diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp | 742 |
1 files changed, 742 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp new file mode 100644 index 000000000000..aaed280a1270 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp @@ -0,0 +1,742 @@ +//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// \file +// This file implements a TargetTransformInfo analysis pass specific to the +// AMDGPU target machine. It uses the target's detailed information to provide +// more precise answers to certain TTI queries, while letting the target +// independent and default TTI implementations handle the rest. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPUTargetTransformInfo.h" +#include "AMDGPUSubtarget.h" +#include "Utils/AMDGPUBaseInfo.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/SubtargetFeature.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <limits> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "AMDGPUtti" + +static cl::opt<unsigned> UnrollThresholdPrivate( + "amdgpu-unroll-threshold-private", + cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), + cl::init(2500), cl::Hidden); + +static cl::opt<unsigned> UnrollThresholdLocal( + "amdgpu-unroll-threshold-local", + cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), + cl::init(1000), cl::Hidden); + +static cl::opt<unsigned> UnrollThresholdIf( + "amdgpu-unroll-threshold-if", + cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), + cl::init(150), cl::Hidden); + +static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, + unsigned Depth = 0) { + const Instruction *I = dyn_cast<Instruction>(Cond); + if (!I) + return false; + + for (const Value *V : I->operand_values()) { + if (!L->contains(I)) + continue; + if (const PHINode *PHI = dyn_cast<PHINode>(V)) { + if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { + return SubLoop->contains(PHI); })) + return true; + } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) + return true; + } + return false; +} + +void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, + TTI::UnrollingPreferences &UP) { + UP.Threshold = 300; // Twice the default. + UP.MaxCount = std::numeric_limits<unsigned>::max(); + UP.Partial = true; + + // TODO: Do we want runtime unrolling? + + // Maximum alloca size than can fit registers. Reserve 16 registers. + const unsigned MaxAlloca = (256 - 16) * 4; + unsigned ThresholdPrivate = UnrollThresholdPrivate; + unsigned ThresholdLocal = UnrollThresholdLocal; + unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); + for (const BasicBlock *BB : L->getBlocks()) { + const DataLayout &DL = BB->getModule()->getDataLayout(); + unsigned LocalGEPsSeen = 0; + + if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { + return SubLoop->contains(BB); })) + continue; // Block belongs to an inner loop. + + for (const Instruction &I : *BB) { + // Unroll a loop which contains an "if" statement whose condition + // defined by a PHI belonging to the loop. This may help to eliminate + // if region and potentially even PHI itself, saving on both divergence + // and registers used for the PHI. + // Add a small bonus for each of such "if" statements. + if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { + if (UP.Threshold < MaxBoost && Br->isConditional()) { + BasicBlock *Succ0 = Br->getSuccessor(0); + BasicBlock *Succ1 = Br->getSuccessor(1); + if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || + (L->contains(Succ1) && L->isLoopExiting(Succ1))) + continue; + if (dependsOnLocalPhi(L, Br->getCondition())) { + UP.Threshold += UnrollThresholdIf; + LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold + << " for loop:\n" + << *L << " due to " << *Br << '\n'); + if (UP.Threshold >= MaxBoost) + return; + } + } + continue; + } + + const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); + if (!GEP) + continue; + + unsigned AS = GEP->getAddressSpace(); + unsigned Threshold = 0; + if (AS == AMDGPUAS::PRIVATE_ADDRESS) + Threshold = ThresholdPrivate; + else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) + Threshold = ThresholdLocal; + else + continue; + + if (UP.Threshold >= Threshold) + continue; + + if (AS == AMDGPUAS::PRIVATE_ADDRESS) { + const Value *Ptr = GEP->getPointerOperand(); + const AllocaInst *Alloca = + dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); + if (!Alloca || !Alloca->isStaticAlloca()) + continue; + Type *Ty = Alloca->getAllocatedType(); + unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; + if (AllocaSize > MaxAlloca) + continue; + } else if (AS == AMDGPUAS::LOCAL_ADDRESS || + AS == AMDGPUAS::REGION_ADDRESS) { + LocalGEPsSeen++; + // Inhibit unroll for local memory if we have seen addressing not to + // a variable, most likely we will be unable to combine it. + // Do not unroll too deep inner loops for local memory to give a chance + // to unroll an outer loop for a more important reason. + if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || + (!isa<GlobalVariable>(GEP->getPointerOperand()) && + !isa<Argument>(GEP->getPointerOperand()))) + continue; + } + + // Check if GEP depends on a value defined by this loop itself. + bool HasLoopDef = false; + for (const Value *Op : GEP->operands()) { + const Instruction *Inst = dyn_cast<Instruction>(Op); + if (!Inst || L->isLoopInvariant(Op)) + continue; + + if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { + return SubLoop->contains(Inst); })) + continue; + HasLoopDef = true; + break; + } + if (!HasLoopDef) + continue; + + // We want to do whatever we can to limit the number of alloca + // instructions that make it through to the code