summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp742
1 files changed, 742 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp
new file mode 100644
index 000000000000..aaed280a1270
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp
@@ -0,0 +1,742 @@
+//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// \file
+// This file implements a TargetTransformInfo analysis pass specific to the
+// AMDGPU target machine. It uses the target's detailed information to provide
+// more precise answers to certain TTI queries, while letting the target
+// independent and default TTI implementations handle the rest.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUTargetTransformInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "Utils/AMDGPUBaseInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/SubtargetFeature.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <limits>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "AMDGPUtti"
+
+static cl::opt<unsigned> UnrollThresholdPrivate(
+ "amdgpu-unroll-threshold-private",
+ cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
+ cl::init(2500), cl::Hidden);
+
+static cl::opt<unsigned> UnrollThresholdLocal(
+ "amdgpu-unroll-threshold-local",
+ cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
+ cl::init(1000), cl::Hidden);
+
+static cl::opt<unsigned> UnrollThresholdIf(
+ "amdgpu-unroll-threshold-if",
+ cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
+ cl::init(150), cl::Hidden);
+
+static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
+ unsigned Depth = 0) {
+ const Instruction *I = dyn_cast<Instruction>(Cond);
+ if (!I)
+ return false;
+
+ for (const Value *V : I->operand_values()) {
+ if (!L->contains(I))
+ continue;
+ if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
+ if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
+ return SubLoop->contains(PHI); }))
+ return true;
+ } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
+ return true;
+ }
+ return false;
+}
+
+void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+ TTI::UnrollingPreferences &UP) {
+ UP.Threshold = 300; // Twice the default.
+ UP.MaxCount = std::numeric_limits<unsigned>::max();
+ UP.Partial = true;
+
+ // TODO: Do we want runtime unrolling?
+
+ // Maximum alloca size than can fit registers. Reserve 16 registers.
+ const unsigned MaxAlloca = (256 - 16) * 4;
+ unsigned ThresholdPrivate = UnrollThresholdPrivate;
+ unsigned ThresholdLocal = UnrollThresholdLocal;
+ unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
+ for (const BasicBlock *BB : L->getBlocks()) {
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ unsigned LocalGEPsSeen = 0;
+
+ if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
+ return SubLoop->contains(BB); }))
+ continue; // Block belongs to an inner loop.
+
+ for (const Instruction &I : *BB) {
+ // Unroll a loop which contains an "if" statement whose condition
+ // defined by a PHI belonging to the loop. This may help to eliminate
+ // if region and potentially even PHI itself, saving on both divergence
+ // and registers used for the PHI.
+ // Add a small bonus for each of such "if" statements.
+ if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
+ if (UP.Threshold < MaxBoost && Br->isConditional()) {
+ BasicBlock *Succ0 = Br->getSuccessor(0);
+ BasicBlock *Succ1 = Br->getSuccessor(1);
+ if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
+ (L->contains(Succ1) && L->isLoopExiting(Succ1)))
+ continue;
+ if (dependsOnLocalPhi(L, Br->getCondition())) {
+ UP.Threshold += UnrollThresholdIf;
+ LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
+ << " for loop:\n"
+ << *L << " due to " << *Br << '\n');
+ if (UP.Threshold >= MaxBoost)
+ return;
+ }
+ }
+ continue;
+ }
+
+ const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
+ if (!GEP)
+ continue;
+
+ unsigned AS = GEP->getAddressSpace();
+ unsigned Threshold = 0;
+ if (AS == AMDGPUAS::PRIVATE_ADDRESS)
+ Threshold = ThresholdPrivate;
+ else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
+ Threshold = ThresholdLocal;
+ else
+ continue;
+
+ if (UP.Threshold >= Threshold)
+ continue;
+
+ if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
+ const Value *Ptr = GEP->getPointerOperand();
+ const AllocaInst *Alloca =
+ dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
+ if (!Alloca || !Alloca->isStaticAlloca())
+ continue;
+ Type *Ty = Alloca->getAllocatedType();
+ unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
+ if (AllocaSize > MaxAlloca)
+ continue;
+ } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
+ AS == AMDGPUAS::REGION_ADDRESS) {
+ LocalGEPsSeen++;
+ // Inhibit unroll for local memory if we have seen addressing not to
+ // a variable, most likely we will be unable to combine it.
