diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp | 582 | 
1 files changed, 582 insertions, 0 deletions
| diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp new file mode 100644 index 000000000000..8a92e7d923fb --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp @@ -0,0 +1,582 @@ +//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This pass optimizes atomic operations by using a single lane of a wavefront +/// to perform the atomic operation, thus reducing contention on that memory +/// location. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPU.h" +#include "AMDGPUSubtarget.h" +#include "llvm/Analysis/LegacyDivergenceAnalysis.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" + +#define DEBUG_TYPE "amdgpu-atomic-optimizer" + +using namespace llvm; + +namespace { + +enum DPP_CTRL { +  DPP_ROW_SR1 = 0x111, +  DPP_ROW_SR2 = 0x112, +  DPP_ROW_SR3 = 0x113, +  DPP_ROW_SR4 = 0x114, +  DPP_ROW_SR8 = 0x118, +  DPP_WF_SR1 = 0x138, +  DPP_ROW_BCAST15 = 0x142, +  DPP_ROW_BCAST31 = 0x143 +}; + +struct ReplacementInfo { +  Instruction *I; +  AtomicRMWInst::BinOp Op; +  unsigned ValIdx; +  bool ValDivergent; +}; + +class AMDGPUAtomicOptimizer : public FunctionPass, +                              public InstVisitor<AMDGPUAtomicOptimizer> { +private: +  SmallVector<ReplacementInfo, 8> ToReplace; +  const LegacyDivergenceAnalysis *DA; +  const DataLayout *DL; +  DominatorTree *DT; +  bool HasDPP; +  bool IsPixelShader; + +  void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx, +                      bool ValDivergent) const; + +public: +  static char ID; + +  AMDGPUAtomicOptimizer() : FunctionPass(ID) {} + +  bool runOnFunction(Function &F) override; + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addPreserved<DominatorTreeWrapperPass>(); +    AU.addRequired<LegacyDivergenceAnalysis>(); +    AU.addRequired<TargetPassConfig>(); +  } + +  void visitAtomicRMWInst(AtomicRMWInst &I); +  void visitIntrinsicInst(IntrinsicInst &I); +}; + +} // namespace + +char AMDGPUAtomicOptimizer::ID = 0; + +char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; + +bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { +  if (skipFunction(F)) { +    return false; +  } + +  DA = &getAnalysis<LegacyDivergenceAnalysis>(); +  DL = &F.getParent()->getDataLayout(); +  DominatorTreeWrapperPass *const DTW = +      getAnalysisIfAvailable<DominatorTreeWrapperPass>(); +  DT = DTW ? &DTW->getDomTree() : nullptr; +  const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); +  const TargetMachine &TM = TPC.getTM<TargetMachine>(); +  const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); +  HasDPP = ST.hasDPP(); +  IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; + +  visit(F); + +  const bool Changed = !ToReplace.empty(); + +  for (ReplacementInfo &Info : ToReplace) { +    optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); +  } + +  ToReplace.clear(); + +  return Changed; +} + +void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { +  // Early exit for unhandled address space atomic instructions. +  switch (I.getPointerAddressSpace()) { +  default: +    return; +  case AMDGPUAS::GLOBAL_ADDRESS: +  case AMDGPUAS::LOCAL_ADDRESS: +    break; +  } + +  AtomicRMWInst::BinOp Op = I.getOperation(); + +  switch (Op) { +  default: +    return; +  case AtomicRMWInst::Add: +  case AtomicRMWInst::Sub: +  case AtomicRMWInst::And: +  case AtomicRMWInst::Or: +  case AtomicRMWInst::Xor: +  case AtomicRMWInst::Max: +  case AtomicRMWInst::Min: +  case AtomicRMWInst::UMax: +  case AtomicRMWInst::UMin: +    break; +  } + +  const unsigned PtrIdx = 0; +  const unsigned ValIdx = 1; + +  // If the pointer operand is divergent, then each lane is doing an atomic +  // operation on a different address, and we cannot optimize that. +  if (DA->isDivergent(I.getOperand(PtrIdx))) { +    return; +  } + +  const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); + +  // If the value operand is divergent, each lane is contributing a different +  // value to the atomic calculation. We can only optimize divergent values if +  // we have DPP available on our subtarget, and the atomic