summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp10750
1 files changed, 10750 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
new file mode 100644
index 000000000000..db0782e2bf3e
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
@@ -0,0 +1,10750 @@
+//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Custom DAG lowering for SI
+//
+//===----------------------------------------------------------------------===//
+
+#if defined(_MSC_VER) || defined(__MINGW32__)
+// Provide M_PI.
+#define _USE_MATH_DEFINES
+#endif
+
+#include "SIISelLowering.h"
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "AMDGPUTargetMachine.h"
+#include "SIDefines.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "SIRegisterInfo.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "Utils/AMDGPUBaseInfo.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/DAGCombine.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/TargetCallingConv.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetOptions.h"
+#include <cassert>
+#include <cmath>
+#include <cstdint>
+#include <iterator>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "si-lower"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+
+static cl::opt<bool> EnableVGPRIndexMode(
+ "amdgpu-vgpr-index-mode",
+ cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
+ cl::init(false));
+
+static cl::opt<bool> DisableLoopAlignment(
+ "amdgpu-disable-loop-alignment",
+ cl::desc("Do not align and prefetch loops"),
+ cl::init(false));
+
+static unsigned findFirstFreeSGPR(CCState &CCInfo) {
+ unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
+ for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
+ if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
+ return AMDGPU::SGPR0 + Reg;
+ }
+ }
+ llvm_unreachable("Cannot allocate sgpr");
+}
+
+SITargetLowering::SITargetLowering(const TargetMachine &TM,
+ const GCNSubtarget &STI)
+ : AMDGPUTargetLowering(TM, STI),
+ Subtarget(&STI) {
+ addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
+ addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
+
+ addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
+ addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
+
+ addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
+ addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
+ addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
+
+ addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
+ addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
+
+ addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
+ addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
+
+ addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
+ addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
+
+ addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
+ addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
+
+ addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
+ addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
+
+ addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
+ addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
+
+ if (Subtarget->has16BitInsts()) {
+ addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
+ addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
+
+ // Unless there are also VOP3P operations, not operations are really legal.
+ addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
+ addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
+ addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
+ addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
+ }
+
+ if (Subtarget->hasMAIInsts()) {
+ addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
+ addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
+ }
+
+ computeRegisterProperties(Subtarget->getRegisterInfo());
+
+ // We need to custom lower vector stores from local memory
+ setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::i1, Custom);
+ setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
+
+ setOperationAction(ISD::STORE, MVT::v2i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v3i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v4i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v5i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v8i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v16i32, Custom);
+ setOperationAction(ISD::STORE, MVT::i1, Custom);
+ setOperationAction(ISD::STORE, MVT::v32i32, Custom);
+
+ setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
+ setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
+ setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
+ setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
+ setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
+ setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
+ setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
+ setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::i1, Promote);
+ setOperationAction(ISD::SELECT, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Promote);
+ AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
+
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
+
+ setOperationAction(ISD::SETCC, MVT::i1, Promote);
+ setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
+ setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
+ AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
+
+ setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
+ setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
+
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
+
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
+
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
+
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i1, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f64, Expand);
+
+ setOperationAction(ISD::UADDO, MVT::i32, Legal);
+ setOperationAction(ISD::USUBO, MVT::i32, Legal);
+
+ setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
+ setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
+
+#if 0
+ setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
+ setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
+#endif
+
+ // We only support LOAD/STORE and vector manipulation ops for vectors
+ // with > 4 elements.
+ for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
+ MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
+ MVT::v32i32, MVT::v32f32 }) {
+ for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
+ switch (Op) {
+ case ISD::LOAD:
+ case ISD::STORE:
+ case ISD::BUILD_VECTOR:
+ case ISD::BITCAST:
+ case ISD::EXTRACT_VECTOR_ELT:
+ case ISD::INSERT_VECTOR_ELT:
+ case ISD::INSERT_SUBVECTOR:
+ case ISD::EXTRACT_SUBVECTOR:
+ case ISD::SCALAR_TO_VECTOR:
+ break;
+ case ISD::CONCAT_VECTORS:
+ setOperationAction(Op, VT, Custom);
+ break;
+ default:
+ setOperationAction(Op, VT, Expand);
+ break;
+ }
+ }
+ }
+
+ setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
+
+ // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
+ // is expanded to avoid having two separate loops in case the index is a VGPR.
+
+ // Most operations are naturally 32-bit vector operations. We only support
+ // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
+ for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
+ setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
+ AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
+ AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
+
+ setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
+ AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
+ AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
+ }
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
+
+ // Avoid stack access for these.
+ // TODO: Generalize to more vector types.
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
+
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
+
+ // Deal with vec3 vector operations when widened to vec4.
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
+
+ // Deal with vec5 vector operations when widened to vec8.
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
+
+ // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
+ // and output demarshalling
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
+
+ // We can't return success/failure, only the old value,
+ // let LLVM add the comparison
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
+
+ if (Subtarget->hasFlatAddressSpace()) {
+ setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
+ setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
+ }
+
+ setOperationAction(ISD::BSWAP, MVT::i32, Legal);
+ setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
+
+ // On SI this is s_memtime and s_memrealtime on VI.
+ setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
+ setOperationAction(ISD::TRAP, MVT::Other, Custom);
+ setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
+
+ if (Subtarget->has16BitInsts()) {
+ setOperationAction(ISD::FLOG, MVT::f16, Custom);
+ setOperationAction(ISD::FEXP, MVT::f16, Custom);
+ setOperationAction(ISD::FLOG10, MVT::f16, Custom);
+ }
+
+ // v_mad_f32 does not support denormals according to some sources.
+ if (!Subtarget->hasFP32Denormals())
+ setOperationAction(ISD::FMAD, MVT::f32, Legal);
+
+ if (!Subtarget->hasBFI()) {
+ // fcopysign can be done in a single instruction with BFI.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ }
+
+ if (!Subtarget->hasBCNT(32))
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+
+ if (!Subtarget->hasBCNT(64))
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+
+ if (Subtarget->hasFFBH())
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
+
+ if (Subtarget->hasFFBL())
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
+
+ // We only really have 32-bit BFE instructions (and 16-bit on VI).
+ //
+ // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
+ // effort to match them now. We want this to be false for i64 cases when the
+ // extraction isn't restricted to the upper or lower half. Ideally we would
+ // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
+ // span the midpoint are probably relatively rare, so don't worry about them
+ // for now.
+ if (Subtarget->hasBFE())
+ setHasExtractBitsInsn(true);
+
+ setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
+ setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
+ setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
+ setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
+
+
+ // These are really only legal for ieee_mode functions. We should be avoiding
+ // them for functions that don't have ieee_mode enabled, so just say they are
+ // legal.
+ setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
+ setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
+ setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
+ setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
+
+
+ if (Subtarget->haveRoundOpsF64()) {
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::f64, Legal);
+ } else {
+ setOperationAction(ISD::FCEIL, MVT::f64, Custom);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
+ setOperationAction(ISD::FRINT, MVT::f64, Custom);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
+ }
+
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+
+ setOperationAction(ISD::FSIN, MVT::f32, Custom);
+ setOperationAction(ISD::FCOS, MVT::f32, Custom);
+ setOperationAction(ISD::FDIV, MVT::f32, Custom);
+ setOperationAction(ISD::FDIV, MVT::f64, Custom);
+
+ if (Subtarget->has16BitInsts()) {
+ setOperationAction(ISD::Constant, MVT::i16, Legal);
+
+ setOperationAction(ISD::SMIN, MVT::i16, Legal);
+ setOperationAction(ISD::SMAX, MVT::i16, Legal);
+
+ setOperationAction(ISD::UMIN, MVT::i16, Legal);
+ setOperationAction(ISD::UMAX, MVT::i16, Legal);
+
+ setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
+ AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
+
+ setOperationAction(ISD::ROTR, MVT::i16, Promote);
+ setOperationAction(ISD::ROTL, MVT::i16, Promote);
+
+ setOperationAction(ISD::SDIV, MVT::i16, Promote);
+ setOperationAction(ISD::UDIV, MVT::i16, Promote);
+ setOperationAction(ISD::SREM, MVT::i16, Promote);
+ setOperationAction(ISD::UREM, MVT::i16, Promote);
+
+ setOperationAction(ISD::BSWAP, MVT::i16, Promote);
+ setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
+
+ setOperationAction(ISD::CTTZ, MVT::i16, Promote);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
+ setOperationAction(ISD::CTLZ, MVT::i16, Promote);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
+ setOperationAction(ISD::CTPOP, MVT::i16, Promote);
+
+ setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
+
+ setOperationAction(ISD::BR_CC, MVT::i16, Expand);
+
+ setOperationAction(ISD::LOAD, MVT::i16, Custom);
+
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+
+ setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
+ AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
+ setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
+ AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
+
+ // F16 - Constant Actions.
+ setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
+
+ // F16 - Load/Store Actions.
+ setOperationAction(ISD::LOAD, MVT::f16, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
+ setOperationAction(ISD::STORE, MVT::f16, Promote);
+ AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
+
+ // F16 - VOP1 Actions.
+ setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
+ setOperationAction(ISD::FCOS, MVT::f16, Promote);
+ setOperationAction(ISD::FSIN, MVT::f16, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
+ setOperationAction(ISD::FROUND, MVT::f16, Custom);
+
+ // F16 - VOP2 Actions.
+ setOperationAction(ISD::BR_CC, MVT::f16, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
+
+ setOperationAction(ISD::FDIV, MVT::f16, Custom);
+
+ // F16 - VOP3 Actions.
+ setOperationAction(ISD::FMA, MVT::f16, Legal);
+ if (!Subtarget->hasFP16Denormals() && STI.hasMadF16())
+ setOperationAction(ISD::FMAD, MVT::f16, Legal);
+
+ for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
+ for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
+ switch (Op) {
+ case ISD::LOAD:
+ case ISD::STORE:
+ case ISD::BUILD_VECTOR:
+ case ISD::BITCAST:
+ case ISD::EXTRACT_VECTOR_ELT:
+ case ISD::INSERT_VECTOR_ELT:
+ case ISD::INSERT_SUBVECTOR:
+ case ISD::EXTRACT_SUBVECTOR:
+ case ISD::SCALAR_TO_VECTOR:
+ break;
+ case ISD::CONCAT_VECTORS:
+ setOperationAction(Op, VT, Custom);
+ break;
+ default:
+ setOperationAction(Op, VT, Expand);
+ break;
+ }
+ }
+ }
+
+ // XXX - Do these do anything? Vector constants turn into build_vector.
+ setOperationAction(ISD::Constant, MVT::v2i16, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
+
+ setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
+ setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
+
+ setOperationAction(ISD::STORE, MVT::v2i16, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
+ setOperationAction(ISD::STORE, MVT::v2f16, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
+
+ setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
+ setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
+
+ setOperationAction(ISD::AND, MVT::v2i16, Promote);
+ AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
+ setOperationAction(ISD::OR, MVT::v2i16, Promote);
+ AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
+ setOperationAction(ISD::XOR, MVT::v2i16, Promote);
+ AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
+
+ setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
+ setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
+
+ setOperationAction(ISD::STORE, MVT::v4i16, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
+ setOperationAction(ISD::STORE, MVT::v4f16, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
+
+ setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
+
+ setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
+
+ if (!Subtarget->hasVOP3PInsts()) {
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
+ }
+
+ setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
+ // This isn't really legal, but this avoids the legalizer unrolling it (and
+ // allows matching fneg (fabs x) patterns)
+ setOperationAction(ISD::FABS, MVT::v2f16, Legal);
+
+ setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
+ setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
+ setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
+ setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
+
+ setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
+ setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
+
+ setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
+ setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
+ }
+
+ if (Subtarget->hasVOP3PInsts()) {
+ setOperationAction(ISD::ADD, MVT::v2i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v2i16, Legal);
+ setOperationAction(ISD::MUL, MVT::v2i16, Legal);
+ setOperationAction(ISD::SHL, MVT::v2i16, Legal);
+ setOperationAction(ISD::SRL, MVT::v2i16, Legal);
+ setOperationAction(ISD::SRA, MVT::v2i16, Legal);
+ setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
+ setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
+ setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
+ setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
+
+ setOperationAction(ISD::FADD, MVT::v2f16, Legal);
+ setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
+ setOperationAction(ISD::FMA, MVT::v2f16, Legal);
+
+ setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
+ setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
+
+ setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v4i16, Custom);
+ setOperationAction(ISD::SRA, MVT::v4i16, Custom);
+ setOperationAction(ISD::SRL, MVT::v4i16, Custom);
+ setOperationAction(ISD::ADD, MVT::v4i16, Custom);
+ setOperationAction(ISD::SUB, MVT::v4i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
+ setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
+ setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
+ setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::FADD, MVT::v4f16, Custom);
+ setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
+
+ setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
+ setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
+
+ setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
+ setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
+ setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
+
+ setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
+ }
+
+ setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
+ setOperationAction(ISD::FABS, MVT::v4f16, Custom);
+
+ if (Subtarget->has16BitInsts()) {
+ setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
+ AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
+ setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
+ AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
+ } else {
+ // Legalization hack.
+ setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
+ setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
+
+ setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
+ setOperationAction(ISD::FABS, MVT::v2f16, Custom);
+ }
+
+ for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
+ setOperationAction(ISD::SELECT, VT, Custom);
+ }
+
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::ADDCARRY);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::SUBCARRY);
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::FSUB);
+ setTargetDAGCombine(ISD::FMINNUM);
+ setTargetDAGCombine(ISD::FMAXNUM);
+ setTargetDAGCombine(ISD::FMINNUM_IEEE);
+ setTargetDAGCombine(ISD::FMAXNUM_IEEE);
+ setTargetDAGCombine(ISD::FMA);
+ setTargetDAGCombine(ISD::SMIN);
+ setTargetDAGCombine(ISD::SMAX);
+ setTargetDAGCombine(ISD::UMIN);
+ setTargetDAGCombine(ISD::UMAX);
+ setTargetDAGCombine(ISD::SETCC);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::XOR);
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::UINT_TO_FP);
+ setTargetDAGCombine(ISD::FCANONICALIZE);
+ setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
+ setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
+
+ // All memory operations. Some folding on the pointer operand is done to help
+ // matching the constant offsets in the addressing modes.
+ setTargetDAGCombine(ISD::LOAD);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD);
+ setTargetDAGCombine(ISD::ATOMIC_STORE);
+ setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
+ setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
+ setTargetDAGCombine(ISD::ATOMIC_SWAP);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
+
+ setSchedulingPreference(Sched::RegPressure);
+}
+
+const GCNSubtarget *SITargetLowering::getSubtarget() const {
+ return Subtarget;
+}
+
+//===----------------------------------------------------------------------===//
+// TargetLowering queries
+//===----------------------------------------------------------------------===//
+
+// v_mad_mix* support a conversion from f16 to f32.
+//
+// There is only one special case when denormals are enabled we don't currently,
+// where this is OK to use.
+bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
+ EVT DestVT, EVT SrcVT) const {
+ return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
+ (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
+ DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
+ SrcVT.getScalarType() == MVT::f16;
+}
+
+bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
+ // SI has some legal vector types, but no legal vector operations. Say no
+ // shuffles are legal in order to prefer scalarizing some vector operations.
+ return false;
+}
+
+MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
+ CallingConv::ID CC,
+ EVT VT) const {
+ // TODO: Consider splitting all arguments into 32-bit pieces.
+ if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
+ EVT ScalarVT = VT.getScalarType();
+ unsigned Size = ScalarVT.getSizeInBits();
+ if (Size == 32)
+ return ScalarVT.getSimpleVT();
+
+ if (Size == 64)
+ return MVT::i32;
+
+ if (Size == 16 && Subtarget->has16BitInsts())
+ return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
+ }
+
+ return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
+}
+
+unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
+ CallingConv::ID CC,
+ EVT VT) const {
+ if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
+ unsigned NumElts = VT.getVectorNumElements();
+ EVT ScalarVT = VT.getScalarType();
+ unsigned Size = ScalarVT.getSizeInBits();
+
+ if (Size == 32)
+ return NumElts;
+
+ if (Size == 64)
+ return 2 * NumElts;
+
+ if (Size == 16 && Subtarget->has16BitInsts())
+ return (VT.getVectorNumElements() + 1) / 2;
+ }
+
+ return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
+}
+
+unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
+ LLVMContext &Context, CallingConv::ID CC,
+ EVT VT, EVT &IntermediateVT,
+ unsigned &NumIntermediates, MVT &RegisterVT) const {
+ if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
+ unsigned NumElts = VT.getVectorNumElements();
+ EVT ScalarVT = VT.getScalarType();
+ unsigned Size = ScalarVT.getSizeInBits();
+ if (Size == 32) {
+ RegisterVT = ScalarVT.getSimpleVT();
+ IntermediateVT = RegisterVT;
+ NumIntermediates = NumElts;
+ return NumIntermediates;
+ }
+
+ if (Size == 64) {
+ RegisterVT = MVT::i32;
+ IntermediateVT = RegisterVT;
+ NumIntermediates = 2 * NumElts;
+ return NumIntermediates;
+ }
+
+ // FIXME: We should fix the ABI to be the same on targets without 16-bit
+ // support, but unless we can properly handle 3-vectors, it will be still be
+ // inconsistent.
+ if (Size == 16 && Subtarget->has16BitInsts()) {
+ RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
+ IntermediateVT = RegisterVT;
+ NumIntermediates = (NumElts + 1) / 2;
+ return NumIntermediates;
+ }
+ }
+
+ return TargetLowering::getVectorTypeBreakdownForCallingConv(
+ Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
+}
+
+static MVT memVTFromAggregate(Type *Ty) {
+ // Only limited forms of aggregate type currently expected.
+ assert(Ty->isStructTy() && "Expected struct type");
+
+
+ Type *ElementType = nullptr;
+ unsigned NumElts;
+ if (Ty->getContainedType(0)->isVectorTy()) {
+ VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
+ ElementType = VecComponent->getElementType();
+ NumElts = VecComponent->getNumElements();
+ } else {
+ ElementType = Ty->getContainedType(0);
+ NumElts = 1;
+ }
+
+ assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type");
+
+ // Calculate the size of the memVT type from the aggregate
+ unsigned Pow2Elts = 0;
+ unsigned ElementSize;
+ switch (ElementType->getTypeID()) {
+ default:
+ llvm_unreachable("Unknown type!");
+ case Type::IntegerTyID:
+ ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
+ break;
+ case Type::HalfTyID:
+ ElementSize = 16;
+ break;
+ case Type::FloatTyID:
+ ElementSize = 32;
+ break;
+ }
+ unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
+ Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
+
+ return MVT::getVectorVT(MVT::getVT(ElementType, false),
+ Pow2Elts);
+}
+
+bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &CI,
+ MachineFunction &MF,
+ unsigned IntrID) const {
+ if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
+ AMDGPU::lookupRsrcIntrinsic(IntrID)) {
+ AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
+ (Intrinsic::ID)IntrID);
+ if (Attr.hasFnAttribute(Attribute::ReadNone))
+ return false;
+
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+
+ if (RsrcIntr->IsImage) {
+ Info.ptrVal = MFI->getImagePSV(
+ *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
+ CI.getArgOperand(RsrcIntr->RsrcArg));
+ Info.align = 0;
+ } else {
+ Info.ptrVal = MFI->getBufferPSV(
+ *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
+ CI.getArgOperand(RsrcIntr->RsrcArg));
+ }
+
+ Info.flags = MachineMemOperand::MODereferenceable;
+ if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(CI.getType(), true);
+ if (Info.memVT == MVT::Other) {
+ // Some intrinsics return an aggregate type - special case to work out
+ // the correct memVT
+ Info.memVT = memVTFromAggregate(CI.getType());
+ }
+ Info.flags |= MachineMemOperand::MOLoad;
+ } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
+ Info.opc = ISD::INTRINSIC_VOID;
+ Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
+ Info.flags |= MachineMemOperand::MOStore;
+ } else {
+ // Atomic
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(CI.getType());
+ Info.flags = MachineMemOperand::MOLoad |
+ MachineMemOperand::MOStore |
+ MachineMemOperand::MODereferenceable;
+
+ // XXX - Should this be volatile without known ordering?
+ Info.flags |= MachineMemOperand::MOVolatile;
+ }
+ return true;
+ }
+
+ switch (IntrID) {
+ case Intrinsic::amdgcn_atomic_inc:
+ case Intrinsic::amdgcn_atomic_dec:
+ case Intrinsic::amdgcn_ds_ordered_add:
+ case Intrinsic::amdgcn_ds_ordered_swap:
+ case Intrinsic::amdgcn_ds_fadd:
+ case Intrinsic::amdgcn_ds_fmin:
+ case Intrinsic::amdgcn_ds_fmax: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(CI.getType());
+ Info.ptrVal = CI.getOperand(0);
+ Info.align = 0;
+ Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
+ if (!Vol->isZero())
+ Info.flags |= MachineMemOperand::MOVolatile;
+
+ return true;
+ }
+ case Intrinsic::amdgcn_buffer_atomic_fadd: {
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+
+ Info.opc = ISD::INTRINSIC_VOID;
+ Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
+ Info.ptrVal = MFI->getBufferPSV(
+ *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
+ CI.getArgOperand(1));
+ Info.align = 0;
+ Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
+ if (!Vol || !Vol->isZero())
+ Info.flags |= MachineMemOperand::MOVolatile;
+
+ return true;
+ }
+ case Intrinsic::amdgcn_global_atomic_fadd: {
+ Info.opc = ISD::INTRINSIC_VOID;
+ Info.memVT = MVT::getVT(CI.getOperand(0)->getType()
+ ->getPointerElementType());
+ Info.ptrVal = CI.getOperand(0);
+ Info.align = 0;
+ Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ return true;
+ }
+ case Intrinsic::amdgcn_ds_append:
+ case Intrinsic::amdgcn_ds_consume: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(CI.getType());
+ Info.ptrVal = CI.getOperand(0);
+ Info.align = 0;
+ Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
+ if (!Vol->isZero())
+ Info.flags |= MachineMemOperand::MOVolatile;
+
+ return true;
+ }
+ case Intrinsic::amdgcn_ds_gws_init:
+ case Intrinsic::amdgcn_ds_gws_barrier:
+ case Intrinsic::amdgcn_ds_gws_sema_v:
+ case Intrinsic::amdgcn_ds_gws_sema_br:
+ case Intrinsic::amdgcn_ds_gws_sema_p:
+ case Intrinsic::amdgcn_ds_gws_sema_release_all: {
+ Info.opc = ISD::INTRINSIC_VOID;
+
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ Info.ptrVal =
+ MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
+
+ // This is an abstract access, but we need to specify a type and size.
+ Info.memVT = MVT::i32;
+ Info.size = 4;
+ Info.align = 4;
+
+ Info.flags = MachineMemOperand::MOStore;
+ if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
+ Info.flags = MachineMemOperand::MOLoad;
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
+ SmallVectorImpl<Value*> &Ops,
+ Type *&AccessTy) const {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::amdgcn_atomic_inc:
+ case Intrinsic::amdgcn_atomic_dec:
+ case Intrinsic::amdgcn_ds_ordered_add:
+ case Intrinsic::amdgcn_ds_ordered_swap:
+ case Intrinsic::amdgcn_ds_fadd:
+ case Intrinsic::amdgcn_ds_fmin:
+ case Intrinsic::amdgcn_ds_fmax: {
+ Value *Ptr = II->getArgOperand(0);
+ AccessTy = II->getType();
+ Ops.push_back(Ptr);
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
+ if (!Subtarget->hasFlatInstOffsets()) {
+ // Flat instructions do not have offsets, and only have the register
+ // address.
+ return AM.BaseOffs == 0 && AM.Scale == 0;
+ }
+
+ // GFX9 added a 13-bit signed offset. When using regular flat instructions,
+ // the sign bit is ignored and is treated as a 12-bit unsigned offset.
+
+ // GFX10 shrinked signed offset to 12 bits. When using regular flat
+ // instructions, the sign bit is also ignored and is treated as 11-bit
+ // unsigned offset.
+
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
+ return isUInt<11>(AM.BaseOffs) && AM.Scale == 0;
+
+ // Just r + i
+ return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
+}
+
+bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
+ if (Subtarget->hasFlatGlobalInsts())
+ return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
+
+ if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
+ // Assume the we will use FLAT for all global memory accesses
+ // on VI.
+ // FIXME: This assumption is currently wrong. On VI we still use
+ // MUBUF instructions for the r + i addressing mode. As currently
+ // implemented, the MUBUF instructions only work on buffer < 4GB.
+ // It may be possible to support > 4GB buffers with MUBUF instructions,
+ // by setting the stride value in the resource descriptor which would
+ // increase the size limit to (stride * 4GB). However, this is risky,
+ // because it has never been validated.
+ return isLegalFlatAddressingMode(AM);
+ }
+
+ return isLegalMUBUFAddressingMode(AM);
+}
+
+bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
+ // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
+ // additionally can do r + r + i with addr64. 32-bit has more addressing
+ // mode options. Depending on the resource constant, it can also do
+ // (i64 r0) + (i32 r1) * (i14 i).
+ //
+ // Private arrays end up using a scratch buffer most of the time, so also
+ // assume those use MUBUF instructions. Scratch loads / stores are currently
+ // implemented as mubuf instructions with offen bit set, so slightly
+ // different than the normal addr64.
+ if (!isUInt<12>(AM.BaseOffs))
+ return false;
+
+ // FIXME: Since we can split immediate into soffset and immediate offset,
+ // would it make sense to allow any immediate?
+
+ switch (AM.Scale) {
+ case 0: // r + i or just i, depending on HasBaseReg.
+ return true;
+ case 1:
+ return true; // We have r + r or r + i.
+ case 2:
+ if (AM.HasBaseReg) {
+ // Reject 2 * r + r.
+ return false;
+ }
+
+ // Allow 2 * r as r + r
+ // Or 2 * r + i is allowed as r + r + i.
+ return true;
+ default: // Don't allow n * r
+ return false;
+ }
+}
+
+bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS, Instruction *I) const {
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ if (AS == AMDGPUAS::GLOBAL_ADDRESS)
+ return isLegalGlobalAddressingMode(AM);
+
+ if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
+ AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
+ AS == AMDGPUAS::BUFFER_FAT_POINTER) {
+ // If the offset isn't a multiple of 4, it probably isn't going to be
+ // correctly aligned.
+ // FIXME: Can we get the real alignment here?
+ if (AM.BaseOffs % 4 != 0)
+ return isLegalMUBUFAddressingMode(AM);
+
+ // There are no SMRD extloads, so if we have to do a small type access we
+ // will use a MUBUF load.
+ // FIXME?: We also need to do this if unaligned, but we don't know the
+ // alignment here.
+ if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
+ return isLegalGlobalAddressingMode(AM);
+
+ if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ // SMRD instructions have an 8-bit, dword offset on SI.
+ if (!isUInt<8>(AM.BaseOffs / 4))
+ return false;
+ } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
+ // On CI+, this can also be a 32-bit literal constant offset. If it fits
+ // in 8-bits, it can use a smaller encoding.
+ if (!isUInt<32>(AM.BaseOffs / 4))
+ return false;
+ } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ // On VI, these use the SMEM format and the offset is 20-bit in bytes.
+ if (!isUInt<20>(AM.BaseOffs))
+ return false;
+ } else
+ llvm_unreachable("unhandled generation");
+
+ if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
+ return true;
+
+ if (AM.Scale == 1 && AM.HasBaseReg)
+ return true;
+
+ return false;
+
+ } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
+ return isLegalMUBUFAddressingMode(AM);
+ } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
+ AS == AMDGPUAS::REGION_ADDRESS) {
+ // Basic, single offset DS instructions allow a 16-bit unsigned immediate
+ // field.
+ // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
+ // an 8-bit dword offset but we don't know the alignment here.
+ if (!isUInt<16>(AM.BaseOffs))
+ return false;
+
+ if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
+ return true;
+
+ if (AM.Scale == 1 && AM.HasBaseReg)
+ return true;
+
+ return false;
+ } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
+ AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
+ // For an unknown address space, this usually means that this is for some
+ // reason being used for pure arithmetic, and not based on some addressing
+ // computation. We don't have instructions that compute pointers with any
+ // addressing modes, so treat them as having no offset like flat
+ // instructions.
+ return isLegalFlatAddressingMode(AM);
+ } else {
+ llvm_unreachable("unhandled address space");
+ }
+}
+
+bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
+ const SelectionDAG &DAG) const {
+ if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
+ return (MemVT.getSizeInBits() <= 4 * 32);
+ } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
+ unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
+ return (MemVT.getSizeInBits() <= MaxPrivateBits);
+ } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
+ return (MemVT.getSizeInBits() <= 2 * 32);
+ }
+ return true;
+}
+
+bool SITargetLowering::allowsMisalignedMemoryAccesses(
+ EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
+ bool *IsFast) const {
+ if (IsFast)
+ *IsFast = false;
+
+ // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
+ // which isn't a simple VT.
+ // Until MVT is extended to handle this, simply check for the size and
+ // rely on the condition below: allow accesses if the size is a multiple of 4.
+ if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
+ VT.getStoreSize() > 16)) {
+ return false;
+ }
+
+ if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
+ AddrSpace == AMDGPUAS::REGION_ADDRESS) {
+ // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
+ // aligned, 8 byte access in a single operation using ds_read2/write2_b32
+ // with adjacent offsets.
+ bool AlignedBy4 = (Align % 4 == 0);
+ if (IsFast)
+ *IsFast = AlignedBy4;
+
+ return AlignedBy4;
+ }
+
+ // FIXME: We have to be conservative here and assume that flat operations
+ // will access scratch. If we had access to the IR function, then we
+ // could determine if any private memory was used in the function.
+ if (!Subtarget->hasUnalignedScratchAccess() &&
+ (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
+ AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
+ bool AlignedBy4 = Align >= 4;
+ if (IsFast)
+ *IsFast = AlignedBy4;
+
+ return AlignedBy4;
+ }
+
+ if (Subtarget->hasUnalignedBufferAccess()) {
+ // If we have an uniform constant load, it still requires using a slow
+ // buffer instruction if unaligned.
+ if (IsFast) {
+ *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
+ AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
+ (Align % 4 == 0) : true;
+ }
+
+ return true;
+ }
+
+ // Smaller than dword value must be aligned.
+ if (VT.bitsLT(MVT::i32))
+ return false;
+
+ // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
+ // byte-address are ignored, thus forcing Dword alignment.
+ // This applies to private, global, and constant memory.
+ if (IsFast)
+ *IsFast = true;
+
+ return VT.bitsGT(MVT::i32) && Align % 4 == 0;
+}
+
+EVT SITargetLowering::getOptimalMemOpType(
+ uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
+ bool ZeroMemset, bool MemcpyStrSrc,
+ const AttributeList &FuncAttributes) const {
+ // FIXME: Should account for address space here.
+
+ // The default fallback uses the private pointer size as a guess for a type to
+ // use. Make sure we switch these to 64-bit accesses.
+
+ if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
+ return MVT::v4i32;
+
+ if (Size >= 8 && DstAlign >= 4)
+ return MVT::v2i32;
+
+ // Use the default.
+ return MVT::Other;
+}
+
+static bool isFlatGlobalAddrSpace(unsigned AS) {
+ return AS == AMDGPUAS::GLOBAL_ADDRESS ||
+ AS == AMDGPUAS::FLAT_ADDRESS ||
+ AS == AMDGPUAS::CONSTANT_ADDRESS ||
+ AS > AMDGPUAS::MAX_AMDGPU_ADDRESS;
+}
+
+bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
+ unsigned DestAS) const {
+ return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
+}
+
+bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
+ const MemSDNode *MemNode = cast<MemSDNode>(N);
+ const Value *Ptr = MemNode->getMemOperand()->getValue();
+ const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
+ return I && I->getMetadata("amdgpu.noclobber");
+}
+
+bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
+ unsigned DestAS) const {
+ // Flat -> private/local is a simple truncate.
+ // Flat -> global is no-op
+ if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
+ return true;
+
+ return isNoopAddrSpaceCast(SrcAS, DestAS);
+}
+
+bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
+ const MemSDNode *MemNode = cast<MemSDNode>(N);
+
+ return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
+}
+
+TargetLoweringBase::LegalizeTypeAction
+SITargetLowering::getPreferredVectorAction(MVT VT) const {
+ if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
+ return TypeSplitVector;
+
+ return TargetLoweringBase::getPreferredVectorAction(VT);
+}
+
+bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ // FIXME: Could be smarter if called for vector constants.
