+ AArch64Operand::CreateToken("!", false, ELoc, getContext()));
+
+ ++N;
+ } while (parseOptionalToken(AsmToken::Comma));
+ }
+
+ if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
+ return true;
+
+ return false;
+}
+
+static inline bool isMatchingOrAlias(unsigned ZReg, unsigned Reg) {
+ assert((ZReg >= AArch64::Z0) && (ZReg <= AArch64::Z31));
+ return (ZReg == ((Reg - AArch64::B0) + AArch64::Z0)) ||
+ (ZReg == ((Reg - AArch64::H0) + AArch64::Z0)) ||
+ (ZReg == ((Reg - AArch64::S0) + AArch64::Z0)) ||
+ (ZReg == ((Reg - AArch64::D0) + AArch64::Z0)) ||
+ (ZReg == ((Reg - AArch64::Q0) + AArch64::Z0)) ||
+ (ZReg == ((Reg - AArch64::Z0) + AArch64::Z0));
+}
+
+// FIXME: This entire function is a giant hack to provide us with decent
+// operand range validation/diagnostics until TableGen/MC can be extended
+// to support autogeneration of this kind of validation.
+bool AArch64AsmParser::validateInstruction(MCInst &Inst, SMLoc &IDLoc,
+ SmallVectorImpl<SMLoc> &Loc) {
+ const MCRegisterInfo *RI = getContext().getRegisterInfo();
+ const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
+
+ // A prefix only applies to the instruction following it. Here we extract
+ // prefix information for the next instruction before validating the current
+ // one so that in the case of failure we don't erronously continue using the
+ // current prefix.
+ PrefixInfo Prefix = NextPrefix;
+ NextPrefix = PrefixInfo::CreateFromInst(Inst, MCID.TSFlags);
+
+ // Before validating the instruction in isolation we run through the rules
+ // applicable when it follows a prefix instruction.
+ // NOTE: brk & hlt can be prefixed but require no additional validation.
+ if (Prefix.isActive() &&
+ (Inst.getOpcode() != AArch64::BRK) &&
+ (Inst.getOpcode() != AArch64::HLT)) {
+
+ // Prefixed intructions must have a destructive operand.
+ if ((MCID.TSFlags & AArch64::DestructiveInstTypeMask) ==
+ AArch64::NotDestructive)
+ return Error(IDLoc, "instruction is unpredictable when following a"
+ " movprfx, suggest replacing movprfx with mov");
+
+ // Destination operands must match.
+ if (Inst.getOperand(0).getReg() != Prefix.getDstReg())
+ return Error(Loc[0], "instruction is unpredictable when following a"
+ " movprfx writing to a different destination");
+
+ // Destination operand must not be used in any other location.
+ for (unsigned i = 1; i < Inst.getNumOperands(); ++i) {
+ if (Inst.getOperand(i).isReg() &&
+ (MCID.getOperandConstraint(i, MCOI::TIED_TO) == -1) &&
+ isMatchingOrAlias(Prefix.getDstReg(), Inst.getOperand(i).getReg()))
+ return Error(Loc[0], "instruction is unpredictable when following a"
+ " movprfx and destination also used as non-destructive"
+ " source");
+ }
+
+ auto PPRRegClass = AArch64MCRegisterClasses[AArch64::PPRRegClassID];
+ if (Prefix.isPredicated()) {
+ int PgIdx = -1;
+
+ // Find the instructions general predicate.
+ for (unsigned i = 1; i < Inst.getNumOperands(); ++i)
+ if (Inst.getOperand(i).isReg() &&
+ PPRRegClass.contains(Inst.getOperand(i).getReg())) {
+ PgIdx = i;
+ break;
+ }
+
+ // Instruction must be predicated if the movprfx is predicated.
+ if (PgIdx == -1 ||
+ (MCID.TSFlags & AArch64::ElementSizeMask) == AArch64::ElementSizeNone)
+ return Error(IDLoc, "instruction is unpredictable when following a"
+ " predicated movprfx, suggest using unpredicated movprfx");
+
+ // Instruction must use same general predicate as the movprfx.
+ if (Inst.getOperand(PgIdx).getReg() != Prefix.getPgReg())
+ return Error(IDLoc, "instruction is unpredictable when following a"
+ " predicated movprfx using a different general predicate");
+
+ // Instruction element type must match the movprfx.
+ if ((MCID.TSFlags & AArch64::ElementSizeMask) != Prefix.getElementSize())
+ return Error(IDLoc, "instruction is unpredictable when following a"
+ " predicated movprfx with a different element size");
+ }
+ }
+
+ // Check for indexed addressing modes w/ the base register being the
+ // same as a destination/source register or pair load where
+ // the Rt == Rt2. All of those are undefined behaviour.
+ switch (Inst.getOpcode()) {
+ case AArch64::LDPSWpre:
+ case AArch64::LDPWpost:
+ case AArch64::LDPWpre:
+ case AArch64::LDPXpost:
+ case AArch64::LDPXpre: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rt2 = Inst.getOperand(2).getReg();
+ unsigned Rn = Inst.getOperand(3).getReg();
+ if (RI->isSubRegisterEq(Rn, Rt))
+ return Error(Loc[0], "unpredictable LDP instruction, writeback base "
+ "is also a destination");
+ if (RI->isSubRegisterEq(Rn, Rt2))
+ return Error(Loc[1], "unpredictable LDP instruction, writeback base "
+ "is also a destination");
+ LLVM_FALLTHROUGH;
+ }
+ case AArch64::LDPDi:
+ case AArch64::LDPQi:
+ case AArch64::LDPSi:
+ case AArch64::LDPSWi:
+ case AArch64::LDPWi:
+ case AArch64::LDPXi: {
+ unsigned Rt = Inst.getOperand(0).getReg();
+ unsigned Rt2 = Inst.getOperand(1).getReg();
+ if (Rt == Rt2)
+ return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
+ break;
+ }
+ case AArch64::LDPDpost:
+ case AArch64::LDPDpre:
+ case AArch64::LDPQpost:
+ case AArch64::LDPQpre:
+ case AArch64::LDPSpost:
+ case AArch64::LDPSpre:
+ case AArch64::LDPSWpost: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rt2 = Inst.getOperand(2).getReg();
+ if (Rt == Rt2)
+ return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
+ break;
+ }
+ case AArch64::STPDpost:
+ case AArch64::STPDpre:
+ case AArch64::STPQpost:
+ case AArch64::STPQpre:
+ case AArch64::STPSpost:
+ case AArch64::STPSpre:
+ case AArch64::STPWpost:
+ case AArch64::STPWpre:
+ case AArch64::STPXpost:
+ case AArch64::STPXpre: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rt2 = Inst.getOperand(2).getReg();
+ unsigned Rn = Inst.getOperand(3).getReg();
+ if (RI->isSubRegisterEq(Rn, Rt))
+ return Error(Loc[0], "unpredictable STP instruction, writeback base "
+ "is also a source");
+ if (RI->isSubRegisterEq(Rn, Rt2))
+ return Error(Loc[1], "unpredictable STP instruction, writeback base "
+ "is also a source");
+ break;
+ }
+ case AArch64::LDRBBpre:
+ case AArch64::LDRBpre:
+ case AArch64::LDRHHpre:
+ case AArch64::LDRHpre:
+ case AArch64::LDRSBWpre:
+ case AArch64::LDRSBXpre:
+ case AArch64::LDRSHWpre:
+ case AArch64::LDRSHXpre:
+ case AArch64::LDRSWpre:
+ case AArch64::LDRWpre:
+ case AArch64::LDRXpre:
+ case AArch64::LDRBBpost:
+ case AArch64::LDRBpost:
+ case AArch64::LDRHHpost:
+ case AArch64::LDRHpost:
+ case AArch64::LDRSBWpost:
+ case AArch64::LDRSBXpost:
+ case AArch64::LDRSHWpost:
+ case AArch64::LDRSHXpost:
+ case AArch64::LDRSWpost:
+ case AArch64::LDRWpost:
+ case AArch64::LDRXpost: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rn = Inst.getOperand(2).getReg();
+ if (RI->isSubRegisterEq(Rn, Rt))
+ return Error(Loc[0], "unpredictable LDR instruction, writeback base "
+ "is also a source");
+ break;
+ }
+ case AArch64::STRBBpost:
+ case AArch64::STRBpost:
+ case AArch64::STRHHpost:
+ case AArch64::STRHpost:
+ case AArch64::STRWpost:
+ case AArch64::STRXpost:
+ case AArch64::STRBBpre:
+ case AArch64::STRBpre:
+ case AArch64::STRHHpre:
+ case AArch64::STRHpre:
+ case AArch64::STRWpre:
+ case AArch64::STRXpre: {
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rn = Inst.getOperand(2).getReg();
+ if (RI->isSubRegisterEq(Rn, Rt))
+ return Error(Loc[0], "unpredictable STR instruction, writeback base "
+ "is also a source");
+ break;
+ }
+ case AArch64::STXRB:
+ case AArch64::STXRH:
+ case AArch64::STXRW:
+ case AArch64::STXRX:
+ case AArch64::STLXRB:
+ case AArch64::STLXRH:
+ case AArch64::STLXRW:
+ case AArch64::STLXRX: {
+ unsigned Rs = Inst.getOperand(0).getReg();
+ unsigned Rt = Inst.getOperand(1).getReg();
+ unsigned Rn = Inst.getOperand(2).getReg();
+ if (RI->isSubRegisterEq(Rt, Rs) ||
+ (RI->isSubRegisterEq(Rn, Rs) && Rn != AArch64::SP))
+ return Error(Loc[0],
+ "unpredictable STXR instruction, status is also a source");
+ break;
+ }
+ case AArch64::STXPW:
+ case AArch64::STXPX:
+ case AArch64::STLXPW:
+ case AArch64::STLXPX: {
+ unsigned Rs = Inst.getOperand(0).getReg();
+ unsigned Rt1 = Inst.getOperand(1).getReg();
+ unsigned Rt2 = Inst.getOperand(2).getReg();
+ unsigned Rn = Inst.getOperand(3).getReg();
+ if (RI->isSubRegisterEq(Rt1, Rs) || RI->isSubRegisterEq(Rt2, Rs) ||
+ (RI->isSubRegisterEq(Rn, Rs) && Rn != AArch64::SP))
+ return Error(Loc[0],
+ "unpredictable STXP instruction, status is also a source");
+ break;
+ }
+ }
+
+
+ // Now check immediate ranges. Separate from the above as there is overlap
+ // in the instructions being checked and this keeps the nested conditionals
+ // to a minimum.