operation is 32 +  // bits. +  if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { +    return; +  } + +  // If we get here, we can optimize the atomic using a single wavefront-wide +  // atomic operation to do the calculation for the entire wavefront, so +  // remember the instruction so we can come back to it. +  const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; + +  ToReplace.push_back(Info); +} + +void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { +  AtomicRMWInst::BinOp Op; + +  switch (I.getIntrinsicID()) { +  default: +    return; +  case Intrinsic::amdgcn_buffer_atomic_add: +  case Intrinsic::amdgcn_struct_buffer_atomic_add: +  case Intrinsic::amdgcn_raw_buffer_atomic_add: +    Op = AtomicRMWInst::Add; +    break; +  case Intrinsic::amdgcn_buffer_atomic_sub: +  case Intrinsic::amdgcn_struct_buffer_atomic_sub: +  case Intrinsic::amdgcn_raw_buffer_atomic_sub: +    Op = AtomicRMWInst::Sub; +    break; +  case Intrinsic::amdgcn_buffer_atomic_and: +  case Intrinsic::amdgcn_struct_buffer_atomic_and: +  case Intrinsic::amdgcn_raw_buffer_atomic_and: +    Op = AtomicRMWInst::And; +    break; +  case Intrinsic::amdgcn_buffer_atomic_or: +  case Intrinsic::amdgcn_struct_buffer_atomic_or: +  case Intrinsic::amdgcn_raw_buffer_atomic_or: +    Op = AtomicRMWInst::Or; +    break; +  case Intrinsic::amdgcn_buffer_atomic_xor: +  case Intrinsic::amdgcn_struct_buffer_atomic_xor: +  case Intrinsic::amdgcn_raw_buffer_atomic_xor: +    Op = AtomicRMWInst::Xor; +    break; +  case Intrinsic::amdgcn_buffer_atomic_smin: +  case Intrinsic::amdgcn_struct_buffer_atomic_smin: +  case Intrinsic::amdgcn_raw_buffer_atomic_smin: +    Op = AtomicRMWInst::Min; +    break; +  case Intrinsic::amdgcn_buffer_atomic_umin: +  case Intrinsic::amdgcn_struct_buffer_atomic_umin: +  case Intrinsic::amdgcn_raw_buffer_atomic_umin: +    Op = AtomicRMWInst::UMin; +    break; +  case Intrinsic::amdgcn_buffer_atomic_smax: +  case Intrinsic::amdgcn_struct_buffer_atomic_smax: +  case Intrinsic::amdgcn_raw_buffer_atomic_smax: +    Op = AtomicRMWInst::Max; +    break; +  case Intrinsic::amdgcn_buffer_atomic_umax: +  case Intrinsic::amdgcn_struct_buffer_atomic_umax: +  case Intrinsic::amdgcn_raw_buffer_atomic_umax: +    Op = AtomicRMWInst::UMax; +    break; +  } + +  const unsigned ValIdx = 0; + +  const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); + +  // If the value operand is divergent, each lane is contributing a different +  // value to the atomic calculation. We can only optimize divergent values if +  // we have DPP available on our subtarget, and the atomic operation is 32 +  // bits. +  if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { +    return; +  } + +  // If any of the other arguments to the intrinsic are divergent, we can't +  // optimize the operation. +  for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { +    if (DA->isDivergent(I.getOperand(Idx))) { +      return; +    } +  } + +  // If we get here, we can optimize the atomic using a single wavefront-wide +  // atomic operation to do the calculation for the entire wavefront, so +  // remember the instruction so we can come back to it. +  const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; + +  ToReplace.push_back(Info); +} + +// Use the builder to create the non-atomic counterpart of the specified +// atomicrmw binary op. +static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op, +                                  Value *LHS, Value *RHS) { +  CmpInst::Predicate Pred; + +  switch (Op) { +  default: +    llvm_unreachable("Unhandled atomic op"); +  case AtomicRMWInst::Add: +    return B.CreateBinOp(Instruction::Add, LHS, RHS); +  case AtomicRMWInst::Sub: +    return B.CreateBinOp(Instruction::Sub, LHS, RHS); +  case AtomicRMWInst::And: +    return B.CreateBinOp(Instruction::And, LHS, RHS); +  case AtomicRMWInst::Or: +    return B.CreateBinOp(Instruction::Or, LHS, RHS); +  case AtomicRMWInst::Xor: +    return B.CreateBinOp(Instruction::Xor, LHS, RHS); + +  case AtomicRMWInst::Max: +    Pred = CmpInst::ICMP_SGT; +    break; +  case AtomicRMWInst::Min: +    Pred = CmpInst::ICMP_SLT; +    break; +  case