+ return true;
+}
+
+bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
+ if (Subtarget->has16BitInsts() && VT == MVT::i16) {
+ switch (Op) {
+ case ISD::LOAD:
+ case ISD::STORE:
+
+ // These operations are done with 32-bit instructions anyway.
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::SELECT:
+ // TODO: Extensions?
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ // SimplifySetCC uses this function to determine whether or not it should
+ // create setcc with i1 operands. We don't have instructions for i1 setcc.
+ if (VT == MVT::i1 && Op == ISD::SETCC)
+ return false;
+
+ return TargetLowering::isTypeDesirableForOp(Op, VT);
+}
+
+SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
+ const SDLoc &SL,
+ SDValue Chain,
+ uint64_t Offset) const {
+ const DataLayout &DL = DAG.getDataLayout();
+ MachineFunction &MF = DAG.getMachineFunction();
+ const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ const ArgDescriptor *InputPtrReg;
+ const TargetRegisterClass *RC;
+
+ std::tie(InputPtrReg, RC)
+ = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
+
+ MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
+ MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
+ SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
+ MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
+
+ return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
+}
+
+SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
+ const SDLoc &SL) const {
+ uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
+ FIRST_IMPLICIT);
+ return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
+}
+
+SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
+ const SDLoc &SL, SDValue Val,
+ bool Signed,
+ const ISD::InputArg *Arg) const {
+ // First, if it is a widened vector, narrow it.
+ if (VT.isVector() &&
+ VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
+ EVT NarrowedVT =
+ EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
+ VT.getVectorNumElements());
+ Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
+ DAG.getConstant(0, SL, MVT::i32));
+ }
+
+ // Then convert the vector elements or scalar value.
+ if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
+ VT.bitsLT(MemVT)) {
+ unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
+ Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
+ }
+
+ if (MemVT.isFloatingPoint())
+ Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
+ else if (Signed)
+ Val = DAG.getSExtOrTrunc(Val, SL, VT);
+ else
+ Val = DAG.getZExtOrTrunc(Val, SL, VT);
+
+ return Val;
+}
+
+SDValue SITargetLowering::lowerKernargMemParameter(
+ SelectionDAG &DAG, EVT VT, EVT MemVT,
+ const SDLoc &SL, SDValue Chain,
+ uint64_t Offset, unsigned Align, bool Signed,
+ const ISD::InputArg *Arg) const {
+ Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
+ PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
+ MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
+
+ // Try to avoid using an extload by loading earlier than the argument address,
+ // and extracting the relevant bits. The load should hopefully be merged with
+ // the previous argument.
+ if (MemVT.getStoreSize() < 4 && Align < 4) {
+ // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
+ int64_t AlignDownOffset = alignDown(Offset, 4);
+ int64_t OffsetDiff = Offset - AlignDownOffset;
+
+ EVT IntVT = MemVT.changeTypeToInteger();
+
+ // TODO: If we passed in the base kernel offset we could have a better
+ // alignment than 4, but we don't really need it.
+ SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
+ SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
+ MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant);
+
+ SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
+ SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
+
+ SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
+ ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
+ ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
+
+
+ return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
+ }
+
+ SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
+ SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
+ MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant);
+
+ SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
+ return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
+}
+
+SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
+ const SDLoc &SL, SDValue Chain,
+ const ISD::InputArg &Arg) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ if (Arg.Flags.isByVal()) {
+ unsigned Size = Arg.Flags.getByValSize();
+ int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
+ return DAG.getFrameIndex(FrameIdx, MVT::i32);
+ }
+
+ unsigned ArgOffset = VA.getLocMemOffset();
+ unsigned ArgSize = VA.getValVT().getStoreSize();
+
+ int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ SDValue ArgValue;
+
+ // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
+ ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
+ MVT MemVT = VA.getValVT();
+
+ switch (VA.getLocInfo()) {
+ default:
+ break;
+ case CCValAssign::BCvt:
+ MemVT = VA.getLocVT();
+ break;
+ case CCValAssign::SExt:
+ ExtType = ISD::SEXTLOAD;
+ break;
+ case CCValAssign::ZExt:
+ ExtType = ISD::ZEXTLOAD;
+ break;
+ case CCValAssign::AExt:
+ ExtType = ISD::EXTLOAD;
+ break;
+ }
+
+ ArgValue = DAG.getExtLoad(
+ ExtType, SL, VA.getLocVT(), Chain, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
+ MemVT);
+ return ArgValue;
+}
+
+SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
+ const SIMachineFunctionInfo &MFI,
+ EVT VT,
+ AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
+ const ArgDescriptor *Reg;
+ const TargetRegisterClass *RC;
+
+ std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
+ return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
+}
+
+static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
+ CallingConv::ID CallConv,
+ ArrayRef<ISD::InputArg> Ins,
+ BitVector &Skipped,
+ FunctionType *FType,
+ SIMachineFunctionInfo *Info) {
+ for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
+ const ISD::InputArg *Arg = &Ins[I];
+
+ assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
+ "vector type argument should have been split");
+
+ // First check if it's a PS input addr.
+ if (CallConv == CallingConv::AMDGPU_PS &&
+ !Arg->Flags.isInReg() && PSInputNum <= 15) {
+ bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
+
+ // Inconveniently only the first part of the split is marked as isSplit,
+ // so skip to the end. We only want to increment PSInputNum once for the
+ // entire split argument.
+ if (Arg->Flags.isSplit()) {
+ while (!Arg->Flags.isSplitEnd()) {
+ assert(!Arg->VT.isVector() &&
+ "unexpected vector split in ps argument type");
+ if (!SkipArg)
+ Splits.push_back(*Arg);
+ Arg = &Ins[++I];
+ }
+ }
+
+ if (SkipArg) {
+ // We can safely skip PS inputs.
+ Skipped.set(Arg->getOrigArgIndex());
+ ++PSInputNum;
+ continue;
+ }
+
+ Info->markPSInputAllocated(PSInputNum);
+ if (Arg->Used)
+ Info->markPSInputEnabled(PSInputNum);
+
+ ++PSInputNum;
+ }
+
+ Splits.push_back(*Arg);
+ }
+}
+
+// Allocate special inputs passed in VGPRs.
+static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
+ MachineFunction &MF,
+ const SIRegisterInfo &TRI,
+ SIMachineFunctionInfo &Info) {
+ if (Info.hasWorkItemIDX()) {
+ unsigned Reg = AMDGPU::VGPR0;
+ MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
+
+ CCInfo.AllocateReg(Reg);
+ Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
+ }
+
+ if (Info.hasWorkItemIDY()) {
+ unsigned Reg = AMDGPU::VGPR1;
+ MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
+
+ CCInfo.AllocateReg(Reg);
+ Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
+ }
+
+ if (Info.hasWorkItemIDZ()) {
+ unsigned Reg = AMDGPU::VGPR2;
+ MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
+
+ CCInfo.AllocateReg(Reg);
+ Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
+ }
+}
+
+// Try to allocate a VGPR at the end of the argument list, or if no argument
+// VGPRs are left allocating a stack slot.
+// If \p Mask is is given it indicates bitfield position in the register.
+// If \p Arg is given use it with new ]p Mask instead of allocating new.
+static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
+ ArgDescriptor Arg = ArgDescriptor()) {
+ if (Arg.isSet())
+ return ArgDescriptor::createArg(Arg, Mask);
+
+ ArrayRef<MCPhysReg> ArgVGPRs
+ = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
+ unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
+ if (RegIdx == ArgVGPRs.size()) {
+ // Spill to stack required.
+ int64_t Offset = CCInfo.AllocateStack(4, 4);
+
+ return ArgDescriptor::createStack(Offset, Mask);
+ }
+
+ unsigned Reg = ArgVGPRs[RegIdx];
+ Reg = CCInfo.AllocateReg(Reg);
+ assert(Reg != AMDGPU::NoRegister);
+
+ MachineFunction &MF = CCInfo.getMachineFunction();
+ MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
+ return ArgDescriptor::createRegister(Reg, Mask);
+}
+
+static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
+ const TargetRegisterClass *RC,
+ unsigned NumArgRegs) {
+ ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
+ unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
+ if (RegIdx == ArgSGPRs.size())
+ report_fatal_error("ran out of SGPRs for arguments");
+
+ unsigned Reg = ArgSGPRs[RegIdx];
+ Reg = CCInfo.AllocateReg(Reg);
+ assert(Reg != AMDGPU::NoRegister);
+
+ MachineFunction &MF = CCInfo.getMachineFunction();
+ MF.addLiveIn(Reg, RC);
+ return ArgDescriptor::createRegister(Reg);
+}
+
+static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
+ return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
+}
+
+static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
+ return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
+}
+
+static void allocateSpecialInputVGPRs(CCState &CCInfo,
+ MachineFunction &MF,
+ const SIRegisterInfo &TRI,
+ SIMachineFunctionInfo &Info) {
+ const unsigned Mask = 0x3ff;
+ ArgDescriptor Arg;
+
+ if (Info.hasWorkItemIDX()) {
+ Arg = allocateVGPR32Input(CCInfo, Mask);
+ Info.setWorkItemIDX(Arg);
+ }
+
+ if (Info.hasWorkItemIDY()) {
+ Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
+ Info.setWorkItemIDY(Arg);
+ }
+
+ if (Info.hasWorkItemIDZ())
+ Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
+}
+
+static void allocateSpecialInputSGPRs(CCState &CCInfo,
+ MachineFunction &MF,
+ const SIRegisterInfo &TRI,
+ SIMachineFunctionInfo &Info) {
+ auto &ArgInfo = Info.getArgInfo();
+
+ // TODO: Unify handling with private memory pointers.
+
+ if (Info.hasDispatchPtr())
+ ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
+
+ if (Info.hasQueuePtr())
+ ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
+
+ if (Info.hasKernargSegmentPtr())
+ ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
+
+ if (Info.hasDispatchID())
+ ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
+
+ // flat_scratch_init is not applicable for non-kernel functions.
+
+ if (Info.hasWorkGroupIDX())
+ ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
+
+ if (Info.hasWorkGroupIDY())
+ ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
+
+ if (Info.hasWorkGroupIDZ())
+ ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
+
+ if (Info.hasImplicitArgPtr())
+ ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
+}
+
+// Allocate special inputs passed in user SGPRs.
+static void allocateHSAUserSGPRs(CCState &CCInfo,
+ MachineFunction &MF,
+ const SIRegisterInfo &TRI,
+ SIMachineFunctionInfo &Info) {
+ if (Info.hasImplicitBufferPtr()) {
+ unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
+ MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(ImplicitBufferPtrReg);
+ }
+
+ // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
+ if (Info.hasPrivateSegmentBuffer()) {
+ unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
+ MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
+ CCInfo.AllocateReg(PrivateSegmentBufferReg);
+ }
+
+ if (Info.hasDispatchPtr()) {
+ unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
+ MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(DispatchPtrReg);
+ }
+
+ if (Info.hasQueuePtr()) {
+ unsigned QueuePtrReg = Info.addQueuePtr(TRI);
+ MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(QueuePtrReg);
+ }
+
+ if (Info.hasKernargSegmentPtr()) {
+ unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
+ MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(InputPtrReg);
+ }
+
+ if (Info.hasDispatchID()) {
+ unsigned DispatchIDReg = Info.addDispatchID(TRI);
+ MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(DispatchIDReg);
+ }
+
+ if (Info.hasFlatScratchInit()) {
+ unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
+ MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(FlatScratchInitReg);
+ }
+
+ // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
+ // these from the dispatch pointer.
+}
+
+// Allocate special input registers that are initialized per-wave.
+static void allocateSystemSGPRs(CCState &CCInfo,
+ MachineFunction &MF,
+ SIMachineFunctionInfo &Info,
+ CallingConv::ID CallConv,
+ bool IsShader) {
+ if (Info.hasWorkGroupIDX()) {
+ unsigned Reg = Info.addWorkGroupIDX();
+ MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Info.hasWorkGroupIDY()) {
+ unsigned Reg = Info.addWorkGroupIDY();
+ MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Info.hasWorkGroupIDZ()) {
+ unsigned Reg = Info.addWorkGroupIDZ();
+ MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Info.hasWorkGroupInfo()) {
+ unsigned Reg = Info.addWorkGroupInfo();
+ MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Info.hasPrivateSegmentWaveByteOffset()) {
+ // Scratch wave offset passed in system SGPR.
+ unsigned PrivateSegmentWaveByteOffsetReg;
+
+ if (IsShader) {
+ PrivateSegmentWaveByteOffsetReg =
+ Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
+
+ // This is true if the scratch wave byte offset doesn't have a fixed
+ // location.
+ if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
+ PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
+ Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
+ }
+ } else
+ PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
+
+ MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
+ CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
+ }
+}
+
+static void reservePrivateMemoryRegs(const TargetMachine &TM,
+ MachineFunction &MF,
+ const SIRegisterInfo &TRI,
+ SIMachineFunctionInfo &Info) {
+ // Now that we've figured out where the scratch register inputs are, see if
+ // should reserve the arguments and use them directly.
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool HasStackObjects = MFI.hasStackObjects();
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+
+ // Record that we know we have non-spill stack objects so we don't need to
+ // check all stack objects later.
+ if (HasStackObjects)
+ Info.setHasNonSpillStackObjects(true);
+
+ // Everything live out of a block is spilled with fast regalloc, so it's
+ // almost certain that spilling will be required.
+ if (TM.getOptLevel() == CodeGenOpt::None)
+ HasStackObjects = true;
+
+ // For now assume stack access is needed in any callee functions, so we need
+ // the scratch registers to pass in.
+ bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
+
+ if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
+ // If we have stack objects, we unquestionably need the private buffer
+ // resource. For the Code Object V2 ABI, this will be the first 4 user
+ // SGPR inputs. We can reserve those and use them directly.
+
+ unsigned PrivateSegmentBufferReg =
+ Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
+ Info.setScratchRSrcReg(PrivateSegmentBufferReg);
+ } else {
+ unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
+ // We tentatively reserve the last registers (skipping the last registers
+ // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
+ // we'll replace these with the ones immediately after those which were
+ // really allocated. In the prologue copies will be inserted from the
+ // argument to these reserved registers.
+
+ // Without HSA, relocations are used for the scratch pointer and the
+ // buffer resource setup is always inserted in the prologue. Scratch wave
+ // offset is still in an input SGPR.
+ Info.setScratchRSrcReg(ReservedBufferReg);
+ }
+
+ // hasFP should be accurate for kernels even before the frame is finalized.
+ if (ST.getFrameLowering()->hasFP(MF)) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Try to use s32 as the SP, but move it if it would interfere with input
+ // arguments. This won't work with calls though.
+ //
+ // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
+ // registers.
+ if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
+ Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
+ } else {
+ assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
+
+ if (MFI.hasCalls())
+ report_fatal_error("call in graphics shader with too many input SGPRs");
+
+ for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
+ if (!MRI.isLiveIn(Reg)) {
+ Info.setStackPtrOffsetReg(Reg);
+ break;
+ }
+ }
+
+ if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
+ report_fatal_error("failed to find register for SP");
+ }
+
+ if (MFI.hasCalls()) {
+ Info.setScratchWaveOffsetReg(AMDGPU::SGPR33);
+ Info.setFrameOffsetReg(AMDGPU::SGPR33);
+ } else {
+ unsigned ReservedOffsetReg =
+ TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
+ Info.setScratchWaveOffsetReg(ReservedOffsetReg);
+ Info.setFrameOffsetReg(ReservedOffsetReg);
+ }
+ } else if (RequiresStackAccess) {
+ assert(!MFI.hasCalls());
+ // We know there are accesses and they will be done relative to SP, so just
+ // pin it to the input.
+ //
+ // FIXME: Should not do this if inline asm is reading/writing these
+ // registers.
+ unsigned PreloadedSP = Info.getPreloadedReg(
+ AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
+
+ Info.setStackPtrOffsetReg(PreloadedSP);
+ Info.setScratchWaveOffsetReg(PreloadedSP);
+ Info.setFrameOffsetReg(PreloadedSP);
+ } else {
+ assert(!MFI.hasCalls());
+
+ // There may not be stack access at all. There may still be spills, or
+ // access of a constant pointer (in which cases an extra copy will be
+ // emitted in the prolog).
+ unsigned ReservedOffsetReg
+ = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
+ Info.setStackPtrOffsetReg(ReservedOffsetReg);
+ Info.setScratchWaveOffsetReg(ReservedOffsetReg);
+ Info.setFrameOffsetReg(ReservedOffsetReg);
+ }
+}
+
+bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
+ const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
+ return !Info->isEntryFunction();
+}
+
+void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
+
+}
+
+void SITargetLowering::insertCopiesSplitCSR(
+ MachineBasicBlock *Entry,
+ const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
+ const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
+
+ const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
+ if (!IStart)
+ return;
+
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
+ MachineBasicBlock::iterator MBBI = Entry->begin();
+ for (const MCPhysReg *I = IStart; *I; ++I) {
+ const TargetRegisterClass *RC = nullptr;
+ if (AMDGPU::SReg_64RegClass.contains(*I))
+ RC = &AMDGPU::SGPR_64RegClass;
+ else if (AMDGPU::SReg_32RegClass.contains(*I))
+ RC = &AMDGPU::SGPR_32RegClass;
+ else
+ llvm_unreachable("Unexpected register class in CSRsViaCopy!");
+
+ unsigned NewVR = MRI->createVirtualRegister(RC);
+ // Create copy from CSR to a virtual register.
+ Entry->addLiveIn(*I);
+ BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
+ .addReg(*I);
+
+ // Insert the copy-back instructions right before the terminator.
+ for (auto *Exit : Exits)
+ BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
+ TII->get(TargetOpcode::COPY), *I)
+ .addReg(NewVR);
+ }
+}
+
+SDValue SITargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
+ const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const Function &Fn = MF.getFunction();
+ FunctionType *FType = MF.getFunction().getFunctionType();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
+ DiagnosticInfoUnsupported NoGraphicsHSA(
+ Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
+ DAG.getContext()->diagnose(NoGraphicsHSA);
+ return DAG.getEntryNode();
+ }
+
+ SmallVector<ISD::InputArg, 16> Splits;
+ SmallVector<CCValAssign, 16> ArgLocs;
+ BitVector Skipped(Ins.size());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ bool IsShader = AMDGPU::isShader(CallConv);
+ bool IsKernel = AMDGPU::isKernel(CallConv);
+ bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
+
+ if (IsShader) {
+ processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
+
+ // At least one interpolation mode must be enabled or else the GPU will
+ // hang.
+ //
+ // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
+ // set PSInputAddr, the user wants to enable some bits after the compilation
+ // based on run-time states. Since we can't know what the final PSInputEna
+ // will look like, so we shouldn't do anything here and the user should take
+ // responsibility for the correct programming.
+ //
+ // Otherwise, the following restrictions apply:
+ // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
+ // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
+ // enabled too.
+ if (CallConv == CallingConv::AMDGPU_PS) {
+ if ((Info->getPSInputAddr() & 0x7F) == 0 ||
+ ((Info->getPSInputAddr() & 0xF) == 0 &&
+ Info->isPSInputAllocated(11))) {
+ CCInfo.AllocateReg(AMDGPU::VGPR0);
+ CCInfo.AllocateReg(AMDGPU::VGPR1);
+ Info->markPSInputAllocated(0);
+ Info->markPSInputEnabled(0);
+ }
+ if (Subtarget->isAmdPalOS()) {
+ // For isAmdPalOS, the user does not enable some bits after compilation
+ // based on run-time states; the register values being generated here are
+ // the final ones set in hardware. Therefore we need to apply the
+ // workaround to PSInputAddr and PSInputEnable together. (The case where
+ // a bit is set in PSInputAddr but not PSInputEnable is where the
+ // frontend set up an input arg for a particular interpolation mode, but
+ // nothing uses that input arg. Really we should have an earlier pass
+ // that removes such an arg.)
+ unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
+ if ((PsInputBits & 0x7F) == 0 ||
+ ((PsInputBits & 0xF) == 0 &&
+ (PsInputBits >> 11 & 1)))
+ Info->markPSInputEnabled(
+ countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
+ }
+ }
+
+ assert(!Info->hasDispatchPtr() &&
+ !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
+ !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
+ !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
+ !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
+ !Info->hasWorkItemIDZ());
+ } else if (IsKernel) {
+ assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
+ } else {
+ Splits.append(Ins.begin(), Ins.end());
+ }
+
+ if (IsEntryFunc) {
+ allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
+ allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
+ }
+
+ if (IsKernel) {
+ analyzeFormalArgumentsCompute(CCInfo, Ins);
+ } else {
+ CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
+ CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
+ }
+
+ SmallVector<SDValue, 16> Chains;
+
+ // FIXME: This is the minimum kernel argument alignment. We should improve
+ // this to the maximum alignment of the arguments.
+ //
+ // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
+ // kern arg offset.
+ const unsigned KernelArgBaseAlign = 16;
+
+ for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
+ const ISD::InputArg &Arg = Ins[i];
+ if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
+ InVals.push_back(DAG.getUNDEF(Arg.VT));
+ continue;
+ }
+
+ CCValAssign &VA = ArgLocs[ArgIdx++];
+ MVT VT = VA.getLocVT();
+
+ if (IsEntryFunc && VA.isMemLoc()) {
+ VT = Ins[i].VT;
+ EVT MemVT = VA.getLocVT();
+
+ const uint64_t Offset = VA.getLocMemOffset();
+ unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
+
+ SDValue Arg = lowerKernargMemParameter(
+ DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
+ Chains.push_back(Arg.getValue(1));
+
+ auto *ParamTy =
+ dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
+ if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
+ ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
+ ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
+ // On SI local pointers are just offsets into LDS, so they are always
+ // less than 16-bits. On CI and newer they could potentially be
+ // real pointers, so we can't guarantee their size.
+ Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
+ DAG.getValueType(MVT::i16));
+ }
+
+ InVals.push_back(Arg);
+ continue;
+ } else if (!IsEntryFunc && VA.isMemLoc()) {
+ SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
+ InVals.push_back(Val);
+ if (!Arg.Flags.isByVal())
+ Chains.push_back(Val.getValue(1));
+ continue;
+ }
+
+ assert(VA.isRegLoc() && "Parameter must be in a register!");
+
+ unsigned Reg = VA.getLocReg();
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
+ EVT ValVT = VA.getValVT();
+
+ Reg = MF.addLiveIn(Reg, RC);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
+
+ if (Arg.Flags.isSRet()) {
+ // The return object should be reasonably addressable.
+
+ // FIXME: This helps when the return is a real sret. If it is a
+ // automatically inserted sret (i.e. CanLowerReturn returns false), an
+ // extra copy is inserted in SelectionDAGBuilder which obscures this.
+ unsigned NumBits
+ = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
+ Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
+ DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
+ }
+
+ // If this is an 8 or 16-bit value, it is really passed promoted
+ // to 32 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
+ break;
+ case CCValAssign::SExt:
+ Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
+ DAG.getValueType(ValVT));
+ Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
+ break;
+ case CCValAssign::ZExt:
+ Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
+ DAG.getValueType(ValVT));
+ Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
+ break;
+ case CCValAssign::AExt:
+ Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
+ break;
+ default:
+ llvm_unreachable("Unknown loc info!");
+ }
+
+ InVals.push_back(Val);
+ }
+
+ if (!IsEntryFunc) {
+ // Special inputs come after user arguments.
+ allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
+ }
+
+ // Start adding system SGPRs.
+ if (IsEntryFunc) {
+ allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
+ } else {
+ CCInfo.AllocateReg(Info->getScratchRSrcReg());
+ CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
+ CCInfo.AllocateReg(Info->getFrameOffsetReg());
+ allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
+ }
+
+ auto &ArgUsageInfo =
+ DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
+ ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
+
+ unsigned StackArgSize = CCInfo.getNextStackOffset();
+ Info->setBytesInStackArgArea(StackArgSize);
+
+ return Chains.empty() ? Chain :
+ DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+}
+
+// TODO: If return values can't fit in registers, we should return as many as
+// possible in registers before passing on stack.
+bool SITargetLowering::CanLowerReturn(
+ CallingConv::ID CallConv,
+ MachineFunction &MF, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ // Replacing returns with sret/stack usage doesn't make sense for shaders.
+ // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
+ // for shaders. Vector types should be explicitly handled by CC.
+ if (AMDGPU::isEntryFunctionCC(CallConv))
+ return true;
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
+}
+
+SDValue
+SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &DL, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ if (AMDGPU::isKernel(CallConv)) {
+ return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
+ OutVals, DL, DAG);
+ }
+
+ bool IsShader = AMDGPU::isShader(CallConv);
+
+ Info->setIfReturnsVoid(Outs.empty());
+ bool IsWaveEnd = Info->returnsVoid() && IsShader;
+
+ // CCValAssign - represent the assignment of the return value to a location.
+ SmallVector<CCValAssign, 48> RVLocs;
+ SmallVector<ISD::OutputArg, 48> Splits;
+
+ // CCState - Info about the registers and stack slots.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Analyze outgoing return values.
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
+
+ SDValue Flag;
+ SmallVector<SDValue, 48> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+
+ // Add return address for callable functions.
+ if (!Info->isEntryFunction()) {
+ const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
+ SDValue ReturnAddrReg = CreateLiveInRegister(
+ DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
+
+ SDValue ReturnAddrVirtualReg = DAG.getRegister(
+ MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
+ MVT::i64);
+ Chain =
+ DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(ReturnAddrVirtualReg);
+ }
+
+ // Copy the result values into the output registers.
+ for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
+ ++I, ++RealRVLocIdx) {
+ CCValAssign &VA = RVLocs[I];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ // TODO: Partially return in registers if return values don't fit.
+ SDValue Arg = OutVals[RealRVLocIdx];
+
+ // Copied from other backends.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ default:
+ llvm_unreachable("Unknown loc info!");
+ }
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // FIXME: Does sret work properly?
+ if (!Info->isEntryFunction()) {
+ const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
+ const MCPhysReg *I =
+ TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
+ if (I) {
+ for (; *I; ++I) {
+ if (AMDGPU::SReg_64RegClass.contains(*I))
+ RetOps.push_back(DAG.getRegister(*I, MVT::i64));
+ else if (AMDGPU::SReg_32RegClass.contains(*I))
+ RetOps.push_back(DAG.getRegister(*I, MVT::i32));
+ else
+ llvm_unreachable("Unexpected register class in CSRsViaCopy!");
+ }
+ }
+ }
+
+ // Update chain and glue.
+ RetOps[0] = Chain;
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ unsigned Opc = AMDGPUISD::ENDPGM;
+ if (!IsWaveEnd)
+ Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
+ return DAG.getNode(Opc, DL, MVT::Other, RetOps);
+}
+
+SDValue SITargetLowering::LowerCallResult(
+ SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
+ SDValue ThisVal) const {
+ CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign VA = RVLocs[i];
+ SDValue Val;
+
+ if (VA.isRegLoc()) {
+ Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+ } else if (VA.isMemLoc()) {
+ report_fatal_error("TODO: return values in memory");
+ } else
+ llvm_unreachable("unknown argument location type");
+
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
+ break;
+ case CCValAssign::ZExt:
+ Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
+ DAG.getValueType(VA.getValVT()));
+ Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
+ break;
+ case CCValAssign::SExt:
+ Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
+ DAG.getValueType(VA.getValVT()));
+ Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
+ break;
+ case CCValAssign::AExt:
+ Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
+ break;
+ default:
+ llvm_unreachable("Unknown loc info!");
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+// Add code to pass special inputs required depending on used features separate
+// from the explicit user arguments present in the IR.
+void SITargetLowering::passSpecialInputs(
+ CallLoweringInfo &CLI,
+ CCState &CCInfo,
+ const SIMachineFunctionInfo &Info,
+ SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
+ SmallVectorImpl<SDValue> &MemOpChains,
+ SDValue Chain) const {
+ // If we don't have a call site, this was a call inserted by
+ // legalization. These can never use special inputs.
+ if (!CLI.CS)
+ return;
+
+ const Function *CalleeFunc = CLI.CS.getCalledFunction();
+ assert(CalleeFunc);
+
+ SelectionDAG &DAG = CLI.DAG;
+ const SDLoc &DL = CLI.DL;
+
+ const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
+
+ auto &ArgUsageInfo =
+ DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
+ const AMDGPUFunctionArgInfo &CalleeArgInfo
+ = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
+
+ const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
+
+ // TODO: Unify with private memory register handling. This is complicated by
+ // the fact that at least in kernels, the input argument is not necessarily
+ // in the same location as the input.
+ AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
+ AMDGPUFunctionArgInfo::DISPATCH_PTR,
+ AMDGPUFunctionArgInfo::QUEUE_PTR,
+ AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
+ AMDGPUFunctionArgInfo::DISPATCH_ID,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
+ AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
+ };
+
+ for (auto InputID : InputRegs) {
+ const ArgDescriptor *OutgoingArg;
+ const TargetRegisterClass *ArgRC;
+
+ std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
+ if (!OutgoingArg)
+ continue;
+
+ const ArgDescriptor *IncomingArg;
+ const TargetRegisterClass *IncomingArgRC;
+ std::tie(IncomingArg, IncomingArgRC)
+ = CallerArgInfo.getPreloadedValue(InputID);
+ assert(IncomingArgRC == ArgRC);
+
+ // All special arguments are ints for now.
+ EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
+ SDValue InputReg;
+
+ if (IncomingArg) {
+ InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
+ } else {
+ // The implicit arg ptr is special because it doesn't have a corresponding
+ // input for kernels, and is computed from the kernarg segment pointer.
+ assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
+ InputReg = getImplicitArgPtr(DAG, DL);
+ }
+
+ if (OutgoingArg->isRegister()) {
+ RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
+ } else {
+ unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
+ SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
+ SpecialArgOffset);
+ MemOpChains.push_back(ArgStore);
+ }
+ }
+
+ // Pack workitem IDs into a single register or pass it as is if already
+ // packed.
+ const ArgDescriptor *OutgoingArg;
+ const TargetRegisterClass *ArgRC;
+
+ std::tie(OutgoingArg, ArgRC) =
+ CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
+ if (!OutgoingArg)
+ std::tie(OutgoingArg, ArgRC) =
+ CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
+ if (!OutgoingArg)
+ std::tie(OutgoingArg, ArgRC) =
+ CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
+ if (!OutgoingArg)
+ return;
+
+ const ArgDescriptor *IncomingArgX
+ = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first;
+ const ArgDescriptor *IncomingArgY
+ = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first;
+ const ArgDescriptor *IncomingArgZ
+ = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first;
+
+ SDValue InputReg;
+ SDLoc SL;
+
+ // If incoming ids are not packed we need to pack them.
+ if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX)
+ InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
+
+ if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) {
+ SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
+ Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
+ DAG.getShiftAmountConstant(10, MVT::i32, SL));
+ InputReg = InputReg.getNode() ?
+ DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
+ }
+
+ if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) {
+ SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
+ Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
+ DAG.getShiftAmountConstant(20, MVT::i32, SL));
+ InputReg = InputReg.getNode() ?
+ DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
+ }
+
+ if (!InputReg.getNode()) {
+ // Workitem ids are already packed, any of present incoming arguments
+ // will carry all required fields.
+ ArgDescriptor IncomingArg = ArgDescriptor::createArg(
+ IncomingArgX ? *IncomingArgX :
+ IncomingArgY ? *IncomingArgY :
+ *IncomingArgZ, ~0u);
+ InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
+ }
+
+ if (OutgoingArg->isRegister()) {
+ RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
+ } else {
+ unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4);
+ SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
+ SpecialArgOffset);
+ MemOpChains.push_back(ArgStore);
+ }
+}
+
+static bool canGuaranteeTCO(CallingConv::ID CC) {
+ return CC == CallingConv::Fast;
+}
+
+/// Return true if we might ever do TCO for calls with this calling convention.
+static bool mayTailCallThisCC(CallingConv::ID CC) {
+ switch (CC) {
+ case CallingConv::C:
+ return true;
+ default:
+ return canGuaranteeTCO(CC);
+ }
+}
+
+bool SITargetLowering::isEligibleForTailCallOptimization(
+ SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
+ if (!mayTailCallThisCC(CalleeCC))
+ return false;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const Function &CallerF = MF.getFunction();
+ CallingConv::ID CallerCC = CallerF.getCallingConv();
+ const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
+ const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
+
+ // Kernels aren't callable, and don't have a live in return address so it
+ // doesn't make sense to do a tail call with entry functions.