+ // Do not unroll too deep inner loops for local memory to give a chance
+ // to unroll an outer loop for a more important reason.
+ if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
+ (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
+ !isa<Argument>(GEP->getPointerOperand())))
+ continue;
+ }
+
+ // Check if GEP depends on a value defined by this loop itself.
+ bool HasLoopDef = false;
+ for (const Value *Op : GEP->operands()) {
+ const Instruction *Inst = dyn_cast<Instruction>(Op);
+ if (!Inst || L->isLoopInvariant(Op))
+ continue;
+
+ if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
+ return SubLoop->contains(Inst); }))
+ continue;
+ HasLoopDef = true;
+ break;
+ }
+ if (!HasLoopDef)
+ continue;
+
+ // We want to do whatever we can to limit the number of alloca
+ // instructions that make it through to the code generator. allocas
+ // require us to use indirect addressing, which is slow and prone to
+ // compiler bugs. If this loop does an address calculation on an
+ // alloca ptr, then we want to use a higher than normal loop unroll
+ // threshold. This will give SROA a better chance to eliminate these
+ // allocas.
+ //
+ // We also want to have more unrolling for local memory to let ds
+ // instructions with different offsets combine.
+ //
+ // Don't use the maximum allowed value here as it will make some
+ // programs way too big.
+ UP.Threshold = Threshold;
+ LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
+ << " for loop:\n"
+ << *L << " due to " << *GEP << '\n');
+ if (UP.Threshold >= MaxBoost)
+ return;
+ }
+ }
+}
+
+unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
+ // The concept of vector registers doesn't really exist. Some packed vector
+ // operations operate on the normal 32-bit registers.
+ return 256;
+}
+
+unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
+ // This is really the number of registers to fill when vectorizing /
+ // interleaving loops, so we lie to avoid trying to use all registers.
+ return getHardwareNumberOfRegisters(Vec) >> 3;
+}
+
+unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
+ return 32;
+}
+
+unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
+ return 32;
+}
+
+unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
+ unsigned ChainSizeInBytes,
+ VectorType *VecTy) const {
+ unsigned VecRegBitWidth = VF * LoadSize;
+ if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
+ // TODO: Support element-size less than 32bit?
+ return 128 / LoadSize;
+
+ return VF;
+}
+
+unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
+ unsigned ChainSizeInBytes,
+ VectorType *VecTy) const {
+ unsigned VecRegBitWidth = VF * StoreSize;
+ if (VecRegBitWidth > 128)
+ return 128 / StoreSize;
+
+ return VF;
+}
+
+unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
+ if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
+ AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
+ AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
+ AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
+ return 512;
+ }
+
+ if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
+ AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
+ AddrSpace == AMDGPUAS::REGION_ADDRESS)
+ return 128;
+
+ if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
+ return 8 * ST->getMaxPrivateElementSize();
+
+ llvm_unreachable("unhandled address space");
+}
+
+bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
+ unsigned Alignment,
+ unsigned AddrSpace) const {
+ // We allow vectorization of flat stores, even though we may need to decompose
+ // them later if they may access private memory. We don't have enough context
+ // here, and legalization can handle it.
+ if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
+ return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
+ ChainSizeInBytes <= ST->getMaxPrivateElementSize();
+ }
+ return true;
+}
+
+bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
+ unsigned Alignment,
+ unsigned AddrSpace) const {
+ return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
+}
+
+bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
+ unsigned Alignment,
+ unsigned AddrSpace) const {
+ return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
+}
+
+unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
+ // Disable unrolling if the loop is not vectorized.