AtomicRMWInst::UMax: +    Pred = CmpInst::ICMP_UGT; +    break; +  case AtomicRMWInst::UMin: +    Pred = CmpInst::ICMP_ULT; +    break; +  } +  Value *Cond = B.CreateICmp(Pred, LHS, RHS); +  return B.CreateSelect(Cond, LHS, RHS); +} + +static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op, +                                         unsigned BitWidth) { +  switch (Op) { +  default: +    llvm_unreachable("Unhandled atomic op"); +  case AtomicRMWInst::Add: +  case AtomicRMWInst::Sub: +  case AtomicRMWInst::Or: +  case AtomicRMWInst::Xor: +  case AtomicRMWInst::UMax: +    return APInt::getMinValue(BitWidth); +  case AtomicRMWInst::And: +  case AtomicRMWInst::UMin: +    return APInt::getMaxValue(BitWidth); +  case AtomicRMWInst::Max: +    return APInt::getSignedMinValue(BitWidth); +  case AtomicRMWInst::Min: +    return APInt::getSignedMaxValue(BitWidth); +  } +} + +void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, +                                           AtomicRMWInst::BinOp Op, +                                           unsigned ValIdx, +                                           bool ValDivergent) const { +  // Start building just before the instruction. +  IRBuilder<> B(&I); + +  // If we are in a pixel shader, because of how we have to mask out helper +  // lane invocations, we need to record the entry and exit BB's. +  BasicBlock *PixelEntryBB = nullptr; +  BasicBlock *PixelExitBB = nullptr; + +  // If we're optimizing an atomic within a pixel shader, we need to wrap the +  // entire atomic operation in a helper-lane check. We do not want any helper +  // lanes that are around only for the purposes of derivatives to take part +  // in any cross-lane communication, and we use a branch on whether the lane is +  // live to do this. +  if (IsPixelShader) { +    // Record I's original position as the entry block. +    PixelEntryBB = I.getParent(); + +    Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); +    Instruction *const NonHelperTerminator = +        SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); + +    // Record I's new position as the exit block. +    PixelExitBB = I.getParent(); + +    I.moveBefore(NonHelperTerminator); +    B.SetInsertPoint(&I); +  } + +  Type *const Ty = I.getType(); +  const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); +  Type *const VecTy = VectorType::get(B.getInt32Ty(), 2); + +  // This is the value in the atomic operation we need to combine in order to +  // reduce the number of atomic operations. +  Value *const V = I.getOperand(ValIdx); + +  // We need to know how many lanes are active within the wavefront, and we do +  // this by doing a ballot of active lanes. +  CallInst *const Ballot = B.CreateIntrinsic( +      Intrinsic::amdgcn_icmp, {B.getInt64Ty(), B.getInt32Ty()}, +      {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)}); + +  // We need to know how many lanes are active within the wavefront that are +  // below us. If we counted each lane linearly starting from 0, a lane is +  // below us only if its associated index was less than ours. We do this by +  // using the mbcnt intrinsic. +  Value *const BitCast = B.CreateBitCast(Ballot, VecTy); +  Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); +  Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); +  CallInst *const PartialMbcnt = B.CreateIntrinsic( +      Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)}); +  Value *const Mbcnt = +      B.CreateIntCast(B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, +                                        {ExtractHi, PartialMbcnt}), +                      Ty, false); + +  Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth)); + +  Value *ExclScan = nullptr; +  Value *NewV = nullptr; + +  // If we have a divergent value in each lane, we need to combine the value +  // using DPP. +  if (ValDivergent) { +    // First we need to set all inactive invocations to the identity value, so +    // that they can correctly contribute to the final result. +    CallInst *const SetInactive = +        B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); + +    CallInst *const FirstDPP = +        