generator. allocas + // require us to use indirect addressing, which is slow and prone to + // compiler bugs. If this loop does an address calculation on an + // alloca ptr, then we want to use a higher than normal loop unroll + // threshold. This will give SROA a better chance to eliminate these + // allocas. + // + // We also want to have more unrolling for local memory to let ds + // instructions with different offsets combine. + // + // Don't use the maximum allowed value here as it will make some + // programs way too big. + UP.Threshold = Threshold; + LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold + << " for loop:\n" + << *L << " due to " << *GEP << '\n'); + if (UP.Threshold >= MaxBoost) + return; + } + } +} + +unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { + // The concept of vector registers doesn't really exist. Some packed vector + // operations operate on the normal 32-bit registers. + return 256; +} + +unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { + // This is really the number of registers to fill when vectorizing / + // interleaving loops, so we lie to avoid trying to use all registers. + return getHardwareNumberOfRegisters(Vec) >> 3; +} + +unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { + return 32; +} + +unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { + return 32; +} + +unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, + unsigned ChainSizeInBytes, + VectorType *VecTy) const { + unsigned VecRegBitWidth = VF * LoadSize; + if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) + // TODO: Support element-size less than 32bit? + return 128 / LoadSize; + + return VF; +} + +unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, + unsigned ChainSizeInBytes, + VectorType *VecTy) const { + unsigned VecRegBitWidth = VF * StoreSize; + if (VecRegBitWidth > 128) + return 128 / StoreSize; + + return VF; +} + +unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { + if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || + AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || + AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || + AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { + return 512; + } + + if (AddrSpace == AMDGPUAS::FLAT_ADDRESS || + AddrSpace == AMDGPUAS::LOCAL_ADDRESS || + AddrSpace == AMDGPUAS::REGION_ADDRESS) + return 128; + + if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) + return 8 * ST->getMaxPrivateElementSize(); + + llvm_unreachable("unhandled address space"); +} + +bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, + unsigned Alignment, + unsigned AddrSpace) const { + // We allow vectorization of flat stores, even though we may need to decompose + // them later if they may access private memory. We don't have enough context + // here, and legalization can handle it. + if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { + return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && + ChainSizeInBytes <= ST->getMaxPrivateElementSize(); + } + return true; +} + +bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, + unsigned Alignment, + unsigned AddrSpace) const { + return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); +} + +bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, + unsigned Alignment, + unsigned AddrSpace) const { + return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); +} + +unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { + // Disable unrolling if the loop is not vectorized. + // TODO: Enable this again. + if (VF == 1) + return 1; + + return 8; +} + +bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, + MemIntrinsicInfo &Info) const { + switch (Inst->getIntrinsicID()) { + case Intrinsic::amdgcn_atomic_inc: + case Intrinsic::amdgcn_atomic_dec: + case Intrinsic::amdgcn_ds_ordered_add: + case Intrinsic::amdgcn_ds_ordered_swap: + case Intrinsic::amdgcn_ds_fadd: + case Intrinsic::amdgcn_ds_fmin: + case Intrinsic::amdgcn_ds_fmax: { + auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); + auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); + if (!Ordering || !Volatile) + return false; // Invalid. + + unsigned OrderingVal = Ordering->getZExtValue(); + if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) + return false; + + Info.PtrVal = Inst->getArgOperand(0); + Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); + Info.ReadMem = true; + Info.WriteMem = true; + Info.IsVolatile = !Volatile->isNullValue(); + return true; + } + default: + return false; + } +} + +int GCNTTIImpl::getArithmeticInstrCost( + unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, + TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, + TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { + EVT OrigTy = TLI->getValueType(DL, Ty); + if (!OrigTy.isSimple()) { + return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, + Opd1PropInfo, Opd2PropInfo); + } + + // Legalize the type. + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); + int ISD = TLI->InstructionOpcodeToISD(Opcode); + + // Because we don't have any legal vector operations, but the legal types, we + // need to account for split vectors. + unsigned NElts = LT.second.isVector() ? + LT.second.getVectorNumElements() : 1; + + MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; + + switch (ISD) { + case ISD::SHL: + case ISD::SRL: + case ISD::SRA: + if (SLT == MVT::i64) + return get64BitInstrCost() * LT.first * NElts; + + // i32 + return getFullRateInstrCost() * LT.first * NElts; + case ISD::ADD: + case ISD::SUB: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + if (SLT == MVT::i64){ + // and, or and xor are typically split into 2 VALU instructions. + return 2 * getFullRateInstrCost() * LT.first * NElts; + } + + return LT.first * NElts * getFullRateInstrCost(); + case ISD::MUL: { + const int QuarterRateCost = getQuarterRateInstrCost(); + if (SLT == MVT::i64) { + const int FullRateCost = getFullRateInstrCost(); + return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; + } + + // i32 + return QuarterRateCost * NElts * LT.first; + } + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + if (SLT == MVT::f64) + return LT.first * NElts * get64BitInstrCost(); + + if (SLT == MVT::f32 || SLT == MVT::f16) + return LT.first * NElts * getFullRateInstrCost(); + break; + case ISD::FDIV: + case ISD::FREM: + // FIXME: frem should be handled separately. The fdiv in it is most of it, + // but the current lowering is also not entirely correct. + if (SLT == MVT::f64) { + int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); + // Add cost of workaround. + if (!ST->hasUsableDivScaleConditionOutput()) + Cost += 3 * getFullRateInstrCost(); + + return LT.first * Cost * NElts; + } + + if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { + // TODO: This is more complicated, unsafe flags etc. + if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || + (SLT == MVT::f16 && ST->has16BitInsts())) { + return LT.first * getQuarterRateInstrCost() * NElts; + } + } + + if (SLT == MVT::f16 && ST->has16BitInsts()) { + // 2 x v_cvt_f32_f16 + // f32 rcp + // f32 fmul + // v_cvt_f16_f32 + // f16 div_fixup + int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); + return LT.first * Cost * NElts; + } + + if (SLT == MVT::f32 || SLT == MVT::f16) { + int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); + + if (!ST->hasFP32Denormals()) { + // FP mode switches. + Cost += 2 * getFullRateInstrCost(); + } + + return LT.first * NElts * Cost; + } + break; + default: + break; + } + + return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, + Opd1PropInfo, Opd2PropInfo); +} + +unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) { + // XXX - For some reason this isn't called for switch. + switch (Opcode) { + case Instruction::Br: + case Instruction::Ret: + return 10; + default: + return BaseT::getCFInstrCost(Opcode); + } +} + +int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, + bool IsPairwise) { + EVT OrigTy = TLI->getValueType(DL, Ty); + + // Computes cost on targets that have packed math instructions(which support + // 16-bit types only). + if (IsPairwise || + !ST->hasVOP3PInsts() || + OrigTy.getScalarSizeInBits() != 16) + return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); + return LT.first * getFullRateInstrCost(); +} + +int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, + bool IsPairwise, + bool IsUnsigned) { + EVT OrigTy = TLI->getValueType(DL, Ty); + + // Computes cost on targets that have packed math instructions(which support + // 16-bit types only). + if (IsPairwise || + !ST->hasVOP3PInsts() || + OrigTy.getScalarSizeInBits() != 16) + return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); + return LT.first * getHalfRateInstrCost(); +} + +int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, + unsigned Index) { + switch (Opcode) { + case Instruction::ExtractElement: + case Instruction::InsertElement: { + unsigned EltSize + = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); + if (EltSize < 32) { + if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) + return 0; + return BaseT::getVectorInstrCost(Opcode, ValTy, Index); + } + + // Extracts are just reads of a subregister, so are free. Inserts are + // considered free because we don't want to have any cost for scalarizing + // operations, and we don't have to copy into a different register class. + + // Dynamic indexing isn't free and is best avoided. + return Index == ~0u ? 2 : 0; + } + default: + return BaseT::getVectorInstrCost(Opcode, ValTy, Index); + } +} + + + +static bool isArgPassedInSGPR(const Argument *A) { + const Function *F = A->getParent(); + + // Arguments to compute shaders are never a source of divergence. + CallingConv::ID CC = F->getCallingConv(); + switch (CC) { + case CallingConv::AMDGPU_KERNEL: + case CallingConv::SPIR_KERNEL: + return true; + case CallingConv::AMDGPU_VS: + case CallingConv::AMDGPU_LS: + case CallingConv::AMDGPU_HS: + case CallingConv::AMDGPU_ES: + case CallingConv::AMDGPU_GS: + case CallingConv::AMDGPU_PS: + case CallingConv::AMDGPU_CS: + // For non-compute shaders, SGPR inputs are marked with either inreg or byval. + // Everything else is in VGPRs. + return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || + F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); + default: + // TODO: Should calls support inreg for SGPR inputs? + return false; + } +} + +/// \returns true if the result of the value could potentially be +/// different across workitems in a wavefront. +bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { + if (const Argument *A = dyn_cast<Argument>(V)) + return !isArgPassedInSGPR(A); + + // Loads from the private and flat address spaces are divergent, because + // threads can execute the load instruction with the same inputs and get + // different results. + // + // All other loads are not divergent, because if threads issue loads with the + // same arguments, they will always get the same result. + if (const LoadInst *Load = dyn_cast<LoadInst>(V)) + return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || + Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; + + // Atomics are divergent because they are executed