+ switch (Inst.getOpcode()) {
+ case AArch64::ADDSWri:
+ case AArch64::ADDSXri:
+ case AArch64::ADDWri:
+ case AArch64::ADDXri:
+ case AArch64::SUBSWri:
+ case AArch64::SUBSXri:
+ case AArch64::SUBWri:
+ case AArch64::SUBXri: {
+ // Annoyingly we can't do this in the isAddSubImm predicate, so there is
+ // some slight duplication here.
+ if (Inst.getOperand(2).isExpr()) {
+ const MCExpr *Expr = Inst.getOperand(2).getExpr();
+ AArch64MCExpr::VariantKind ELFRefKind;
+ MCSymbolRefExpr::VariantKind DarwinRefKind;
+ int64_t Addend;
+ if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
+
+ // Only allow these with ADDXri.
+ if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
+ DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) &&
+ Inst.getOpcode() == AArch64::ADDXri)
+ return false;
+
+ // Only allow these with ADDXri/ADDWri
+ if ((ELFRefKind == AArch64MCExpr::VK_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
+ ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_SECREL_LO12 ||
+ ELFRefKind == AArch64MCExpr::VK_SECREL_HI12) &&
+ (Inst.getOpcode() == AArch64::ADDXri ||
+ Inst.getOpcode() == AArch64::ADDWri))
+ return false;
+
+ // Don't allow symbol refs in the immediate field otherwise
+ // Note: Loc.back() may be Loc[1] or Loc[2] depending on the number of
+ // operands of the original instruction (i.e. 'add w0, w1, borked' vs
+ // 'cmp w0, 'borked')
+ return Error(Loc.back(), "invalid immediate expression");
+ }
+ // We don't validate more complex expressions here
+ }
+ return false;
+ }
+ default:
+ return false;
+ }
+}
+
+static std::string AArch64MnemonicSpellCheck(StringRef S,
+ const FeatureBitset &FBS,
+ unsigned VariantID = 0);
+
+bool AArch64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode,
+ uint64_t ErrorInfo,
+ OperandVector &Operands) {
+ switch (ErrCode) {
+ case Match_InvalidTiedOperand: {
+ RegConstraintEqualityTy EqTy =
+ static_cast<const AArch64Operand &>(*Operands[ErrorInfo])
+ .getRegEqualityTy();
+ switch (EqTy) {
+ case RegConstraintEqualityTy::EqualsSubReg:
+ return Error(Loc, "operand must be 64-bit form of destination register");
+ case RegConstraintEqualityTy::EqualsSuperReg:
+ return Error(Loc, "operand must be 32-bit form of destination register");
+ case RegConstraintEqualityTy::EqualsReg:
+ return Error(Loc, "operand must match destination register");
+ }
+ llvm_unreachable("Unknown RegConstraintEqualityTy");
+ }
+ case Match_MissingFeature:
+ return Error(Loc,
+ "instruction requires a CPU feature not currently enabled");
+ case Match_InvalidOperand:
+ return Error(Loc, "invalid operand for instruction");
+ case Match_InvalidSuffix:
+ return Error(Loc, "invalid type suffix for instruction");
+ case Match_InvalidCondCode:
+ return Error(Loc, "expected AArch64 condition code");
+ case Match_AddSubRegExtendSmall:
+ return Error(Loc,
+ "expected '[su]xt[bhw]' with optional integer in range [0, 4]");
+ case Match_AddSubRegExtendLarge:
+ return Error(Loc,
+ "expected 'sxtx' 'uxtx' or 'lsl' with optional integer in range [0, 4]");
+ case Match_AddSubSecondSource:
+ return Error(Loc,
+ "expected compatible register, symbol or integer in range [0, 4095]");
+ case Match_LogicalSecondSource:
+ return Error(Loc, "expected compatible register or logical immediate");
+ case Match_InvalidMovImm32Shift:
+ return Error(Loc, "expected 'lsl' with optional integer 0 or 16");
+ case Match_InvalidMovImm64Shift:
+ return Error(Loc, "expected 'lsl' with optional integer 0, 16, 32 or 48");
+ case Match_AddSubRegShift32:
+ return Error(Loc,
+ "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 31]");
+ case Match_AddSubRegShift64:
+ return Error(Loc,
+ "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 63]");
+ case Match_InvalidFPImm:
+ return Error(Loc,
+ "expected compatible register or floating-point constant");
+ case Match_InvalidMemoryIndexedSImm6:
+ return Error(Loc, "index must be an integer in range [-32, 31].");
+ case Match_InvalidMemoryIndexedSImm5:
+ return Error(Loc, "index must be an integer in range [-16, 15].");
+ case Match_InvalidMemoryIndexed1SImm4:
+ return Error(Loc, "index must be an integer in range [-8, 7].");
+ case Match_InvalidMemoryIndexed2SImm4:
+ return Error(Loc, "index must be a multiple of 2 in range [-16, 14].");
+ case Match_InvalidMemoryIndexed3SImm4:
+ return Error(Loc, "index must be a multiple of 3 in range [-24, 21].");
+ case Match_InvalidMemoryIndexed4SImm4:
+ return Error(Loc, "index must be a multiple of 4 in range [-32, 28].");
+ case Match_InvalidMemoryIndexed16SImm4:
+ return Error(Loc, "index must be a multiple of 16 in range [-128, 112].");
+ case Match_InvalidMemoryIndexed1SImm6:
+ return Error(Loc, "index must be an integer in range [-32, 31].");
+ case Match_InvalidMemoryIndexedSImm8:
+ return Error(Loc, "index must be an integer in range [-128, 127].");
+ case Match_InvalidMemoryIndexedSImm9:
+ return Error(Loc, "index must be an integer in range [-256, 255].");
+ case Match_InvalidMemoryIndexed16SImm9:
+ return Error(Loc, "index must be a multiple of 16 in range [-4096, 4080].");
+ case Match_InvalidMemoryIndexed8SImm10:
+ return Error(Loc, "index must be a multiple of 8 in range [-4096, 4088].");
+ case Match_InvalidMemoryIndexed4SImm7:
+ return Error(Loc, "index must be a multiple of 4 in range [-256, 252].");
+ case Match_InvalidMemoryIndexed8SImm7:
+ return Error(Loc, "index must be a multiple of 8 in range [-512, 504].");
+ case Match_InvalidMemoryIndexed16SImm7:
+ return Error(Loc, "index must be a multiple of 16 in range [-1024, 1008].");
+ case Match_InvalidMemoryIndexed8UImm5:
+ return Error(Loc, "index must be a multiple of 8 in range [0, 248].");
+ case Match_InvalidMemoryIndexed4UImm5:
+ return Error(Loc, "index must be a multiple of 4 in range [0, 124].");
+ case Match_InvalidMemoryIndexed2UImm5:
+ return Error(Loc, "index must be a multiple of 2 in range [0, 62].");
+ case Match_InvalidMemoryIndexed8UImm6:
+ return Error(Loc, "index must be a multiple of 8 in range [0, 504].");
+ case Match_InvalidMemoryIndexed16UImm6:
+ return Error(Loc, "index must be a multiple of 16 in range [0, 1008].");
+ case Match_InvalidMemoryIndexed4UImm6:
+ return Error(Loc, "index must be a multiple of 4 in range [0, 252].");
+ case Match_InvalidMemoryIndexed2UImm6:
+ return Error(Loc, "index must be a multiple of 2 in range [0, 126].");
+ case Match_InvalidMemoryIndexed1UImm6:
+ return Error(Loc, "index must be in range [0, 63].");
+ case Match_InvalidMemoryWExtend8:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0");
+ case Match_InvalidMemoryWExtend16:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0 or #1");
+ case Match_InvalidMemoryWExtend32:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0 or #2");
+ case Match_InvalidMemoryWExtend64:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0 or #3");
+ case Match_InvalidMemoryWExtend128:
+ return Error(Loc,
+ "expected 'uxtw' or 'sxtw' with optional shift of #0 or #4");
+ case Match_InvalidMemoryXExtend8:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0");
+ case Match_InvalidMemoryXExtend16:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0 or #1");
+ case Match_InvalidMemoryXExtend32:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0 or #2");
+ case Match_InvalidMemoryXExtend64:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0 or #3");
+ case Match_InvalidMemoryXExtend128:
+ return Error(Loc,
+ "expected 'lsl' or 'sxtx' with optional shift of #0 or #4");
+ case Match_InvalidMemoryIndexed1:
+ return Error(Loc, "index must be an integer in range [0, 4095].");
+ case Match_InvalidMemoryIndexed2:
+ return Error(Loc, "index must be a multiple of 2 in range [0, 8190].");
+ case Match_InvalidMemoryIndexed4:
+ return Error(Loc, "index must be a multiple of 4 in range [0, 16380].");
+ case Match_InvalidMemoryIndexed8:
+ return Error(Loc, "index must be a multiple of 8 in range [0, 32760].");
+ case Match_InvalidMemoryIndexed16:
+ return Error(Loc, "index must be a multiple of 16 in range [0, 65520].");
+ case Match_InvalidImm0_1:
+ return Error(Loc, "immediate must be an integer in range [0, 1].");
+ case Match_InvalidImm0_7:
+ return Error(Loc, "immediate must be an integer in range [0, 7].");
+ case Match_InvalidImm0_15:
+ return Error(Loc, "immediate must be an integer in range [0, 15].");
+ case Match_InvalidImm0_31:
+ return Error(Loc, "immediate must be an integer in range [0, 31].");
+ case Match_InvalidImm0_63:
+ return Error(Loc, "immediate must be an integer in range [0, 63].");
+ case Match_InvalidImm0_127:
+ return Error(Loc, "immediate must be an integer in range [0, 127].");
+ case Match_InvalidImm0_255:
+ return Error(Loc, "immediate must be an integer in range [0, 255].");
+ case Match_InvalidImm0_65535:
+ return Error(Loc, "immediate must be an integer in range [0, 65535].");
+ case Match_InvalidImm1_8:
+ return Error(Loc, "immediate must be an integer in range [1, 8].");
+ case Match_InvalidImm1_16:
+ return Error(Loc, "immediate must be an integer in range [1, 16].");
+ case Match_InvalidImm1_32:
+ return Error(Loc, "immediate must be an integer in range [1, 32].");