+ if (!CallerPreserved)
+ return false;
+
+ bool CCMatch = CallerCC == CalleeCC;
+
+ if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
+ if (canGuaranteeTCO(CalleeCC) && CCMatch)
+ return true;
+ return false;
+ }
+
+ // TODO: Can we handle var args?
+ if (IsVarArg)
+ return false;
+
+ for (const Argument &Arg : CallerF.args()) {
+ if (Arg.hasByValAttr())
+ return false;
+ }
+
+ LLVMContext &Ctx = *DAG.getContext();
+
+ // Check that the call results are passed in the same way.
+ if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
+ CCAssignFnForCall(CalleeCC, IsVarArg),
+ CCAssignFnForCall(CallerCC, IsVarArg)))
+ return false;
+
+ // The callee has to preserve all registers the caller needs to preserve.
+ if (!CCMatch) {
+ const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
+ if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
+ return false;
+ }
+
+ // Nothing more to check if the callee is taking no arguments.
+ if (Outs.empty())
+ return true;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
+
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
+
+ const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
+ // If the stack arguments for this call do not fit into our own save area then
+ // the call cannot be made tail.
+ // TODO: Is this really necessary?
+ if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
+ return false;
+
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
+}
+
+bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
+ if (!CI->isTailCall())
+ return false;
+
+ const Function *ParentFn = CI->getParent()->getParent();
+ if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
+ return false;
+
+ auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
+ return (Attr.getValueAsString() != "true");
+}
+
+// The wave scratch offset register is used as the global base pointer.
+SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ const SDLoc &DL = CLI.DL;
+ SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
+ SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
+ SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &IsTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+ bool IsSibCall = false;
+ bool IsThisReturn = false;
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ if (IsVarArg) {
+ return lowerUnhandledCall(CLI, InVals,
+ "unsupported call to variadic function ");
+ }
+
+ if (!CLI.CS.getInstruction())
+ report_fatal_error("unsupported libcall legalization");
+
+ if (!CLI.CS.getCalledFunction()) {
+ return lowerUnhandledCall(CLI, InVals,
+ "unsupported indirect call to function ");
+ }
+
+ if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
+ return lowerUnhandledCall(CLI, InVals,
+ "unsupported required tail call to function ");
+ }
+
+ if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
+ // Note the issue is with the CC of the calling function, not of the call
+ // itself.
+ return lowerUnhandledCall(CLI, InVals,
+ "unsupported call from graphics shader of function ");
+ }
+
+ if (IsTailCall) {
+ IsTailCall = isEligibleForTailCallOptimization(
+ Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
+ if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+ }
+
+ bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
+
+ // A sibling call is one where we're under the usual C ABI and not planning
+ // to change that but can still do a tail call:
+ if (!TailCallOpt && IsTailCall)
+ IsSibCall = true;
+
+ if (IsTailCall)
+ ++NumTailCalls;
+ }
+
+ const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
+ CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
+
+ CCInfo.AnalyzeCallOperands(Outs, AssignFn);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ if (IsSibCall) {
+ // Since we're not changing the ABI to make this a tail call, the memory
+ // operands are already available in the caller's incoming argument space.
+ NumBytes = 0;
+ }
+
+ // FPDiff is the byte offset of the call's argument area from the callee's.
+ // Stores to callee stack arguments will be placed in FixedStackSlots offset
+ // by this amount for a tail call. In a sibling call it must be 0 because the
+ // caller will deallocate the entire stack and the callee still expects its
+ // arguments to begin at SP+0. Completely unused for non-tail calls.
+ int32_t FPDiff = 0;
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ if (!IsSibCall) {
+ Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
+
+ SmallVector<SDValue, 4> CopyFromChains;
+
+ // In the HSA case, this should be an identity copy.
+ SDValue ScratchRSrcReg
+ = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
+ RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
+ CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
+ Chain = DAG.getTokenFactor(DL, CopyFromChains);
+ }
+
+ SmallVector<SDValue, 8> MemOpChains;
+ MVT PtrVT = MVT::i32;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[realArgIdx];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::FPExt:
+ Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ default:
+ llvm_unreachable("Unknown loc info!");
+ }
+
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ SDValue DstAddr;
+ MachinePointerInfo DstInfo;
+
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ int32_t Offset = LocMemOffset;
+
+ SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
+ unsigned Align = 0;
+
+ if (IsTailCall) {
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+ unsigned OpSize = Flags.isByVal() ?
+ Flags.getByValSize() : VA.getValVT().getStoreSize();
+
+ // FIXME: We can have better than the minimum byval required alignment.
+ Align = Flags.isByVal() ? Flags.getByValAlign() :
+ MinAlign(Subtarget->getStackAlignment(), Offset);
+
+ Offset = Offset + FPDiff;
+ int FI = MFI.CreateFixedObject(OpSize, Offset, true);
+
+ DstAddr = DAG.getFrameIndex(FI, PtrVT);
+ DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
+
+ // Make sure any stack arguments overlapping with where we're storing
+ // are loaded before this eventual operation. Otherwise they'll be
+ // clobbered.
+
+ // FIXME: Why is this really necessary? This seems to just result in a
+ // lot of code to copy the stack and write them back to the same
+ // locations, which are supposed to be immutable?
+ Chain = addTokenForArgument(Chain, DAG, MFI, FI);
+ } else {
+ DstAddr = PtrOff;
+ DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
+ Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset);
+ }
+
+ if (Outs[i].Flags.isByVal()) {
+ SDValue SizeNode =
+ DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
+ SDValue Cpy = DAG.getMemcpy(
+ Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
+ /*isVol = */ false, /*AlwaysInline = */ true,
+ /*isTailCall = */ false, DstInfo,
+ MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
+ *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))));
+
+ MemOpChains.push_back(Cpy);
+ } else {
+ SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align);
+ MemOpChains.push_back(Store);
+ }
+ }
+ }
+
+ // Copy special input registers after user input arguments.
+ passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (auto &RegToPass : RegsToPass) {
+ Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
+ RegToPass.second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+
+ SDValue PhysReturnAddrReg;
+ if (IsTailCall) {
+ // Since the return is being combined with the call, we need to pass on the
+ // return address.
+
+ const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
+ SDValue ReturnAddrReg = CreateLiveInRegister(
+ DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
+
+ PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
+ MVT::i64);
+ Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // We don't usually want to end the call-sequence here because we would tidy
+ // the frame up *after* the call, however in the ABI-changing tail-call case
+ // we've carefully laid out the parameters so that when sp is reset they'll be
+ // in the correct location.
+ if (IsTailCall && !IsSibCall) {
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getTargetConstant(NumBytes, DL, MVT::i32),
+ DAG.getTargetConstant(0, DL, MVT::i32),
+ InFlag, DL);
+ InFlag = Chain.getValue(1);
+ }
+
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ // Add a redundant copy of the callee global which will not be legalized, as
+ // we need direct access to the callee later.
+ GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
+ const GlobalValue *GV = GSD->getGlobal();
+ Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
+
+ if (IsTailCall) {
+ // Each tail call may have to adjust the stack by a different amount, so
+ // this information must travel along with the operation for eventual
+ // consumption by emitEpilogue.
+ Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
+
+ Ops.push_back(PhysReturnAddrReg);
+ }
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (auto &RegToPass : RegsToPass) {
+ Ops.push_back(DAG.getRegister(RegToPass.first,
+ RegToPass.second.getValueType()));
+ }
+
+ // Add a register mask operand representing the call-preserved registers.
+
+ auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
+ const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ // If we're doing a tall call, use a TC_RETURN here rather than an
+ // actual call instruction.
+ if (IsTailCall) {
+ MFI.setHasTailCall();
+ return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
+ }
+
+ // Returns a chain and a flag for retval copy to use.
+ SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
+ Chain = Call.getValue(0);
+ InFlag = Call.getValue(1);
+
+ uint64_t CalleePopBytes = NumBytes;
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
+ DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
+ InFlag, DL);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
+ InVals, IsThisReturn,
+ IsThisReturn ? OutVals[0] : SDValue());
+}
+
+unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
+ SelectionDAG &DAG) const {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("m0", AMDGPU::M0)
+ .Case("exec", AMDGPU::EXEC)
+ .Case("exec_lo", AMDGPU::EXEC_LO)
+ .Case("exec_hi", AMDGPU::EXEC_HI)
+ .Case("flat_scratch", AMDGPU::FLAT_SCR)
+ .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
+ .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
+ .Default(AMDGPU::NoRegister);
+
+ if (Reg == AMDGPU::NoRegister) {
+ report_fatal_error(Twine("invalid register name \""
+ + StringRef(RegName) + "\"."));
+
+ }
+
+ if (!Subtarget->hasFlatScrRegister() &&
+ Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
+ report_fatal_error(Twine("invalid register \""
+ + StringRef(RegName) + "\" for subtarget."));
+ }
+
+ switch (Reg) {
+ case AMDGPU::M0:
+ case AMDGPU::EXEC_LO:
+ case AMDGPU::EXEC_HI:
+ case AMDGPU::FLAT_SCR_LO:
+ case AMDGPU::FLAT_SCR_HI:
+ if (VT.getSizeInBits() == 32)
+ return Reg;
+ break;
+ case AMDGPU::EXEC:
+ case AMDGPU::FLAT_SCR:
+ if (VT.getSizeInBits() == 64)
+ return Reg;
+ break;
+ default:
+ llvm_unreachable("missing register type checking");
+ }
+
+ report_fatal_error(Twine("invalid type for register \""
+ + StringRef(RegName) + "\"."));
+}
+
+// If kill is not the last instruction, split the block so kill is always a
+// proper terminator.
+MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+
+ MachineBasicBlock::iterator SplitPoint(&MI);
+ ++SplitPoint;
+
+ if (SplitPoint == BB->end()) {
+ // Don't bother with a new block.
+ MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
+ return BB;
+ }
+
+ MachineFunction *MF = BB->getParent();
+ MachineBasicBlock *SplitBB
+ = MF->CreateMachineBasicBlock(BB->getBasicBlock());
+
+ MF->insert(++MachineFunction::iterator(BB), SplitBB);
+ SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
+
+ SplitBB->transferSuccessorsAndUpdatePHIs(BB);
+ BB->addSuccessor(SplitBB);
+
+ MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
+ return SplitBB;
+}
+
+// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
+// \p MI will be the only instruction in the loop body block. Otherwise, it will
+// be the first instruction in the remainder block.
+//
+/// \returns { LoopBody, Remainder }
+static std::pair<MachineBasicBlock *, MachineBasicBlock *>
+splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
+ MachineFunction *MF = MBB.getParent();
+ MachineBasicBlock::iterator I(&MI);
+
+ // To insert the loop we need to split the block. Move everything after this
+ // point to a new block, and insert a new empty block between the two.
+ MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
+ MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
+ MachineFunction::iterator MBBI(MBB);
+ ++MBBI;
+
+ MF->insert(MBBI, LoopBB);
+ MF->insert(MBBI, RemainderBB);
+
+ LoopBB->addSuccessor(LoopBB);
+ LoopBB->addSuccessor(RemainderBB);
+
+ // Move the rest of the block into a new block.
+ RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
+
+ if (InstInLoop) {
+ auto Next = std::next(I);
+
+ // Move instruction to loop body.
+ LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
+
+ // Move the rest of the block.
+ RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
+ } else {
+ RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
+ }
+
+ MBB.addSuccessor(LoopBB);
+
+ return std::make_pair(LoopBB, RemainderBB);
+}
+
+MachineBasicBlock *
+SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ const DebugLoc &DL = MI.getDebugLoc();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+
+ MachineBasicBlock *LoopBB;
+ MachineBasicBlock *RemainderBB;
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+
+ MachineBasicBlock::iterator Prev = std::prev(MI.getIterator());
+
+ std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
+
+ MachineBasicBlock::iterator I = LoopBB->end();
+ MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
+
+ const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
+ AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
+
+ // Clear TRAP_STS.MEM_VIOL
+ BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
+ .addImm(0)
+ .addImm(EncodedReg);
+
+ // This is a pain, but we're not allowed to have physical register live-ins
+ // yet. Insert a pair of copies if the VGPR0 hack is necessary.
+ if (Src && TargetRegisterInfo::isPhysicalRegister(Src->getReg())) {
+ unsigned Data0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ BuildMI(*BB, std::next(Prev), DL, TII->get(AMDGPU::COPY), Data0)
+ .add(*Src);
+
+ BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::COPY), Src->getReg())
+ .addReg(Data0);
+
+ MRI.setSimpleHint(Data0, Src->getReg());
+ }
+
+ BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_WAITCNT))
+ .addImm(0);
+
+ unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
+
+ // Load and check TRAP_STS.MEM_VIOL
+ BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
+ .addImm(EncodedReg);
+
+ // FIXME: Do we need to use an isel pseudo that may clobber scc?
+ BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
+ .addReg(Reg, RegState::Kill)
+ .addImm(0);
+ BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
+ .addMBB(LoopBB);
+
+ return RemainderBB;
+}
+
+// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
+// wavefront. If the value is uniform and just happens to be in a VGPR, this
+// will only do one iteration. In the worst case, this will loop 64 times.
+//
+// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
+static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
+ const SIInstrInfo *TII,
+ MachineRegisterInfo &MRI,
+ MachineBasicBlock &OrigBB,
+ MachineBasicBlock &LoopBB,
+ const DebugLoc &DL,
+ const MachineOperand &IdxReg,
+ unsigned InitReg,
+ unsigned ResultReg,
+ unsigned PhiReg,
+ unsigned InitSaveExecReg,
+ int Offset,
+ bool UseGPRIdxMode,
+ bool IsIndirectSrc) {
+ MachineFunction *MF = OrigBB.getParent();
+ const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+ MachineBasicBlock::iterator I = LoopBB.begin();
+
+ const TargetRegisterClass *BoolRC = TRI->getBoolRC();
+ unsigned PhiExec = MRI.createVirtualRegister(BoolRC);
+ unsigned NewExec = MRI.createVirtualRegister(BoolRC);
+ unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned CondReg = MRI.createVirtualRegister(BoolRC);
+
+ BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
+ .addReg(InitReg)
+ .addMBB(&OrigBB)
+ .addReg(ResultReg)
+ .addMBB(&LoopBB);
+
+ BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
+ .addReg(InitSaveExecReg)
+ .addMBB(&OrigBB)
+ .addReg(NewExec)
+ .addMBB(&LoopBB);
+
+ // Read the next variant <- also loop target.
+ BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
+ .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
+
+ // Compare the just read M0 value to all possible Idx values.
+ BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
+ .addReg(CurrentIdxReg)
+ .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
+
+ // Update EXEC, save the original EXEC value to VCC.
+ BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
+ : AMDGPU::S_AND_SAVEEXEC_B64),
+ NewExec)
+ .addReg(CondReg, RegState::Kill);
+
+ MRI.setSimpleHint(NewExec, CondReg);
+
+ if (UseGPRIdxMode) {
+ unsigned IdxReg;
+ if (Offset == 0) {
+ IdxReg = CurrentIdxReg;
+ } else {
+ IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
+ .addReg(CurrentIdxReg, RegState::Kill)
+ .addImm(Offset);
+ }
+ unsigned IdxMode = IsIndirectSrc ?
+ AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
+ MachineInstr *SetOn =
+ BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
+ .addReg(IdxReg, RegState::Kill)
+ .addImm(IdxMode);
+ SetOn->getOperand(3).setIsUndef();
+ } else {
+ // Move index from VCC into M0
+ if (Offset == 0) {
+ BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
+ .addReg(CurrentIdxReg, RegState::Kill);
+ } else {
+ BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
+ .addReg(CurrentIdxReg, RegState::Kill)
+ .addImm(Offset);
+ }
+ }
+
+ // Update EXEC, switch all done bits to 0 and all todo bits to 1.
+ unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
+ MachineInstr *InsertPt =
+ BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
+ : AMDGPU::S_XOR_B64_term), Exec)
+ .addReg(Exec)
+ .addReg(NewExec);
+
+ // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
+ // s_cbranch_scc0?
+
+ // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
+ BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
+ .addMBB(&LoopBB);
+
+ return InsertPt->getIterator();
+}
+
+// This has slightly sub-optimal regalloc when the source vector is killed by
+// the read. The register allocator does not understand that the kill is
+// per-workitem, so is kept alive for the whole loop so we end up not re-using a
+// subregister from it, using 1 more VGPR than necessary. This was saved when
+// this was expanded after register allocation.
+static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
+ MachineBasicBlock &MBB,
+ MachineInstr &MI,
+ unsigned InitResultReg,
+ unsigned PhiReg,
+ int Offset,
+ bool UseGPRIdxMode,
+ bool IsIndirectSrc) {
+ MachineFunction *MF = MBB.getParent();
+ const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ const DebugLoc &DL = MI.getDebugLoc();
+ MachineBasicBlock::iterator I(&MI);
+
+ const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
+ unsigned DstReg = MI.getOperand(0).getReg();
+ unsigned SaveExec = MRI.createVirtualRegister(BoolXExecRC);
+ unsigned TmpExec = MRI.createVirtualRegister(BoolXExecRC);
+ unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
+ unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
+
+ BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
+
+ // Save the EXEC mask
+ BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
+ .addReg(Exec);
+
+ MachineBasicBlock *LoopBB;
+ MachineBasicBlock *RemainderBB;
+ std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
+
+ const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
+
+ auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
+ InitResultReg, DstReg, PhiReg, TmpExec,
+ Offset, UseGPRIdxMode, IsIndirectSrc);
+
+ MachineBasicBlock::iterator First = RemainderBB->begin();
+ BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec)
+ .addReg(SaveExec);
+
+ return InsPt;
+}
+
+// Returns subreg index, offset
+static std::pair<unsigned, int>
+computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
+ const TargetRegisterClass *SuperRC,
+ unsigned VecReg,
+ int Offset) {
+ int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
+
+ // Skip out of bounds offsets, or else we would end up using an undefined
+ // register.
+ if (Offset >= NumElts || Offset < 0)
+ return std::make_pair(AMDGPU::sub0, Offset);
+
+ return std::make_pair(AMDGPU::sub0 + Offset, 0);
+}
+
+// Return true if the index is an SGPR and was set.
+static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
+ MachineRegisterInfo &MRI,
+ MachineInstr &MI,
+ int Offset,
+ bool UseGPRIdxMode,
+ bool IsIndirectSrc) {
+ MachineBasicBlock *MBB = MI.getParent();
+ const DebugLoc &DL = MI.getDebugLoc();
+ MachineBasicBlock::iterator I(&MI);
+
+ const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
+ const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
+
+ assert(Idx->getReg() != AMDGPU::NoRegister);
+
+ if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
+ return false;
+
+ if (UseGPRIdxMode) {
+ unsigned IdxMode = IsIndirectSrc ?
+ AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
+ if (Offset == 0) {
+ MachineInstr *SetOn =
+ BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
+ .add(*Idx)
+ .addImm(IdxMode);
+
+ SetOn->getOperand(3).setIsUndef();
+ } else {
+ unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
+ BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
+ .add(*Idx)
+ .addImm(Offset);
+ MachineInstr *SetOn =
+ BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
+ .addReg(Tmp, RegState::Kill)
+ .addImm(IdxMode);
+
+ SetOn->getOperand(3).setIsUndef();
+ }
+
+ return true;
+ }
+
+ if (Offset == 0) {
+ BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
+ .add(*Idx);
+ } else {
+ BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
+ .add(*Idx)
+ .addImm(Offset);
+ }
+
+ return true;
+}
+
+// Control flow needs to be inserted if indexing with a VGPR.
+static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ const GCNSubtarget &ST) {
+ const SIInstrInfo *TII = ST.getInstrInfo();
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+ MachineFunction *MF = MBB.getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ unsigned Dst = MI.getOperand(0).getReg();
+ unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
+ int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
+
+ const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
+
+ unsigned SubReg;
+ std::tie(SubReg, Offset)
+ = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
+
+ bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
+
+ if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
+ MachineBasicBlock::iterator I(&MI);
+ const DebugLoc &DL = MI.getDebugLoc();
+
+ if (UseGPRIdxMode) {
+ // TODO: Look at the uses to avoid the copy. This may require rescheduling
+ // to avoid interfering with other uses, so probably requires a new
+ // optimization pass.
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
+ .addReg(SrcReg, RegState::Undef, SubReg)
+ .addReg(SrcReg, RegState::Implicit)
+ .addReg(AMDGPU::M0, RegState::Implicit);
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
+ } else {
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
+ .addReg(SrcReg, RegState::Undef, SubReg)
+ .addReg(SrcReg, RegState::Implicit);
+ }
+
+ MI.eraseFromParent();
+
+ return &MBB;
+ }
+
+ const DebugLoc &DL = MI.getDebugLoc();
+ MachineBasicBlock::iterator I(&MI);
+
+ unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+
+ BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
+
+ auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
+ Offset, UseGPRIdxMode, true);
+ MachineBasicBlock *LoopBB = InsPt->getParent();
+
+ if (UseGPRIdxMode) {
+ BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
+ .addReg(SrcReg, RegState::Undef, SubReg)
+ .addReg(SrcReg, RegState::Implicit)
+ .addReg(AMDGPU::M0, RegState::Implicit);
+ BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
+ } else {
+ BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
+ .addReg(SrcReg, RegState::Undef, SubReg)
+ .addReg(SrcReg, RegState::Implicit);
+ }
+
+ MI.eraseFromParent();
+
+ return LoopBB;
+}
+
+static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
+ const TargetRegisterClass *VecRC) {
+ switch (TRI.getRegSizeInBits(*VecRC)) {
+ case 32: // 4 bytes
+ return AMDGPU::V_MOVRELD_B32_V1;
+ case 64: // 8 bytes
+ return AMDGPU::V_MOVRELD_B32_V2;
+ case 128: // 16 bytes
+ return AMDGPU::V_MOVRELD_B32_V4;
+ case 256: // 32 bytes
+ return AMDGPU::V_MOVRELD_B32_V8;
+ case 512: // 64 bytes
+ return AMDGPU::V_MOVRELD_B32_V16;
+ default:
+ llvm_unreachable("unsupported size for MOVRELD pseudos");
+ }
+}
+
+static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ const GCNSubtarget &ST) {
+ const SIInstrInfo *TII = ST.getInstrInfo();
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+ MachineFunction *MF = MBB.getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ unsigned Dst = MI.getOperand(0).getReg();
+ const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
+ const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
+ const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
+ int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
+ const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
+
+ // This can be an immediate, but will be folded later.
+ assert(Val->getReg());
+
+ unsigned SubReg;
+ std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
+ SrcVec->getReg(),
+ Offset);
+ bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
+
+ if (Idx->getReg() == AMDGPU::NoRegister) {
+ MachineBasicBlock::iterator I(&MI);
+ const DebugLoc &DL = MI.getDebugLoc();
+
+ assert(Offset == 0);
+
+ BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
+ .add(*SrcVec)
+ .add(*Val)
+ .addImm(SubReg);
+
+ MI.eraseFromParent();
+ return &MBB;
+ }
+
+ if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
+ MachineBasicBlock::iterator I(&MI);
+ const DebugLoc &DL = MI.getDebugLoc();
+
+ if (UseGPRIdxMode) {
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
+ .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
+ .add(*Val)
+ .addReg(Dst, RegState::ImplicitDefine)
+ .addReg(SrcVec->getReg(), RegState::Implicit)
+ .addReg(AMDGPU::M0, RegState::Implicit);
+
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
+ } else {
+ const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
+
+ BuildMI(MBB, I, DL, MovRelDesc)
+ .addReg(Dst, RegState::Define)
+ .addReg(SrcVec->getReg())
+ .add(*Val)
+ .addImm(SubReg - AMDGPU::sub0);
+ }
+
+ MI.eraseFromParent();
+ return &MBB;
+ }
+
+ if (Val->isReg())
+ MRI.clearKillFlags(Val->getReg());
+
+ const DebugLoc &DL = MI.getDebugLoc();
+
+ unsigned PhiReg = MRI.createVirtualRegister(VecRC);
+
+ auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
+ Offset, UseGPRIdxMode, false);
+ MachineBasicBlock *LoopBB = InsPt->getParent();
+
+ if (UseGPRIdxMode) {
+ BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
+ .addReg(PhiReg, RegState::Undef, SubReg) // vdst
+ .add(*Val) // src0
+ .addReg(Dst, RegState::ImplicitDefine)
+ .addReg(PhiReg, RegState::Implicit)
+ .addReg(AMDGPU::M0, RegState::Implicit);
+ BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
+ } else {
+ const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
+
+ BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
+ .addReg(Dst, RegState::Define)
+ .addReg(PhiReg)
+ .add(*Val)
+ .addImm(SubReg - AMDGPU::sub0);
+ }
+
+ MI.eraseFromParent();
+
+ return LoopBB;
+}
+
+MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
+ MachineInstr &MI, MachineBasicBlock *BB) const {
+
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+ MachineFunction *MF = BB->getParent();
+ SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
+
+ if (TII->isMIMG(MI)) {
+ if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
+ report_fatal_error("missing mem operand from MIMG instruction");
+ }
+ // Add a memoperand for mimg instructions so that they aren't assumed to
+ // be ordered memory instuctions.
+
+ return BB;
+ }
+
+ switch (MI.getOpcode()) {
+ case AMDGPU::S_ADD_U64_PSEUDO:
+ case AMDGPU::S_SUB_U64_PSEUDO: {
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+ const TargetRegisterClass *BoolRC = TRI->getBoolRC();
+ const DebugLoc &DL = MI.getDebugLoc();
+
+ MachineOperand &Dest = MI.getOperand(0);
+ MachineOperand &Src0 = MI.getOperand(1);
+ MachineOperand &Src1 = MI.getOperand(2);
+
+ unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
+ unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
+
+ MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
+ Src0, BoolRC, AMDGPU::sub0,
+ &AMDGPU::SReg_32_XM0RegClass);
+ MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
+ Src0, BoolRC, AMDGPU::sub1,
+ &AMDGPU::SReg_32_XM0RegClass);
+
+ MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
+ Src1, BoolRC, AMDGPU::sub0,
+ &AMDGPU::SReg_32_XM0RegClass);
+ MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
+ Src1, BoolRC, AMDGPU::sub1,
+ &AMDGPU::SReg_32_XM0RegClass);
+
+ bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
+
+ unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
+ unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
+ BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
+ .add(Src0Sub0)
+ .add(Src1Sub0);
+ BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
+ .add(Src0Sub1)
+ .add(Src1Sub1);
+ BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
+ .addReg(DestSub0)
+ .addImm(AMDGPU::sub0)
+ .addReg(DestSub1)
+ .addImm(AMDGPU::sub1);
+ MI.eraseFromParent();
+ return BB;
+ }
+ case AMDGPU::SI_INIT_M0: {
+ BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
+ TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
+ .add(MI.getOperand(0));
+ MI.eraseFromParent();
+ return BB;
+ }
+ case AMDGPU::SI_INIT_EXEC:
+ // This should be before all vector instructions.
+ BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
+ AMDGPU::EXEC)
+ .addImm(MI.getOperand(0).getImm());
+ MI.eraseFromParent();
+ return BB;
+
+ case AMDGPU::SI_INIT_EXEC_LO:
+ // This should be before all vector instructions.
+ BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
+ AMDGPU::EXEC_LO)
+ .addImm(MI.getOperand(0).getImm());
+ MI.eraseFromParent();
+ return BB;
+
+ case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
+ // Extract the thread count from an SGPR input and set EXEC accordingly.
+ // Since BFM can't shift by 64, handle that case with CMP + CMOV.
+ //
+ // S_BFE_U32 count, input, {shift, 7}
+ // S_BFM_B64 exec, count, 0
+ // S_CMP_EQ_U32 count, 64
+ // S_CMOV_B64 exec, -1
+ MachineInstr *FirstMI = &*BB->begin();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ unsigned InputReg = MI.getOperand(0).getReg();
+ unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ bool Found = false;
+
+ // Move the COPY of the input reg to the beginning, so that we can use it.
+ for (auto I = BB->begin(); I != &MI; I++) {
+ if (I->getOpcode() != TargetOpcode::COPY ||
+ I->getOperand(0).getReg() != InputReg)
+ continue;
+
+ if (I == FirstMI) {
+ FirstMI = &*++BB->begin();
+ } else {
+ I->removeFromParent();
+ BB->insert(FirstMI, &*I);
+ }
+ Found = true;
+ break;
+ }
+ assert(Found);
+ (void)Found;
+
+ // This should be before all vector instructions.
+ unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
+ bool isWave32 = getSubtarget()->isWave32();
+ unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
+ BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
+ .addReg(InputReg)
+ .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
+ BuildMI(*BB, FirstMI, DebugLoc(),
+ TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
+ Exec)
+ .addReg(CountReg)
+ .addImm(0);
+ BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
+ .addReg(CountReg, RegState::Kill)
+ .addImm(getSubtarget()->getWavefrontSize());
+ BuildMI(*BB, FirstMI, DebugLoc(),
+ TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
+ Exec)
+ .addImm(-1);
+ MI.eraseFromParent();
+ return BB;
+ }
+
+ case AMDGPU::GET_GROUPSTATICSIZE: {
+ assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
+ getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
+ DebugLoc DL = MI.getDebugLoc();
+ BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
+ .add(MI.getOperand(0))
+ .addImm(MFI->getLDSSize());
+ MI.eraseFromParent();
+ return BB;
+ }
+ case AMDGPU::SI_INDIRECT_SRC_V1:
+ case AMDGPU::SI_INDIRECT_SRC_V2:
+ case AMDGPU::SI_INDIRECT_SRC_V4:
+ case AMDGPU::SI_INDIRECT_SRC_V8:
+ case AMDGPU::SI_INDIRECT_SRC_V16:
+ return emitIndirectSrc(MI, *BB, *getSubtarget());
+ case AMDGPU::SI_INDIRECT_DST_V1:
+ case AMDGPU::SI_INDIRECT_DST_V2:
+ case AMDGPU::SI_INDIRECT_DST_V4:
+ case AMDGPU::SI_INDIRECT_DST_V8:
+ case AMDGPU::SI_INDIRECT_DST_V16:
+ return emitIndirectDst(MI, *BB, *getSubtarget());
+ case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
+ case AMDGPU::SI_KILL_I1_PSEUDO:
+ return splitKillBlock(MI, BB);
+ case AMDGPU::V_CNDMASK_B64_PSEUDO: {
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+
+ unsigned Dst = MI.getOperand(0).getReg();
+ unsigned Src0 = MI.getOperand(1).getReg();
+ unsigned Src1 = MI.getOperand(2).getReg();
+ const DebugLoc &DL = MI.getDebugLoc();
+ unsigned SrcCond = MI.getOperand(3).getReg();
+
+ unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
+ unsigned SrcCondCopy = MRI.createVirtualRegister(CondRC);
+
+ BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
+ .addReg(SrcCond);
+ BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
+ .addImm(0)
+ .addReg(Src0, 0, AMDGPU::sub0)
+ .addImm(0)
+ .addReg(Src1, 0, AMDGPU::sub0)
+ .addReg(SrcCondCopy);
+ BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
+ .addImm(0)
+ .addReg(Src0, 0, AMDGPU::sub1)
+ .addImm(0)
+ .addReg(Src1, 0, AMDGPU::sub1)
+ .addReg(SrcCondCopy);
+
+ BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
+ .addReg(DstLo)
+ .addImm(AMDGPU::sub0)
+ .addReg(DstHi)
+ .addImm(AMDGPU::sub1);
+ MI.eraseFromParent();
+ return BB;
+ }
+ case AMDGPU::SI_BR_UNDEF: {
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+ const DebugLoc &DL = MI.getDebugLoc();
+ MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
+ .add(MI.getOperand(0));
+ Br->getOperand(1).setIsUndef(true); // read undef SCC
+ MI.eraseFromParent();
+ return BB;
+ }
+ case AMDGPU::ADJCALLSTACKUP:
+ case AMDGPU::ADJCALLSTACKDOWN: {
+ const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
+ MachineInstrBuilder MIB(*MF, &MI);
+
+ // Add an implicit use of the frame offset reg to prevent the restore copy
+ // inserted after the call from being reorderd after stack operations in the
+ // the caller's frame.
+ MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
+ .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
+ .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
+ return BB;
+ }
+ case AMDGPU::SI_CALL_ISEL: {
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+ const DebugLoc &DL = MI.getDebugLoc();
+
+ unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
+
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
+
+ for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
+ MIB.add(MI.getOperand(I));
+
+ MIB.cloneMemRefs(MI);
+ MI.eraseFromParent();
+ return BB;
+ }
+ case AMDGPU::V_ADD_I32_e32:
+ case AMDGPU::V_SUB_I32_e32:
+ case AMDGPU::V_SUBREV_I32_e32: {
+ // TODO: Define distinct V_*_I32_Pseudo instructions instead.
+ const DebugLoc &DL = MI.getDebugLoc();
+ unsigned Opc = MI.getOpcode();
+
+ bool NeedClampOperand = false;
+ if (TII->pseudoToMCOpcode(Opc) == -1) {
+ Opc = AMDGPU::getVOPe64(Opc);
+ NeedClampOperand = true;
+ }
+
+ auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
+ if (TII->isVOP3(*I)) {
+ const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+ I.addReg(TRI->getVCC(), RegState::Define);
+ }
+ I.add(MI.getOperand(1))
+ .add(MI.getOperand(2));
+ if (NeedClampOperand)
+ I.addImm(0); // clamp bit for e64 encoding
+
+ TII->legalizeOperands(*I);
+
+ MI.eraseFromParent();
+ return BB;
+ }
+ case AMDGPU::DS_GWS_INIT:
+ case AMDGPU::DS_GWS_SEMA_V:
+ case AMDGPU::DS_GWS_SEMA_BR:
+ case AMDGPU::DS_GWS_SEMA_P:
+ case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
+ case AMDGPU::DS_GWS_BARRIER:
+ if (getSubtarget()->hasGWSAutoReplay())
+ return BB;
+ return emitGWSMemViolTestLoop(MI, BB);
+ default:
+ return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
+ }
+}
+
+bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
+ return isTypeLegal(VT.getScalarType());
+}
+
+bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
+ // This currently forces unfolding various combinations of fsub into fma with
+ // free fneg'd operands. As long as we have fast FMA (controlled by
+ // isFMAFasterThanFMulAndFAdd), we should perform these.
+
+ // When fma is quarter rate, for f64 where add / sub are at best half rate,
+ // most of these combines appear to be cycle neutral but save on instruction
+ // count / code size.
+ return true;
+}
+
+EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
+ EVT VT) const {
+ if (!VT.isVector()) {
+ return MVT::i1;
+ }
+ return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
+}
+
+MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
+ // TODO: Should i16 be used always if legal? For now it would force VALU
+ // shifts.
+ return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
+}
+
+// Answering this is somewhat tricky and depends on the specific device which
+// have different rates for fma or all f64 operations.
+//
+// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
+// regardless of which device (although the number of cycles differs between
+// devices), so it is always profitable for f64.
+//
+// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
+// only on full rate devices. Normally, we should prefer selecting v_mad_f32
+// which we can always do even without fused FP ops since it returns the same
+// result as the separate operations and since it is always full
+// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
+// however does not support denormals, so we do report fma as faster if we have
+// a fast fma device and require denormals.
+//
+bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32: {
+ // This is as fast on some subtargets. However, we always have full rate f32
+ // mad available which returns the same result as the separate operations
+ // which we should prefer over fma. We can't use this if we want to support
+ // denormals, so only report this in these cases.
+ if (Subtarget->hasFP32Denormals())
+ return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
+
+ // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
+ return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
+ }
+ case MVT::f64:
+ return true;
+ case MVT::f16:
+ return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
+ default:
+ break;
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG Lowering Operations
+//===----------------------------------------------------------------------===//
+
+// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
+// wider vector type is legal.
+SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned Opc = Op.getOpcode();
+ EVT VT = Op.getValueType();
+ assert(VT == MVT::v4f16);
+
+ SDValue Lo, Hi;
+ std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
+
+ SDLoc SL(Op);
+ SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
+ Op->getFlags());
+ SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
+ Op->getFlags());
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
+}
+
+// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
+// wider vector type is legal.
+SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned Opc = Op.getOpcode();
+ EVT VT = Op.getValueType();
+ assert(VT == MVT::v4i16 || VT == MVT::v4f16);
+
+ SDValue Lo0, Hi0;
+ std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
+ SDValue Lo1, Hi1;
+ std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
+
+ SDLoc SL(Op);
+
+ SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
+ Op->getFlags());
+ SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
+ Op->getFlags());
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
+}
+
+SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::LOAD: {
+ SDValue Result = LowerLOAD(Op, DAG);
+ assert((!Result.getNode() ||
+ Result.getNode()->getNumValues() == 2) &&
+ "Load should return a value and a chain");
+ return Result;
+ }
+
+ case ISD::FSIN:
+ case ISD::FCOS:
+ return LowerTrig(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::FDIV: return LowerFDIV(Op, DAG);
+ case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
+ case ISD::GlobalAddress: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ return LowerGlobalAddress(MFI, Op, DAG);
+ }
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
+ case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
+ case ISD::INSERT_SUBVECTOR:
+ return lowerINSERT_SUBVECTOR(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT:
+ return lowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT:
+ return lowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::VECTOR_SHUFFLE:
+ return lowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::BUILD_VECTOR:
+ return lowerBUILD_VECTOR(Op, DAG);
+ case ISD::FP_ROUND:
+ return lowerFP_ROUND(Op, DAG);
+ case ISD::TRAP:
+ return lowerTRAP(Op, DAG);
+ case ISD::DEBUGTRAP:
+ return lowerDEBUGTRAP(Op, DAG);
+ case ISD::FABS:
+ case ISD::FNEG:
+ case ISD::FCANONICALIZE:
+ return splitUnaryVectorOp(Op, DAG);
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+ return lowerFMINNUM_FMAXNUM(Op, DAG);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ case ISD::SMIN:
+ case ISD::SMAX:
+ case ISD::UMIN:
+ case ISD::UMAX:
+ case ISD::FADD:
+ case ISD::FMUL:
+ case ISD::FMINNUM_IEEE:
+ case ISD::FMAXNUM_IEEE:
+ return splitBinaryVectorOp(Op, DAG);
+ }
+ return SDValue();
+}
+
+static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
+ const SDLoc &DL,
+ SelectionDAG &DAG, bool Unpacked) {
+ if (!LoadVT.isVector())
+ return Result;
+
+ if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
+ // Truncate to v2i16/v4i16.
+ EVT IntLoadVT = LoadVT.changeTypeToInteger();
+
+ // Workaround legalizer not scalarizing truncate after vector op
+ // legalization byt not creating intermediate vector trunc.
+ SmallVector<SDValue, 4> Elts;
+ DAG.ExtractVectorElements(Result, Elts);
+ for (SDValue &Elt : Elts)
+ Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
+
+ Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
+
+ // Bitcast to original type (v2f16/v4f16).
+ return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
+ }
+
+ // Cast back to the original packed type.
+ return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
+}
+
+SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
+ MemSDNode *M,
+ SelectionDAG &DAG,
+ ArrayRef<SDValue> Ops,
+ bool IsIntrinsic) const {
+ SDLoc DL(M);
+
+ bool Unpacked = Subtarget->hasUnpackedD16VMem();
+ EVT LoadVT = M->getValueType(0);
+
+ EVT EquivLoadVT = LoadVT;
+ if (Unpacked && LoadVT.isVector()) {
+ EquivLoadVT = LoadVT.isVector() ?
+ EVT::getVectorVT(*DAG.getContext(), MVT::i32,
+ LoadVT.getVectorNumElements()) : LoadVT;
+ }
+
+ // Change from v4f16/v2f16 to EquivLoadVT.
+ SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
+
+ SDValue Load
+ = DAG.getMemIntrinsicNode(
+ IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
+ VTList, Ops, M->getMemoryVT(),
+ M->getMemOperand());
+ if (!Unpacked) // Just adjusted the opcode.
+ return Load;
+
+ SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
+
+ return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
+}
+
+static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
+ SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
+ int CondCode = CD->getSExtValue();
+ if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
+ CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
+ return DAG.getUNDEF(VT);
+
+ ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
+
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+
+ SDLoc DL(N);
+
+ EVT CmpVT = LHS.getValueType();
+ if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
+ unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
+ ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
+ RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
+ }
+
+ ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
+
+ unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
+ EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
+
+ SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
+ DAG.getCondCode(CCOpcode));
+ if (VT.bitsEq(CCVT))
+ return SetCC;
+ return DAG.getZExtOrTrunc(SetCC, DL, VT);
+}
+
+static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
+ SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
+
+ int CondCode = CD->getSExtValue();
+ if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
+ CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
+ return DAG.getUNDEF(VT);
+ }
+
+ SDValue Src0 = N->getOperand(1);
+ SDValue Src1 = N->getOperand(2);
+ EVT CmpVT = Src0.getValueType();
+ SDLoc SL(N);
+
+ if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
+ Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
+ Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
+ }
+
+ FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
+ ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
+ unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
+ EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
+ SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
+ Src1, DAG.getCondCode(CCOpcode));
+ if (VT.bitsEq(CCVT))
+ return SetCC;
+ return DAG.getZExtOrTrunc(SetCC, SL, VT);
+}
+
+void SITargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ case ISD::INSERT_VECTOR_ELT: {
+ if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
+ Results.push_back(Res);
+ return;
+ }
+ case ISD::EXTRACT_VECTOR_ELT: {
+ if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
+ Results.push_back(Res);
+ return;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IID) {
+ case Intrinsic::amdgcn_cvt_pkrtz: {
+ SDValue Src0 = N->getOperand(1);
+ SDValue Src1 = N->getOperand(2);
+ SDLoc SL(N);
+ SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
+ Src0, Src1);
+ Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
+ return;
+ }
+ case Intrinsic::amdgcn_cvt_pknorm_i16:
+ case Intrinsic::amdgcn_cvt_pknorm_u16:
+ case Intrinsic::amdgcn_cvt_pk_i16:
+ case Intrinsic::amdgcn_cvt_pk_u16: {
+ SDValue Src0 = N->getOperand(1);
+ SDValue Src1 = N->getOperand(2);
+ SDLoc SL(N);
+ unsigned Opcode;
+
+ if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
+ Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
+ else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
+ Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
+ else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
+ Opcode = AMDGPUISD::CVT_PK_I16_I32;
+ else
+ Opcode = AMDGPUISD::CVT_PK_U16_U32;
+
+ EVT VT = N->getValueType(0);
+ if (isTypeLegal(VT))
+ Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
+ else {
+ SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
+ Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
+ }
+ return;
+ }
+ }
+ break;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
+ Results.push_back(Res);
+ Results.push_back(Res.getValue(1));
+ return;
+ }
+
+ break;
+ }
+ case ISD::SELECT: {
+ SDLoc SL(N);
+ EVT VT = N->getValueType(0);
+ EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
+ SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
+ SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
+
+ EVT SelectVT = NewVT;
+ if (NewVT.bitsLT(MVT::i32)) {
+ LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
+ RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
+ SelectVT = MVT::i32;
+ }
+
+ SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
+ N->getOperand(0), LHS, RHS);
+
+ if (NewVT != SelectVT)
+ NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
+ Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
+ return;
+ }
+ case ISD::FNEG: {
+ if (N->getValueType(0) != MVT::v2f16)
+ break;
+
+ SDLoc SL(N);
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
+
+ SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
+ BC,
+ DAG.getConstant(0x80008000, SL, MVT::i32));
+ Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
+ return;
+ }
+ case ISD::FABS: {
+ if (N->getValueType(0) != MVT::v2f16)
+ break;
+
+ SDLoc SL(N);
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
+
+ SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
+ BC,
+ DAG.getConstant(0x7fff7fff, SL, MVT::i32));
+ Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
+ return;
+ }
+ default:
+ break;
+ }
+}
+
+/// Helper function for LowerBRCOND
+static SDNode *findUser(SDValue Value, unsigned Opcode) {
+
+ SDNode *Parent = Value.getNode();
+ for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
+ I != E; ++I) {
+
+ if (I.getUse().get() != Value)
+ continue;
+
+ if (I->getOpcode() == Opcode)
+ return *I;
+ }
+ return nullptr;
+}
+
+unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
+ if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
+ switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
+ case Intrinsic::amdgcn_if:
+ return AMDGPUISD::IF;
+ case Intrinsic::amdgcn_else:
+ return AMDGPUISD::ELSE;
+ case Intrinsic::amdgcn_loop:
+ return AMDGPUISD::LOOP;
+ case Intrinsic::amdgcn_end_cf:
+ llvm_unreachable("should not occur");
+ default:
+ return 0;
+ }
+ }
+
+ // break, if_break, else_break are all only used as inputs to loop, not
+ // directly as branch conditions.
+ return 0;
+}
+
+bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
+ const Triple &TT = getTargetMachine().getTargetTriple();
+ return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
+ GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
+ AMDGPU::shouldEmitConstantsToTextSection(TT);
+}
+
+bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
+ // FIXME: Either avoid relying on address space here or change the default
+ // address space for functions to avoid the explicit check.
+ return (GV->getValueType()->isFunctionTy() ||
+ GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
+ GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
+ GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
+ !shouldEmitFixup(GV) &&
+ !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
+}
+
+bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
+ return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
+}
+
+/// This transforms the control flow intrinsics to get the branch destination as
+/// last parameter, also switches branch target with BR if the need arise
+SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
+ SelectionDAG &DAG) const {
+ SDLoc DL(BRCOND);
+
+ SDNode *Intr = BRCOND.getOperand(1).getNode();
+ SDValue Target = BRCOND.getOperand(2);
+ SDNode *BR = nullptr;
+ SDNode *SetCC = nullptr;
+
+ if (Intr->getOpcode() == ISD::SETCC) {
+ // As long as we negate the condition everything is fine
+ SetCC = Intr;
+ Intr = SetCC->getOperand(0).getNode();
+
+ } else {
+ // Get the target from BR if we don't negate the condition
+ BR = findUser(BRCOND, ISD::BR);
+ Target = BR->getOperand(1);
+ }
+
+ // FIXME: This changes the types of the intrinsics instead of introducing new
+ // nodes with the correct types.
+ // e.g. llvm.amdgcn.loop
+
+ // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
+ // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
+
+ unsigned CFNode = isCFIntrinsic(Intr);
+ if (CFNode == 0) {
+ // This is a uniform branch so we don't need to legalize.
+ return BRCOND;
+ }
+
+ bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
+ Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
+
+ assert(!SetCC ||
+ (SetCC->getConstantOperandVal(1) == 1 &&
+ cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
+ ISD::SETNE));
+
+ // operands of the new intrinsic call
+ SmallVector<SDValue, 4> Ops;
+ if (HaveChain)
+ Ops.push_back(BRCOND.getOperand(0));
+
+ Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
+ Ops.push_back(Target);
+
+ ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
+
+ // build the new intrinsic call
+ SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
+
+ if (!HaveChain) {
+ SDValue Ops[] = {
+ SDValue(Result, 0),
+ BRCOND.getOperand(0)
+ };
+
+ Result = DAG.getMergeValues(Ops, DL).getNode();
+ }
+
+ if (BR) {
+ // Give the branch instruction our target
+ SDValue Ops[] = {
+ BR->getOperand(0),
+ BRCOND.getOperand(2)
+ };
+ SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
+ DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
+ BR = NewBR.getNode();
+ }
+
+ SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
+
+ // Copy the intrinsic results to registers
+ for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
+ SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
+ if (!CopyToReg)
+ continue;
+
+ Chain = DAG.getCopyToReg(
+ Chain, DL,
+ CopyToReg->getOperand(1),
+ SDValue(Result, i - 1),
+ SDValue());
+
+ DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
+ }
+
+ // Remove the old intrinsic from the chain
+ DAG.ReplaceAllUsesOfValueWith(
+ SDValue(Intr, Intr->getNumValues() - 1),
+ Intr->getOperand(0));
+
+ return Chain;
+}
+
+SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ // Checking the depth
+ if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
+ return DAG.getConstant(0, DL, VT);
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ // Check for kernel and shader functions
+ if (Info->isEntryFunction())
+ return DAG.getConstant(0, DL, VT);
+
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ // There is a call to @llvm.returnaddress in this function
+ MFI.setReturnAddressIsTaken(true);
+
+ const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
+ // Get the return address reg and mark it as an implicit live-in
+ unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
+
+ return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
+}
+
+SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
+ SDValue Op,
+ const SDLoc &DL,
+ EVT VT) const {
+ return Op.getValueType().bitsLE(VT) ?
+ DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
+ DAG.getNode(ISD::FTRUNC, DL, VT, Op);
+}
+
+SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::f16 &&
+ "Do not know how to custom lower FP_ROUND for non-f16 type");
+
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ if (SrcVT != MVT::f64)
+ return Op;
+
+ SDLoc DL(Op);
+
+ SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
+ return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
+}
+
+SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ bool IsIEEEMode = Info->getMode().IEEE;
+
+ // FIXME: Assert during eslection that this is only selected for
+ // ieee_mode. Currently a combine can produce the ieee version for non-ieee
+ // mode functions, but this happens to be OK since it's only done in cases
+ // where there is known no sNaN.
+ if (IsIEEEMode)
+ return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
+
+ if (VT == MVT::v4f16)
+ return splitBinaryVectorOp(Op, DAG);
+ return Op;
+}
+
+SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Chain = Op.getOperand(0);
+
+ if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
+ !Subtarget->isTrapHandlerEnabled())
+ return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ unsigned UserSGPR = Info->getQueuePtrUserSGPR();
+ assert(UserSGPR != AMDGPU::NoRegister);
+ SDValue QueuePtr = CreateLiveInRegister(
+ DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
+ SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
+ SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
+ QueuePtr, SDValue());
+ SDValue Ops[] = {
+ ToReg,
+ DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
+ SGPR01,
+ ToReg.getValue(1)
+ };
+ return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
+}
+
+SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Chain = Op.getOperand(0);
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
+ !Subtarget->isTrapHandlerEnabled()) {
+ DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
+ "debugtrap handler not supported",
+ Op.getDebugLoc(),
+ DS_Warning);
+ LLVMContext &Ctx = MF.getFunction().getContext();
+ Ctx.diagnose(NoTrap);
+ return Chain;
+ }
+
+ SDValue Ops[] = {
+ Chain,
+ DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
+ };
+ return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
+}
+
+SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
+ SelectionDAG &DAG) const {
+ // FIXME: Use inline constants (src_{shared, private}_base) instead.
+ if (Subtarget->hasApertureRegs()) {
+ unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
+ AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
+ AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
+ unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
+ AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
+ AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
+ unsigned Encoding =
+ AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
+ Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
+ WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
+
+ SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
+ SDValue ApertureReg = SDValue(
+ DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
+ SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
+ return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
+ }
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ unsigned UserSGPR = Info->getQueuePtrUserSGPR();
+ assert(UserSGPR != AMDGPU::NoRegister);
+
+ SDValue QueuePtr = CreateLiveInRegister(
+ DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
+
+ // Offset into amd_queue_t for group_segment_aperture_base_hi /
+ // private_segment_aperture_base_hi.
+ uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
+
+ SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
+
+ // TODO: Use custom target PseudoSourceValue.
+ // TODO: We should use the value from the IR intrinsic call, but it might not
+ // be available and how do we get it?
+ Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
+ AMDGPUAS::CONSTANT_ADDRESS));
+
+ MachinePointerInfo PtrInfo(V, StructOffset);
+ return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
+ MinAlign(64, StructOffset),
+ MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant);
+}
+
+SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
+
+ SDValue Src = ASC->getOperand(0);
+ SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
+
+ const AMDGPUTargetMachine &TM =
+ static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
+
+ // flat -> local/private
+ if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
+ unsigned DestAS = ASC->getDestAddressSpace();
+
+ if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
+ DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
+ unsigned NullVal = TM.getNullPointerValue(DestAS);
+ SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
+ SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
+ SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
+
+ return DAG.getNode(ISD::SELECT, SL, MVT::i32,
+ NonNull, Ptr, SegmentNullPtr);
+ }
+ }
+
+ // local/private -> flat
+ if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
+ unsigned SrcAS = ASC->getSrcAddressSpace();
+
+ if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
+ SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
+ unsigned NullVal = TM.getNullPointerValue(SrcAS);
+ SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
+
+ SDValue NonNull
+ = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
+
+ SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
+ SDValue CvtPtr
+ = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
+
+ return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
+ DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
+ FlatNullPtr);
+ }
+ }
+
+ // global <-> flat are no-ops and never emitted.
+
+ const MachineFunction &MF = DAG.getMachineFunction();
+ DiagnosticInfoUnsupported InvalidAddrSpaceCast(
+ MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
+ DAG.getContext()->diagnose(InvalidAddrSpaceCast);
+
+ return DAG.getUNDEF(ASC->getValueType(0));
+}
+
+// This lowers an INSERT_SUBVECTOR by extracting the individual elements from
+// the small vector and inserting them into the big vector. That is better than
+// the default expansion of doing it via a stack slot. Even though the use of
+// the stack slot would be optimized away afterwards, the stack slot itself
+// remains.
+SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Vec = Op.getOperand(0);
+ SDValue Ins = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+ EVT VecVT = Vec.getValueType();
+ EVT InsVT = Ins.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
+ unsigned InsNumElts = InsVT.getVectorNumElements();
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ SDLoc SL(Op);
+
+ for (unsigned I = 0; I != InsNumElts; ++I) {
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
+ DAG.getConstant(I, SL, MVT::i32));
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
+ DAG.getConstant(IdxVal + I, SL, MVT::i32));
+ }
+ return Vec;
+}
+
+SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Vec = Op.getOperand(0);
+ SDValue InsVal = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+ EVT VecVT = Vec.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
+ unsigned VecSize = VecVT.getSizeInBits();
+ unsigned EltSize = EltVT.getSizeInBits();
+
+
+ assert(VecSize <= 64);
+
+ unsigned NumElts = VecVT.getVectorNumElements();
+ SDLoc SL(Op);
+ auto KIdx = dyn_cast<ConstantSDNode>(Idx);
+
+ if (NumElts == 4 && EltSize == 16 && KIdx) {
+ SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
+
+ SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
+ DAG.getConstant(0, SL, MVT::i32));
+ SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
+ DAG.getConstant(1, SL, MVT::i32));
+
+ SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
+ SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
+
+ unsigned Idx = KIdx->getZExtValue();
+ bool InsertLo = Idx < 2;
+ SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
+ InsertLo ? LoVec : HiVec,
+ DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
+ DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
+
+ InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
+
+ SDValue Concat = InsertLo ?
+ DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
+ DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
+
+ return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
+ }
+
+ if (isa<ConstantSDNode>(Idx))
+ return SDValue();
+
+ MVT IntVT = MVT::getIntegerVT(VecSize);
+
+ // Avoid stack access for dynamic indexing.
+ // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
+
+ // Create a congruent vector with the target value in each element so that
+ // the required element can be masked and ORed into the target vector.
+ SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
+ DAG.getSplatBuildVector(VecVT, SL, InsVal));
+
+ assert(isPowerOf2_32(EltSize));
+ SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
+
+ // Convert vector index to bit-index.
+ SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
+
+ SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
+ SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
+ DAG.getConstant(0xffff, SL, IntVT),
+ ScaledIdx);
+
+ SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
+ SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
+ DAG.getNOT(SL, BFM, IntVT), BCVec);
+
+ SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
+ return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
+}
+
+SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+
+ EVT ResultVT = Op.getValueType();
+ SDValue Vec = Op.getOperand(0);
+ SDValue Idx = Op.getOperand(1);
+ EVT VecVT = Vec.getValueType();
+ unsigned VecSize = VecVT.getSizeInBits();
+ EVT EltVT = VecVT.getVectorElementType();
+ assert(VecSize <= 64);
+
+ DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
+
+ // Make sure we do any optimizations that will make it easier to fold
+ // source modifiers before obscuring it with bit operations.
+
+ // XXX - Why doesn't this get called when vector_shuffle is expanded?
+ if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
+ return Combined;
+
+ unsigned EltSize = EltVT.getSizeInBits();
+ assert(isPowerOf2_32(EltSize));
+
+ MVT IntVT = MVT::getIntegerVT(VecSize);
+ SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
+
+ // Convert vector index to bit-index (* EltSize)
+ SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
+
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
+ SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
+
+ if (ResultVT == MVT::f16) {
+ SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
+ return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
+ }
+
+ return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
+}
+
+static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
+ assert(Elt % 2 == 0);
+ return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
+}
+
+SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ EVT ResultVT = Op.getValueType();
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
+
+ EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
+ EVT EltVT = PackVT.getVectorElementType();
+ int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
+
+ // vector_shuffle <0,1,6,7> lhs, rhs
+ // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
+ //
+ // vector_shuffle <6,7,2,3> lhs, rhs
+ // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
+ //
+ // vector_shuffle <6,7,0,1> lhs, rhs
+ // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
+
+ // Avoid scalarizing when both halves are reading from consecutive elements.
+ SmallVector<SDValue, 4> Pieces;
+ for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
+ if (elementPairIsContiguous(SVN->getMask(), I)) {
+ const int Idx = SVN->getMaskElt(I);
+ int VecIdx = Idx < SrcNumElts ? 0 : 1;
+ int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
+ SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
+ PackVT, SVN->getOperand(VecIdx),
+ DAG.getConstant(EltIdx, SL, MVT::i32));
+ Pieces.push_back(SubVec);
+ } else {
+ const int Idx0 = SVN->getMaskElt(I);
+ const int Idx1 = SVN->getMaskElt(I + 1);
+ int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
+ int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
+ int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
+ int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
+
+ SDValue Vec0 = SVN->getOperand(VecIdx0);
+ SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
+ Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
+
+ SDValue Vec1 = SVN->getOperand(VecIdx1);
+ SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
+ Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
+ Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
+ }
+ }
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
+}
+
+SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ EVT VT = Op.getValueType();
+
+ if (VT == MVT::v4i16 || VT == MVT::v4f16) {
+ EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
+
+ // Turn into pair of packed build_vectors.
+ // TODO: Special case for constants that can be materialized with s_mov_b64.
+ SDValue Lo = DAG.getBuildVector(HalfVT, SL,
+ { Op.getOperand(0), Op.getOperand(1) });
+ SDValue Hi = DAG.getBuildVector(HalfVT, SL,
+ { Op.getOperand(2), Op.getOperand(3) });
+
+ SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
+ SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
+
+ SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
+ return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
+ }
+
+ assert(VT == MVT::v2f16 || VT == MVT::v2i16);
+ assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
+
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+
+ // Avoid adding defined bits with the zero_extend.
+ if (Hi.isUndef()) {
+ Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
+ SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
+ return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
+ }
+
+ Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
+ Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
+
+ SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
+ DAG.getConstant(16, SL, MVT::i32));
+ if (Lo.isUndef())
+ return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
+
+ Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
+
+ SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
+ return DAG.getNode(ISD::BITCAST, SL, VT, Or);
+}
+
+bool
+SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // We can fold offsets for anything that doesn't require a GOT relocation.
+ return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
+ GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
+ GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
+ !shouldEmitGOTReloc(GA->getGlobal());
+}
+
+static SDValue
+buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
+ const SDLoc &DL, unsigned Offset, EVT PtrVT,
+ unsigned GAFlags = SIInstrInfo::MO_NONE) {
+ // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
+ // lowered to the following code sequence:
+ //
+ // For constant address space:
+ // s_getpc_b64 s[0:1]
+ // s_add_u32 s0, s0, $symbol
+ // s_addc_u32 s1, s1, 0
+ //
+ // s_getpc_b64 returns the address of the s_add_u32 instruction and then
+ // a fixup or relocation is emitted to replace $symbol with a literal
+ // constant, which is a pc-relative offset from the encoding of the $symbol
+ // operand to the global variable.
+ //
+ // For global address space:
+ // s_getpc_b64 s[0:1]
+ // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
+ // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
+ //
+ // s_getpc_b64 returns the address of the s_add_u32 instruction and then
+ // fixups or relocations are emitted to replace $symbol@*@lo and
+ // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
+ // which is a 64-bit pc-relative offset from the encoding of the $symbol
+ // operand to the global variable.
+ //
+ // What we want here is an offset from the value returned by s_getpc
+ // (which is the address of the s_add_u32 instruction) to the global
+ // variable, but since the encoding of $symbol starts 4 bytes after the start
+ // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
+ // small. This requires us to add 4 to the global variable offset in order to
+ // compute the correct address.
+ unsigned LoFlags = GAFlags;
+ if (LoFlags == SIInstrInfo::MO_NONE)
+ LoFlags = SIInstrInfo::MO_REL32;
+ SDValue PtrLo =
+ DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, LoFlags);
+ SDValue PtrHi;
+ if (GAFlags == SIInstrInfo::MO_NONE) {
+ PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
+ } else {
+ PtrHi =
+ DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
+ }
+ return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
+}
+
+SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
+ SDValue Op,
+ SelectionDAG &DAG) const {
+ GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = GSD->getGlobal();
+ if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
+ (!GV->hasExternalLinkage() ||
+ getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
+ getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) ||
+ GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
+ GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
+ return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
+
+ SDLoc DL(GSD);
+ EVT PtrVT = Op.getValueType();
+
+ if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
+ SIInstrInfo::MO_ABS32_LO);
+ return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
+ }
+
+ if (shouldEmitFixup(GV))
+ return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
+ else if (shouldEmitPCReloc(GV))
+ return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
+ SIInstrInfo::MO_REL32);
+
+ SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
+ SIInstrInfo::MO_GOTPCREL32);
+
+ Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
+ PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
+ const DataLayout &DataLayout = DAG.getDataLayout();
+ unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
+ MachinePointerInfo PtrInfo
+ = MachinePointerInfo::getGOT(DAG.getMachineFunction());
+
+ return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
+ MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant);
+}
+
+SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
+ const SDLoc &DL, SDValue V) const {
+ // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
+ // the destination register.
+ //
+ // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
+ // so we will end up with redundant moves to m0.
+ //
+ // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
+
+ // A Null SDValue creates a glue result.
+ SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
+ V, Chain);
+ return SDValue(M0, 0);
+}
+
+SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
+ SDValue Op,
+ MVT VT,
+ unsigned Offset) const {
+ SDLoc SL(Op);
+ SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
+ DAG.getEntryNode(), Offset, 4, false);
+ // The local size values will have the hi 16-bits as zero.
+ return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
+ DAG.getValueType(VT));
+}
+
+static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
+ EVT VT) {
+ DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
+ "non-hsa intrinsic with hsa target",
+ DL.getDebugLoc());
+ DAG.getContext()->diagnose(BadIntrin);
+ return DAG.getUNDEF(VT);
+}
+
+static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
+ EVT VT) {
+ DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
+ "intrinsic not supported on subtarget",
+ DL.getDebugLoc());
+ DAG.getContext()->diagnose(BadIntrin);
+ return DAG.getUNDEF(VT);
+}
+
+static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
+ ArrayRef<SDValue> Elts) {
+ assert(!Elts.empty());
+ MVT Type;
+ unsigned NumElts;
+
+ if (Elts.size() == 1) {
+ Type = MVT::f32;
+ NumElts = 1;
+ } else if (Elts.size() == 2) {
+ Type = MVT::v2f32;
+ NumElts = 2;
+ } else if (Elts.size() <= 4) {
+ Type = MVT::v4f32;
+ NumElts = 4;
+ } else if (Elts.size() <= 8) {
+ Type = MVT::v8f32;
+ NumElts = 8;
+ } else {
+ assert(Elts.size() <= 16);
+ Type = MVT::v16f32;
+ NumElts = 16;
+ }
+
+ SmallVector<SDValue, 16> VecElts(NumElts);
+ for (unsigned i = 0; i < Elts.size(); ++i) {
+ SDValue Elt = Elts[i];
+ if (Elt.getValueType() != MVT::f32)
+ Elt = DAG.getBitcast(MVT::f32, Elt);
+ VecElts[i] = Elt;
+ }
+ for (unsigned i = Elts.size(); i < NumElts; ++i)
+ VecElts[i] = DAG.getUNDEF(MVT::f32);
+
+ if (NumElts == 1)
+ return VecElts[0];
+ return DAG.getBuildVector(Type, DL, VecElts);
+}
+
+static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
+ SDValue *GLC, SDValue *SLC, SDValue *DLC) {
+ auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
+
+ uint64_t Value = CachePolicyConst->getZExtValue();
+ SDLoc DL(CachePolicy);
+ if (GLC) {
+ *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
+ Value &= ~(uint64_t)0x1;
+ }
+ if (SLC) {
+ *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
+ Value &= ~(uint64_t)0x2;
+ }
+ if (DLC) {
+ *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
+ Value &= ~(uint64_t)0x4;
+ }
+
+ return Value == 0;
+}
+
+// Re-construct the required return value for a image load intrinsic.