+ // TODO: Enable this again.
+ if (VF == 1)
+ return 1;
+
+ return 8;
+}
+
+bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
+ MemIntrinsicInfo &Info) const {
+ switch (Inst->getIntrinsicID()) {
+ case Intrinsic::amdgcn_atomic_inc:
+ case Intrinsic::amdgcn_atomic_dec:
+ case Intrinsic::amdgcn_ds_ordered_add:
+ case Intrinsic::amdgcn_ds_ordered_swap:
+ case Intrinsic::amdgcn_ds_fadd:
+ case Intrinsic::amdgcn_ds_fmin:
+ case Intrinsic::amdgcn_ds_fmax: {
+ auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
+ auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
+ if (!Ordering || !Volatile)
+ return false; // Invalid.
+
+ unsigned OrderingVal = Ordering->getZExtValue();
+ if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
+ return false;
+
+ Info.PtrVal = Inst->getArgOperand(0);
+ Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
+ Info.ReadMem = true;
+ Info.WriteMem = true;
+ Info.IsVolatile = !Volatile->isNullValue();
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+int GCNTTIImpl::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
+ TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
+ EVT OrigTy = TLI->getValueType(DL, Ty);
+ if (!OrigTy.isSimple()) {
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo);
+ }
+
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+
+ // Because we don't have any legal vector operations, but the legal types, we
+ // need to account for split vectors.
+ unsigned NElts = LT.second.isVector() ?
+ LT.second.getVectorNumElements() : 1;
+
+ MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
+
+ switch (ISD) {
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA:
+ if (SLT == MVT::i64)
+ return get64BitInstrCost() * LT.first * NElts;
+
+ // i32
+ return getFullRateInstrCost() * LT.first * NElts;
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ if (SLT == MVT::i64){
+ // and, or and xor are typically split into 2 VALU instructions.
+ return 2 * getFullRateInstrCost() * LT.first * NElts;
+ }
+
+ return LT.first * NElts * getFullRateInstrCost();
+ case ISD::MUL: {
+ const int QuarterRateCost = getQuarterRateInstrCost();
+ if (SLT == MVT::i64) {
+ const int FullRateCost = getFullRateInstrCost();
+ return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
+ }
+
+ // i32
+ return QuarterRateCost * NElts * LT.first;
+ }
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ if (SLT == MVT::f64)
+ return LT.first * NElts * get64BitInstrCost();
+
+ if (SLT == MVT::f32 || SLT == MVT::f16)
+ return LT.first * NElts * getFullRateInstrCost();
+ break;
+ case ISD::FDIV:
+ case ISD::FREM:
+ // FIXME: frem should be handled separately. The fdiv in it is most of it,
+ // but the current lowering is also not entirely correct.
+ if (SLT == MVT::f64) {
+ int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
+ // Add cost of workaround.
+ if (!ST->hasUsableDivScaleConditionOutput())
+ Cost += 3 * getFullRateInstrCost();
+
+ return LT.first * Cost * NElts;
+ }
+
+ if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
+ // TODO: This is more complicated, unsafe flags etc.
+ if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) ||
+ (SLT == MVT::f16 && ST->has16BitInsts())) {
+ return LT.first * getQuarterRateInstrCost() * NElts;
+ }
+ }
+
+ if (SLT == MVT::f16 && ST->has16BitInsts()) {
+ // 2 x v_cvt_f32_f16
+ // f32 rcp
+ // f32 fmul
+ // v_cvt_f16_f32
+ // f16 div_fixup
+ int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
+ return LT.first * Cost * NElts;
+ }
+
+ if (SLT == MVT::f32 || SLT == MVT::f16) {
+ int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
+
+ if (!ST->hasFP32Denormals()) {
+ // FP mode switches.