+ case Match_InvalidImm1_64:
+ return Error(Loc, "immediate must be an integer in range [1, 64].");
+ case Match_InvalidSVEAddSubImm8:
+ return Error(Loc, "immediate must be an integer in range [0, 255]"
+ " with a shift amount of 0");
+ case Match_InvalidSVEAddSubImm16:
+ case Match_InvalidSVEAddSubImm32:
+ case Match_InvalidSVEAddSubImm64:
+ return Error(Loc, "immediate must be an integer in range [0, 255] or a "
+ "multiple of 256 in range [256, 65280]");
+ case Match_InvalidSVECpyImm8:
+ return Error(Loc, "immediate must be an integer in range [-128, 255]"
+ " with a shift amount of 0");
+ case Match_InvalidSVECpyImm16:
+ return Error(Loc, "immediate must be an integer in range [-128, 127] or a "
+ "multiple of 256 in range [-32768, 65280]");
+ case Match_InvalidSVECpyImm32:
+ case Match_InvalidSVECpyImm64:
+ return Error(Loc, "immediate must be an integer in range [-128, 127] or a "
+ "multiple of 256 in range [-32768, 32512]");
+ case Match_InvalidIndexRange1_1:
+ return Error(Loc, "expected lane specifier '[1]'");
+ case Match_InvalidIndexRange0_15:
+ return Error(Loc, "vector lane must be an integer in range [0, 15].");
+ case Match_InvalidIndexRange0_7:
+ return Error(Loc, "vector lane must be an integer in range [0, 7].");
+ case Match_InvalidIndexRange0_3:
+ return Error(Loc, "vector lane must be an integer in range [0, 3].");
+ case Match_InvalidIndexRange0_1:
+ return Error(Loc, "vector lane must be an integer in range [0, 1].");
+ case Match_InvalidSVEIndexRange0_63:
+ return Error(Loc, "vector lane must be an integer in range [0, 63].");
+ case Match_InvalidSVEIndexRange0_31:
+ return Error(Loc, "vector lane must be an integer in range [0, 31].");
+ case Match_InvalidSVEIndexRange0_15:
+ return Error(Loc, "vector lane must be an integer in range [0, 15].");
+ case Match_InvalidSVEIndexRange0_7:
+ return Error(Loc, "vector lane must be an integer in range [0, 7].");
+ case Match_InvalidSVEIndexRange0_3:
+ return Error(Loc, "vector lane must be an integer in range [0, 3].");
+ case Match_InvalidLabel:
+ return Error(Loc, "expected label or encodable integer pc offset");
+ case Match_MRS:
+ return Error(Loc, "expected readable system register");
+ case Match_MSR:
+ return Error(Loc, "expected writable system register or pstate");
+ case Match_InvalidComplexRotationEven:
+ return Error(Loc, "complex rotation must be 0, 90, 180 or 270.");
+ case Match_InvalidComplexRotationOdd:
+ return Error(Loc, "complex rotation must be 90 or 270.");
+ case Match_MnemonicFail: {
+ std::string Suggestion = AArch64MnemonicSpellCheck(
+ ((AArch64Operand &)*Operands[0]).getToken(),
+ ComputeAvailableFeatures(STI->getFeatureBits()));
+ return Error(Loc, "unrecognized instruction mnemonic" + Suggestion);
+ }
+ case Match_InvalidGPR64shifted8:
+ return Error(Loc, "register must be x0..x30 or xzr, without shift");
+ case Match_InvalidGPR64shifted16:
+ return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #1'");
+ case Match_InvalidGPR64shifted32:
+ return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #2'");
+ case Match_InvalidGPR64shifted64:
+ return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #3'");
+ case Match_InvalidGPR64NoXZRshifted8:
+ return Error(Loc, "register must be x0..x30 without shift");
+ case Match_InvalidGPR64NoXZRshifted16:
+ return Error(Loc, "register must be x0..x30 with required shift 'lsl #1'");
+ case Match_InvalidGPR64NoXZRshifted32:
+ return Error(Loc, "register must be x0..x30 with required shift 'lsl #2'");
+ case Match_InvalidGPR64NoXZRshifted64:
+ return Error(Loc, "register must be x0..x30 with required shift 'lsl #3'");
+ case Match_InvalidZPR32UXTW8:
+ case Match_InvalidZPR32SXTW8:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw)'");
+ case Match_InvalidZPR32UXTW16:
+ case Match_InvalidZPR32SXTW16:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #1'");
+ case Match_InvalidZPR32UXTW32:
+ case Match_InvalidZPR32SXTW32:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #2'");
+ case Match_InvalidZPR32UXTW64:
+ case Match_InvalidZPR32SXTW64:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #3'");
+ case Match_InvalidZPR64UXTW8:
+ case Match_InvalidZPR64SXTW8:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (uxtw|sxtw)'");
+ case Match_InvalidZPR64UXTW16:
+ case Match_InvalidZPR64SXTW16:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #1'");
+ case Match_InvalidZPR64UXTW32:
+ case Match_InvalidZPR64SXTW32:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #2'");
+ case Match_InvalidZPR64UXTW64:
+ case Match_InvalidZPR64SXTW64:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #3'");
+ case Match_InvalidZPR32LSL8:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s'");
+ case Match_InvalidZPR32LSL16:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #1'");
+ case Match_InvalidZPR32LSL32:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #2'");
+ case Match_InvalidZPR32LSL64:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #3'");
+ case Match_InvalidZPR64LSL8:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d'");
+ case Match_InvalidZPR64LSL16:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #1'");
+ case Match_InvalidZPR64LSL32:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #2'");
+ case Match_InvalidZPR64LSL64:
+ return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #3'");
+ case Match_InvalidZPR0:
+ return Error(Loc, "expected register without element width suffix");
+ case Match_InvalidZPR8:
+ case Match_InvalidZPR16:
+ case Match_InvalidZPR32:
+ case Match_InvalidZPR64:
+ case Match_InvalidZPR128:
+ return Error(Loc, "invalid element width");
+ case Match_InvalidZPR_3b8:
+ return Error(Loc, "Invalid restricted vector register, expected z0.b..z7.b");
+ case Match_InvalidZPR_3b16:
+ return Error(Loc, "Invalid restricted vector register, expected z0.h..z7.h");
+ case Match_InvalidZPR_3b32:
+ return Error(Loc, "Invalid restricted vector register, expected z0.s..z7.s");
+ case Match_InvalidZPR_4b16:
+ return Error(Loc, "Invalid restricted vector register, expected z0.h..z15.h");
+ case Match_InvalidZPR_4b32:
+ return Error(Loc, "Invalid restricted vector register, expected z0.s..z15.s");
+ case Match_InvalidZPR_4b64:
+ return Error(Loc, "Invalid restricted vector register, expected z0.d..z15.d");
+ case Match_InvalidSVEPattern:
+ return Error(Loc, "invalid predicate pattern");
+ case Match_InvalidSVEPredicateAnyReg:
+ case Match_InvalidSVEPredicateBReg:
+ case Match_InvalidSVEPredicateHReg:
+ case Match_InvalidSVEPredicateSReg:
+ case Match_InvalidSVEPredicateDReg:
+ return Error(Loc, "invalid predicate register.");
+ case Match_InvalidSVEPredicate3bAnyReg:
+ return Error(Loc, "invalid restricted predicate register, expected p0..p7 (without element suffix)");
+ case Match_InvalidSVEPredicate3bBReg:
+ return Error(Loc, "invalid restricted predicate register, expected p0.b..p7.b");
+ case Match_InvalidSVEPredicate3bHReg:
+ return Error(Loc, "invalid restricted predicate register, expected p0.h..p7.h");
+ case Match_InvalidSVEPredicate3bSReg:
+ return Error(Loc, "invalid restricted predicate register, expected p0.s..p7.s");
+ case Match_InvalidSVEPredicate3bDReg:
+ return Error(Loc, "invalid restricted predicate register, expected p0.d..p7.d");
+ case Match_InvalidSVEExactFPImmOperandHalfOne:
+ return Error(Loc, "Invalid floating point constant, expected 0.5 or 1.0.");
+ case Match_InvalidSVEExactFPImmOperandHalfTwo:
+ return Error(Loc, "Invalid floating point constant, expected 0.5 or 2.0.");
+ case Match_InvalidSVEExactFPImmOperandZeroOne:
+ return Error(Loc, "Invalid floating point constant, expected 0.0 or 1.0.");
+ default:
+ llvm_unreachable("unexpected error code!");
+ }
+}
+
+static const char *getSubtargetFeatureName(uint64_t Val);
+
+bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[0]);
+ assert(Op.isToken() && "Leading operand should always be a mnemonic!");
+
+ StringRef Tok = Op.getToken();
+ unsigned NumOperands = Operands.size();
+
+ if (NumOperands == 4 && Tok == "lsl") {
+ AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]);
+ AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
+ if (Op2.isScalarReg() && Op3.isImm()) {
+ const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
+ if (Op3CE) {
+ uint64_t Op3Val = Op3CE->getValue();
+ uint64_t NewOp3Val = 0;
+ uint64_t NewOp4Val = 0;
+ if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains(
+ Op2.getReg())) {
+ NewOp3Val = (32 - Op3Val) & 0x1f;
+ NewOp4Val = 31 - Op3Val;
+ } else {
+ NewOp3Val = (64 - Op3Val) & 0x3f;
+ NewOp4Val = 63 - Op3Val;
+ }
+
+ const MCExpr *NewOp3 = MCConstantExpr::create(NewOp3Val, getContext());
+ const MCExpr *NewOp4 = MCConstantExpr::create(NewOp4Val, getContext());
+
+ Operands[0] = AArch64Operand::CreateToken(
+ "ubfm", false, Op.getStartLoc(), getContext());
+ Operands.push_back(AArch64Operand::CreateImm(
+ NewOp4, Op3.getStartLoc(), Op3.getEndLoc(), getContext()));
+ Operands[3] = AArch64Operand::CreateImm(NewOp3, Op3.getStartLoc(),
+ Op3.getEndLoc(), getContext());
+ }
+ }
+ } else if (NumOperands == 4 && Tok == "bfc") {
+ // FIXME: Horrible hack to handle BFC->BFM alias.
+ AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
+ AArch64Operand LSBOp = static_cast<AArch64Operand &>(*Operands[2]);
+ AArch64Operand WidthOp = static_cast<AArch64Operand &>(*Operands[3]);
+
+ if (Op1.isScalarReg() && LSBOp.isImm() && WidthOp.isImm()) {
+ const MCConstantExpr *LSBCE = dyn_cast<MCConstantExpr>(LSBOp.getImm());
+ const MCConstantExpr *WidthCE = dyn_cast<MCConstantExpr>(WidthOp.getImm());
+
+ if (LSBCE && WidthCE) {
+ uint64_t LSB = LSBCE->getValue();
+ uint64_t Width = WidthCE->getValue();
+
+ uint64_t RegWidth = 0;
+ if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op1.getReg()))
+ RegWidth = 64;
+ else
+ RegWidth = 32;
+
+ if (LSB >= RegWidth)
+ return Error(LSBOp.getStartLoc(),
+ "expected integer in range [0, 31]");
+ if (Width < 1 || Width > RegWidth)
+ return Error(WidthOp.getStartLoc(),
+ "expected integer in range [1, 32]");
+
+ uint64_t ImmR = 0;
+ if (RegWidth == 32)
+ ImmR = (32 - LSB) & 0x1f;
+ else
+ ImmR = (64 - LSB) & 0x3f;
+
+ uint64_t ImmS = Width - 1;
+
+ if (ImmR != 0 && ImmS >= ImmR)
+ return Error(WidthOp.getStartLoc(),
+ "requested insert overflows register");
+
+ const MCExpr *ImmRExpr = MCConstantExpr::create(ImmR, getContext());
+ const MCExpr *ImmSExpr = MCConstantExpr::create(ImmS, getContext());
+ Operands[0] = AArch64Operand::CreateToken(
+ "bfm", false, Op.getStartLoc(), getContext());
+ Operands[2] = AArch64Operand::CreateReg(
+ RegWidth == 32 ? AArch64::WZR : AArch64::XZR, RegKind::Scalar,
+ SMLoc(), SMLoc(), getContext());
+ Operands[3] = AArch64Operand::CreateImm(
+ ImmRExpr, LSBOp.getStartLoc(), LSBOp.getEndLoc(), getContext());
+ Operands.emplace_back(
+ AArch64Operand::CreateImm(ImmSExpr, WidthOp.getStartLoc(),
+ WidthOp.getEndLoc(), getContext()));
+ }
+ }
+ } else if (NumOperands == 5) {
+ // FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and
+ // UBFIZ -> UBFM aliases.
+ if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") {
+ AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
+ AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
+ AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);
+
+ if (Op1.isScalarReg() && Op3.isImm() && Op4.isImm()) {
+ const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
+ const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());
+
+ if (Op3CE && Op4CE) {
+ uint64_t Op3Val = Op3CE->getValue();
+ uint64_t Op4Val = Op4CE->getValue();
+
+ uint64_t RegWidth = 0;
+ if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op1.getReg()))
+ RegWidth = 64;
+ else
+ RegWidth = 32;
+
+ if (Op3Val >= RegWidth)
+ return Error(Op3.getStartLoc(),
+ "expected integer in range [0, 31]");
+ if (Op4Val < 1 || Op4Val > RegWidth)
+ return Error(Op4.getStartLoc(),
+ "expected integer in range [1, 32]");
+
+ uint64_t NewOp3Val = 0;
+ if (RegWidth == 32)
+ NewOp3Val = (32 - Op3Val) & 0x1f;
+ else
+ NewOp3Val = (64 - Op3Val) & 0x3f;
+
+ uint64_t NewOp4Val = Op4Val - 1;
+
+ if (NewOp3Val != 0 && NewOp4Val >= NewOp3Val)
+ return Error(Op4.getStartLoc(),
+ "requested insert overflows register");
+
+ const MCExpr *NewOp3 =
+ MCConstantExpr::create(NewOp3Val, getContext());
+ const MCExpr *NewOp4 =
+ MCConstantExpr::create(NewOp4Val, getContext());
+ Operands[3] = AArch64Operand::CreateImm(
+ NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext());
+ Operands[4] = AArch64Operand::CreateImm(
+ NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
+ if (Tok == "bfi")
+ Operands[0] = AArch64Operand::CreateToken(
+ "bfm", false, Op.getStartLoc(), getContext());
+ else if (Tok == "sbfiz")
+ Operands[0] = AArch64Operand::CreateToken(
+ "sbfm", false, Op.getStartLoc(), getContext());
+ else if (Tok == "ubfiz")
+ Operands[0] = AArch64Operand::CreateToken(
+ "ubfm", false, Op.getStartLoc(), getContext());
+ else
+ llvm_unreachable("No valid mnemonic for alias?");
+ }
+ }
+
+ // FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and
+ // UBFX -> UBFM aliases.
+ } else if (NumOperands == 5 &&
+ (Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) {
+ AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
+ AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
+ AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);
+
+ if (Op1.isScalarReg() && Op3.isImm() && Op4.isImm()) {
+ const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
+ const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());
+
+ if (Op3CE && Op4CE) {
+ uint64_t Op3Val = Op3CE->getValue();
+ uint64_t Op4Val = Op4CE->getValue();
+
+ uint64_t RegWidth = 0;
+ if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op1.getReg()))
+ RegWidth = 64;
+ else
+ RegWidth = 32;
+
+ if (Op3Val >= RegWidth)
+ return Error(Op3.getStartLoc(),
+ "expected integer in range [0, 31]");
+ if (Op4Val < 1 || Op4Val > RegWidth)
+ return Error(Op4.getStartLoc(),
+ "expected integer in range [1, 32]");
+
+ uint64_t NewOp4Val = Op3Val + Op4Val - 1;
+
+ if (NewOp4Val >= RegWidth || NewOp4Val < Op3Val)
+ return Error(Op4.getStartLoc(),
+ "requested extract overflows register");
+
+ const MCExpr *NewOp4 =
+ MCConstantExpr::create(NewOp4Val, getContext());
+ Operands[4] = AArch64Operand::CreateImm(
+ NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
+ if (Tok == "bfxil")
+ Operands[0] = AArch64Operand::CreateToken(
+ "bfm", false, Op.getStartLoc(), getContext());
+ else if (Tok == "sbfx")
+ Operands[0] = AArch64Operand::CreateToken(
+ "sbfm", false, Op.getStartLoc(), getContext());
+ else if (Tok == "ubfx")
+ Operands[0] = AArch64Operand::CreateToken(
+ "ubfm", false, Op.getStartLoc(), getContext());
+ else
+ llvm_unreachable("No valid mnemonic for alias?");
+ }
+ }
+ }
+ }
+
+ // The Cyclone CPU and early successors didn't execute the zero-cycle zeroing
+ // instruction for FP registers correctly in some rare circumstances. Convert
+ // it to a safe instruction and warn (because silently changing someone's
+ // assembly is rude).
+ if (getSTI().getFeatureBits()[AArch64::FeatureZCZeroingFPWorkaround] &&
+ NumOperands == 4 && Tok == "movi") {
+ AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
+ AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]);
+ AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
+ if ((Op1.isToken() && Op2.isNeonVectorReg() && Op3.isImm()) ||
+ (Op1.isNeonVectorReg() && Op2.isToken() && Op3.isImm())) {
+ StringRef Suffix = Op1.isToken() ? Op1.getToken() : Op2.getToken();
+ if (Suffix.lower() == ".2d" &&
+ cast<MCConstantExpr>(Op3.getImm())->getValue() == 0) {
+ Warning(IDLoc, "instruction movi.2d with immediate #0 may not function"
+ " correctly on this CPU, converting to equivalent movi.16b");
+ // Switch the suffix to .16b.
+ unsigned Idx = Op1.isToken() ? 1 : 2;
+ Operands[Idx] = AArch64Operand::CreateToken(".16b", false, IDLoc,
+ getContext());
+ }
+ }
+ }
+
+ // FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands.