+// This is more complicated due to the optional use TexFailCtrl which means the required
+// return type is an aggregate
+static SDValue constructRetValue(SelectionDAG &DAG,
+ MachineSDNode *Result,
+ ArrayRef<EVT> ResultTypes,
+ bool IsTexFail, bool Unpacked, bool IsD16,
+ int DMaskPop, int NumVDataDwords,
+ const SDLoc &DL, LLVMContext &Context) {
+ // Determine the required return type. This is the same regardless of IsTexFail flag
+ EVT ReqRetVT = ResultTypes[0];
+ EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
+ int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
+ EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
+ EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
+ : AdjEltVT
+ : ReqRetVT;
+
+ // Extract data part of the result
+ // Bitcast the result to the same type as the required return type
+ int NumElts;
+ if (IsD16 && !Unpacked)
+ NumElts = NumVDataDwords << 1;
+ else
+ NumElts = NumVDataDwords;
+
+ EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
+ : AdjEltVT;
+
+ // Special case for v6f16. Rather than add support for this, use v3i32 to
+ // extract the data elements
+ bool V6F16Special = false;
+ if (NumElts == 6) {
+ CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
+ DMaskPop >>= 1;
+ ReqRetNumElts >>= 1;
+ V6F16Special = true;
+ AdjVT = MVT::v2i32;
+ }
+
+ SDValue N = SDValue(Result, 0);
+ SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
+
+ // Iterate over the result
+ SmallVector<SDValue, 4> BVElts;
+
+ if (CastVT.isVector()) {
+ DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
+ } else {
+ BVElts.push_back(CastRes);
+ }
+ int ExtraElts = ReqRetNumElts - DMaskPop;
+ while(ExtraElts--)
+ BVElts.push_back(DAG.getUNDEF(AdjEltVT));
+
+ SDValue PreTFCRes;
+ if (ReqRetNumElts > 1) {
+ SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
+ if (IsD16 && Unpacked)
+ PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
+ else
+ PreTFCRes = NewVec;
+ } else {
+ PreTFCRes = BVElts[0];
+ }
+
+ if (V6F16Special)
+ PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
+
+ if (!IsTexFail) {
+ if (Result->getNumValues() > 1)
+ return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
+ else
+ return PreTFCRes;
+ }
+
+ // Extract the TexFail result and insert into aggregate return
+ SmallVector<SDValue, 1> TFCElt;
+ DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
+ SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
+ return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
+}
+
+static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
+ SDValue *LWE, bool &IsTexFail) {
+ auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
+
+ uint64_t Value = TexFailCtrlConst->getZExtValue();
+ if (Value) {
+ IsTexFail = true;
+ }
+
+ SDLoc DL(TexFailCtrlConst);
+ *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
+ Value &= ~(uint64_t)0x1;
+ *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
+ Value &= ~(uint64_t)0x2;
+
+ return Value == 0;
+}
+
+SDValue SITargetLowering::lowerImage(SDValue Op,
+ const AMDGPU::ImageDimIntrinsicInfo *Intr,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MachineFunction &MF = DAG.getMachineFunction();
+ const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
+ const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
+ AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
+ const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
+ const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
+ AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
+ const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
+ AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
+ unsigned IntrOpcode = Intr->BaseOpcode;
+ bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
+
+ SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
+ SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
+ bool IsD16 = false;
+ bool IsA16 = false;
+ SDValue VData;
+ int NumVDataDwords;
+ bool AdjustRetType = false;
+
+ unsigned AddrIdx; // Index of first address argument
+ unsigned DMask;
+ unsigned DMaskLanes = 0;
+
+ if (BaseOpcode->Atomic) {
+ VData = Op.getOperand(2);
+
+ bool Is64Bit = VData.getValueType() == MVT::i64;
+ if (BaseOpcode->AtomicX2) {
+ SDValue VData2 = Op.getOperand(3);
+ VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
+ {VData, VData2});
+ if (Is64Bit)
+ VData = DAG.getBitcast(MVT::v4i32, VData);
+
+ ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
+ DMask = Is64Bit ? 0xf : 0x3;
+ NumVDataDwords = Is64Bit ? 4 : 2;
+ AddrIdx = 4;
+ } else {
+ DMask = Is64Bit ? 0x3 : 0x1;
+ NumVDataDwords = Is64Bit ? 2 : 1;
+ AddrIdx = 3;
+ }
+ } else {
+ unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
+ auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
+ DMask = DMaskConst->getZExtValue();
+ DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
+
+ if (BaseOpcode->Store) {
+ VData = Op.getOperand(2);
+
+ MVT StoreVT = VData.getSimpleValueType();
+ if (StoreVT.getScalarType() == MVT::f16) {
+ if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
+ return Op; // D16 is unsupported for this instruction
+
+ IsD16 = true;
+ VData = handleD16VData(VData, DAG);
+ }
+
+ NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
+ } else {
+ // Work out the num dwords based on the dmask popcount and underlying type
+ // and whether packing is supported.
+ MVT LoadVT = ResultTypes[0].getSimpleVT();
+ if (LoadVT.getScalarType() == MVT::f16) {
+ if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
+ return Op; // D16 is unsupported for this instruction
+
+ IsD16 = true;
+ }
+
+ // Confirm that the return type is large enough for the dmask specified
+ if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
+ (!LoadVT.isVector() && DMaskLanes > 1))
+ return Op;
+
+ if (IsD16 && !Subtarget->hasUnpackedD16VMem())
+ NumVDataDwords = (DMaskLanes + 1) / 2;
+ else
+ NumVDataDwords = DMaskLanes;
+
+ AdjustRetType = true;
+ }
+
+ AddrIdx = DMaskIdx + 1;
+ }
+
+ unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
+ unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
+ unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
+ unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
+ NumCoords + NumLCM;
+ unsigned NumMIVAddrs = NumVAddrs;
+
+ SmallVector<SDValue, 4> VAddrs;
+
+ // Optimize _L to _LZ when _L is zero
+ if (LZMappingInfo) {
+ if (auto ConstantLod =
+ dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
+ if (ConstantLod->isZero() || ConstantLod->isNegative()) {
+ IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
+ NumMIVAddrs--; // remove 'lod'
+ }
+ }
+ }
+
+ // Optimize _mip away, when 'lod' is zero
+ if (MIPMappingInfo) {
+ if (auto ConstantLod =
+ dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
+ if (ConstantLod->isNullValue()) {
+ IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
+ NumMIVAddrs--; // remove 'lod'
+ }
+ }
+ }
+
+ // Check for 16 bit addresses and pack if true.
+ unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
+ MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
+ const MVT VAddrScalarVT = VAddrVT.getScalarType();
+ if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
+ ST->hasFeature(AMDGPU::FeatureR128A16)) {
+ IsA16 = true;
+ const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
+ for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
+ SDValue AddrLo, AddrHi;
+ // Push back extra arguments.
+ if (i < DimIdx) {
+ AddrLo = Op.getOperand(i);
+ } else {
+ AddrLo = Op.getOperand(i);
+ // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
+ // in 1D, derivatives dx/dh and dx/dv are packed with undef.
+ if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
+ ((NumGradients / 2) % 2 == 1 &&
+ (i == DimIdx + (NumGradients / 2) - 1 ||
+ i == DimIdx + NumGradients - 1))) {
+ AddrHi = DAG.getUNDEF(MVT::f16);
+ } else {
+ AddrHi = Op.getOperand(i + 1);
+ i++;
+ }
+ AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
+ {AddrLo, AddrHi});
+ AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
+ }
+ VAddrs.push_back(AddrLo);
+ }
+ } else {
+ for (unsigned i = 0; i < NumMIVAddrs; ++i)
+ VAddrs.push_back(Op.getOperand(AddrIdx + i));
+ }
+
+ // If the register allocator cannot place the address registers contiguously
+ // without introducing moves, then using the non-sequential address encoding
+ // is always preferable, since it saves VALU instructions and is usually a
+ // wash in terms of code size or even better.
+ //
+ // However, we currently have no way of hinting to the register allocator that
+ // MIMG addresses should be placed contiguously when it is possible to do so,
+ // so force non-NSA for the common 2-address case as a heuristic.
+ //
+ // SIShrinkInstructions will convert NSA encodings to non-NSA after register
+ // allocation when possible.
+ bool UseNSA =
+ ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
+ SDValue VAddr;
+ if (!UseNSA)
+ VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
+
+ SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
+ SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
+ unsigned CtrlIdx; // Index of texfailctrl argument
+ SDValue Unorm;
+ if (!BaseOpcode->Sampler) {
+ Unorm = True;
+ CtrlIdx = AddrIdx + NumVAddrs + 1;
+ } else {
+ auto UnormConst =
+ cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
+
+ Unorm = UnormConst->getZExtValue() ? True : False;
+ CtrlIdx = AddrIdx + NumVAddrs + 3;
+ }
+
+ SDValue TFE;
+ SDValue LWE;
+ SDValue TexFail = Op.getOperand(CtrlIdx);
+ bool IsTexFail = false;
+ if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
+ return Op;
+
+ if (IsTexFail) {
+ if (!DMaskLanes) {
+ // Expecting to get an error flag since TFC is on - and dmask is 0
+ // Force dmask to be at least 1 otherwise the instruction will fail
+ DMask = 0x1;
+ DMaskLanes = 1;
+ NumVDataDwords = 1;
+ }
+ NumVDataDwords += 1;
+ AdjustRetType = true;
+ }
+
+ // Has something earlier tagged that the return type needs adjusting
+ // This happens if the instruction is a load or has set TexFailCtrl flags
+ if (AdjustRetType) {
+ // NumVDataDwords reflects the true number of dwords required in the return type
+ if (DMaskLanes == 0 && !BaseOpcode->Store) {
+ // This is a no-op load. This can be eliminated
+ SDValue Undef = DAG.getUNDEF(Op.getValueType());
+ if (isa<MemSDNode>(Op))
+ return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
+ return Undef;
+ }
+
+ EVT NewVT = NumVDataDwords > 1 ?
+ EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
+ : MVT::f32;
+
+ ResultTypes[0] = NewVT;
+ if (ResultTypes.size() == 3) {
+ // Original result was aggregate type used for TexFailCtrl results
+ // The actual instruction returns as a vector type which has now been
+ // created. Remove the aggregate result.
+ ResultTypes.erase(&ResultTypes[1]);
+ }
+ }
+
+ SDValue GLC;
+ SDValue SLC;
+ SDValue DLC;
+ if (BaseOpcode->Atomic) {
+ GLC = True; // TODO no-return optimization
+ if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
+ IsGFX10 ? &DLC : nullptr))
+ return Op;
+ } else {
+ if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
+ IsGFX10 ? &DLC : nullptr))
+ return Op;
+ }
+
+ SmallVector<SDValue, 26> Ops;
+ if (BaseOpcode->Store || BaseOpcode->Atomic)
+ Ops.push_back(VData); // vdata
+ if (UseNSA) {
+ for (const SDValue &Addr : VAddrs)
+ Ops.push_back(Addr);
+ } else {
+ Ops.push_back(VAddr);
+ }
+ Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
+ if (BaseOpcode->Sampler)
+ Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
+ Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
+ if (IsGFX10)
+ Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
+ Ops.push_back(Unorm);
+ if (IsGFX10)
+ Ops.push_back(DLC);
+ Ops.push_back(GLC);
+ Ops.push_back(SLC);
+ Ops.push_back(IsA16 && // a16 or r128
+ ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
+ Ops.push_back(TFE); // tfe
+ Ops.push_back(LWE); // lwe
+ if (!IsGFX10)
+ Ops.push_back(DimInfo->DA ? True : False);
+ if (BaseOpcode->HasD16)
+ Ops.push_back(IsD16 ? True : False);
+ if (isa<MemSDNode>(Op))
+ Ops.push_back(Op.getOperand(0)); // chain
+
+ int NumVAddrDwords =
+ UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
+ int Opcode = -1;
+
+ if (IsGFX10) {
+ Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
+ UseNSA ? AMDGPU::MIMGEncGfx10NSA
+ : AMDGPU::MIMGEncGfx10Default,
+ NumVDataDwords, NumVAddrDwords);
+ } else {
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
+ NumVDataDwords, NumVAddrDwords);
+ if (Opcode == -1)
+ Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
+ NumVDataDwords, NumVAddrDwords);
+ }
+ assert(Opcode != -1);
+
+ MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
+ if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
+ MachineMemOperand *MemRef = MemOp->getMemOperand();
+ DAG.setNodeMemRefs(NewNode, {MemRef});
+ }
+
+ if (BaseOpcode->AtomicX2) {
+ SmallVector<SDValue, 1> Elt;
+ DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
+ return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
+ } else if (!BaseOpcode->Store) {
+ return constructRetValue(DAG, NewNode,
+ OrigResultTypes, IsTexFail,
+ Subtarget->hasUnpackedD16VMem(), IsD16,
+ DMaskLanes, NumVDataDwords, DL,
+ *DAG.getContext());
+ }
+
+ return SDValue(NewNode, 0);
+}
+
+SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
+ SDValue Offset, SDValue GLC, SDValue DLC,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo(),
+ MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant,
+ VT.getStoreSize(), VT.getStoreSize());
+
+ if (!Offset->isDivergent()) {
+ SDValue Ops[] = {
+ Rsrc,
+ Offset, // Offset
+ GLC,
+ DLC,
+ };
+ return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
+ DAG.getVTList(VT), Ops, VT, MMO);
+ }
+
+ // We have a divergent offset. Emit a MUBUF buffer load instead. We can
+ // assume that the buffer is unswizzled.
+ SmallVector<SDValue, 4> Loads;
+ unsigned NumLoads = 1;
+ MVT LoadVT = VT.getSimpleVT();
+ unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
+ assert((LoadVT.getScalarType() == MVT::i32 ||
+ LoadVT.getScalarType() == MVT::f32) &&
+ isPowerOf2_32(NumElts));
+
+ if (NumElts == 8 || NumElts == 16) {
+ NumLoads = NumElts == 16 ? 4 : 2;
+ LoadVT = MVT::v4i32;
+ }
+
+ SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
+ unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
+ SDValue Ops[] = {
+ DAG.getEntryNode(), // Chain
+ Rsrc, // rsrc
+ DAG.getConstant(0, DL, MVT::i32), // vindex
+ {}, // voffset
+ {}, // soffset
+ {}, // offset
+ DAG.getConstant(CachePolicy, DL, MVT::i32), // cachepolicy
+ DAG.getConstant(0, DL, MVT::i1), // idxen
+ };
+
+ // Use the alignment to ensure that the required offsets will fit into the
+ // immediate offsets.
+ setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
+
+ uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
+ for (unsigned i = 0; i < NumLoads; ++i) {
+ Ops[5] = DAG.getConstant(InstOffset + 16 * i, DL, MVT::i32);
+ Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList,
+ Ops, LoadVT, MMO));
+ }
+
+ if (VT == MVT::v8i32 || VT == MVT::v16i32)
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
+
+ return Loads[0];
+}
+
+SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ auto MFI = MF.getInfo<SIMachineFunctionInfo>();
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+
+ // TODO: Should this propagate fast-math-flags?
+
+ switch (IntrinsicID) {
+ case Intrinsic::amdgcn_implicit_buffer_ptr: {
+ if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+ return getPreloadedValue(DAG, *MFI, VT,
+ AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
+ }
+ case Intrinsic::amdgcn_dispatch_ptr:
+ case Intrinsic::amdgcn_queue_ptr: {
+ if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
+ DiagnosticInfoUnsupported BadIntrin(
+ MF.getFunction(), "unsupported hsa intrinsic without hsa target",
+ DL.getDebugLoc());
+ DAG.getContext()->diagnose(BadIntrin);
+ return DAG.getUNDEF(VT);
+ }
+
+ auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
+ AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
+ return getPreloadedValue(DAG, *MFI, VT, RegID);
+ }
+ case Intrinsic::amdgcn_implicitarg_ptr: {
+ if (MFI->isEntryFunction())
+ return getImplicitArgPtr(DAG, DL);
+ return getPreloadedValue(DAG, *MFI, VT,
+ AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
+ }
+ case Intrinsic::amdgcn_kernarg_segment_ptr: {
+ return getPreloadedValue(DAG, *MFI, VT,
+ AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
+ }
+ case Intrinsic::amdgcn_dispatch_id: {
+ return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
+ }
+ case Intrinsic::amdgcn_rcp:
+ return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
+ case Intrinsic::amdgcn_rsq:
+ return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
+ case Intrinsic::amdgcn_rsq_legacy:
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return emitRemovedIntrinsicError(DAG, DL, VT);
+
+ return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
+ case Intrinsic::amdgcn_rcp_legacy:
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return emitRemovedIntrinsicError(DAG, DL, VT);
+ return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
+ case Intrinsic::amdgcn_rsq_clamp: {
+ if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
+
+ Type *Type = VT.getTypeForEVT(*DAG.getContext());
+ APFloat Max = APFloat::getLargest(Type->getFltSemantics());
+ APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
+
+ SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
+ SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
+ DAG.getConstantFP(Max, DL, VT));
+ return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
+ DAG.getConstantFP(Min, DL, VT));
+ }
+ case Intrinsic::r600_read_ngroups_x:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_X, 4, false);
+ case Intrinsic::r600_read_ngroups_y:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_Y, 4, false);
+ case Intrinsic::r600_read_ngroups_z:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_Z, 4, false);
+ case Intrinsic::r600_read_global_size_x:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
+ case Intrinsic::r600_read_global_size_y:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
+ case Intrinsic::r600_read_global_size_z:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
+ case Intrinsic::r600_read_local_size_x:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerImplicitZextParam(DAG, Op, MVT::i16,
+ SI::KernelInputOffsets::LOCAL_SIZE_X);
+ case Intrinsic::r600_read_local_size_y:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerImplicitZextParam(DAG, Op, MVT::i16,
+ SI::KernelInputOffsets::LOCAL_SIZE_Y);
+ case Intrinsic::r600_read_local_size_z:
+ if (Subtarget->isAmdHsaOS())
+ return emitNonHSAIntrinsicError(DAG, DL, VT);
+
+ return lowerImplicitZextParam(DAG, Op, MVT::i16,
+ SI::KernelInputOffsets::LOCAL_SIZE_Z);
+ case Intrinsic::amdgcn_workgroup_id_x:
+ case Intrinsic::r600_read_tgid_x:
+ return getPreloadedValue(DAG, *MFI, VT,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
+ case Intrinsic::amdgcn_workgroup_id_y:
+ case Intrinsic::r600_read_tgid_y:
+ return getPreloadedValue(DAG, *MFI, VT,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
+ case Intrinsic::amdgcn_workgroup_id_z:
+ case Intrinsic::r600_read_tgid_z:
+ return getPreloadedValue(DAG, *MFI, VT,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
+ case Intrinsic::amdgcn_workitem_id_x:
+ case Intrinsic::r600_read_tidig_x:
+ return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
+ SDLoc(DAG.getEntryNode()),
+ MFI->getArgInfo().WorkItemIDX);
+ case Intrinsic::amdgcn_workitem_id_y:
+ case Intrinsic::r600_read_tidig_y:
+ return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
+ SDLoc(DAG.getEntryNode()),
+ MFI->getArgInfo().WorkItemIDY);
+ case Intrinsic::amdgcn_workitem_id_z:
+ case Intrinsic::r600_read_tidig_z:
+ return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
+ SDLoc(DAG.getEntryNode()),
+ MFI->getArgInfo().WorkItemIDZ);
+ case Intrinsic::amdgcn_wavefrontsize:
+ return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
+ SDLoc(Op), MVT::i32);
+ case Intrinsic::amdgcn_s_buffer_load: {
+ bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
+ SDValue GLC;
+ SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
+ if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
+ IsGFX10 ? &DLC : nullptr))
+ return Op;
+ return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC,
+ DAG);
+ }
+ case Intrinsic::amdgcn_fdiv_fast:
+ return lowerFDIV_FAST(Op, DAG);
+ case Intrinsic::amdgcn_interp_mov: {
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
+ SDValue Glue = M0.getValue(1);
+ return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3), Glue);
+ }
+ case Intrinsic::amdgcn_interp_p1: {
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
+ SDValue Glue = M0.getValue(1);
+ return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3), Glue);
+ }
+ case Intrinsic::amdgcn_interp_p2: {
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
+ SDValue Glue = SDValue(M0.getNode(), 1);
+ return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
+ Glue);
+ }
+ case Intrinsic::amdgcn_interp_p1_f16: {
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
+ SDValue Glue = M0.getValue(1);
+ if (getSubtarget()->getLDSBankCount() == 16) {
+ // 16 bank LDS
+ SDValue S = DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
+ DAG.getConstant(2, DL, MVT::i32), // P0
+ Op.getOperand(2), // Attrchan
+ Op.getOperand(3), // Attr
+ Glue);
+ SDValue Ops[] = {
+ Op.getOperand(1), // Src0
+ Op.getOperand(2), // Attrchan
+ Op.getOperand(3), // Attr
+ DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
+ S, // Src2 - holds two f16 values selected by high
+ DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers
+ Op.getOperand(4), // high
+ DAG.getConstant(0, DL, MVT::i1), // $clamp
+ DAG.getConstant(0, DL, MVT::i32) // $omod
+ };
+ return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
+ } else {
+ // 32 bank LDS
+ SDValue Ops[] = {
+ Op.getOperand(1), // Src0
+ Op.getOperand(2), // Attrchan
+ Op.getOperand(3), // Attr
+ DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
+ Op.getOperand(4), // high
+ DAG.getConstant(0, DL, MVT::i1), // $clamp
+ DAG.getConstant(0, DL, MVT::i32), // $omod
+ Glue
+ };
+ return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
+ }
+ }
+ case Intrinsic::amdgcn_interp_p2_f16: {
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(6));
+ SDValue Glue = SDValue(M0.getNode(), 1);
+ SDValue Ops[] = {
+ Op.getOperand(2), // Src0
+ Op.getOperand(3), // Attrchan
+ Op.getOperand(4), // Attr
+ DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers
+ Op.getOperand(1), // Src2
+ DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers
+ Op.getOperand(5), // high
+ DAG.getConstant(0, DL, MVT::i1), // $clamp
+ Glue
+ };
+ return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops);
+ }
+ case Intrinsic::amdgcn_sin:
+ return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
+
+ case Intrinsic::amdgcn_cos:
+ return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
+
+ case Intrinsic::amdgcn_mul_u24:
+ return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
+ case Intrinsic::amdgcn_mul_i24:
+ return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::amdgcn_log_clamp: {
+ if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return SDValue();
+
+ DiagnosticInfoUnsupported BadIntrin(
+ MF.getFunction(), "intrinsic not supported on subtarget",
+ DL.getDebugLoc());
+ DAG.getContext()->diagnose(BadIntrin);
+ return DAG.getUNDEF(VT);
+ }
+ case Intrinsic::amdgcn_ldexp:
+ return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::amdgcn_fract:
+ return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
+
+ case Intrinsic::amdgcn_class:
+ return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+ case Intrinsic::amdgcn_div_fmas:
+ return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
+ Op.getOperand(4));
+
+ case Intrinsic::amdgcn_div_fixup:
+ return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::amdgcn_trig_preop:
+ return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+ case Intrinsic::amdgcn_div_scale: {
+ const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
+
+ // Translate to the operands expected by the machine instruction. The
+ // first parameter must be the same as the first instruction.
+ SDValue Numerator = Op.getOperand(1);
+ SDValue Denominator = Op.getOperand(2);
+
+ // Note this order is opposite of the machine instruction's operations,
+ // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
+ // intrinsic has the numerator as the first operand to match a normal
+ // division operation.
+
+ SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
+
+ return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
+ Denominator, Numerator);
+ }
+ case Intrinsic::amdgcn_icmp: {
+ // There is a Pat that handles this variant, so return it as-is.
+ if (Op.getOperand(1).getValueType() == MVT::i1 &&
+ Op.getConstantOperandVal(2) == 0 &&
+ Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
+ return Op;
+ return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
+ }
+ case Intrinsic::amdgcn_fcmp: {
+ return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
+ }
+ case Intrinsic::amdgcn_fmed3:
+ return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+ case Intrinsic::amdgcn_fdot2:
+ return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
+ Op.getOperand(4));
+ case Intrinsic::amdgcn_fmul_legacy:
+ return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+ case Intrinsic::amdgcn_sffbh:
+ return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
+ case Intrinsic::amdgcn_sbfe:
+ return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+ case Intrinsic::amdgcn_ubfe:
+ return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+ case Intrinsic::amdgcn_cvt_pkrtz:
+ case Intrinsic::amdgcn_cvt_pknorm_i16:
+ case Intrinsic::amdgcn_cvt_pknorm_u16:
+ case Intrinsic::amdgcn_cvt_pk_i16:
+ case Intrinsic::amdgcn_cvt_pk_u16: {
+ // FIXME: Stop adding cast if v2f16/v2i16 are legal.
+ EVT VT = Op.getValueType();
+ unsigned Opcode;
+
+ if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
+ Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
+ else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
+ Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
+ else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
+ Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
+ else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
+ Opcode = AMDGPUISD::CVT_PK_I16_I32;
+ else
+ Opcode = AMDGPUISD::CVT_PK_U16_U32;
+
+ if (isTypeLegal(VT))
+ return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
+
+ SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
+ Op.getOperand(1), Op.getOperand(2));
+ return DAG.getNode(ISD::BITCAST, DL, VT, Node);
+ }
+ case Intrinsic::amdgcn_wqm: {
+ SDValue Src = Op.getOperand(1);
+ return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
+ 0);
+ }
+ case Intrinsic::amdgcn_wwm: {
+ SDValue Src = Op.getOperand(1);
+ return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
+ 0);
+ }
+ case Intrinsic::amdgcn_fmad_ftz:
+ return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::amdgcn_if_break:
+ return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
+ Op->getOperand(1), Op->getOperand(2)), 0);
+
+ case Intrinsic::amdgcn_groupstaticsize: {
+ Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
+ if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
+ return Op;
+
+ const Module *M = MF.getFunction().getParent();
+ const GlobalValue *GV =
+ M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
+ SIInstrInfo::MO_ABS32_LO);
+ return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
+ }
+ default:
+ if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
+ AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
+ return lowerImage(Op, ImageDimIntr, DAG);
+
+ return Op;
+ }
+}
+
+SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ SDLoc DL(Op);
+
+ switch (IntrID) {
+ case Intrinsic::amdgcn_ds_ordered_add:
+ case Intrinsic::amdgcn_ds_ordered_swap: {
+ MemSDNode *M = cast<MemSDNode>(Op);
+ SDValue Chain = M->getOperand(0);
+ SDValue M0 = M->getOperand(2);
+ SDValue Value = M->getOperand(3);
+ unsigned IndexOperand = M->getConstantOperandVal(7);
+ unsigned WaveRelease = M->getConstantOperandVal(8);
+ unsigned WaveDone = M->getConstantOperandVal(9);
+ unsigned ShaderType;
+ unsigned Instruction;
+
+ unsigned OrderedCountIndex = IndexOperand & 0x3f;
+ IndexOperand &= ~0x3f;
+ unsigned CountDw = 0;
+
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
+ CountDw = (IndexOperand >> 24) & 0xf;
+ IndexOperand &= ~(0xf << 24);
+
+ if (CountDw < 1 || CountDw > 4) {
+ report_fatal_error(
+ "ds_ordered_count: dword count must be between 1 and 4");
+ }
+ }
+
+ if (IndexOperand)
+ report_fatal_error("ds_ordered_count: bad index operand");
+
+ switch (IntrID) {
+ case Intrinsic::amdgcn_ds_ordered_add:
+ Instruction = 0;
+ break;
+ case Intrinsic::amdgcn_ds_ordered_swap:
+ Instruction = 1;
+ break;
+ }
+
+ if (WaveDone && !WaveRelease)
+ report_fatal_error("ds_ordered_count: wave_done requires wave_release");
+
+ switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
+ case CallingConv::AMDGPU_CS:
+ case CallingConv::AMDGPU_KERNEL:
+ ShaderType = 0;
+ break;
+ case CallingConv::AMDGPU_PS:
+ ShaderType = 1;
+ break;
+ case CallingConv::AMDGPU_VS:
+ ShaderType = 2;
+ break;
+ case CallingConv::AMDGPU_GS:
+ ShaderType = 3;
+ break;
+ default:
+ report_fatal_error("ds_ordered_count unsupported for this calling conv");
+ }
+
+ unsigned Offset0 = OrderedCountIndex << 2;
+ unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
+ (Instruction << 4);
+
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
+ Offset1 |= (CountDw - 1) << 6;
+
+ unsigned Offset = Offset0 | (Offset1 << 8);
+
+ SDValue Ops[] = {
+ Chain,
+ Value,
+ DAG.getTargetConstant(Offset, DL, MVT::i16),
+ copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
+ };
+ return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
+ M->getVTList(), Ops, M->getMemoryVT(),
+ M->getMemOperand());
+ }
+ case Intrinsic::amdgcn_ds_fadd: {
+ MemSDNode *M = cast<MemSDNode>(Op);
+ unsigned Opc;
+ switch (IntrID) {
+ case Intrinsic::amdgcn_ds_fadd:
+ Opc = ISD::ATOMIC_LOAD_FADD;
+ break;
+ }
+
+ return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
+ M->getOperand(0), M->getOperand(2), M->getOperand(3),
+ M->getMemOperand());
+ }
+ case Intrinsic::amdgcn_atomic_inc:
+ case Intrinsic::amdgcn_atomic_dec:
+ case Intrinsic::amdgcn_ds_fmin:
+ case Intrinsic::amdgcn_ds_fmax: {
+ MemSDNode *M = cast<MemSDNode>(Op);
+ unsigned Opc;
+ switch (IntrID) {
+ case Intrinsic::amdgcn_atomic_inc:
+ Opc = AMDGPUISD::ATOMIC_INC;
+ break;
+ case Intrinsic::amdgcn_atomic_dec:
+ Opc = AMDGPUISD::ATOMIC_DEC;
+ break;
+ case Intrinsic::amdgcn_ds_fmin:
+ Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
+ break;
+ case Intrinsic::amdgcn_ds_fmax:
+ Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
+ break;
+ default:
+ llvm_unreachable("Unknown intrinsic!");
+ }
+ SDValue Ops[] = {
+ M->getOperand(0), // Chain
+ M->getOperand(2), // Ptr
+ M->getOperand(3) // Value
+ };
+
+ return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
+ M->getMemoryVT(), M->getMemOperand());
+ }
+ case Intrinsic::amdgcn_buffer_load:
+ case Intrinsic::amdgcn_buffer_load_format: {
+ unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
+ unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
+ unsigned IdxEn = 1;
+ if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
+ IdxEn = Idx->getZExtValue() != 0;
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // rsrc
+ Op.getOperand(3), // vindex
+ SDValue(), // voffset -- will be set by setBufferOffsets
+ SDValue(), // soffset -- will be set by setBufferOffsets
+ SDValue(), // offset -- will be set by setBufferOffsets
+ DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
+ DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
+ };
+
+ setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
+ unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
+ AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
+
+ EVT VT = Op.getValueType();
+ EVT IntVT = VT.changeTypeToInteger();
+ auto *M = cast<MemSDNode>(Op);
+ EVT LoadVT = Op.getValueType();
+
+ if (LoadVT.getScalarType() == MVT::f16)
+ return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
+ M, DAG, Ops);
+
+ // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
+ if (LoadVT.getScalarType() == MVT::i8 ||
+ LoadVT.getScalarType() == MVT::i16)
+ return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
+
+ return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
+ M->getMemOperand(), DAG);
+ }
+ case Intrinsic::amdgcn_raw_buffer_load:
+ case Intrinsic::amdgcn_raw_buffer_load_format: {
+ auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // rsrc
+ DAG.getConstant(0, DL, MVT::i32), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(4), // soffset
+ Offsets.second, // offset
+ Op.getOperand(5), // cachepolicy
+ DAG.getConstant(0, DL, MVT::i1), // idxen
+ };
+
+ unsigned Opc = (IntrID == Intrinsic::amdgcn_raw_buffer_load) ?
+ AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
+
+ EVT VT = Op.getValueType();
+ EVT IntVT = VT.changeTypeToInteger();
+ auto *M = cast<MemSDNode>(Op);
+ EVT LoadVT = Op.getValueType();
+
+ if (LoadVT.getScalarType() == MVT::f16)
+ return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
+ M, DAG, Ops);
+
+ // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
+ if (LoadVT.getScalarType() == MVT::i8 ||
+ LoadVT.getScalarType() == MVT::i16)
+ return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
+
+ return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
+ M->getMemOperand(), DAG);
+ }
+ case Intrinsic::amdgcn_struct_buffer_load:
+ case Intrinsic::amdgcn_struct_buffer_load_format: {
+ auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // rsrc
+ Op.getOperand(3), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(5), // soffset
+ Offsets.second, // offset
+ Op.getOperand(6), // cachepolicy
+ DAG.getConstant(1, DL, MVT::i1), // idxen
+ };
+
+ unsigned Opc = (IntrID == Intrinsic::amdgcn_struct_buffer_load) ?
+ AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
+
+ EVT VT = Op.getValueType();
+ EVT IntVT = VT.changeTypeToInteger();
+ auto *M = cast<MemSDNode>(Op);
+ EVT LoadVT = Op.getValueType();
+
+ if (LoadVT.getScalarType() == MVT::f16)
+ return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
+ M, DAG, Ops);
+
+ // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
+ if (LoadVT.getScalarType() == MVT::i8 ||
+ LoadVT.getScalarType() == MVT::i16)
+ return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
+
+ return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
+ M->getMemOperand(), DAG);
+ }
+ case Intrinsic::amdgcn_tbuffer_load: {
+ MemSDNode *M = cast<MemSDNode>(Op);
+ EVT LoadVT = Op.getValueType();
+
+ unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
+ unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
+ unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
+ unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
+ unsigned IdxEn = 1;
+ if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
+ IdxEn = Idx->getZExtValue() != 0;
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // rsrc
+ Op.getOperand(3), // vindex
+ Op.getOperand(4), // voffset
+ Op.getOperand(5), // soffset
+ Op.getOperand(6), // offset
+ DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
+ DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
+ DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
+ };
+
+ if (LoadVT.getScalarType() == MVT::f16)
+ return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
+ M, DAG, Ops);
+ return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
+ Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
+ DAG);
+ }
+ case Intrinsic::amdgcn_raw_tbuffer_load: {
+ MemSDNode *M = cast<MemSDNode>(Op);
+ EVT LoadVT = Op.getValueType();
+ auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
+
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // rsrc
+ DAG.getConstant(0, DL, MVT::i32), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(4), // soffset
+ Offsets.second, // offset
+ Op.getOperand(5), // format
+ Op.getOperand(6), // cachepolicy
+ DAG.getConstant(0, DL, MVT::i1), // idxen
+ };
+
+ if (LoadVT.getScalarType() == MVT::f16)
+ return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
+ M, DAG, Ops);
+ return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
+ Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
+ DAG);
+ }
+ case Intrinsic::amdgcn_struct_tbuffer_load: {
+ MemSDNode *M = cast<MemSDNode>(Op);
+ EVT LoadVT = Op.getValueType();
+ auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
+
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // rsrc
+ Op.getOperand(3), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(5), // soffset
+ Offsets.second, // offset
+ Op.getOperand(6), // format
+ Op.getOperand(7), // cachepolicy
+ DAG.getConstant(1, DL, MVT::i1), // idxen
+ };
+
+ if (LoadVT.getScalarType() == MVT::f16)
+ return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
+ M, DAG, Ops);
+ return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
+ Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
+ DAG);
+ }
+ case Intrinsic::amdgcn_buffer_atomic_swap:
+ case Intrinsic::amdgcn_buffer_atomic_add:
+ case Intrinsic::amdgcn_buffer_atomic_sub:
+ case Intrinsic::amdgcn_buffer_atomic_smin:
+ case Intrinsic::amdgcn_buffer_atomic_umin:
+ case Intrinsic::amdgcn_buffer_atomic_smax:
+ case Intrinsic::amdgcn_buffer_atomic_umax:
+ case Intrinsic::amdgcn_buffer_atomic_and:
+ case Intrinsic::amdgcn_buffer_atomic_or:
+ case Intrinsic::amdgcn_buffer_atomic_xor: {
+ unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
+ unsigned IdxEn = 1;
+ if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
+ IdxEn = Idx->getZExtValue() != 0;
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // vdata
+ Op.getOperand(3), // rsrc
+ Op.getOperand(4), // vindex
+ SDValue(), // voffset -- will be set by setBufferOffsets
+ SDValue(), // soffset -- will be set by setBufferOffsets
+ SDValue(), // offset -- will be set by setBufferOffsets
+ DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
+ DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
+ };
+ setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
+ EVT VT = Op.getValueType();
+
+ auto *M = cast<MemSDNode>(Op);
+ unsigned Opcode = 0;
+
+ switch (IntrID) {
+ case Intrinsic::amdgcn_buffer_atomic_swap:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_add:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_sub:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_smin:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_umin:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_smax:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_umax:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_and:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_or:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_xor:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
+ break;
+ default:
+ llvm_unreachable("unhandled atomic opcode");
+ }
+
+ return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
+ M->getMemOperand());
+ }
+ case Intrinsic::amdgcn_raw_buffer_atomic_swap:
+ case Intrinsic::amdgcn_raw_buffer_atomic_add:
+ case Intrinsic::amdgcn_raw_buffer_atomic_sub:
+ case Intrinsic::amdgcn_raw_buffer_atomic_smin:
+ case Intrinsic::amdgcn_raw_buffer_atomic_umin:
+ case Intrinsic::amdgcn_raw_buffer_atomic_smax:
+ case Intrinsic::amdgcn_raw_buffer_atomic_umax:
+ case Intrinsic::amdgcn_raw_buffer_atomic_and:
+ case Intrinsic::amdgcn_raw_buffer_atomic_or:
+ case Intrinsic::amdgcn_raw_buffer_atomic_xor: {
+ auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // vdata
+ Op.getOperand(3), // rsrc
+ DAG.getConstant(0, DL, MVT::i32), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(5), // soffset
+ Offsets.second, // offset
+ Op.getOperand(6), // cachepolicy
+ DAG.getConstant(0, DL, MVT::i1), // idxen
+ };
+ EVT VT = Op.getValueType();
+
+ auto *M = cast<MemSDNode>(Op);
+ unsigned Opcode = 0;
+
+ switch (IntrID) {
+ case Intrinsic::amdgcn_raw_buffer_atomic_swap:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_add:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_sub:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_smin:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_umin:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_smax:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_umax:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_and:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_or:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
+ break;
+ case Intrinsic::amdgcn_raw_buffer_atomic_xor:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
+ break;
+ default:
+ llvm_unreachable("unhandled atomic opcode");
+ }
+
+ return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
+ M->getMemOperand());
+ }
+ case Intrinsic::amdgcn_struct_buffer_atomic_swap:
+ case Intrinsic::amdgcn_struct_buffer_atomic_add:
+ case Intrinsic::amdgcn_struct_buffer_atomic_sub:
+ case Intrinsic::amdgcn_struct_buffer_atomic_smin:
+ case Intrinsic::amdgcn_struct_buffer_atomic_umin:
+ case Intrinsic::amdgcn_struct_buffer_atomic_smax:
+ case Intrinsic::amdgcn_struct_buffer_atomic_umax:
+ case Intrinsic::amdgcn_struct_buffer_atomic_and:
+ case Intrinsic::amdgcn_struct_buffer_atomic_or:
+ case Intrinsic::amdgcn_struct_buffer_atomic_xor: {
+ auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // vdata
+ Op.getOperand(3), // rsrc
+ Op.getOperand(4), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(6), // soffset
+ Offsets.second, // offset
+ Op.getOperand(7), // cachepolicy
+ DAG.getConstant(1, DL, MVT::i1), // idxen
+ };
+ EVT VT = Op.getValueType();
+
+ auto *M = cast<MemSDNode>(Op);
+ unsigned Opcode = 0;
+
+ switch (IntrID) {
+ case Intrinsic::amdgcn_struct_buffer_atomic_swap:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_add:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_sub:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_smin:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_umin:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_smax:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_umax:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_and:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_or:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
+ break;
+ case Intrinsic::amdgcn_struct_buffer_atomic_xor:
+ Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
+ break;
+ default:
+ llvm_unreachable("unhandled atomic opcode");
+ }
+
+ return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
+ M->getMemOperand());
+ }
+ case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
+ unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
+ unsigned IdxEn = 1;
+ if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
+ IdxEn = Idx->getZExtValue() != 0;
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // src
+ Op.getOperand(3), // cmp
+ Op.getOperand(4), // rsrc
+ Op.getOperand(5), // vindex
+ SDValue(), // voffset -- will be set by setBufferOffsets
+ SDValue(), // soffset -- will be set by setBufferOffsets
+ SDValue(), // offset -- will be set by setBufferOffsets
+ DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
+ DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
+ };
+ setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
+ EVT VT = Op.getValueType();
+ auto *M = cast<MemSDNode>(Op);
+
+ return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
+ Op->getVTList(), Ops, VT, M->getMemOperand());
+ }
+ case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
+ auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // src
+ Op.getOperand(3), // cmp
+ Op.getOperand(4), // rsrc
+ DAG.getConstant(0, DL, MVT::i32), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(6), // soffset
+ Offsets.second, // offset
+ Op.getOperand(7), // cachepolicy
+ DAG.getConstant(0, DL, MVT::i1), // idxen
+ };
+ EVT VT = Op.getValueType();
+ auto *M = cast<MemSDNode>(Op);
+
+ return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
+ Op->getVTList(), Ops, VT, M->getMemOperand());
+ }
+ case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
+ auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
+ SDValue Ops[] = {
+ Op.getOperand(0), // Chain
+ Op.getOperand(2), // src
+ Op.getOperand(3), // cmp
+ Op.getOperand(4), // rsrc
+ Op.getOperand(5), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(7), // soffset
+ Offsets.second, // offset
+ Op.getOperand(8), // cachepolicy
+ DAG.getConstant(1, DL, MVT::i1), // idxen
+ };
+ EVT VT = Op.getValueType();
+ auto *M = cast<MemSDNode>(Op);
+
+ return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
+ Op->getVTList(), Ops, VT, M->getMemOperand());
+ }
+
+ default:
+ if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
+ AMDGPU::getImageDimIntrinsicInfo(IntrID))
+ return lowerImage(Op, ImageDimIntr, DAG);
+
+ return SDValue();
+ }
+}
+
+// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
+// dwordx4 if on SI.
+SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
+ SDVTList VTList,
+ ArrayRef<SDValue> Ops, EVT MemVT,
+ MachineMemOperand *MMO,
+ SelectionDAG &DAG) const {
+ EVT VT = VTList.VTs[0];
+ EVT WidenedVT = VT;
+ EVT WidenedMemVT = MemVT;
+ if (!Subtarget->hasDwordx3LoadStores() &&
+ (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
+ WidenedVT = EVT::getVectorVT(*DAG.getContext(),
+ WidenedVT.getVectorElementType(), 4);
+ WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
+ WidenedMemVT.getVectorElementType(), 4);
+ MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
+ }
+
+ assert(VTList.NumVTs == 2);
+ SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
+
+ auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
+ WidenedMemVT, MMO);
+ if (WidenedVT != VT) {
+ auto Extract = DAG.getNode(
+ ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
+ DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
+ NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
+ }
+ return NewOp;
+}
+
+SDValue SITargetLowering::handleD16VData(SDValue VData,
+ SelectionDAG &DAG) const {
+ EVT StoreVT = VData.getValueType();
+
+ // No change for f16 and legal vector D16 types.
+ if (!StoreVT.isVector())
+ return VData;
+
+ SDLoc DL(VData);
+ assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
+
+ if (Subtarget->hasUnpackedD16VMem()) {
+ // We need to unpack the packed data to store.
+ EVT IntStoreVT = StoreVT.changeTypeToInteger();
+ SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
+
+ EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
+ StoreVT.getVectorNumElements());
+ SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
+ return DAG.UnrollVectorOp(ZExt.getNode());
+ }
+
+ assert(isTypeLegal(StoreVT));
+ return VData;
+}
+
+SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Chain = Op.getOperand(0);
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ switch (IntrinsicID) {
+ case Intrinsic::amdgcn_exp: {
+ const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
+ const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
+ const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
+ const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
+
+ const SDValue Ops[] = {
+ Chain,
+ DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
+ DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
+ Op.getOperand(4), // src0
+ Op.getOperand(5), // src1
+ Op.getOperand(6), // src2
+ Op.getOperand(7), // src3
+ DAG.getTargetConstant(0, DL, MVT::i1), // compr
+ DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
+ };
+
+ unsigned Opc = Done->isNullValue() ?
+ AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
+ return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
+ }
+ case Intrinsic::amdgcn_exp_compr: {
+ const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
+ const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
+ SDValue Src0 = Op.getOperand(4);
+ SDValue Src1 = Op.getOperand(5);
+ const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
+ const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
+
+ SDValue Undef = DAG.getUNDEF(MVT::f32);
+ const SDValue Ops[] = {
+ Chain,
+ DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
+ DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
+ DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
+ DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
+ Undef, // src2
+ Undef, // src3
+ DAG.getTargetConstant(1, DL, MVT::i1), // compr
+ DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
+ };
+
+ unsigned Opc = Done->isNullValue() ?
+ AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
+ return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
+ }
+ case Intrinsic::amdgcn_s_sendmsg:
+ case Intrinsic::amdgcn_s_sendmsghalt: {
+ unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
+ AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
+ Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
+ SDValue Glue = Chain.getValue(1);
+ return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
+ Op.getOperand(2), Glue);
+ }
+ case Intrinsic::amdgcn_init_exec: {
+ return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
+ Op.getOperand(2));
+ }
+ case Intrinsic::amdgcn_init_exec_from_input: {
+ return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
+ Op.getOperand(2), Op.getOperand(3));
+ }
+ case Intrinsic::amdgcn_s_barrier: {
+ if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+ unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
+ if (WGSize <= ST.getWavefrontSize())
+ return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
+ Op.getOperand(0)), 0);
+ }
+ return SDValue();
+ };
+ case Intrinsic::amdgcn_tbuffer_store: {
+ SDValue VData = Op.getOperand(2);
+ bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
+ if (IsD16)
+ VData = handleD16VData(VData, DAG);
+ unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
+ unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
+ unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
+ unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
+ unsigned IdxEn = 1;
+ if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
+ IdxEn = Idx->getZExtValue() != 0;
+ SDValue Ops[] = {
+ Chain,
+ VData, // vdata
+ Op.getOperand(3), // rsrc
+ Op.getOperand(4), // vindex
+ Op.getOperand(5), // voffset
+ Op.getOperand(6), // soffset
+ Op.getOperand(7), // offset
+ DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
+ DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
+ DAG.getConstant(IdxEn, DL, MVT::i1), // idexen
+ };
+ unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
+ AMDGPUISD::TBUFFER_STORE_FORMAT;
+ MemSDNode *M = cast<MemSDNode>(Op);
+ return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
+ M->getMemoryVT(), M->getMemOperand());
+ }
+
+ case Intrinsic::amdgcn_struct_tbuffer_store: {
+ SDValue VData = Op.getOperand(2);
+ bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
+ if (IsD16)
+ VData = handleD16VData(VData, DAG);
+ auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
+ SDValue Ops[] = {
+ Chain,
+ VData, // vdata
+ Op.getOperand(3), // rsrc
+ Op.getOperand(4), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(6), // soffset
+ Offsets.second, // offset
+ Op.getOperand(7), // format
+ Op.getOperand(8), // cachepolicy
+ DAG.getConstant(1, DL, MVT::i1), // idexen
+ };
+ unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
+ AMDGPUISD::TBUFFER_STORE_FORMAT;
+ MemSDNode *M = cast<MemSDNode>(Op);
+ return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
+ M->getMemoryVT(), M->getMemOperand());
+ }
+
+ case Intrinsic::amdgcn_raw_tbuffer_store: {
+ SDValue VData = Op.getOperand(2);
+ bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
+ if (IsD16)
+ VData = handleD16VData(VData, DAG);
+ auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
+ SDValue Ops[] = {
+ Chain,
+ VData, // vdata
+ Op.getOperand(3), // rsrc
+ DAG.getConstant(0, DL, MVT::i32), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(5), // soffset
+ Offsets.second, // offset
+ Op.getOperand(6), // format
+ Op.getOperand(7), // cachepolicy
+ DAG.getConstant(0, DL, MVT::i1), // idexen
+ };
+ unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
+ AMDGPUISD::TBUFFER_STORE_FORMAT;
+ MemSDNode *M = cast<MemSDNode>(Op);
+ return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
+ M->getMemoryVT(), M->getMemOperand());
+ }
+
+ case Intrinsic::amdgcn_buffer_store:
+ case Intrinsic::amdgcn_buffer_store_format: {
+ SDValue VData = Op.getOperand(2);
+ bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
+ if (IsD16)
+ VData = handleD16VData(VData, DAG);
+ unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
+ unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
+ unsigned IdxEn = 1;
+ if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
+ IdxEn = Idx->getZExtValue() != 0;
+ SDValue Ops[] = {
+ Chain,
+ VData,
+ Op.getOperand(3), // rsrc
+ Op.getOperand(4), // vindex
+ SDValue(), // voffset -- will be set by setBufferOffsets
+ SDValue(), // soffset -- will be set by setBufferOffsets
+ SDValue(), // offset -- will be set by setBufferOffsets
+ DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
+ DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
+ };
+ setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
+ unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
+ AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
+ Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
+ MemSDNode *M = cast<MemSDNode>(Op);
+
+ // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
+ EVT VDataType = VData.getValueType().getScalarType();
+ if (VDataType == MVT::i8 || VDataType == MVT::i16)
+ return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
+
+ return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
+ M->getMemoryVT(), M->getMemOperand());
+ }
+
+ case Intrinsic::amdgcn_raw_buffer_store:
+ case Intrinsic::amdgcn_raw_buffer_store_format: {
+ SDValue VData = Op.getOperand(2);
+ bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
+ if (IsD16)
+ VData = handleD16VData(VData, DAG);
+ auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
+ SDValue Ops[] = {
+ Chain,
+ VData,
+ Op.getOperand(3), // rsrc
+ DAG.getConstant(0, DL, MVT::i32), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(5), // soffset
+ Offsets.second, // offset
+ Op.getOperand(6), // cachepolicy
+ DAG.getConstant(0, DL, MVT::i1), // idxen
+ };
+ unsigned Opc = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store ?
+ AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
+ Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
+ MemSDNode *M = cast<MemSDNode>(Op);
+
+ // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
+ EVT VDataType = VData.getValueType().getScalarType();
+ if (VDataType == MVT::i8 || VDataType == MVT::i16)
+ return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
+
+ return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
+ M->getMemoryVT(), M->getMemOperand());
+ }
+
+ case Intrinsic::amdgcn_struct_buffer_store:
+ case Intrinsic::amdgcn_struct_buffer_store_format: {
+ SDValue VData = Op.getOperand(2);
+ bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
+ if (IsD16)
+ VData = handleD16VData(VData, DAG);
+ auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
+ SDValue Ops[] = {
+ Chain,
+ VData,
+ Op.getOperand(3), // rsrc
+ Op.getOperand(4), // vindex
+ Offsets.first, // voffset
+ Op.getOperand(6), // soffset
+ Offsets.second, // offset
+ Op.getOperand(7), // cachepolicy
+ DAG.getConstant(1, DL, MVT::i1), // idxen
+ };
+ unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
+ AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
+ Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
+ MemSDNode *M = cast<MemSDNode>(Op);
+
+ // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
+ EVT VDataType = VData.getValueType().getScalarType();
+ if (VDataType == MVT::i8 || VDataType == MVT::i16)
+ return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
+
+ return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
+ M->getMemoryVT(), M->getMemOperand());
+ }
+
+ case Intrinsic::amdgcn_buffer_atomic_fadd: {
+ unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
+ unsigned IdxEn = 1;
+ if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
+ IdxEn = Idx->getZExtValue() != 0;
+ SDValue Ops[] = {
+ Chain,
+ Op.getOperand(2), // vdata
+ Op.getOperand(3), // rsrc
+ Op.getOperand(4), // vindex
+ SDValue(), // voffset -- will be set by setBufferOffsets
+ SDValue(), // soffset -- will be set by setBufferOffsets
+ SDValue(), // offset -- will be set by setBufferOffsets
+ DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy
+ DAG.getConstant(IdxEn, DL, MVT::i1), // idxen
+ };
+ setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
+ EVT VT = Op.getOperand(2).getValueType();
+
+ auto *M = cast<MemSDNode>(Op);
+ unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD
+ : AMDGPUISD::BUFFER_ATOMIC_FADD;
+
+ return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
+ M->getMemOperand());
+ }
+
+ case Intrinsic::amdgcn_global_atomic_fadd: {
+ SDValue Ops[] = {
+ Chain,
+ Op.getOperand(2), // ptr
+ Op.getOperand(3) // vdata
+ };
+ EVT VT = Op.getOperand(3).getValueType();
+
+ auto *M = cast<MemSDNode>(Op);
+ unsigned Opcode = VT.isVector() ? AMDGPUISD::ATOMIC_PK_FADD
+ : AMDGPUISD::ATOMIC_FADD;
+
+ return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
+ M->getMemOperand());
+ }
+
+ case Intrinsic::amdgcn_end_cf:
+ return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
+ Op->getOperand(2), Chain), 0);
+
+ default: {
+ if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
+ AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
+ return lowerImage(Op, ImageDimIntr, DAG);
+
+ return Op;
+ }
+ }
+}
+
+// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
+// offset (the offset that is included in bounds checking and swizzling, to be
+// split between the instruction's voffset and immoffset fields) and soffset
+// (the offset that is excluded from bounds checking and swizzling, to go in
+// the instruction's soffset field). This function takes the first kind of
+// offset and figures out how to split it between voffset and immoffset.
+std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
+ SDValue Offset, SelectionDAG &DAG) const {
+ SDLoc DL(Offset);
+ const unsigned MaxImm = 4095;
+ SDValue N0 = Offset;
+ ConstantSDNode *C1 = nullptr;
+
+ if ((C1 = dyn_cast<ConstantSDNode>(N0)))
+ N0 = SDValue();
+ else if (DAG.isBaseWithConstantOffset(N0)) {
+ C1 = cast<ConstantSDNode>(N0.getOperand(1));
+ N0 = N0.getOperand(0);
+ }
+
+ if (C1) {
+ unsigned ImmOffset = C1->getZExtValue();
+ // If the immediate value is too big for the immoffset field, put the value
+ // and -4096 into the immoffset field so that the value that is copied/added
+ // for the voffset field is a multiple of 4096, and it stands more chance
+ // of being CSEd with the copy/add for another similar load/store.
+ // However, do not do that rounding down to a multiple of 4096 if that is a
+ // negative number, as it appears to be illegal to have a negative offset
+ // in the vgpr, even if adding the immediate offset makes it positive.
+ unsigned Overflow = ImmOffset & ~MaxImm;
+ ImmOffset -= Overflow;
+ if ((int32_t)Overflow < 0) {
+ Overflow += ImmOffset;
+ ImmOffset = 0;
+ }
+ C1 = cast<ConstantSDNode>(DAG.getConstant(ImmOffset, DL, MVT::i32));
+ if (Overflow) {
+ auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
+ if (!N0)
+ N0 = OverflowVal;
+ else {
+ SDValue Ops[] = { N0, OverflowVal };
+ N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
+ }
+ }
+ }
+ if (!N0)
+ N0 = DAG.getConstant(0, DL, MVT::i32);
+ if (!C1)
+ C1 = cast<ConstantSDNode>(DAG.getConstant(0, DL, MVT::i32));
+ return {N0, SDValue(C1, 0)};
+}
+
+// Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
+// three offsets (voffset, soffset and instoffset) into the SDValue[3] array
+// pointed to by Offsets.
+void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
+ SelectionDAG &DAG, SDValue *Offsets,
+ unsigned Align) const {
+ SDLoc DL(CombinedOffset);
+ if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
+ uint32_t Imm = C->getZExtValue();
+ uint32_t SOffset, ImmOffset;
+ if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
+ Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
+ Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
+ Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32);
+ return;
+ }
+ }
+ if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
+ SDValue N0 = CombinedOffset.getOperand(0);
+ SDValue N1 = CombinedOffset.getOperand(1);
+ uint32_t SOffset, ImmOffset;
+ int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
+ if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
+ Subtarget, Align)) {
+ Offsets[0] = N0;
+ Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
+ Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32);
+ return;
+ }
+ }
+ Offsets[0] = CombinedOffset;
+ Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
+ Offsets[2] = DAG.getConstant(0, DL, MVT::i32);
+}
+
+// Handle 8 bit and 16 bit buffer loads
+SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
+ EVT LoadVT, SDLoc DL,
+ ArrayRef<SDValue> Ops,
+ MemSDNode *M) const {
+ EVT IntVT = LoadVT.changeTypeToInteger();
+ unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
+ AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
+
+ SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
+ SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
+ Ops, IntVT,
+ M->getMemOperand());
+ SDValue BufferLoadTrunc = DAG.getNode(ISD::TRUNCATE, DL,
+ LoadVT.getScalarType(), BufferLoad);
+ return DAG.getMergeValues({BufferLoadTrunc, BufferLoad.getValue(1)}, DL);
+}
+
+// Handle 8 bit and 16 bit buffer stores
+SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
+ EVT VDataType, SDLoc DL,
+ SDValue Ops[],
+ MemSDNode *M) const {
+ SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
+ Ops[1] = BufferStoreExt;
+ unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
+ AMDGPUISD::BUFFER_STORE_SHORT;
+ ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
+ return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
+ M->getMemOperand());
+}
+
+static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
+ ISD::LoadExtType ExtType, SDValue Op,
+ const SDLoc &SL, EVT VT) {
+ if (VT.bitsLT(Op.getValueType()))
+ return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
+
+ switch (ExtType) {
+ case ISD::SEXTLOAD:
+ return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
+ case ISD::ZEXTLOAD:
+ return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
+ case ISD::EXTLOAD:
+ return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
+ case ISD::NON_EXTLOAD:
+ return Op;
+ }
+
+ llvm_unreachable("invalid ext type");
+}
+
+SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ if (Ld->getAlignment() < 4 || Ld->isDivergent())
+ return SDValue();
+
+ // FIXME: Constant loads should all be marked invariant.
+ unsigned AS = Ld->getAddressSpace();
+ if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
+ AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
+ (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
+ return SDValue();
+
+ // Don't do this early, since it may interfere with adjacent load merging for
+ // illegal types. We can avoid losing alignment information for exotic types
+ // pre-legalize.
+ EVT MemVT = Ld->getMemoryVT();
+ if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
+ MemVT.getSizeInBits() >= 32)
+ return SDValue();
+
+ SDLoc SL(Ld);
+
+ assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
+ "unexpected vector extload");
+
+ // TODO: Drop only high part of range.
+ SDValue Ptr = Ld->getBasePtr();
+ SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
+ MVT::i32, SL, Ld->getChain(), Ptr,
+ Ld->getOffset(),
+ Ld->getPointerInfo(), MVT::i32,
+ Ld->getAlignment(),
+ Ld->getMemOperand()->getFlags(),
+ Ld->getAAInfo(),
+ nullptr); // Drop ranges
+
+ EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
+ if (MemVT.isFloatingPoint()) {
+ assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
+ "unexpected fp extload");
+ TruncVT = MemVT.changeTypeToInteger();
+ }
+
+ SDValue Cvt = NewLoad;
+ if (Ld->getExtensionType() == ISD::SEXTLOAD) {
+ Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
+ DAG.getValueType(TruncVT));
+ } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
+ Ld->getExtensionType() == ISD::NON_EXTLOAD) {
+ Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
+ } else {
+ assert(Ld->getExtensionType() == ISD::EXTLOAD);
+ }
+
+ EVT VT = Ld->getValueType(0);
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
+
+ DCI.AddToWorklist(Cvt.getNode());
+
+ // We may need to handle exotic cases, such as i16->i64 extloads, so insert
+ // the appropriate extension from the 32-bit load.
+ Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
+ DCI.AddToWorklist(Cvt.getNode());
+
+ // Handle conversion back to floating point if necessary.
+ Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
+
+ return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
+}
+
+SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+ ISD::LoadExtType ExtType = Load->getExtensionType();
+ EVT MemVT = Load->getMemoryVT();
+
+ if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
+ if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
+ return SDValue();
+
+ // FIXME: Copied from PPC
+ // First, load into 32 bits, then truncate to 1 bit.
+
+ SDValue Chain = Load->getChain();
+ SDValue BasePtr = Load->getBasePtr();
+ MachineMemOperand *MMO = Load->getMemOperand();
+
+ EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
+
+ SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
+ BasePtr, RealMemVT, MMO);
+
+ if (!MemVT.isVector()) {
+ SDValue Ops[] = {
+ DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
+ NewLD.getValue(1)
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ SmallVector<SDValue, 3> Elts;
+ for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
+ SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
+ DAG.getConstant(I, DL, MVT::i32));
+
+ Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
+ }
+
+ SDValue Ops[] = {
+ DAG.getBuildVector(MemVT, DL, Elts),
+ NewLD.getValue(1)
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ if (!MemVT.isVector())
+ return SDValue();
+
+ assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
+ "Custom lowering for non-i32 vectors hasn't been implemented.");
+
+ if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
+ *Load->getMemOperand())) {
+ SDValue Ops[2];
+ std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ unsigned Alignment = Load->getAlignment();
+ unsigned AS = Load->getAddressSpace();
+ if (Subtarget->hasLDSMisalignedBug() &&
+ AS == AMDGPUAS::FLAT_ADDRESS &&
+ Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
+ return SplitVectorLoad(Op, DAG);
+ }
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ // If there is a possibilty that flat instruction access scratch memory
+ // then we need to use the same legalization rules we use for private.
+ if (AS == AMDGPUAS::FLAT_ADDRESS)
+ AS = MFI->hasFlatScratchInit() ?
+ AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
+
+ unsigned NumElements = MemVT.getVectorNumElements();
+
+ if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
+ AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
+ if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
+ if (MemVT.isPow2VectorType())
+ return SDValue();
+ if (NumElements == 3)
+ return WidenVectorLoad(Op, DAG);
+ return SplitVectorLoad(Op, DAG);
+ }
+ // Non-uniform loads will be selected to MUBUF instructions, so they
+ // have the same legalization requirements as global and private
+ // loads.
+ //
+ }
+
+ if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
+ AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
+ AS == AMDGPUAS::GLOBAL_ADDRESS) {
+ if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
+ !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
+ Alignment >= 4 && NumElements < 32) {
+ if (MemVT.isPow2VectorType())
+ return SDValue();
+ if (NumElements == 3)
+ return WidenVectorLoad(Op, DAG);
+ return SplitVectorLoad(Op, DAG);
+ }
+ // Non-uniform loads will be selected to MUBUF instructions, so they
+ // have the same legalization requirements as global and private
+ // loads.
+ //
+ }
+ if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
+ AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
+ AS == AMDGPUAS::GLOBAL_ADDRESS ||
+ AS == AMDGPUAS::FLAT_ADDRESS) {
+ if (NumElements > 4)
+ return SplitVectorLoad(Op, DAG);
+ // v3 loads not supported on SI.
+ if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
+ return WidenVectorLoad(Op, DAG);
+ // v3 and v4 loads are supported for private and global memory.
+ return SDValue();
+ }
+ if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
+ // Depending on the setting of the private_element_size field in the
+ // resource descriptor, we can only make private accesses up to a certain
+ // size.
+ switch (Subtarget->getMaxPrivateElementSize()) {
+ case 4:
+ return scalarizeVectorLoad(Load, DAG);
+ case 8:
+ if (NumElements > 2)
+ return SplitVectorLoad(Op, DAG);
+ return SDValue();
+ case 16:
+ // Same as global/flat
+ if (NumElements > 4)
+ return SplitVectorLoad(Op, DAG);
+ // v3 loads not supported on SI.
+ if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
+ return WidenVectorLoad(Op, DAG);
+ return SDValue();
+ default:
+ llvm_unreachable("unsupported private_element_size");
+ }
+ } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
+ // Use ds_read_b128 if possible.
+ if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
+ MemVT.getStoreSize() == 16)
+ return SDValue();
+
+ if (NumElements > 2)
+ return SplitVectorLoad(Op, DAG);
+
+ // SI has a hardware bug in the LDS / GDS boounds checking: if the base
+ // address is negative, then the instruction is incorrectly treated as
+ // out-of-bounds even if base + offsets is in bounds. Split vectorized
+ // loads here to avoid emitting ds_read2_b32. We may re-combine the
+ // load later in the SILoadStoreOptimizer.