+ Cost += 2 * getFullRateInstrCost();
+ }
+
+ return LT.first * NElts * Cost;
+ }
+ break;
+ default:
+ break;
+ }
+
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo);
+}
+
+unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
+ // XXX - For some reason this isn't called for switch.
+ switch (Opcode) {
+ case Instruction::Br:
+ case Instruction::Ret:
+ return 10;
+ default:
+ return BaseT::getCFInstrCost(Opcode);
+ }
+}
+
+int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwise) {
+ EVT OrigTy = TLI->getValueType(DL, Ty);
+
+ // Computes cost on targets that have packed math instructions(which support
+ // 16-bit types only).
+ if (IsPairwise ||
+ !ST->hasVOP3PInsts() ||
+ OrigTy.getScalarSizeInBits() != 16)
+ return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+ return LT.first * getFullRateInstrCost();
+}
+
+int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
+ bool IsPairwise,
+ bool IsUnsigned) {
+ EVT OrigTy = TLI->getValueType(DL, Ty);
+
+ // Computes cost on targets that have packed math instructions(which support
+ // 16-bit types only).
+ if (IsPairwise ||
+ !ST->hasVOP3PInsts() ||
+ OrigTy.getScalarSizeInBits() != 16)
+ return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+ return LT.first * getHalfRateInstrCost();
+}
+
+int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
+ unsigned Index) {
+ switch (Opcode) {
+ case Instruction::ExtractElement:
+ case Instruction::InsertElement: {
+ unsigned EltSize
+ = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
+ if (EltSize < 32) {
+ if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
+ return 0;
+ return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
+ }
+
+ // Extracts are just reads of a subregister, so are free. Inserts are
+ // considered free because we don't want to have any cost for scalarizing
+ // operations, and we don't have to copy into a different register class.
+
+ // Dynamic indexing isn't free and is best avoided.
+ return Index == ~0u ? 2 : 0;
+ }
+ default:
+ return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
+ }
+}
+
+
+
+static bool isArgPassedInSGPR(const Argument *A) {
+ const Function *F = A->getParent();
+
+ // Arguments to compute shaders are never a source of divergence.
+ CallingConv::ID CC = F->getCallingConv();
+ switch (CC) {
+ case CallingConv::AMDGPU_KERNEL:
+ case CallingConv::SPIR_KERNEL:
+ return true;
+ case CallingConv::AMDGPU_VS:
+ case CallingConv::AMDGPU_LS:
+ case CallingConv::AMDGPU_HS:
+ case CallingConv::AMDGPU_ES:
+ case CallingConv::AMDGPU_GS:
+ case CallingConv::AMDGPU_PS:
+ case CallingConv::AMDGPU_CS:
+ // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
+ // Everything else is in VGPRs.
+ return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
+ F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
+ default:
+ // TODO: Should calls support inreg for SGPR inputs?
+ return false;
+ }
+}
+
+/// \returns true if the result of the value could potentially be
+/// different across workitems in a wavefront.
+bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return !isArgPassedInSGPR(A);
+
+ // Loads from the private and flat address spaces are divergent, because
+ // threads can execute the load instruction with the same inputs and get
+ // different results.
+ //
+ // All other loads are not divergent, because if threads issue loads with the
+ // same arguments, they will always get the same result.
+ if (const LoadInst *Load = dyn_cast<LoadInst>(V))
+ return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
+ Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
+
+ // Atomics are divergent because they are executed sequentially: when an
+ // atomic operation refers to the same address in each thread, then each
+ // thread after the first sees the value written by the previous thread as
+ // original value.
+ if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
+ return true;
+
+ if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
+ return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
+
+ // Assume all function calls are a source of divergence.