+ // InstAlias can't quite handle this since the reg classes aren't
+ // subclasses.
+ if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) {
+ // The source register can be Wn here, but the matcher expects a
+ // GPR64. Twiddle it here if necessary.
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
+ if (Op.isScalarReg()) {
+ unsigned Reg = getXRegFromWReg(Op.getReg());
+ Operands[2] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
+ Op.getStartLoc(), Op.getEndLoc(),
+ getContext());
+ }
+ }
+ // FIXME: Likewise for sxt[bh] with a Xd dst operand
+ else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) {
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
+ if (Op.isScalarReg() &&
+ AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op.getReg())) {
+ // The source register can be Wn here, but the matcher expects a
+ // GPR64. Twiddle it here if necessary.
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
+ if (Op.isScalarReg()) {
+ unsigned Reg = getXRegFromWReg(Op.getReg());
+ Operands[2] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
+ Op.getStartLoc(),
+ Op.getEndLoc(), getContext());
+ }
+ }
+ }
+ // FIXME: Likewise for uxt[bh] with a Xd dst operand
+ else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) {
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
+ if (Op.isScalarReg() &&
+ AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
+ Op.getReg())) {
+ // The source register can be Wn here, but the matcher expects a
+ // GPR32. Twiddle it here if necessary.
+ AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
+ if (Op.isScalarReg()) {
+ unsigned Reg = getWRegFromXReg(Op.getReg());
+ Operands[1] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
+ Op.getStartLoc(),
+ Op.getEndLoc(), getContext());
+ }
+ }
+ }
+
+ MCInst Inst;
+ FeatureBitset MissingFeatures;
+ // First try to match against the secondary set of tables containing the
+ // short-form NEON instructions (e.g. "fadd.2s v0, v1, v2").
+ unsigned MatchResult =
+ MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
+ MatchingInlineAsm, 1);
+
+ // If that fails, try against the alternate table containing long-form NEON:
+ // "fadd v0.2s, v1.2s, v2.2s"
+ if (MatchResult != Match_Success) {
+ // But first, save the short-form match result: we can use it in case the
+ // long-form match also fails.
+ auto ShortFormNEONErrorInfo = ErrorInfo;
+ auto ShortFormNEONMatchResult = MatchResult;
+ auto ShortFormNEONMissingFeatures = MissingFeatures;
+
+ MatchResult =
+ MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
+ MatchingInlineAsm, 0);
+
+ // Now, both matches failed, and the long-form match failed on the mnemonic
+ // suffix token operand. The short-form match failure is probably more
+ // relevant: use it instead.
+ if (MatchResult == Match_InvalidOperand && ErrorInfo == 1 &&
+ Operands.size() > 1 && ((AArch64Operand &)*Operands[1]).isToken() &&
+ ((AArch64Operand &)*Operands[1]).isTokenSuffix()) {
+ MatchResult = ShortFormNEONMatchResult;
+ ErrorInfo = ShortFormNEONErrorInfo;
+ MissingFeatures = ShortFormNEONMissingFeatures;
+ }
+ }
+
+ switch (MatchResult) {
+ case Match_Success: {
+ // Perform range checking and other semantic validations
+ SmallVector<SMLoc, 8> OperandLocs;
+ NumOperands = Operands.size();
+ for (unsigned i = 1; i < NumOperands; ++i)
+ OperandLocs.push_back(Operands[i]->getStartLoc());
+ if (validateInstruction(Inst, IDLoc, OperandLocs))
+ return true;
+
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst, getSTI());
+ return false;
+ }
+ case Match_MissingFeature: {
+ assert(MissingFeatures.any() && "Unknown missing feature!");
+ // Special case the error message for the very common case where only
+ // a single subtarget feature is missing (neon, e.g.).
+ std::string Msg = "instruction requires:";
+ for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
+ if (MissingFeatures[i]) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(i);
+ }
+ }
+ return Error(IDLoc, Msg);
+ }
+ case Match_MnemonicFail:
+ return showMatchError(IDLoc, MatchResult, ErrorInfo, Operands);
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+
+ if (ErrorInfo != ~0ULL) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction",
+ SMRange(IDLoc, getTok().getLoc()));
+
+ ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+ // If the match failed on a suffix token operand, tweak the diagnostic
+ // accordingly.
+ if (((AArch64Operand &)*Operands[ErrorInfo]).isToken() &&
+ ((AArch64Operand &)*Operands[ErrorInfo]).isTokenSuffix())
+ MatchResult = Match_InvalidSuffix;
+
+ return showMatchError(ErrorLoc, MatchResult, ErrorInfo, Operands);
+ }
+ case Match_InvalidTiedOperand:
+ case Match_InvalidMemoryIndexed1:
+ case Match_InvalidMemoryIndexed2:
+ case Match_InvalidMemoryIndexed4:
+ case Match_InvalidMemoryIndexed8:
+ case Match_InvalidMemoryIndexed16:
+ case Match_InvalidCondCode:
+ case Match_AddSubRegExtendSmall:
+ case Match_AddSubRegExtendLarge:
+ case Match_AddSubSecondSource:
+ case Match_LogicalSecondSource:
+ case Match_AddSubRegShift32:
+ case Match_AddSubRegShift64:
+ case Match_InvalidMovImm32Shift:
+ case Match_InvalidMovImm64Shift:
+ case Match_InvalidFPImm:
+ case Match_InvalidMemoryWExtend8:
+ case Match_InvalidMemoryWExtend16:
+ case Match_InvalidMemoryWExtend32:
+ case Match_InvalidMemoryWExtend64:
+ case Match_InvalidMemoryWExtend128:
+ case Match_InvalidMemoryXExtend8:
+ case Match_InvalidMemoryXExtend16:
+ case Match_InvalidMemoryXExtend32:
+ case Match_InvalidMemoryXExtend64:
+ case Match_InvalidMemoryXExtend128:
+ case Match_InvalidMemoryIndexed1SImm4:
+ case Match_InvalidMemoryIndexed2SImm4:
+ case Match_InvalidMemoryIndexed3SImm4:
+ case Match_InvalidMemoryIndexed4SImm4:
+ case Match_InvalidMemoryIndexed1SImm6:
+ case Match_InvalidMemoryIndexed16SImm4:
+ case Match_InvalidMemoryIndexed4SImm7:
+ case Match_InvalidMemoryIndexed8SImm7:
+ case Match_InvalidMemoryIndexed16SImm7:
+ case Match_InvalidMemoryIndexed8UImm5:
+ case Match_InvalidMemoryIndexed4UImm5:
+ case Match_InvalidMemoryIndexed2UImm5:
+ case Match_InvalidMemoryIndexed1UImm6:
+ case Match_InvalidMemoryIndexed2UImm6:
+ case Match_InvalidMemoryIndexed4UImm6:
+ case Match_InvalidMemoryIndexed8UImm6:
+ case Match_InvalidMemoryIndexed16UImm6:
+ case Match_InvalidMemoryIndexedSImm6:
+ case Match_InvalidMemoryIndexedSImm5:
+ case Match_InvalidMemoryIndexedSImm8:
+ case Match_InvalidMemoryIndexedSImm9:
+ case Match_InvalidMemoryIndexed16SImm9:
+ case Match_InvalidMemoryIndexed8SImm10:
+ case Match_InvalidImm0_1:
+ case Match_InvalidImm0_7:
+ case Match_InvalidImm0_15:
+ case Match_InvalidImm0_31:
+ case Match_InvalidImm0_63:
+ case Match_InvalidImm0_127:
+ case Match_InvalidImm0_255:
+ case Match_InvalidImm0_65535:
+ case Match_InvalidImm1_8:
+ case Match_InvalidImm1_16:
+ case Match_InvalidImm1_32:
+ case Match_InvalidImm1_64:
+ case Match_InvalidSVEAddSubImm8:
+ case Match_InvalidSVEAddSubImm16:
+ case Match_InvalidSVEAddSubImm32:
+ case Match_InvalidSVEAddSubImm64:
+ case Match_InvalidSVECpyImm8:
+ case Match_InvalidSVECpyImm16:
+ case Match_InvalidSVECpyImm32:
+ case Match_InvalidSVECpyImm64:
+ case Match_InvalidIndexRange1_1:
+ case Match_InvalidIndexRange0_15:
+ case Match_InvalidIndexRange0_7:
+ case Match_InvalidIndexRange0_3:
+ case Match_InvalidIndexRange0_1:
+ case Match_InvalidSVEIndexRange0_63:
+ case Match_InvalidSVEIndexRange0_31:
+ case Match_InvalidSVEIndexRange0_15:
+ case Match_InvalidSVEIndexRange0_7:
+ case Match_InvalidSVEIndexRange0_3:
+ case Match_InvalidLabel:
+ case Match_InvalidComplexRotationEven:
+ case Match_InvalidComplexRotationOdd:
+ case Match_InvalidGPR64shifted8:
+ case Match_InvalidGPR64shifted16:
+ case Match_InvalidGPR64shifted32:
+ case Match_InvalidGPR64shifted64:
+ case Match_InvalidGPR64NoXZRshifted8:
+ case Match_InvalidGPR64NoXZRshifted16:
+ case Match_InvalidGPR64NoXZRshifted32:
+ case Match_InvalidGPR64NoXZRshifted64:
+ case Match_InvalidZPR32UXTW8:
+ case Match_InvalidZPR32UXTW16:
+ case Match_InvalidZPR32UXTW32:
+ case Match_InvalidZPR32UXTW64:
+ case Match_InvalidZPR32SXTW8:
+ case Match_InvalidZPR32SXTW16:
+ case Match_InvalidZPR32SXTW32:
+ case Match_InvalidZPR32SXTW64:
+ case Match_InvalidZPR64UXTW8:
+ case Match_InvalidZPR64SXTW8:
+ case Match_InvalidZPR64UXTW16:
+ case Match_InvalidZPR64SXTW16:
+ case Match_InvalidZPR64UXTW32:
+ case Match_InvalidZPR64SXTW32:
+ case Match_InvalidZPR64UXTW64:
+ case Match_InvalidZPR64SXTW64:
+ case Match_InvalidZPR32LSL8:
+ case Match_InvalidZPR32LSL16:
+ case Match_InvalidZPR32LSL32:
+ case Match_InvalidZPR32LSL64:
+ case Match_InvalidZPR64LSL8:
+ case Match_InvalidZPR64LSL16:
+ case Match_InvalidZPR64LSL32:
+ case Match_InvalidZPR64LSL64:
+ case Match_InvalidZPR0:
+ case Match_InvalidZPR8:
+ case Match_InvalidZPR16:
+ case Match_InvalidZPR32:
+ case Match_InvalidZPR64:
+ case Match_InvalidZPR128:
+ case Match_InvalidZPR_3b8:
+ case Match_InvalidZPR_3b16:
+ case Match_InvalidZPR_3b32:
+ case Match_InvalidZPR_4b16:
+ case Match_InvalidZPR_4b32:
+ case Match_InvalidZPR_4b64:
+ case Match_InvalidSVEPredicateAnyReg:
+ case Match_InvalidSVEPattern:
+ case Match_InvalidSVEPredicateBReg:
+ case Match_InvalidSVEPredicateHReg:
+ case Match_InvalidSVEPredicateSReg:
+ case Match_InvalidSVEPredicateDReg:
+ case Match_InvalidSVEPredicate3bAnyReg:
+ case Match_InvalidSVEPredicate3bBReg:
+ case Match_InvalidSVEPredicate3bHReg:
+ case Match_InvalidSVEPredicate3bSReg:
+ case Match_InvalidSVEPredicate3bDReg:
+ case Match_InvalidSVEExactFPImmOperandHalfOne:
+ case Match_InvalidSVEExactFPImmOperandHalfTwo:
+ case Match_InvalidSVEExactFPImmOperandZeroOne:
+ case Match_MSR:
+ case Match_MRS: {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction", SMRange(IDLoc, (*Operands.back()).getEndLoc()));
+ // Any time we get here, there's nothing fancy to do. Just get the
+ // operand SMLoc and display the diagnostic.