+ if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
+ NumElements == 2 && MemVT.getStoreSize() == 8 &&
+ Load->getAlignment() < 8) {
+ return SplitVectorLoad(Op, DAG);
+ }
+ }
+ return SDValue();
+}
+
+SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ assert(VT.getSizeInBits() == 64);
+
+ SDLoc DL(Op);
+ SDValue Cond = Op.getOperand(0);
+
+ SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
+ SDValue One = DAG.getConstant(1, DL, MVT::i32);
+
+ SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
+ SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
+
+ SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
+ SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
+
+ SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
+
+ SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
+ SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
+
+ SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
+
+ SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
+ return DAG.getNode(ISD::BITCAST, DL, VT, Res);
+}
+
+// Catch division cases where we can use shortcuts with rcp and rsq
+// instructions.
+SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ EVT VT = Op.getValueType();
+ const SDNodeFlags Flags = Op->getFlags();
+ bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
+
+ if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
+ return SDValue();
+
+ if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
+ if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
+ if (CLHS->isExactlyValue(1.0)) {
+ // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
+ // the CI documentation has a worst case error of 1 ulp.
+ // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
+ // use it as long as we aren't trying to use denormals.
+ //
+ // v_rcp_f16 and v_rsq_f16 DO support denormals.
+
+ // 1.0 / sqrt(x) -> rsq(x)
+
+ // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
+ // error seems really high at 2^29 ULP.
+ if (RHS.getOpcode() == ISD::FSQRT)
+ return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
+
+ // 1.0 / x -> rcp(x)
+ return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
+ }
+
+ // Same as for 1.0, but expand the sign out of the constant.
+ if (CLHS->isExactlyValue(-1.0)) {
+ // -1.0 / x -> rcp (fneg x)
+ SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
+ return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
+ }
+ }
+ }
+
+ if (Unsafe) {
+ // Turn into multiply by the reciprocal.
+ // x / y -> x * (1.0 / y)
+ SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
+ return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
+ }
+
+ return SDValue();
+}
+
+static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
+ EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
+ if (GlueChain->getNumValues() <= 1) {
+ return DAG.getNode(Opcode, SL, VT, A, B);
+ }
+
+ assert(GlueChain->getNumValues() == 3);
+
+ SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
+ switch (Opcode) {
+ default: llvm_unreachable("no chain equivalent for opcode");
+ case ISD::FMUL:
+ Opcode = AMDGPUISD::FMUL_W_CHAIN;
+ break;
+ }
+
+ return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
+ GlueChain.getValue(2));
+}
+
+static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
+ EVT VT, SDValue A, SDValue B, SDValue C,
+ SDValue GlueChain) {
+ if (GlueChain->getNumValues() <= 1) {
+ return DAG.getNode(Opcode, SL, VT, A, B, C);
+ }
+
+ assert(GlueChain->getNumValues() == 3);
+
+ SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
+ switch (Opcode) {
+ default: llvm_unreachable("no chain equivalent for opcode");
+ case ISD::FMA:
+ Opcode = AMDGPUISD::FMA_W_CHAIN;
+ break;
+ }
+
+ return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
+ GlueChain.getValue(2));
+}
+
+SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
+ if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
+ return FastLowered;
+
+ SDLoc SL(Op);
+ SDValue Src0 = Op.getOperand(0);
+ SDValue Src1 = Op.getOperand(1);
+
+ SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
+ SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
+
+ SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
+ SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
+
+ SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
+ SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
+
+ return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
+}
+
+// Faster 2.5 ULP division that does not support denormals.
+SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+
+ SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
+
+ const APFloat K0Val(BitsToFloat(0x6f800000));
+ const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
+
+ const APFloat K1Val(BitsToFloat(0x2f800000));
+ const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
+
+ const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
+
+ SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
+
+ SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
+
+ // TODO: Should this propagate fast-math-flags?
+ r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
+
+ // rcp does not support denormals.
+ SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
+
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
+
+ return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
+}
+
+SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
+ if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
+ return FastLowered;
+
+ SDLoc SL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+
+ const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
+
+ SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
+
+ SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
+ RHS, RHS, LHS);
+ SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
+ LHS, RHS, LHS);
+
+ // Denominator is scaled to not be denormal, so using rcp is ok.
+ SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
+ DenominatorScaled);
+ SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
+ DenominatorScaled);
+
+ const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
+ (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
+ (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
+
+ const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
+
+ if (!Subtarget->hasFP32Denormals()) {
+ SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
+ SL, MVT::i32);
+ SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
+ DAG.getEntryNode(),
+ EnableDenormValue, BitField);
+ SDValue Ops[3] = {
+ NegDivScale0,
+ EnableDenorm.getValue(0),
+ EnableDenorm.getValue(1)
+ };
+
+ NegDivScale0 = DAG.getMergeValues(Ops, SL);
+ }
+
+ SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
+ ApproxRcp, One, NegDivScale0);
+
+ SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
+ ApproxRcp, Fma0);
+
+ SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
+ Fma1, Fma1);
+
+ SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
+ NumeratorScaled, Mul);
+
+ SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
+
+ SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
+ NumeratorScaled, Fma3);
+
+ if (!Subtarget->hasFP32Denormals()) {
+ const SDValue DisableDenormValue =
+ DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
+ SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
+ Fma4.getValue(1),
+ DisableDenormValue,
+ BitField,
+ Fma4.getValue(2));
+
+ SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
+ DisableDenorm, DAG.getRoot());
+ DAG.setRoot(OutputChain);
+ }
+
+ SDValue Scale = NumeratorScaled.getValue(1);
+ SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
+ Fma4, Fma1, Fma3, Scale);
+
+ return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
+}
+
+SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
+ if (DAG.getTarget().Options.UnsafeFPMath)
+ return lowerFastUnsafeFDIV(Op, DAG);
+
+ SDLoc SL(Op);
+ SDValue X = Op.getOperand(0);
+ SDValue Y = Op.getOperand(1);
+
+ const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
+
+ SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
+
+ SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
+
+ SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
+
+ SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
+
+ SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
+
+ SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
+
+ SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
+
+ SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
+
+ SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
+
+ SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
+ NegDivScale0, Mul, DivScale1);
+
+ SDValue Scale;
+
+ if (!Subtarget->hasUsableDivScaleConditionOutput()) {
+ // Workaround a hardware bug on SI where the condition output from div_scale
+ // is not usable.
+
+ const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
+
+ // Figure out if the scale to use for div_fmas.
+ SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
+ SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
+ SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
+ SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
+
+ SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
+ SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
+
+ SDValue Scale0Hi
+ = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
+ SDValue Scale1Hi
+ = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
+
+ SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
+ SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
+ Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
+ } else {
+ Scale = DivScale1.getValue(1);
+ }
+
+ SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
+ Fma4, Fma3, Mul, Scale);
+
+ return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
+}
+
+SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+
+ if (VT == MVT::f32)
+ return LowerFDIV32(Op, DAG);
+
+ if (VT == MVT::f64)
+ return LowerFDIV64(Op, DAG);
+
+ if (VT == MVT::f16)
+ return LowerFDIV16(Op, DAG);
+
+ llvm_unreachable("Unexpected type for fdiv");
+}
+
+SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ EVT VT = Store->getMemoryVT();
+
+ if (VT == MVT::i1) {
+ return DAG.getTruncStore(Store->getChain(), DL,
+ DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
+ Store->getBasePtr(), MVT::i1, Store->getMemOperand());
+ }
+
+ assert(VT.isVector() &&
+ Store->getValue().getValueType().getScalarType() == MVT::i32);
+
+ if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
+ *Store->getMemOperand())) {
+ return expandUnalignedStore(Store, DAG);
+ }
+
+ unsigned AS = Store->getAddressSpace();
+ if (Subtarget->hasLDSMisalignedBug() &&
+ AS == AMDGPUAS::FLAT_ADDRESS &&
+ Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
+ return SplitVectorStore(Op, DAG);
+ }
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ // If there is a possibilty that flat instruction access scratch memory
+ // then we need to use the same legalization rules we use for private.
+ if (AS == AMDGPUAS::FLAT_ADDRESS)
+ AS = MFI->hasFlatScratchInit() ?
+ AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
+
+ unsigned NumElements = VT.getVectorNumElements();
+ if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
+ AS == AMDGPUAS::FLAT_ADDRESS) {
+ if (NumElements > 4)
+ return SplitVectorStore(Op, DAG);
+ // v3 stores not supported on SI.
+ if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
+ return SplitVectorStore(Op, DAG);
+ return SDValue();
+ } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
+ switch (Subtarget->getMaxPrivateElementSize()) {
+ case 4:
+ return scalarizeVectorStore(Store, DAG);
+ case 8:
+ if (NumElements > 2)
+ return SplitVectorStore(Op, DAG);
+ return SDValue();
+ case 16:
+ if (NumElements > 4 || NumElements == 3)
+ return SplitVectorStore(Op, DAG);
+ return SDValue();
+ default:
+ llvm_unreachable("unsupported private_element_size");
+ }
+ } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
+ // Use ds_write_b128 if possible.
+ if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
+ VT.getStoreSize() == 16 && NumElements != 3)
+ return SDValue();
+
+ if (NumElements > 2)
+ return SplitVectorStore(Op, DAG);
+
+ // SI has a hardware bug in the LDS / GDS boounds checking: if the base
+ // address is negative, then the instruction is incorrectly treated as
+ // out-of-bounds even if base + offsets is in bounds. Split vectorized
+ // stores here to avoid emitting ds_write2_b32. We may re-combine the
+ // store later in the SILoadStoreOptimizer.
+ if (!Subtarget->hasUsableDSOffset() &&
+ NumElements == 2 && VT.getStoreSize() == 8 &&
+ Store->getAlignment() < 8) {
+ return SplitVectorStore(Op, DAG);
+ }
+
+ return SDValue();
+ } else {
+ llvm_unreachable("unhandled address space");
+ }
+}
+
+SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue Arg = Op.getOperand(0);
+ SDValue TrigVal;
+
+ // TODO: Should this propagate fast-math-flags?
+
+ SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
+
+ if (Subtarget->hasTrigReducedRange()) {
+ SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
+ TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
+ } else {
+ TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
+ }
+
+ switch (Op.getOpcode()) {
+ case ISD::FCOS:
+ return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
+ case ISD::FSIN:
+ return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
+ default:
+ llvm_unreachable("Wrong trig opcode");
+ }
+}
+
+SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
+ AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
+ assert(AtomicNode->isCompareAndSwap());
+ unsigned AS = AtomicNode->getAddressSpace();
+
+ // No custom lowering required for local address space
+ if (!isFlatGlobalAddrSpace(AS))
+ return Op;
+
+ // Non-local address space requires custom lowering for atomic compare
+ // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
+ SDLoc DL(Op);
+ SDValue ChainIn = Op.getOperand(0);
+ SDValue Addr = Op.getOperand(1);
+ SDValue Old = Op.getOperand(2);
+ SDValue New = Op.getOperand(3);
+ EVT VT = Op.getValueType();
+ MVT SimpleVT = VT.getSimpleVT();
+ MVT VecType = MVT::getVectorVT(SimpleVT, 2);
+
+ SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
+ SDValue Ops[] = { ChainIn, Addr, NewOld };
+
+ return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
+ Ops, VT, AtomicNode->getMemOperand());
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG optimizations
+//===----------------------------------------------------------------------===//
+
+SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+ EVT ScalarVT = VT.getScalarType();
+ if (ScalarVT != MVT::f32)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ SDValue Src = N->getOperand(0);
+ EVT SrcVT = Src.getValueType();
+
+ // TODO: We could try to match extracting the higher bytes, which would be
+ // easier if i8 vectors weren't promoted to i32 vectors, particularly after
+ // types are legalized. v4i8 -> v4f32 is probably the only case to worry
+ // about in practice.
+ if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
+ if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
+ SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
+ DCI.AddToWorklist(Cvt.getNode());
+ return Cvt;
+ }
+ }
+
+ return SDValue();
+}
+
+// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
+
+// This is a variant of
+// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
+//
+// The normal DAG combiner will do this, but only if the add has one use since
+// that would increase the number of instructions.
+//
+// This prevents us from seeing a constant offset that can be folded into a
+// memory instruction's addressing mode. If we know the resulting add offset of
+// a pointer can be folded into an addressing offset, we can replace the pointer
+// operand with the add of new constant offset. This eliminates one of the uses,
+// and may allow the remaining use to also be simplified.
+//
+SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
+ unsigned AddrSpace,
+ EVT MemVT,
+ DAGCombinerInfo &DCI) const {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // We only do this to handle cases where it's profitable when there are
+ // multiple uses of the add, so defer to the standard combine.
+ if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
+ N0->hasOneUse())
+ return SDValue();
+
+ const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
+ if (!CN1)
+ return SDValue();
+
+ const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!CAdd)
+ return SDValue();
+
+ // If the resulting offset is too large, we can't fold it into the addressing
+ // mode offset.
+ APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
+ Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
+
+ AddrMode AM;
+ AM.HasBaseReg = true;
+ AM.BaseOffs = Offset.getSExtValue();
+ if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+ EVT VT = N->getValueType(0);
+
+ SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
+ SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
+
+ SDNodeFlags Flags;
+ Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
+ (N0.getOpcode() == ISD::OR ||
+ N0->getFlags().hasNoUnsignedWrap()));
+
+ return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
+}
+
+SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SDValue Ptr = N->getBasePtr();
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+
+ // TODO: We could also do this for multiplies.
+ if (Ptr.getOpcode() == ISD::SHL) {
+ SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
+ N->getMemoryVT(), DCI);
+ if (NewPtr) {
+ SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
+
+ NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
+ return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
+ }
+ }
+
+ return SDValue();
+}
+
+static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
+ return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
+ (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
+ (Opc == ISD::XOR && Val == 0);
+}
+
+// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
+// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
+// integer combine opportunities since most 64-bit operations are decomposed
+// this way. TODO: We won't want this for SALU especially if it is an inline
+// immediate.
+SDValue SITargetLowering::splitBinaryBitConstantOp(
+ DAGCombinerInfo &DCI,
+ const SDLoc &SL,
+ unsigned Opc, SDValue LHS,
+ const ConstantSDNode *CRHS) const {
+ uint64_t Val = CRHS->getZExtValue();
+ uint32_t ValLo = Lo_32(Val);
+ uint32_t ValHi = Hi_32(Val);
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+
+ if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
+ bitOpWithConstantIsReducible(Opc, ValHi)) ||
+ (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
+ // If we need to materialize a 64-bit immediate, it will be split up later
+ // anyway. Avoid creating the harder to understand 64-bit immediate
+ // materialization.
+ return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
+ }
+
+ return SDValue();
+}
+
+// Returns true if argument is a boolean value which is not serialized into
+// memory or argument and does not require v_cmdmask_b32 to be deserialized.
+static bool isBoolSGPR(SDValue V) {
+ if (V.getValueType() != MVT::i1)
+ return false;
+ switch (V.getOpcode()) {
+ default: break;
+ case ISD::SETCC:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ case AMDGPUISD::FP_CLASS:
+ return true;
+ }
+ return false;
+}
+
+// If a constant has all zeroes or all ones within each byte return it.
+// Otherwise return 0.
+static uint32_t getConstantPermuteMask(uint32_t C) {
+ // 0xff for any zero byte in the mask
+ uint32_t ZeroByteMask = 0;
+ if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
+ if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
+ if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
+ if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
+ uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
+ if ((NonZeroByteMask & C) != NonZeroByteMask)
+ return 0; // Partial bytes selected.
+ return C;
+}
+
+// Check if a node selects whole bytes from its operand 0 starting at a byte
+// boundary while masking the rest. Returns select mask as in the v_perm_b32
+// or -1 if not succeeded.
+// Note byte select encoding:
+// value 0-3 selects corresponding source byte;
+// value 0xc selects zero;
+// value 0xff selects 0xff.
+static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
+ assert(V.getValueSizeInBits() == 32);
+
+ if (V.getNumOperands() != 2)
+ return ~0;
+
+ ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
+ if (!N1)
+ return ~0;
+
+ uint32_t C = N1->getZExtValue();
+
+ switch (V.getOpcode()) {
+ default:
+ break;
+ case ISD::AND:
+ if (uint32_t ConstMask = getConstantPermuteMask(C)) {
+ return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
+ }
+ break;
+
+ case ISD::OR:
+ if (uint32_t ConstMask = getConstantPermuteMask(C)) {
+ return (0x03020100 & ~ConstMask) | ConstMask;
+ }
+ break;
+
+ case ISD::SHL:
+ if (C % 8)
+ return ~0;
+
+ return uint32_t((0x030201000c0c0c0cull << C) >> 32);
+
+ case ISD::SRL:
+ if (C % 8)
+ return ~0;
+
+ return uint32_t(0x0c0c0c0c03020100ull >> C);
+ }
+
+ return ~0;
+}
+
+SDValue SITargetLowering::performAndCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.isBeforeLegalize())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+
+ const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
+ if (VT == MVT::i64 && CRHS) {
+ if (SDValue Split
+ = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
+ return Split;
+ }
+
+ if (CRHS && VT == MVT::i32) {
+ // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
+ // nb = number of trailing zeroes in mask
+ // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
+ // given that we are selecting 8 or 16 bit fields starting at byte boundary.
+ uint64_t Mask = CRHS->getZExtValue();
+ unsigned Bits = countPopulation(Mask);
+ if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
+ (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
+ if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
+ unsigned Shift = CShift->getZExtValue();
+ unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
+ unsigned Offset = NB + Shift;
+ if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
+ SDLoc SL(N);
+ SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
+ LHS->getOperand(0),
+ DAG.getConstant(Offset, SL, MVT::i32),
+ DAG.getConstant(Bits, SL, MVT::i32));
+ EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
+ SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
+ DAG.getValueType(NarrowVT));
+ SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
+ DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
+ return Shl;
+ }
+ }
+ }
+
+ // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
+ if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
+ isa<ConstantSDNode>(LHS.getOperand(2))) {
+ uint32_t Sel = getConstantPermuteMask(Mask);
+ if (!Sel)
+ return SDValue();
+
+ // Select 0xc for all zero bytes
+ Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
+ SDLoc DL(N);
+ return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
+ LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
+ }
+ }
+
+ // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
+ // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
+ if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
+ ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
+ ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
+
+ SDValue X = LHS.getOperand(0);
+ SDValue Y = RHS.getOperand(0);
+ if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
+ return SDValue();
+
+ if (LCC == ISD::SETO) {
+ if (X != LHS.getOperand(1))
+ return SDValue();
+
+ if (RCC == ISD::SETUNE) {
+ const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
+ if (!C1 || !C1->isInfinity() || C1->isNegative())
+ return SDValue();
+
+ const uint32_t Mask = SIInstrFlags::N_NORMAL |
+ SIInstrFlags::N_SUBNORMAL |
+ SIInstrFlags::N_ZERO |
+ SIInstrFlags::P_ZERO |
+ SIInstrFlags::P_SUBNORMAL |
+ SIInstrFlags::P_NORMAL;
+
+ static_assert(((~(SIInstrFlags::S_NAN |
+ SIInstrFlags::Q_NAN |
+ SIInstrFlags::N_INFINITY |
+ SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
+ "mask not equal");
+
+ SDLoc DL(N);
+ return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
+ X, DAG.getConstant(Mask, DL, MVT::i32));
+ }
+ }
+ }
+
+ if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
+ std::swap(LHS, RHS);
+
+ if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
+ RHS.hasOneUse()) {
+ ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
+ // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
+ // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
+ const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
+ if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
+ (RHS.getOperand(0) == LHS.getOperand(0) &&
+ LHS.getOperand(0) == LHS.getOperand(1))) {
+ const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
+ unsigned NewMask = LCC == ISD::SETO ?
+ Mask->getZExtValue() & ~OrdMask :
+ Mask->getZExtValue() & OrdMask;
+
+ SDLoc DL(N);
+ return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
+ DAG.getConstant(NewMask, DL, MVT::i32));
+ }
+ }
+
+ if (VT == MVT::i32 &&
+ (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
+ // and x, (sext cc from i1) => select cc, x, 0
+ if (RHS.getOpcode() != ISD::SIGN_EXTEND)
+ std::swap(LHS, RHS);
+ if (isBoolSGPR(RHS.getOperand(0)))
+ return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
+ LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
+ }
+
+ // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+ if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
+ N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
+ uint32_t LHSMask = getPermuteMask(DAG, LHS);
+ uint32_t RHSMask = getPermuteMask(DAG, RHS);
+ if (LHSMask != ~0u && RHSMask != ~0u) {
+ // Canonicalize the expression in an attempt to have fewer unique masks
+ // and therefore fewer registers used to hold the masks.
+ if (LHSMask > RHSMask) {
+ std::swap(LHSMask, RHSMask);
+ std::swap(LHS, RHS);
+ }
+
+ // Select 0xc for each lane used from source operand. Zero has 0xc mask
+ // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
+ uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
+ uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
+
+ // Check of we need to combine values from two sources within a byte.
+ if (!(LHSUsedLanes & RHSUsedLanes) &&
+ // If we select high and lower word keep it for SDWA.
+ // TODO: teach SDWA to work with v_perm_b32 and remove the check.
+ !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
+ // Each byte in each mask is either selector mask 0-3, or has higher
+ // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
+ // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
+ // mask which is not 0xff wins. By anding both masks we have a correct
+ // result except that 0x0c shall be corrected to give 0x0c only.
+ uint32_t Mask = LHSMask & RHSMask;
+ for (unsigned I = 0; I < 32; I += 8) {
+ uint32_t ByteSel = 0xff << I;
+ if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
+ Mask &= (0x0c << I) & 0xffffffff;
+ }
+
+ // Add 4 to each active LHS lane. It will not affect any existing 0xff
+ // or 0x0c.
+ uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
+ SDLoc DL(N);
+
+ return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
+ LHS.getOperand(0), RHS.getOperand(0),
+ DAG.getConstant(Sel, DL, MVT::i32));
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performOrCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::i1) {
+ // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
+ if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
+ RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
+ SDValue Src = LHS.getOperand(0);
+ if (Src != RHS.getOperand(0))
+ return SDValue();
+
+ const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
+ const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
+ if (!CLHS || !CRHS)
+ return SDValue();
+
+ // Only 10 bits are used.
+ static const uint32_t MaxMask = 0x3ff;
+
+ uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
+ SDLoc DL(N);
+ return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
+ Src, DAG.getConstant(NewMask, DL, MVT::i32));
+ }
+
+ return SDValue();
+ }
+
+ // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
+ if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
+ LHS.getOpcode() == AMDGPUISD::PERM &&
+ isa<ConstantSDNode>(LHS.getOperand(2))) {
+ uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
+ if (!Sel)
+ return SDValue();
+
+ Sel |= LHS.getConstantOperandVal(2);
+ SDLoc DL(N);
+ return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
+ LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
+ }
+
+ // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+ if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
+ N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
+ uint32_t LHSMask = getPermuteMask(DAG, LHS);
+ uint32_t RHSMask = getPermuteMask(DAG, RHS);
+ if (LHSMask != ~0u && RHSMask != ~0u) {
+ // Canonicalize the expression in an attempt to have fewer unique masks
+ // and therefore fewer registers used to hold the masks.
+ if (LHSMask > RHSMask) {
+ std::swap(LHSMask, RHSMask);
+ std::swap(LHS, RHS);
+ }
+
+ // Select 0xc for each lane used from source operand. Zero has 0xc mask
+ // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
+ uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
+ uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
+
+ // Check of we need to combine values from two sources within a byte.
+ if (!(LHSUsedLanes & RHSUsedLanes) &&
+ // If we select high and lower word keep it for SDWA.
+ // TODO: teach SDWA to work with v_perm_b32 and remove the check.
+ !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
+ // Kill zero bytes selected by other mask. Zero value is 0xc.
+ LHSMask &= ~RHSUsedLanes;
+ RHSMask &= ~LHSUsedLanes;
+ // Add 4 to each active LHS lane
+ LHSMask |= LHSUsedLanes & 0x04040404;
+ // Combine masks
+ uint32_t Sel = LHSMask | RHSMask;
+ SDLoc DL(N);
+
+ return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
+ LHS.getOperand(0), RHS.getOperand(0),
+ DAG.getConstant(Sel, DL, MVT::i32));
+ }
+ }
+ }
+
+ if (VT != MVT::i64)
+ return SDValue();
+
+ // TODO: This could be a generic combine with a predicate for extracting the
+ // high half of an integer being free.
+
+ // (or i64:x, (zero_extend i32:y)) ->
+ // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
+ if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
+ RHS.getOpcode() != ISD::ZERO_EXTEND)
+ std::swap(LHS, RHS);
+
+ if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
+ SDValue ExtSrc = RHS.getOperand(0);
+ EVT SrcVT = ExtSrc.getValueType();
+ if (SrcVT == MVT::i32) {
+ SDLoc SL(N);
+ SDValue LowLHS, HiBits;
+ std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
+ SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
+
+ DCI.AddToWorklist(LowOr.getNode());
+ DCI.AddToWorklist(HiBits.getNode());
+
+ SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
+ LowOr, HiBits);
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
+ }
+ }
+
+ const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (CRHS) {
+ if (SDValue Split
+ = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
+ return Split;
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performXorCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i64)
+ return SDValue();
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
+ if (CRHS) {
+ if (SDValue Split
+ = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
+ return Split;
+ }
+
+ return SDValue();
+}
+
+// Instructions that will be lowered with a final instruction that zeros the
+// high result bits.
+// XXX - probably only need to list legal operations.
+static bool fp16SrcZerosHighBits(unsigned Opc) {
+ switch (Opc) {
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::FMA:
+ case ISD::FMAD:
+ case ISD::FCANONICALIZE:
+ case ISD::FP_ROUND:
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP:
+ case ISD::FABS:
+ // Fabs is lowered to a bit operation, but it's an and which will clear the
+ // high bits anyway.
+ case ISD::FSQRT:
+ case ISD::FSIN:
+ case ISD::FCOS:
+ case ISD::FPOWI:
+ case ISD::FPOW:
+ case ISD::FLOG:
+ case ISD::FLOG2:
+ case ISD::FLOG10:
+ case ISD::FEXP:
+ case ISD::FEXP2:
+ case ISD::FCEIL:
+ case ISD::FTRUNC:
+ case ISD::FRINT:
+ case ISD::FNEARBYINT:
+ case ISD::FROUND:
+ case ISD::FFLOOR:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+ case AMDGPUISD::FRACT:
+ case AMDGPUISD::CLAMP:
+ case AMDGPUISD::COS_HW:
+ case AMDGPUISD::SIN_HW:
+ case AMDGPUISD::FMIN3:
+ case AMDGPUISD::FMAX3:
+ case AMDGPUISD::FMED3:
+ case AMDGPUISD::FMAD_FTZ:
+ case AMDGPUISD::RCP:
+ case AMDGPUISD::RSQ:
+ case AMDGPUISD::RCP_IFLAG:
+ case AMDGPUISD::LDEXP:
+ return true;
+ default:
+ // fcopysign, select and others may be lowered to 32-bit bit operations
+ // which don't zero the high bits.
+ return false;
+ }
+}
+
+SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (!Subtarget->has16BitInsts() ||
+ DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i32)
+ return SDValue();
+
+ SDValue Src = N->getOperand(0);
+ if (Src.getValueType() != MVT::i16)
+ return SDValue();
+
+ // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
+ // FIXME: It is not universally true that the high bits are zeroed on gfx9.
+ if (Src.getOpcode() == ISD::BITCAST) {
+ SDValue BCSrc = Src.getOperand(0);
+ if (BCSrc.getValueType() == MVT::f16 &&
+ fp16SrcZerosHighBits(BCSrc.getOpcode()))
+ return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
+ DAGCombinerInfo &DCI)
+ const {
+ SDValue Src = N->getOperand(0);
+ auto *VTSign = cast<VTSDNode>(N->getOperand(1));
+
+ if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
+ VTSign->getVT() == MVT::i8) ||
+ (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
+ VTSign->getVT() == MVT::i16)) &&
+ Src.hasOneUse()) {
+ auto *M = cast<MemSDNode>(Src);
+ SDValue Ops[] = {
+ Src.getOperand(0), // Chain
+ Src.getOperand(1), // rsrc
+ Src.getOperand(2), // vindex
+ Src.getOperand(3), // voffset
+ Src.getOperand(4), // soffset
+ Src.getOperand(5), // offset
+ Src.getOperand(6),
+ Src.getOperand(7)
+ };
+ // replace with BUFFER_LOAD_BYTE/SHORT
+ SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
+ Src.getOperand(0).getValueType());
+ unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
+ AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
+ SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
+ ResList,
+ Ops, M->getMemoryVT(),
+ M->getMemOperand());
+ return DCI.DAG.getMergeValues({BufferLoadSignExt,
+ BufferLoadSignExt.getValue(1)}, SDLoc(N));
+ }
+ return SDValue();
+}
+
+SDValue SITargetLowering::performClassCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Mask = N->getOperand(1);
+
+ // fp_class x, 0 -> false
+ if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
+ if (CMask->isNullValue())
+ return DAG.getConstant(0, SDLoc(N), MVT::i1);
+ }
+
+ if (N->getOperand(0).isUndef())
+ return DAG.getUNDEF(MVT::i1);
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performRcpCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+
+ if (N0.isUndef())
+ return N0;
+
+ if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
+ N0.getOpcode() == ISD::SINT_TO_FP)) {
+ return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
+ N->getFlags());
+ }
+
+ return AMDGPUTargetLowering::performRcpCombine(N, DCI);
+}
+
+bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
+ unsigned MaxDepth) const {
+ unsigned Opcode = Op.getOpcode();
+ if (Opcode == ISD::FCANONICALIZE)
+ return true;
+
+ if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
+ auto F = CFP->getValueAPF();
+ if (F.isNaN() && F.isSignaling())
+ return false;
+ return !F.isDenormal() || denormalsEnabledForType(Op.getValueType());
+ }
+
+ // If source is a result of another standard FP operation it is already in
+ // canonical form.
+ if (MaxDepth == 0)
+ return false;
+
+ switch (Opcode) {
+ // These will flush denorms if required.
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FCEIL:
+ case ISD::FFLOOR:
+ case ISD::FMA:
+ case ISD::FMAD:
+ case ISD::FSQRT:
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::FP_ROUND:
+ case ISD::FP_EXTEND:
+ case AMDGPUISD::FMUL_LEGACY:
+ case AMDGPUISD::FMAD_FTZ:
+ case AMDGPUISD::RCP:
+ case AMDGPUISD::RSQ:
+ case AMDGPUISD::RSQ_CLAMP:
+ case AMDGPUISD::RCP_LEGACY:
+ case AMDGPUISD::RSQ_LEGACY:
+ case AMDGPUISD::RCP_IFLAG:
+ case AMDGPUISD::TRIG_PREOP:
+ case AMDGPUISD::DIV_SCALE:
+ case AMDGPUISD::DIV_FMAS:
+ case AMDGPUISD::DIV_FIXUP:
+ case AMDGPUISD::FRACT:
+ case AMDGPUISD::LDEXP:
+ case AMDGPUISD::CVT_PKRTZ_F16_F32:
+ case AMDGPUISD::CVT_F32_UBYTE0:
+ case AMDGPUISD::CVT_F32_UBYTE1:
+ case AMDGPUISD::CVT_F32_UBYTE2:
+ case AMDGPUISD::CVT_F32_UBYTE3:
+ return true;
+
+ // It can/will be lowered or combined as a bit operation.
+ // Need to check their input recursively to handle.
+ case ISD::FNEG:
+ case ISD::FABS:
+ case ISD::FCOPYSIGN:
+ return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
+
+ case ISD::FSIN:
+ case ISD::FCOS:
+ case ISD::FSINCOS:
+ return Op.getValueType().getScalarType() != MVT::f16;
+
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+ case ISD::FMINNUM_IEEE:
+ case ISD::FMAXNUM_IEEE:
+ case AMDGPUISD::CLAMP:
+ case AMDGPUISD::FMED3:
+ case AMDGPUISD::FMAX3:
+ case AMDGPUISD::FMIN3: {
+ // FIXME: Shouldn't treat the generic operations different based these.
+ // However, we aren't really required to flush the result from
+ // minnum/maxnum..