B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty, +                          {Identity, SetInactive, B.getInt32(DPP_WF_SR1), +                           B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); +    ExclScan = FirstDPP; + +    const unsigned Iters = 7; +    const unsigned DPPCtrl[Iters] = { +        DPP_ROW_SR1, DPP_ROW_SR2,     DPP_ROW_SR3,    DPP_ROW_SR4, +        DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31}; +    const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc}; +    const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf}; + +    // This loop performs an exclusive scan across the wavefront, with all lanes +    // active (by using the WWM intrinsic). +    for (unsigned Idx = 0; Idx < Iters; Idx++) { +      Value *const UpdateValue = Idx < 3 ? FirstDPP : ExclScan; +      CallInst *const DPP = B.CreateIntrinsic( +          Intrinsic::amdgcn_update_dpp, Ty, +          {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]), +           B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()}); + +      ExclScan = buildNonAtomicBinOp(B, Op, ExclScan, DPP); +    } + +    NewV = buildNonAtomicBinOp(B, Op, SetInactive, ExclScan); + +    // Read the value from the last lane, which has accumlated the values of +    // each active lane in the wavefront. This will be our new value which we +    // will provide to the atomic operation. +    if (TyBitWidth == 64) { +      Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); +      Value *const ExtractHi = +          B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty()); +      CallInst *const ReadLaneLo = B.CreateIntrinsic( +          Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)}); +      CallInst *const ReadLaneHi = B.CreateIntrinsic( +          Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)}); +      Value *const PartialInsert = B.CreateInsertElement( +          UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); +      Value *const Insert = +          B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); +      NewV = B.CreateBitCast(Insert, Ty); +    } else if (TyBitWidth == 32) { +      NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, +                               {NewV, B.getInt32(63)}); +    } else { +      llvm_unreachable("Unhandled atomic bit width"); +    } + +    // Finally mark the readlanes in the WWM section. +    NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); +  } else { +    switch (Op) { +    default: +      llvm_unreachable("Unhandled atomic op"); + +    case AtomicRMWInst::Add: +    case AtomicRMWInst::Sub: { +      // The new value we will be contributing to the atomic operation is the +      // old value times the number of active lanes. +      Value *const Ctpop = B.CreateIntCast( +          B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); +      NewV = B.CreateMul(V, Ctpop); +      break; +    } + +    case AtomicRMWInst::And: +    case AtomicRMWInst::Or: +    case AtomicRMWInst::Max: +    case AtomicRMWInst::Min: +    case AtomicRMWInst::UMax: +    case AtomicRMWInst::UMin: +      // These operations with a uniform value are idempotent: doing the atomic +      // operation multiple times has the same effect as doing it once. +      NewV = V; +      break; + +    case AtomicRMWInst::Xor: +      // The new value we will be contributing to the atomic operation is the +      // old value times the parity of the number of active lanes. +      Value *const Ctpop = B.CreateIntCast( +          B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); +      NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1)); +      break; +    } +  } + +  // We only want a single lane to enter our new control flow, and we do this +  // by checking if there are any active lanes below us. Only one lane will +  // have 0 active lanes below us, so that will be the only one to progress. +  Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0)); + +  // Store I's original basic block before we split the block. +  BasicBlock *const EntryBB = I.getParent(); + +  // We need to introduce some new control flow to force a