+ SMLoc ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ return showMatchError(ErrorLoc, MatchResult, ErrorInfo, Operands);
+ }
+ }
+
+ llvm_unreachable("Implement any new match types added!");
+}
+
+/// ParseDirective parses the arm specific directives
+bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) {
+ const MCObjectFileInfo::Environment Format =
+ getContext().getObjectFileInfo()->getObjectFileType();
+ bool IsMachO = Format == MCObjectFileInfo::IsMachO;
+
+ StringRef IDVal = DirectiveID.getIdentifier();
+ SMLoc Loc = DirectiveID.getLoc();
+ if (IDVal == ".arch")
+ parseDirectiveArch(Loc);
+ else if (IDVal == ".cpu")
+ parseDirectiveCPU(Loc);
+ else if (IDVal == ".tlsdesccall")
+ parseDirectiveTLSDescCall(Loc);
+ else if (IDVal == ".ltorg" || IDVal == ".pool")
+ parseDirectiveLtorg(Loc);
+ else if (IDVal == ".unreq")
+ parseDirectiveUnreq(Loc);
+ else if (IDVal == ".inst")
+ parseDirectiveInst(Loc);
+ else if (IDVal == ".cfi_negate_ra_state")
+ parseDirectiveCFINegateRAState();
+ else if (IDVal == ".cfi_b_key_frame")
+ parseDirectiveCFIBKeyFrame();
+ else if (IDVal == ".arch_extension")
+ parseDirectiveArchExtension(Loc);
+ else if (IsMachO) {
+ if (IDVal == MCLOHDirectiveName())
+ parseDirectiveLOH(IDVal, Loc);
+ else
+ return true;
+ } else
+ return true;
+ return false;
+}
+
+static void ExpandCryptoAEK(AArch64::ArchKind ArchKind,
+ SmallVector<StringRef, 4> &RequestedExtensions) {
+ const bool NoCrypto =
+ (std::find(RequestedExtensions.begin(), RequestedExtensions.end(),
+ "nocrypto") != std::end(RequestedExtensions));
+ const bool Crypto =
+ (std::find(RequestedExtensions.begin(), RequestedExtensions.end(),
+ "crypto") != std::end(RequestedExtensions));
+
+ if (!NoCrypto && Crypto) {
+ switch (ArchKind) {
+ default:
+ // Map 'generic' (and others) to sha2 and aes, because
+ // that was the traditional meaning of crypto.
+ case AArch64::ArchKind::ARMV8_1A:
+ case AArch64::ArchKind::ARMV8_2A:
+ case AArch64::ArchKind::ARMV8_3A:
+ RequestedExtensions.push_back("sha2");
+ RequestedExtensions.push_back("aes");
+ break;
+ case AArch64::ArchKind::ARMV8_4A:
+ case AArch64::ArchKind::ARMV8_5A:
+ RequestedExtensions.push_back("sm4");
+ RequestedExtensions.push_back("sha3");
+ RequestedExtensions.push_back("sha2");
+ RequestedExtensions.push_back("aes");
+ break;
+ }
+ } else if (NoCrypto) {
+ switch (ArchKind) {
+ default:
+ // Map 'generic' (and others) to sha2 and aes, because
+ // that was the traditional meaning of crypto.
+ case AArch64::ArchKind::ARMV8_1A:
+ case AArch64::ArchKind::ARMV8_2A:
+ case AArch64::ArchKind::ARMV8_3A:
+ RequestedExtensions.push_back("nosha2");
+ RequestedExtensions.push_back("noaes");
+ break;
+ case AArch64::ArchKind::ARMV8_4A:
+ case AArch64::ArchKind::ARMV8_5A:
+ RequestedExtensions.push_back("nosm4");
+ RequestedExtensions.push_back("nosha3");
+ RequestedExtensions.push_back("nosha2");
+ RequestedExtensions.push_back("noaes");
+ break;
+ }
+ }
+}
+
+/// parseDirectiveArch
+/// ::= .arch token
+bool AArch64AsmParser::parseDirectiveArch(SMLoc L) {
+ SMLoc ArchLoc = getLoc();
+
+ StringRef Arch, ExtensionString;
+ std::tie(Arch, ExtensionString) =
+ getParser().parseStringToEndOfStatement().trim().split('+');
+
+ AArch64::ArchKind ID = AArch64::parseArch(Arch);
+ if (ID == AArch64::ArchKind::INVALID)
+ return Error(ArchLoc, "unknown arch name");
+
+ if (parseToken(AsmToken::EndOfStatement))
+ return true;
+
+ // Get the architecture and extension features.
+ std::vector<StringRef> AArch64Features;
+ AArch64::getArchFeatures(ID, AArch64Features);
+ AArch64::getExtensionFeatures(AArch64::getDefaultExtensions("generic", ID),
+ AArch64Features);
+
+ MCSubtargetInfo &STI = copySTI();
+ std::vector<std::string> ArchFeatures(AArch64Features.begin(), AArch64Features.end());
+ STI.setDefaultFeatures("generic", join(ArchFeatures.begin(), ArchFeatures.end(), ","));
+
+ SmallVector<StringRef, 4> RequestedExtensions;
+ if (!ExtensionString.empty())
+ ExtensionString.split(RequestedExtensions, '+');
+
+ ExpandCryptoAEK(ID, RequestedExtensions);
+
+ FeatureBitset Features = STI.getFeatureBits();
+ for (auto Name : RequestedExtensions) {
+ bool EnableFeature = true;
+
+ if (Name.startswith_lower("no")) {
+ EnableFeature = false;
+ Name = Name.substr(2);
+ }
+
+ for (const auto &Extension : ExtensionMap) {
+ if (Extension.Name != Name)
+ continue;
+
+ if (Extension.Features.none())
+ report_fatal_error("unsupported architectural extension: " + Name);
+
+ FeatureBitset ToggleFeatures = EnableFeature
+ ? (~Features & Extension.Features)
+ : ( Features & Extension.Features);
+ FeatureBitset Features =
+ ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
+ setAvailableFeatures(Features);
+ break;
+ }
+ }
+ return false;
+}
+
+/// parseDirectiveArchExtension
+/// ::= .arch_extension [no]feature
+bool AArch64AsmParser::parseDirectiveArchExtension(SMLoc L) {
+ SMLoc ExtLoc = getLoc();
+
+ StringRef Name = getParser().parseStringToEndOfStatement().trim();
+
+ if (parseToken(AsmToken::EndOfStatement,
+ "unexpected token in '.arch_extension' directive"))
+ return true;
+
+ bool EnableFeature = true;
+ if (Name.startswith_lower("no")) {
+ EnableFeature = false;
+ Name = Name.substr(2);
+ }
+
+ MCSubtargetInfo &STI = copySTI();
+ FeatureBitset Features = STI.getFeatureBits();
+ for (const auto &Extension : ExtensionMap) {
+ if (Extension.Name != Name)
+ continue;
+
+ if (Extension.Features.none())
+ return Error(ExtLoc, "unsupported architectural extension: " + Name);
+
+ FeatureBitset ToggleFeatures = EnableFeature
+ ? (~Features & Extension.Features)
+ : (Features & Extension.Features);
+ FeatureBitset Features =
+ ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
+ setAvailableFeatures(Features);
+ return false;
+ }
+
+ return Error(ExtLoc, "unknown architectural extension: " + Name);
+}
+
+static SMLoc incrementLoc(SMLoc L, int Offset) {
+ return SMLoc::getFromPointer(L.getPointer() + Offset);
+}
+
+/// parseDirectiveCPU
+/// ::= .cpu id
+bool AArch64AsmParser::parseDirectiveCPU(SMLoc L) {
+ SMLoc CurLoc = getLoc();
+
+ StringRef CPU, ExtensionString;
+ std::tie(CPU, ExtensionString) =
+ getParser().parseStringToEndOfStatement().trim().split('+');
+
+ if (parseToken(AsmToken::EndOfStatement))
+ return true;
+
+ SmallVector<StringRef, 4> RequestedExtensions;
+ if (!ExtensionString.empty())
+ ExtensionString.split(RequestedExtensions, '+');
+
+ // FIXME This is using tablegen data, but should be moved to ARMTargetParser
+ // once that is tablegen'ed
+ if (!getSTI().isCPUStringValid(CPU)) {
+ Error(CurLoc, "unknown CPU name");
+ return false;
+ }
+
+ MCSubtargetInfo &STI = copySTI();
+ STI.setDefaultFeatures(CPU, "");
+ CurLoc = incrementLoc(CurLoc, CPU.size());
+
+ ExpandCryptoAEK(llvm::AArch64::getCPUArchKind(CPU), RequestedExtensions);
+
+ FeatureBitset Features = STI.getFeatureBits();
+ for (auto Name : RequestedExtensions) {
+ // Advance source location past '+'.