+ if (isa<CallInst>(V) || isa<InvokeInst>(V))
+ return true;
+
+ return false;
+}
+
+bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
+ if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
+ switch (Intrinsic->getIntrinsicID()) {
+ default:
+ return false;
+ case Intrinsic::amdgcn_readfirstlane:
+ case Intrinsic::amdgcn_readlane:
+ case Intrinsic::amdgcn_icmp:
+ case Intrinsic::amdgcn_fcmp:
+ return true;
+ }
+ }
+ return false;
+}
+
+unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
+ if (ST->hasVOP3PInsts()) {
+ VectorType *VT = cast<VectorType>(Tp);
+ if (VT->getNumElements() == 2 &&
+ DL.getTypeSizeInBits(VT->getElementType()) == 16) {
+ // With op_sel VOP3P instructions freely can access the low half or high
+ // half of a register, so any swizzle is free.
+
+ switch (Kind) {
+ case TTI::SK_Broadcast:
+ case TTI::SK_Reverse:
+ case TTI::SK_PermuteSingleSrc:
+ return 0;
+ default:
+ break;
+ }
+ }
+ }
+
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+}
+
+bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
+ const Function *Callee) const {
+ const TargetMachine &TM = getTLI()->getTargetMachine();
+ const FeatureBitset &CallerBits =
+ TM.getSubtargetImpl(*Caller)->getFeatureBits();
+ const FeatureBitset &CalleeBits =
+ TM.getSubtargetImpl(*Callee)->getFeatureBits();
+
+ FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
+ FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
+ if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
+ return false;
+
+ // FIXME: dx10_clamp can just take the caller setting, but there seems to be
+ // no way to support merge for backend defined attributes.
+ AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
+ AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
+ return CallerMode.isInlineCompatible(CalleeMode);
+}
+
+void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+ TTI::UnrollingPreferences &UP) {
+ CommonTTI.getUnrollingPreferences(L, SE, UP);
+}
+
+unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
+ return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
+}
+
+unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
+ return getHardwareNumberOfRegisters(Vec);
+}
+
+unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
+ return 32;
+}
+
+unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
+ return 32;
+}
+
+unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
+ if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
+ AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
+ return 128;
+ if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
+ AddrSpace == AMDGPUAS::REGION_ADDRESS)
+ return 64;
+ if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
+ return 32;
+
+ if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
+ AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
+ (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
+ AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
+ return 128;
+ llvm_unreachable("unhandled address space");
+}
+
+bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
+ unsigned Alignment,
+ unsigned AddrSpace) const {
+ // We allow vectorization of flat stores, even though we may need to decompose
+ // them later if they may access private memory. We don't have enough context
+ // here, and legalization can handle it.
+ return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
+}
+
+bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
+ unsigned Alignment,
+ unsigned AddrSpace) const {
+ return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
+}
+
+bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
+ unsigned Alignment,
+ unsigned AddrSpace) const {
+ return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
+}
+
+unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
+ // Disable unrolling if the loop is not vectorized.
+ // TODO: Enable this again.
+ if (VF == 1)
+ return 1;
+
+ return 8;
+}
+
+unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
+ // XXX - For some reason this isn't called for switch.
+ switch (Opcode) {
+ case Instruction::Br:
+ case Instruction::Ret:
+ return 10;
+ default:
+ return BaseT::getCFInstrCost(Opcode);
+ }
+}
+
+int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
+ unsigned Index) {
+ switch (Opcode) {
+ case Instruction::ExtractElement:
+ case Instruction::InsertElement: {
+ unsigned EltSize
+ = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
+ if (EltSize < 32) {
+ return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
+ }
+
+ // Extracts are just reads of a subregister, so are free. Inserts are
+ // considered free because we don't want to have any cost for scalarizing
+ // operations, and we don't have to copy into a different register class.
+
+ // Dynamic indexing isn't free and is best avoided.
+ return Index == ~0u ? 2 : 0;
+ }
+ default:
+ return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
+ }
+}
+
+void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+ TTI::UnrollingPreferences &UP) {
+ CommonTTI.getUnrollingPreferences(L, SE, UP);
+}