single lane to be +  // active. We do this by splitting I's basic block at I, and introducing the +  // new block such that: +  // entry --> single_lane -\ +  //       \------------------> exit +  Instruction *const SingleLaneTerminator = +      SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); + +  // Move the IR builder into single_lane next. +  B.SetInsertPoint(SingleLaneTerminator); + +  // Clone the original atomic operation into single lane, replacing the +  // original value with our newly created one. +  Instruction *const NewI = I.clone(); +  B.Insert(NewI); +  NewI->setOperand(ValIdx, NewV); + +  // Move the IR builder into exit next, and start inserting just before the +  // original instruction. +  B.SetInsertPoint(&I); + +  // Create a PHI node to get our new atomic result into the exit block. +  PHINode *const PHI = B.CreatePHI(Ty, 2); +  PHI->addIncoming(UndefValue::get(Ty), EntryBB); +  PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); + +  // We need to broadcast the value who was the lowest active lane (the first +  // lane) to all other lanes in the wavefront. We use an intrinsic for this, +  // but have to handle 64-bit broadcasts with two calls to this intrinsic. +  Value *BroadcastI = nullptr; + +  if (TyBitWidth == 64) { +    Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); +    Value *const ExtractHi = +        B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty()); +    CallInst *const ReadFirstLaneLo = +        B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); +    CallInst *const ReadFirstLaneHi = +        B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); +    Value *const PartialInsert = B.CreateInsertElement( +        UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); +    Value *const Insert = +        B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); +    BroadcastI = B.CreateBitCast(Insert, Ty); +  } else if (TyBitWidth == 32) { + +    BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); +  } else { +    llvm_unreachable("Unhandled atomic bit width"); +  } + +  // Now that we have the result of our single atomic operation, we need to +  // get our individual lane's slice into the result. We use the lane offset we +  // previously calculated combined with the atomic result value we got from the +  // first lane, to get our lane's index into the atomic result. +  Value *LaneOffset = nullptr; +  if (ValDivergent) { +    LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan); +  } else { +    switch (Op) { +    default: +      llvm_unreachable("Unhandled atomic op"); +    case AtomicRMWInst::Add: +    case AtomicRMWInst::Sub: +      LaneOffset = B.CreateMul(V, Mbcnt); +      break; +    case AtomicRMWInst::And: +    case AtomicRMWInst::Or: +    case AtomicRMWInst::Max: +    case AtomicRMWInst::Min: +    case AtomicRMWInst::UMax: +    case AtomicRMWInst::UMin: +      LaneOffset = B.CreateSelect(Cond, Identity, V); +      break; +    case AtomicRMWInst::Xor: +      LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1)); +      break; +    } +  } +  Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset); + +  if (IsPixelShader) { +    // Need a final PHI to reconverge to above the helper lane branch mask. +    B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); + +    PHINode *const PHI = B.CreatePHI(Ty, 2); +    PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); +    PHI->addIncoming(Result, I.getParent()); +    I.replaceAllUsesWith(PHI); +  } else { +    // Replace the original atomic instruction with the new one. +    I.replaceAllUsesWith(Result); +  } + +  // And delete the original. +  I.eraseFromParent(); +} + +INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, +                      "AMDGPU atomic optimizations", false, false) +INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) +INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) +INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, +                    "AMDGPU atomic optimizations", false, false) + +FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { +  return new AMDGPUAtomicOptimizer(); +} | 