+ CurLoc = incrementLoc(CurLoc, 1);
+
+ bool EnableFeature = true;
+
+ if (Name.startswith_lower("no")) {
+ EnableFeature = false;
+ Name = Name.substr(2);
+ }
+
+ bool FoundExtension = false;
+ for (const auto &Extension : ExtensionMap) {
+ if (Extension.Name != Name)
+ continue;
+
+ if (Extension.Features.none())
+ report_fatal_error("unsupported architectural extension: " + Name);
+
+ FeatureBitset ToggleFeatures = EnableFeature
+ ? (~Features & Extension.Features)
+ : ( Features & Extension.Features);
+ FeatureBitset Features =
+ ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
+ setAvailableFeatures(Features);
+ FoundExtension = true;
+
+ break;
+ }
+
+ if (!FoundExtension)
+ Error(CurLoc, "unsupported architectural extension");
+
+ CurLoc = incrementLoc(CurLoc, Name.size());
+ }
+ return false;
+}
+
+/// parseDirectiveInst
+/// ::= .inst opcode [, ...]
+bool AArch64AsmParser::parseDirectiveInst(SMLoc Loc) {
+ if (getLexer().is(AsmToken::EndOfStatement))
+ return Error(Loc, "expected expression following '.inst' directive");
+
+ auto parseOp = [&]() -> bool {
+ SMLoc L = getLoc();
+ const MCExpr *Expr;
+ if (check(getParser().parseExpression(Expr), L, "expected expression"))
+ return true;
+ const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
+ if (check(!Value, L, "expected constant expression"))
+ return true;
+ getTargetStreamer().emitInst(Value->getValue());
+ return false;
+ };
+
+ if (parseMany(parseOp))
+ return addErrorSuffix(" in '.inst' directive");
+ return false;
+}
+
+// parseDirectiveTLSDescCall:
+// ::= .tlsdesccall symbol
+bool AArch64AsmParser::parseDirectiveTLSDescCall(SMLoc L) {
+ StringRef Name;
+ if (check(getParser().parseIdentifier(Name), L,
+ "expected symbol after directive") ||
+ parseToken(AsmToken::EndOfStatement))
+ return true;
+
+ MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
+ const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext());
+ Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_TLSDESC, getContext());
+
+ MCInst Inst;
+ Inst.setOpcode(AArch64::TLSDESCCALL);
+ Inst.addOperand(MCOperand::createExpr(Expr));
+
+ getParser().getStreamer().EmitInstruction(Inst, getSTI());
+ return false;
+}
+
+/// ::= .loh <lohName | lohId> label1, ..., labelN
+/// The number of arguments depends on the loh identifier.
+bool AArch64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) {
+ MCLOHType Kind;
+ if (getParser().getTok().isNot(AsmToken::Identifier)) {
+ if (getParser().getTok().isNot(AsmToken::Integer))
+ return TokError("expected an identifier or a number in directive");
+ // We successfully get a numeric value for the identifier.
+ // Check if it is valid.
+ int64_t Id = getParser().getTok().getIntVal();
+ if (Id <= -1U && !isValidMCLOHType(Id))
+ return TokError("invalid numeric identifier in directive");
+ Kind = (MCLOHType)Id;
+ } else {
+ StringRef Name = getTok().getIdentifier();
+ // We successfully parse an identifier.
+ // Check if it is a recognized one.
+ int Id = MCLOHNameToId(Name);
+
+ if (Id == -1)
+ return TokError("invalid identifier in directive");
+ Kind = (MCLOHType)Id;
+ }
+ // Consume the identifier.
+ Lex();
+ // Get the number of arguments of this LOH.
+ int NbArgs = MCLOHIdToNbArgs(Kind);
+
+ assert(NbArgs != -1 && "Invalid number of arguments");
+
+ SmallVector<MCSymbol *, 3> Args;
+ for (int Idx = 0; Idx < NbArgs; ++Idx) {
+ StringRef Name;
+ if (getParser().parseIdentifier(Name))
+ return TokError("expected identifier in directive");
+ Args.push_back(getContext().getOrCreateSymbol(Name));
+
+ if (Idx + 1 == NbArgs)
+ break;
+ if (parseToken(AsmToken::Comma,
+ "unexpected token in '" + Twine(IDVal) + "' directive"))
+ return true;
+ }
+ if (parseToken(AsmToken::EndOfStatement,
+ "unexpected token in '" + Twine(IDVal) + "' directive"))
+ return true;
+
+ getStreamer().EmitLOHDirective((MCLOHType)Kind, Args);
+ return false;
+}
+
+/// parseDirectiveLtorg
+/// ::= .ltorg | .pool
+bool AArch64AsmParser::parseDirectiveLtorg(SMLoc L) {
+ if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
+ return true;
+ getTargetStreamer().emitCurrentConstantPool();
+ return false;
+}
+
+/// parseDirectiveReq
+/// ::= name .req registername
+bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat the '.req' token.
+ SMLoc SRegLoc = getLoc();
+ RegKind RegisterKind = RegKind::Scalar;
+ unsigned RegNum;
+ OperandMatchResultTy ParseRes = tryParseScalarRegister(RegNum);
+
+ if (ParseRes != MatchOperand_Success) {
+ StringRef Kind;
+ RegisterKind = RegKind::NeonVector;
+ ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::NeonVector);
+
+ if (ParseRes == MatchOperand_ParseFail)
+ return true;
+
+ if (ParseRes == MatchOperand_Success && !Kind.empty())
+ return Error(SRegLoc, "vector register without type specifier expected");
+ }
+
+ if (ParseRes != MatchOperand_Success) {
+ StringRef Kind;
+ RegisterKind = RegKind::SVEDataVector;
+ ParseRes =
+ tryParseVectorRegister(RegNum, Kind, RegKind::SVEDataVector);
+
+ if (ParseRes == MatchOperand_ParseFail)
+ return true;
+
+ if (ParseRes == MatchOperand_Success && !Kind.empty())
+ return Error(SRegLoc,
+ "sve vector register without type specifier expected");
+ }
+
+ if (ParseRes != MatchOperand_Success) {
+ StringRef Kind;
+ RegisterKind = RegKind::SVEPredicateVector;
+ ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::SVEPredicateVector);
+
+ if (ParseRes == MatchOperand_ParseFail)
+ return true;
+
+ if (ParseRes == MatchOperand_Success && !Kind.empty())
+ return Error(SRegLoc,
+ "sve predicate register without type specifier expected");
+ }
+
+ if (ParseRes != MatchOperand_Success)
+ return Error(SRegLoc, "register name or alias expected");
+
+ // Shouldn't be anything else.
+ if (parseToken(AsmToken::EndOfStatement,
+ "unexpected input in .req directive"))
+ return true;
+
+ auto pair = std::make_pair(RegisterKind, (unsigned) RegNum);
+ if (RegisterReqs.insert(std::make_pair(Name, pair)).first->second != pair)
+ Warning(L, "ignoring redefinition of register alias '" + Name + "'");
+
+ return false;
+}
+
+/// parseDirectiveUneq
+/// ::= .unreq registername
+bool AArch64AsmParser::parseDirectiveUnreq(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ if (getTok().isNot(AsmToken::Identifier))
+ return TokError("unexpected input in .unreq directive.");
+ RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
+ Parser.Lex(); // Eat the identifier.
+ if (parseToken(AsmToken::EndOfStatement))
+ return addErrorSuffix("in '.unreq' directive");
+ return false;
+}
+
+bool AArch64AsmParser::parseDirectiveCFINegateRAState() {
+ if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
+ return true;
+ getStreamer().EmitCFINegateRAState();
+ return false;
+}
+
+/// parseDirectiveCFIBKeyFrame
+/// ::= .cfi_b_key
+bool AArch64AsmParser::parseDirectiveCFIBKeyFrame() {
+ if (parseToken(AsmToken::EndOfStatement,
+ "unexpected token in '.cfi_b_key_frame'"))
+ return true;
+ getStreamer().EmitCFIBKeyFrame();
+ return false;
+}
+
+bool
+AArch64AsmParser::classifySymbolRef(const MCExpr *Expr,
+ AArch64MCExpr::VariantKind &ELFRefKind,
+ MCSymbolRefExpr::VariantKind &DarwinRefKind,
+ int64_t &Addend) {
+ ELFRefKind = AArch64MCExpr::VK_INVALID;
+ DarwinRefKind = MCSymbolRefExpr::VK_None;
+ Addend = 0;
+
+ if (const AArch64MCExpr *AE = dyn_cast<AArch64MCExpr>(Expr)) {
+ ELFRefKind = AE->getKind();
+ Expr = AE->getSubExpr();
+ }
+
+ const MCSymbolRefExpr *SE = dyn_cast<MCSymbolRefExpr>(Expr);
+ if (SE) {
+ // It's a simple symbol reference with no addend.