sequentially: when an + // atomic operation refers to the same address in each thread, then each + // thread after the first sees the value written by the previous thread as + // original value. + if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) + return true; + + if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) + return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); + + // Assume all function calls are a source of divergence. + if (isa<CallInst>(V) || isa<InvokeInst>(V)) + return true; + + return false; +} + +bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { + if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { + switch (Intrinsic->getIntrinsicID()) { + default: + return false; + case Intrinsic::amdgcn_readfirstlane: + case Intrinsic::amdgcn_readlane: + case Intrinsic::amdgcn_icmp: + case Intrinsic::amdgcn_fcmp: + return true; + } + } + return false; +} + +unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, + Type *SubTp) { + if (ST->hasVOP3PInsts()) { + VectorType *VT = cast<VectorType>(Tp); + if (VT->getNumElements() == 2 && + DL.getTypeSizeInBits(VT->getElementType()) == 16) { + // With op_sel VOP3P instructions freely can access the low half or high + // half of a register, so any swizzle is free. + + switch (Kind) { + case TTI::SK_Broadcast: + case TTI::SK_Reverse: + case TTI::SK_PermuteSingleSrc: + return 0; + default: + break; + } + } + } + + return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); +} + +bool GCNTTIImpl::areInlineCompatible(const Function *Caller, + const Function *Callee) const { + const TargetMachine &TM = getTLI()->getTargetMachine(); + const FeatureBitset &CallerBits = + TM.getSubtargetImpl(*Caller)->getFeatureBits(); + const FeatureBitset &CalleeBits = + TM.getSubtargetImpl(*Callee)->getFeatureBits(); + + FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; + FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; + if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) + return false; + + // FIXME: dx10_clamp can just take the caller setting, but there seems to be + // no way to support merge for backend defined attributes. + AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); + AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); + return CallerMode.isInlineCompatible(CalleeMode); +} + +void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, + TTI::UnrollingPreferences &UP) { + CommonTTI.getUnrollingPreferences(L, SE, UP); +} + +unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { + return 4 * 128; // XXX - 4 channels. Should these count as vector instead? +} + +unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { + return getHardwareNumberOfRegisters(Vec); +} + +unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { + return 32; +} + +unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { + return 32; +} + +unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { + if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || + AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) + return 128; + if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || + AddrSpace == AMDGPUAS::REGION_ADDRESS) + return 64; + if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) + return 32; + + if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || + AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || + (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && + AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) + return 128; + llvm_unreachable("unhandled address space"); +} + +bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, + unsigned Alignment, + unsigned AddrSpace) const { + // We allow vectorization of flat stores, even though we may need to decompose + // them later if they may access private memory. We don't have enough context + // here, and legalization can handle it. + return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); +} + +bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, + unsigned Alignment, + unsigned AddrSpace) const { + return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); +} + +bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, + unsigned Alignment, + unsigned AddrSpace) const { + return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); +} + +unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { + // Disable unrolling if the loop is not vectorized. + // TODO: Enable this again. + if (VF == 1) + return 1; + + return 8; +} + +unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) { + // XXX - For some reason this isn't called for switch. + switch (Opcode) { + case Instruction::Br: + case Instruction::Ret: + return 10; + default: + return BaseT::getCFInstrCost(Opcode); + } +} + +int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, + unsigned Index) { + switch (Opcode) { + case Instruction::ExtractElement: + case Instruction::InsertElement: { + unsigned EltSize + = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); + if (EltSize < 32) { + return BaseT::getVectorInstrCost(Opcode, ValTy, Index); + } + + // Extracts are just reads of a subregister, so are free. Inserts are + // considered free because we don't want to have any cost for scalarizing + // operations, and we don't have to copy into a different register class. + + // Dynamic indexing isn't free and is best avoided. + return Index == ~0u ? 2 : 0; + } + default: + return BaseT::getVectorInstrCost(Opcode, ValTy, Index); + } +} + +void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, + TTI::UnrollingPreferences &UP) { + CommonTTI.getUnrollingPreferences(L, SE, UP); +} |