+ DarwinRefKind = SE->getKind();
+ return true;
+ }
+
+ // Check that it looks like a symbol + an addend
+ MCValue Res;
+ bool Relocatable = Expr->evaluateAsRelocatable(Res, nullptr, nullptr);
+ if (!Relocatable || Res.getSymB())
+ return false;
+
+ // Treat expressions with an ELFRefKind (like ":abs_g1:3", or
+ // ":abs_g1:x" where x is constant) as symbolic even if there is no symbol.
+ if (!Res.getSymA() && ELFRefKind == AArch64MCExpr::VK_INVALID)
+ return false;
+
+ if (Res.getSymA())
+ DarwinRefKind = Res.getSymA()->getKind();
+ Addend = Res.getConstant();
+
+ // It's some symbol reference + a constant addend, but really
+ // shouldn't use both Darwin and ELF syntax.
+ return ELFRefKind == AArch64MCExpr::VK_INVALID ||
+ DarwinRefKind == MCSymbolRefExpr::VK_None;
+}
+
+/// Force static initialization.
+extern "C" void LLVMInitializeAArch64AsmParser() {
+ RegisterMCAsmParser<AArch64AsmParser> X(getTheAArch64leTarget());
+ RegisterMCAsmParser<AArch64AsmParser> Y(getTheAArch64beTarget());
+ RegisterMCAsmParser<AArch64AsmParser> Z(getTheARM64Target());
+ RegisterMCAsmParser<AArch64AsmParser> W(getTheARM64_32Target());
+ RegisterMCAsmParser<AArch64AsmParser> V(getTheAArch64_32Target());
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_SUBTARGET_FEATURE_NAME
+#define GET_MATCHER_IMPLEMENTATION
+#define GET_MNEMONIC_SPELL_CHECKER
+#include "AArch64GenAsmMatcher.inc"
+
+// Define this matcher function after the auto-generated include so we
+// have the match class enum definitions.
+unsigned AArch64AsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
+ unsigned Kind) {
+ AArch64Operand &Op = static_cast<AArch64Operand &>(AsmOp);
+ // If the kind is a token for a literal immediate, check if our asm
+ // operand matches. This is for InstAliases which have a fixed-value
+ // immediate in the syntax.
+ int64_t ExpectedVal;
+ switch (Kind) {
+ default:
+ return Match_InvalidOperand;
+ case MCK__35_0:
+ ExpectedVal = 0;
+ break;
+ case MCK__35_1:
+ ExpectedVal = 1;
+ break;
+ case MCK__35_12:
+ ExpectedVal = 12;
+ break;
+ case MCK__35_16:
+ ExpectedVal = 16;
+ break;
+ case MCK__35_2:
+ ExpectedVal = 2;
+ break;
+ case MCK__35_24:
+ ExpectedVal = 24;
+ break;
+ case MCK__35_3:
+ ExpectedVal = 3;
+ break;
+ case MCK__35_32:
+ ExpectedVal = 32;
+ break;
+ case MCK__35_4:
+ ExpectedVal = 4;
+ break;
+ case MCK__35_48:
+ ExpectedVal = 48;
+ break;
+ case MCK__35_6:
+ ExpectedVal = 6;
+ break;
+ case MCK__35_64:
+ ExpectedVal = 64;
+ break;
+ case MCK__35_8:
+ ExpectedVal = 8;
+ break;
+ }
+ if (!Op.isImm())
+ return Match_InvalidOperand;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
+ if (!CE)
+ return Match_InvalidOperand;
+ if (CE->getValue() == ExpectedVal)
+ return Match_Success;
+ return Match_InvalidOperand;
+}
+
+OperandMatchResultTy
+AArch64AsmParser::tryParseGPRSeqPair(OperandVector &Operands) {
+
+ SMLoc S = getLoc();
+
+ if (getParser().getTok().isNot(AsmToken::Identifier)) {
+ Error(S, "expected register");
+ return MatchOperand_ParseFail;
+ }
+
+ unsigned FirstReg;
+ OperandMatchResultTy Res = tryParseScalarRegister(FirstReg);
+ if (Res != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+
+ const MCRegisterClass &WRegClass =
+ AArch64MCRegisterClasses[AArch64::GPR32RegClassID];
+ const MCRegisterClass &XRegClass =
+ AArch64MCRegisterClasses[AArch64::GPR64RegClassID];
+
+ bool isXReg = XRegClass.contains(FirstReg),
+ isWReg = WRegClass.contains(FirstReg);
+ if (!isXReg && !isWReg) {
+ Error(S, "expected first even register of a "
+ "consecutive same-size even/odd register pair");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCRegisterInfo *RI = getContext().getRegisterInfo();
+ unsigned FirstEncoding = RI->getEncodingValue(FirstReg);
+
+ if (FirstEncoding & 0x1) {
+ Error(S, "expected first even register of a "
+ "consecutive same-size even/odd register pair");
+ return MatchOperand_ParseFail;
+ }
+
+ if (getParser().getTok().isNot(AsmToken::Comma)) {
+ Error(getLoc(), "expected comma");
+ return MatchOperand_ParseFail;
+ }
+ // Eat the comma
+ getParser().Lex();
+
+ SMLoc E = getLoc();
+ unsigned SecondReg;
+ Res = tryParseScalarRegister(SecondReg);
+ if (Res != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+
+ if (RI->getEncodingValue(SecondReg) != FirstEncoding + 1 ||
+ (isXReg && !XRegClass.contains(SecondReg)) ||
+ (isWReg && !WRegClass.contains(SecondReg))) {
+ Error(E,"expected second odd register of a "
+ "consecutive same-size even/odd register pair");
+ return MatchOperand_ParseFail;
+ }
+
+ unsigned Pair = 0;
+ if (isXReg) {
+ Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube64,
+ &AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID]);
+ } else {
+ Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube32,
+ &AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID]);
+ }
+
+ Operands.push_back(AArch64Operand::CreateReg(Pair, RegKind::Scalar, S,
+ getLoc(), getContext()));
+
+ return MatchOperand_Success;
+}
+
+template <bool ParseShiftExtend, bool ParseSuffix>
+OperandMatchResultTy
+AArch64AsmParser::tryParseSVEDataVector(OperandVector &Operands) {
+ const SMLoc S = getLoc();
+ // Check for a SVE vector register specifier first.
+ unsigned RegNum;
+ StringRef Kind;
+
+ OperandMatchResultTy Res =
+ tryParseVectorRegister(RegNum, Kind, RegKind::SVEDataVector);
+
+ if (Res != MatchOperand_Success)
+ return Res;
+
+ if (ParseSuffix && Kind.empty())
+ return MatchOperand_NoMatch;
+
+ const auto &KindRes = parseVectorKind(Kind, RegKind::SVEDataVector);
+ if (!KindRes)
+ return MatchOperand_NoMatch;
+
+ unsigned ElementWidth = KindRes->second;
+
+ // No shift/extend is the default.
+ if (!ParseShiftExtend || getParser().getTok().isNot(AsmToken::Comma)) {
+ Operands.push_back(AArch64Operand::CreateVectorReg(
+ RegNum, RegKind::SVEDataVector, ElementWidth, S, S, getContext()));
+
+ OperandMatchResultTy Res = tryParseVectorIndex(Operands);
+ if (Res == MatchOperand_ParseFail)
+ return MatchOperand_ParseFail;
+ return MatchOperand_Success;
+ }
+
+ // Eat the comma
+ getParser().Lex();
+
+ // Match the shift
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> ExtOpnd;
+ Res = tryParseOptionalShiftExtend(ExtOpnd);
+ if (Res != MatchOperand_Success)
+ return Res;
+
+ auto Ext = static_cast<AArch64Operand *>(ExtOpnd.back().get());
+ Operands.push_back(AArch64Operand::CreateVectorReg(
+ RegNum, RegKind::SVEDataVector, ElementWidth, S, Ext->getEndLoc(),
+ getContext(), Ext->getShiftExtendType(), Ext->getShiftExtendAmount(),
+ Ext->hasShiftExtendAmount()));
+
+ return MatchOperand_Success;
+}
+
+OperandMatchResultTy
+AArch64AsmParser::tryParseSVEPattern(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+
+ SMLoc SS = getLoc();
+ const AsmToken &TokE = Parser.getTok();
+ bool IsHash = TokE.is(AsmToken::Hash);
+
+ if (!IsHash && TokE.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ int64_t Pattern;
+ if (IsHash) {
+ Parser.Lex(); // Eat hash
+
+ // Parse the immediate operand.
+ const MCExpr *ImmVal;
+ SS = getLoc();
+ if (Parser.parseExpression(ImmVal))
+ return MatchOperand_ParseFail;
+
+ auto *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE)
+ return MatchOperand_ParseFail;
+
+ Pattern = MCE->getValue();
+ } else {
+ // Parse the pattern
+ auto Pat = AArch64SVEPredPattern::lookupSVEPREDPATByName(TokE.getString());
+ if (!Pat)
+ return MatchOperand_NoMatch;
+
+ Parser.Lex();
+ Pattern = Pat->Encoding;
+ assert(Pattern >= 0 && Pattern < 32);
+ }
+
+ Operands.push_back(
+ AArch64Operand::CreateImm(MCConstantExpr::create(Pattern, getContext()),
+ SS, getLoc(), getContext()));
+
+ return MatchOperand_Success;
+}