+
+ // snans will be quieted, so we only need to worry about denormals.
+ if (Subtarget->supportsMinMaxDenormModes() ||
+ denormalsEnabledForType(Op.getValueType()))
+ return true;
+
+ // Flushing may be required.
+ // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
+ // targets need to check their input recursively.
+
+ // FIXME: Does this apply with clamp? It's implemented with max.
+ for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
+ if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
+ return false;
+ }
+
+ return true;
+ }
+ case ISD::SELECT: {
+ return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
+ isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
+ }
+ case ISD::BUILD_VECTOR: {
+ for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
+ SDValue SrcOp = Op.getOperand(i);
+ if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
+ return false;
+ }
+
+ return true;
+ }
+ case ISD::EXTRACT_VECTOR_ELT:
+ case ISD::EXTRACT_SUBVECTOR: {
+ return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
+ isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
+ }
+ case ISD::UNDEF:
+ // Could be anything.
+ return false;
+
+ case ISD::BITCAST: {
+ // Hack round the mess we make when legalizing extract_vector_elt
+ SDValue Src = Op.getOperand(0);
+ if (Src.getValueType() == MVT::i16 &&
+ Src.getOpcode() == ISD::TRUNCATE) {
+ SDValue TruncSrc = Src.getOperand(0);
+ if (TruncSrc.getValueType() == MVT::i32 &&
+ TruncSrc.getOpcode() == ISD::BITCAST &&
+ TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
+ return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
+ }
+ }
+
+ return false;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntrinsicID
+ = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ // TODO: Handle more intrinsics
+ switch (IntrinsicID) {
+ case Intrinsic::amdgcn_cvt_pkrtz:
+ case Intrinsic::amdgcn_cubeid:
+ case Intrinsic::amdgcn_frexp_mant:
+ case Intrinsic::amdgcn_fdot2:
+ return true;
+ default:
+ break;
+ }
+
+ LLVM_FALLTHROUGH;
+ }
+ default:
+ return denormalsEnabledForType(Op.getValueType()) &&
+ DAG.isKnownNeverSNaN(Op);
+ }
+
+ llvm_unreachable("invalid operation");
+}
+
+// Constant fold canonicalize.
+SDValue SITargetLowering::getCanonicalConstantFP(
+ SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
+ // Flush denormals to 0 if not enabled.
+ if (C.isDenormal() && !denormalsEnabledForType(VT))
+ return DAG.getConstantFP(0.0, SL, VT);
+
+ if (C.isNaN()) {
+ APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
+ if (C.isSignaling()) {
+ // Quiet a signaling NaN.
+ // FIXME: Is this supposed to preserve payload bits?
+ return DAG.getConstantFP(CanonicalQNaN, SL, VT);
+ }
+
+ // Make sure it is the canonical NaN bitpattern.
+ //
+ // TODO: Can we use -1 as the canonical NaN value since it's an inline
+ // immediate?
+ if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
+ return DAG.getConstantFP(CanonicalQNaN, SL, VT);
+ }
+
+ // Already canonical.
+ return DAG.getConstantFP(C, SL, VT);
+}
+
+static bool vectorEltWillFoldAway(SDValue Op) {
+ return Op.isUndef() || isa<ConstantFPSDNode>(Op);
+}
+
+SDValue SITargetLowering::performFCanonicalizeCombine(
+ SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fcanonicalize undef -> qnan
+ if (N0.isUndef()) {
+ APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
+ return DAG.getConstantFP(QNaN, SDLoc(N), VT);
+ }
+
+ if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
+ EVT VT = N->getValueType(0);
+ return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
+ }
+
+ // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
+ // (fcanonicalize k)
+ //
+ // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
+
+ // TODO: This could be better with wider vectors that will be split to v2f16,
+ // and to consider uses since there aren't that many packed operations.
+ if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
+ isTypeLegal(MVT::v2f16)) {
+ SDLoc SL(N);
+ SDValue NewElts[2];
+ SDValue Lo = N0.getOperand(0);
+ SDValue Hi = N0.getOperand(1);
+ EVT EltVT = Lo.getValueType();
+
+ if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
+ for (unsigned I = 0; I != 2; ++I) {
+ SDValue Op = N0.getOperand(I);
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
+ NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
+ CFP->getValueAPF());
+ } else if (Op.isUndef()) {
+ // Handled below based on what the other operand is.
+ NewElts[I] = Op;
+ } else {
+ NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
+ }
+ }
+
+ // If one half is undef, and one is constant, perfer a splat vector rather
+ // than the normal qNaN. If it's a register, prefer 0.0 since that's
+ // cheaper to use and may be free with a packed operation.
+ if (NewElts[0].isUndef()) {
+ if (isa<ConstantFPSDNode>(NewElts[1]))
+ NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
+ NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
+ }
+
+ if (NewElts[1].isUndef()) {
+ NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
+ NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
+ }
+
+ return DAG.getBuildVector(VT, SL, NewElts);
+ }
+ }
+
+ unsigned SrcOpc = N0.getOpcode();
+
+ // If it's free to do so, push canonicalizes further up the source, which may
+ // find a canonical source.
+ //
+ // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
+ // sNaNs.
+ if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
+ auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
+ if (CRHS && N0.hasOneUse()) {
+ SDLoc SL(N);
+ SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
+ N0.getOperand(0));
+ SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
+ DCI.AddToWorklist(Canon0.getNode());
+
+ return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
+ }
+ }
+
+ return isCanonicalized(DAG, N0) ? N0 : SDValue();
+}
+
+static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
+ switch (Opc) {
+ case ISD::FMAXNUM:
+ case ISD::FMAXNUM_IEEE:
+ return AMDGPUISD::FMAX3;
+ case ISD::SMAX:
+ return AMDGPUISD::SMAX3;
+ case ISD::UMAX:
+ return AMDGPUISD::UMAX3;
+ case ISD::FMINNUM:
+ case ISD::FMINNUM_IEEE:
+ return AMDGPUISD::FMIN3;
+ case ISD::SMIN:
+ return AMDGPUISD::SMIN3;
+ case ISD::UMIN:
+ return AMDGPUISD::UMIN3;
+ default:
+ llvm_unreachable("Not a min/max opcode");
+ }
+}
+
+SDValue SITargetLowering::performIntMed3ImmCombine(
+ SelectionDAG &DAG, const SDLoc &SL,
+ SDValue Op0, SDValue Op1, bool Signed) const {
+ ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
+ if (!K1)
+ return SDValue();
+
+ ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
+ if (!K0)
+ return SDValue();
+
+ if (Signed) {
+ if (K0->getAPIntValue().sge(K1->getAPIntValue()))
+ return SDValue();
+ } else {
+ if (K0->getAPIntValue().uge(K1->getAPIntValue()))
+ return SDValue();
+ }
+
+ EVT VT = K0->getValueType(0);
+ unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
+ if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
+ return DAG.getNode(Med3Opc, SL, VT,
+ Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
+ }
+
+ // If there isn't a 16-bit med3 operation, convert to 32-bit.
+ MVT NVT = MVT::i32;
+ unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+
+ SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
+ SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
+ SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
+
+ SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
+ return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
+}
+
+static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
+ return C;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
+ if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
+ return C;
+ }
+
+ return nullptr;
+}
+
+SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
+ const SDLoc &SL,
+ SDValue Op0,
+ SDValue Op1) const {
+ ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
+ if (!K1)
+ return SDValue();
+
+ ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
+ if (!K0)
+ return SDValue();
+
+ // Ordered >= (although NaN inputs should have folded away by now).
+ APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
+ if (Cmp == APFloat::cmpGreaterThan)
+ return SDValue();
+
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ // TODO: Check IEEE bit enabled?
+ EVT VT = Op0.getValueType();
+ if (Info->getMode().DX10Clamp) {
+ // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
+ // hardware fmed3 behavior converting to a min.
+ // FIXME: Should this be allowing -0.0?
+ if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
+ return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
+ }
+
+ // med3 for f16 is only available on gfx9+, and not available for v2f16.
+ if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
+ // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
+ // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
+ // then give the other result, which is different from med3 with a NaN
+ // input.
+ SDValue Var = Op0.getOperand(0);
+ if (!DAG.isKnownNeverSNaN(Var))
+ return SDValue();
+
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+
+ if ((!K0->hasOneUse() ||
+ TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
+ (!K1->hasOneUse() ||
+ TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
+ return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
+ Var, SDValue(K0, 0), SDValue(K1, 0));
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+
+ EVT VT = N->getValueType(0);
+ unsigned Opc = N->getOpcode();
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // Only do this if the inner op has one use since this will just increases
+ // register pressure for no benefit.
+
+ if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
+ !VT.isVector() &&
+ (VT == MVT::i32 || VT == MVT::f32 ||
+ ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
+ // max(max(a, b), c) -> max3(a, b, c)
+ // min(min(a, b), c) -> min3(a, b, c)
+ if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
+ SDLoc DL(N);
+ return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
+ DL,
+ N->getValueType(0),
+ Op0.getOperand(0),
+ Op0.getOperand(1),
+ Op1);
+ }
+
+ // Try commuted.
+ // max(a, max(b, c)) -> max3(a, b, c)
+ // min(a, min(b, c)) -> min3(a, b, c)
+ if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
+ SDLoc DL(N);
+ return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
+ DL,
+ N->getValueType(0),
+ Op0,
+ Op1.getOperand(0),
+ Op1.getOperand(1));
+ }
+ }
+
+ // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
+ if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
+ if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
+ return Med3;
+ }
+
+ if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
+ if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
+ return Med3;
+ }
+
+ // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
+ if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
+ (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
+ (Opc == AMDGPUISD::FMIN_LEGACY &&
+ Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
+ (VT == MVT::f32 || VT == MVT::f64 ||
+ (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
+ (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
+ Op0.hasOneUse()) {
+ if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
+ return Res;
+ }
+
+ return SDValue();
+}
+
+static bool isClampZeroToOne(SDValue A, SDValue B) {
+ if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
+ if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
+ // FIXME: Should this be allowing -0.0?
+ return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
+ (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
+ }
+ }
+
+ return false;
+}
+
+// FIXME: Should only worry about snans for version with chain.
+SDValue SITargetLowering::performFMed3Combine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+ // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
+ // NaNs. With a NaN input, the order of the operands may change the result.
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+
+ SDValue Src0 = N->getOperand(0);
+ SDValue Src1 = N->getOperand(1);
+ SDValue Src2 = N->getOperand(2);
+
+ if (isClampZeroToOne(Src0, Src1)) {
+ // const_a, const_b, x -> clamp is safe in all cases including signaling
+ // nans.
+ // FIXME: Should this be allowing -0.0?
+ return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
+ }
+
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
+ // handling no dx10-clamp?
+ if (Info->getMode().DX10Clamp) {
+ // If NaNs is clamped to 0, we are free to reorder the inputs.
+
+ if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
+ std::swap(Src0, Src1);
+
+ if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
+ std::swap(Src1, Src2);
+
+ if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
+ std::swap(Src0, Src1);
+
+ if (isClampZeroToOne(Src1, Src2))
+ return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SDValue Src0 = N->getOperand(0);
+ SDValue Src1 = N->getOperand(1);
+ if (Src0.isUndef() && Src1.isUndef())
+ return DCI.DAG.getUNDEF(N->getValueType(0));
+ return SDValue();
+}
+
+SDValue SITargetLowering::performExtractVectorEltCombine(
+ SDNode *N, DAGCombinerInfo &DCI) const {
+ SDValue Vec = N->getOperand(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ EVT VecVT = Vec.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
+
+ if ((Vec.getOpcode() == ISD::FNEG ||
+ Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
+ SDLoc SL(N);
+ EVT EltVT = N->getValueType(0);
+ SDValue Idx = N->getOperand(1);
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
+ Vec.getOperand(0), Idx);
+ return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
+ }
+
+ // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
+ // =>
+ // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
+ // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
+ // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
+ if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
+ SDLoc SL(N);
+ EVT EltVT = N->getValueType(0);
+ SDValue Idx = N->getOperand(1);
+ unsigned Opc = Vec.getOpcode();
+
+ switch(Opc) {
+ default:
+ break;
+ // TODO: Support other binary operations.
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::ADD:
+ case ISD::UMIN:
+ case ISD::UMAX:
+ case ISD::SMIN:
+ case ISD::SMAX:
+ case ISD::FMAXNUM:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM_IEEE:
+ case ISD::FMINNUM_IEEE: {
+ SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
+ Vec.getOperand(0), Idx);
+ SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
+ Vec.getOperand(1), Idx);
+
+ DCI.AddToWorklist(Elt0.getNode());
+ DCI.AddToWorklist(Elt1.getNode());
+ return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
+ }
+ }
+ }
+
+ unsigned VecSize = VecVT.getSizeInBits();
+ unsigned EltSize = EltVT.getSizeInBits();
+
+ // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
+ // This elminates non-constant index and subsequent movrel or scratch access.
+ // Sub-dword vectors of size 2 dword or less have better implementation.
+ // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
+ // instructions.
+ if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
+ !isa<ConstantSDNode>(N->getOperand(1))) {
+ SDLoc SL(N);
+ SDValue Idx = N->getOperand(1);
+ EVT IdxVT = Idx.getValueType();
+ SDValue V;
+ for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
+ SDValue IC = DAG.getConstant(I, SL, IdxVT);
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
+ if (I == 0)
+ V = Elt;
+ else
+ V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
+ }
+ return V;
+ }
+
+ if (!DCI.isBeforeLegalize())
+ return SDValue();
+
+ // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
+ // elements. This exposes more load reduction opportunities by replacing
+ // multiple small extract_vector_elements with a single 32-bit extract.
+ auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (isa<MemSDNode>(Vec) &&
+ EltSize <= 16 &&
+ EltVT.isByteSized() &&
+ VecSize > 32 &&
+ VecSize % 32 == 0 &&
+ Idx) {
+ EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
+
+ unsigned BitIndex = Idx->getZExtValue() * EltSize;
+ unsigned EltIdx = BitIndex / 32;
+ unsigned LeftoverBitIdx = BitIndex % 32;
+ SDLoc SL(N);
+
+ SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
+ DCI.AddToWorklist(Cast.getNode());
+
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
+ DAG.getConstant(EltIdx, SL, MVT::i32));
+ DCI.AddToWorklist(Elt.getNode());
+ SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
+ DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
+ DCI.AddToWorklist(Srl.getNode());
+
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
+ DCI.AddToWorklist(Trunc.getNode());
+ return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
+ }
+
+ return SDValue();
+}
+
+SDValue
+SITargetLowering::performInsertVectorEltCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SDValue Vec = N->getOperand(0);
+ SDValue Idx = N->getOperand(2);
+ EVT VecVT = Vec.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
+ unsigned VecSize = VecVT.getSizeInBits();
+ unsigned EltSize = EltVT.getSizeInBits();
+
+ // INSERT_VECTOR_ELT (<n x e>, var-idx)
+ // => BUILD_VECTOR n x select (e, const-idx)
+ // This elminates non-constant index and subsequent movrel or scratch access.
+ // Sub-dword vectors of size 2 dword or less have better implementation.
+ // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
+ // instructions.
+ if (isa<ConstantSDNode>(Idx) ||
+ VecSize > 256 || (VecSize <= 64 && EltSize < 32))
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+ SDValue Ins = N->getOperand(1);
+ EVT IdxVT = Idx.getValueType();
+
+ SmallVector<SDValue, 16> Ops;
+ for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
+ SDValue IC = DAG.getConstant(I, SL, IdxVT);
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
+ SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
+ Ops.push_back(V);
+ }
+
+ return DAG.getBuildVector(VecVT, SL, Ops);
+}
+
+unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
+ const SDNode *N0,
+ const SDNode *N1) const {
+ EVT VT = N0->getValueType(0);
+
+ // Only do this if we are not trying to support denormals. v_mad_f32 does not
+ // support denormals ever.
+ if (((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
+ (VT == MVT::f16 && !Subtarget->hasFP16Denormals() &&
+ getSubtarget()->hasMadF16())) &&
+ isOperationLegal(ISD::FMAD, VT))
+ return ISD::FMAD;
+
+ const TargetOptions &Options = DAG.getTarget().Options;
+ if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
+ (N0->getFlags().hasAllowContract() &&
+ N1->getFlags().hasAllowContract())) &&
+ isFMAFasterThanFMulAndFAdd(VT)) {
+ return ISD::FMA;
+ }
+
+ return 0;
+}
+
+// For a reassociatable opcode perform:
+// op x, (op y, z) -> op (op x, z), y, if x and z are uniform
+SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
+ SelectionDAG &DAG) const {
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ unsigned Opc = N->getOpcode();
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ if (!(Op0->isDivergent() ^ Op1->isDivergent()))
+ return SDValue();
+
+ if (Op0->isDivergent())
+ std::swap(Op0, Op1);
+
+ if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
+ return SDValue();
+
+ SDValue Op2 = Op1.getOperand(1);
+ Op1 = Op1.getOperand(0);
+ if (!(Op1->isDivergent() ^ Op2->isDivergent()))
+ return SDValue();
+
+ if (Op1->isDivergent())
+ std::swap(Op1, Op2);
+
+ // If either operand is constant this will conflict with
+ // DAGCombiner::ReassociateOps().
+ if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
+ DAG.isConstantIntBuildVectorOrConstantInt(Op1))
+ return SDValue();
+
+ SDLoc SL(N);
+ SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
+ return DAG.getNode(Opc, SL, VT, Add1, Op2);
+}
+
+static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
+ EVT VT,
+ SDValue N0, SDValue N1, SDValue N2,
+ bool Signed) {
+ unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
+ SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
+ return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
+}
+
+SDValue SITargetLowering::performAddCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ SDLoc SL(N);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
+ && Subtarget->hasMad64_32() &&
+ !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
+ VT.getScalarSizeInBits() <= 64) {
+ if (LHS.getOpcode() != ISD::MUL)
+ std::swap(LHS, RHS);
+
+ SDValue MulLHS = LHS.getOperand(0);
+ SDValue MulRHS = LHS.getOperand(1);
+ SDValue AddRHS = RHS;
+
+ // TODO: Maybe restrict if SGPR inputs.
+ if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
+ numBitsUnsigned(MulRHS, DAG) <= 32) {
+ MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
+ MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
+ AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
+ return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
+ }
+
+ if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
+ MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
+ MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
+ AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
+ return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
+ }
+
+ return SDValue();
+ }
+
+ if (SDValue V = reassociateScalarOps(N, DAG)) {
+ return V;
+ }
+
+ if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
+ return SDValue();
+
+ // add x, zext (setcc) => addcarry x, 0, setcc
+ // add x, sext (setcc) => subcarry x, 0, setcc
+ unsigned Opc = LHS.getOpcode();
+ if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
+ Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
+ std::swap(RHS, LHS);
+
+ Opc = RHS.getOpcode();
+ switch (Opc) {
+ default: break;
+ case ISD::ZERO_EXTEND:
+ case ISD::SIGN_EXTEND:
+ case ISD::ANY_EXTEND: {
+ auto Cond = RHS.getOperand(0);
+ if (!isBoolSGPR(Cond))
+ break;
+ SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
+ SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
+ Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
+ return DAG.getNode(Opc, SL, VTList, Args);
+ }
+ case ISD::ADDCARRY: {
+ // add x, (addcarry y, 0, cc) => addcarry x, y, cc
+ auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
+ if (!C || C->getZExtValue() != 0) break;
+ SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
+ return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
+ }
+ }
+ return SDValue();
+}
+
+SDValue SITargetLowering::performSubCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ if (VT != MVT::i32)
+ return SDValue();
+
+ SDLoc SL(N);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ if (LHS.getOpcode() == ISD::SUBCARRY) {
+ // sub (subcarry x, 0, cc), y => subcarry x, y, cc
+ auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
+ if (!C || !C->isNullValue())
+ return SDValue();
+ SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
+ return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
+ }
+ return SDValue();
+}
+
+SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+
+ if (N->getValueType(0) != MVT::i32)
+ return SDValue();
+
+ auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C || C->getZExtValue() != 0)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue LHS = N->getOperand(0);
+
+ // addcarry (add x, y), 0, cc => addcarry x, y, cc
+ // subcarry (sub x, y), 0, cc => subcarry x, y, cc
+ unsigned LHSOpc = LHS.getOpcode();
+ unsigned Opc = N->getOpcode();
+ if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
+ (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
+ SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
+ return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
+ }
+ return SDValue();
+}
+
+SDValue SITargetLowering::performFAddCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ SDLoc SL(N);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // These should really be instruction patterns, but writing patterns with
+ // source modiifiers is a pain.
+
+ // fadd (fadd (a, a), b) -> mad 2.0, a, b
+ if (LHS.getOpcode() == ISD::FADD) {
+ SDValue A = LHS.getOperand(0);
+ if (A == LHS.getOperand(1)) {
+ unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
+ if (FusedOp != 0) {
+ const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
+ return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
+ }
+ }
+ }
+
+ // fadd (b, fadd (a, a)) -> mad 2.0, a, b
+ if (RHS.getOpcode() == ISD::FADD) {
+ SDValue A = RHS.getOperand(0);
+ if (A == RHS.getOperand(1)) {
+ unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
+ if (FusedOp != 0) {
+ const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
+ return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performFSubCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+ EVT VT = N->getValueType(0);
+ assert(!VT.isVector());
+
+ // Try to get the fneg to fold into the source modifier. This undoes generic
+ // DAG combines and folds them into the mad.
+ //
+ // Only do this if we are not trying to support denormals. v_mad_f32 does
+ // not support denormals ever.
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ if (LHS.getOpcode() == ISD::FADD) {
+ // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
+ SDValue A = LHS.getOperand(0);
+ if (A == LHS.getOperand(1)) {
+ unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
+ if (FusedOp != 0){
+ const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
+ SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
+
+ return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
+ }
+ }
+ }
+
+ if (RHS.getOpcode() == ISD::FADD) {
+ // (fsub c, (fadd a, a)) -> mad -2.0, a, c
+
+ SDValue A = RHS.getOperand(0);
+ if (A == RHS.getOperand(1)) {
+ unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
+ if (FusedOp != 0){
+ const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
+ return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performFMACombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ SDLoc SL(N);
+
+ if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
+ return SDValue();
+
+ // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
+ // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
+ SDValue Op1 = N->getOperand(0);
+ SDValue Op2 = N->getOperand(1);
+ SDValue FMA = N->getOperand(2);
+
+ if (FMA.getOpcode() != ISD::FMA ||
+ Op1.getOpcode() != ISD::FP_EXTEND ||
+ Op2.getOpcode() != ISD::FP_EXTEND)
+ return SDValue();
+
+ // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
+ // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
+ // is sufficient to allow generaing fdot2.
+ const TargetOptions &Options = DAG.getTarget().Options;
+ if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
+ (N->getFlags().hasAllowContract() &&
+ FMA->getFlags().hasAllowContract())) {
+ Op1 = Op1.getOperand(0);
+ Op2 = Op2.getOperand(0);
+ if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ SDValue Vec1 = Op1.getOperand(0);
+ SDValue Idx1 = Op1.getOperand(1);
+ SDValue Vec2 = Op2.getOperand(0);
+
+ SDValue FMAOp1 = FMA.getOperand(0);
+ SDValue FMAOp2 = FMA.getOperand(1);
+ SDValue FMAAcc = FMA.getOperand(2);
+
+ if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
+ FMAOp2.getOpcode() != ISD::FP_EXTEND)
+ return SDValue();
+
+ FMAOp1 = FMAOp1.getOperand(0);
+ FMAOp2 = FMAOp2.getOperand(0);
+ if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ SDValue Vec3 = FMAOp1.getOperand(0);
+ SDValue Vec4 = FMAOp2.getOperand(0);
+ SDValue Idx2 = FMAOp1.getOperand(1);
+
+ if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
+ // Idx1 and Idx2 cannot be the same.
+ Idx1 == Idx2)
+ return SDValue();
+
+ if (Vec1 == Vec2 || Vec3 == Vec4)
+ return SDValue();
+
+ if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
+ return SDValue();
+
+ if ((Vec1 == Vec3 && Vec2 == Vec4) ||
+ (Vec1 == Vec4 && Vec2 == Vec3)) {
+ return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
+ DAG.getTargetConstant(0, SL, MVT::i1));
+ }
+ }
+ return SDValue();
+}
+
+SDValue SITargetLowering::performSetCCCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ EVT VT = LHS.getValueType();
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+
+ auto CRHS = dyn_cast<ConstantSDNode>(RHS);
+ if (!CRHS) {
+ CRHS = dyn_cast<ConstantSDNode>(LHS);
+ if (CRHS) {
+ std::swap(LHS, RHS);
+ CC = getSetCCSwappedOperands(CC);
+ }
+ }
+
+ if (CRHS) {
+ if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
+ isBoolSGPR(LHS.getOperand(0))) {
+ // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
+ // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
+ // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
+ // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
+ if ((CRHS->isAllOnesValue() &&
+ (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
+ (CRHS->isNullValue() &&
+ (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
+ return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
+ DAG.getConstant(-1, SL, MVT::i1));
+ if ((CRHS->isAllOnesValue() &&
+ (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
+ (CRHS->isNullValue() &&
+ (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
+ return LHS.getOperand(0);
+ }
+
+ uint64_t CRHSVal = CRHS->getZExtValue();
+ if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ LHS.getOpcode() == ISD::SELECT &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ isa<ConstantSDNode>(LHS.getOperand(2)) &&
+ LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
+ isBoolSGPR(LHS.getOperand(0))) {
+ // Given CT != FT:
+ // setcc (select cc, CT, CF), CF, eq => xor cc, -1
+ // setcc (select cc, CT, CF), CF, ne => cc
+ // setcc (select cc, CT, CF), CT, ne => xor cc, -1
+ // setcc (select cc, CT, CF), CT, eq => cc
+ uint64_t CT = LHS.getConstantOperandVal(1);
+ uint64_t CF = LHS.getConstantOperandVal(2);
+
+ if ((CF == CRHSVal && CC == ISD::SETEQ) ||
+ (CT == CRHSVal && CC == ISD::SETNE))
+ return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
+ DAG.getConstant(-1, SL, MVT::i1));
+ if ((CF == CRHSVal && CC == ISD::SETNE) ||
+ (CT == CRHSVal && CC == ISD::SETEQ))
+ return LHS.getOperand(0);
+ }
+ }
+
+ if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
+ VT != MVT::f16))
+ return SDValue();
+
+ // Match isinf/isfinite pattern
+ // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
+ // (fcmp one (fabs x), inf) -> (fp_class x,
+ // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
+ if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
+ const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
+ if (!CRHS)
+ return SDValue();
+
+ const APFloat &APF = CRHS->getValueAPF();
+ if (APF.isInfinity() && !APF.isNegative()) {
+ const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
+ SIInstrFlags::N_INFINITY;
+ const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
+ SIInstrFlags::P_ZERO |
+ SIInstrFlags::N_NORMAL |
+ SIInstrFlags::P_NORMAL |
+ SIInstrFlags::N_SUBNORMAL |
+ SIInstrFlags::P_SUBNORMAL;
+ unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
+ return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
+ DAG.getConstant(Mask, SL, MVT::i32));
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+ unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
+
+ SDValue Src = N->getOperand(0);
+ SDValue Srl = N->getOperand(0);
+ if (Srl.getOpcode() == ISD::ZERO_EXTEND)
+ Srl = Srl.getOperand(0);
+
+ // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
+ if (Srl.getOpcode() == ISD::SRL) {
+ // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
+ // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
+ // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
+
+ if (const ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
+ Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
+ EVT(MVT::i32));
+
+ unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
+ if (SrcOffset < 32 && SrcOffset % 8 == 0) {
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
+ MVT::f32, Srl);
+ }
+ }
+ }
+
+ APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
+
+ KnownBits Known;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performClampCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
+ if (!CSrc)
+ return SDValue();
+
+ const MachineFunction &MF = DCI.DAG.getMachineFunction();
+ const APFloat &F = CSrc->getValueAPF();
+ APFloat Zero = APFloat::getZero(F.getSemantics());
+ APFloat::cmpResult Cmp0 = F.compare(Zero);
+ if (Cmp0 == APFloat::cmpLessThan ||
+ (Cmp0 == APFloat::cmpUnordered &&
+ MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
+ return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
+ }
+
+ APFloat One(F.getSemantics(), "1.0");
+ APFloat::cmpResult Cmp1 = F.compare(One);
+ if (Cmp1 == APFloat::cmpGreaterThan)
+ return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
+
+ return SDValue(CSrc, 0);
+}
+
+
+SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
+ return SDValue();
+ switch (N->getOpcode()) {
+ default:
+ return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+ case ISD::ADD:
+ return performAddCombine(N, DCI);
+ case ISD::SUB:
+ return performSubCombine(N, DCI);
+ case ISD::ADDCARRY:
+ case ISD::SUBCARRY:
+ return performAddCarrySubCarryCombine(N, DCI);
+ case ISD::FADD:
+ return performFAddCombine(N, DCI);
+ case ISD::FSUB:
+ return performFSubCombine(N, DCI);
+ case ISD::SETCC:
+ return performSetCCCombine(N, DCI);
+ case ISD::FMAXNUM:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM_IEEE:
+ case ISD::FMINNUM_IEEE:
+ case ISD::SMAX:
+ case ISD::SMIN:
+ case ISD::UMAX:
+ case ISD::UMIN:
+ case AMDGPUISD::FMIN_LEGACY:
+ case AMDGPUISD::FMAX_LEGACY:
+ return performMinMaxCombine(N, DCI);
+ case ISD::FMA:
+ return performFMACombine(N, DCI);
+ case ISD::LOAD: {
+ if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
+ return Widended;
+ LLVM_FALLTHROUGH;
+ }
+ case ISD::STORE:
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE:
+ case ISD::ATOMIC_CMP_SWAP:
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX:
+ case ISD::ATOMIC_LOAD_FADD:
+ case AMDGPUISD::ATOMIC_INC:
+ case AMDGPUISD::ATOMIC_DEC:
+ case AMDGPUISD::ATOMIC_LOAD_FMIN:
+ case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
+ if (DCI.isBeforeLegalize())
+ break;
+ return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
+ case ISD::AND:
+ return performAndCombine(N, DCI);
+ case ISD::OR:
+ return performOrCombine(N, DCI);
+ case ISD::XOR:
+ return performXorCombine(N, DCI);
+ case ISD::ZERO_EXTEND:
+ return performZeroExtendCombine(N, DCI);
+ case ISD::SIGN_EXTEND_INREG:
+ return performSignExtendInRegCombine(N , DCI);
+ case AMDGPUISD::FP_CLASS:
+ return performClassCombine(N, DCI);
+ case ISD::FCANONICALIZE:
+ return performFCanonicalizeCombine(N, DCI);
+ case AMDGPUISD::RCP:
+ return performRcpCombine(N, DCI);
+ case AMDGPUISD::FRACT:
+ case AMDGPUISD::RSQ:
+ case AMDGPUISD::RCP_LEGACY:
+ case AMDGPUISD::RSQ_LEGACY:
+ case AMDGPUISD::RCP_IFLAG:
+ case AMDGPUISD::RSQ_CLAMP:
+ case AMDGPUISD::LDEXP: {
+ SDValue Src = N->getOperand(0);
+ if (Src.isUndef())
+ return Src;
+ break;
+ }
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ return performUCharToFloatCombine(N, DCI);
+ case AMDGPUISD::CVT_F32_UBYTE0:
+ case AMDGPUISD::CVT_F32_UBYTE1:
+ case AMDGPUISD::CVT_F32_UBYTE2:
+ case AMDGPUISD::CVT_F32_UBYTE3:
+ return performCvtF32UByteNCombine(N, DCI);
+ case AMDGPUISD::FMED3:
+ return performFMed3Combine(N, DCI);
+ case AMDGPUISD::CVT_PKRTZ_F16_F32:
+ return performCvtPkRTZCombine(N, DCI);
+ case AMDGPUISD::CLAMP:
+ return performClampCombine(N, DCI);
+ case ISD::SCALAR_TO_VECTOR: {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
+ if (VT == MVT::v2i16 || VT == MVT::v2f16) {
+ SDLoc SL(N);
+ SDValue Src = N->getOperand(0);
+ EVT EltVT = Src.getValueType();
+ if (EltVT == MVT::f16)
+ Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
+
+ SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
+ return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
+ }
+
+ break;
+ }
+ case ISD::EXTRACT_VECTOR_ELT:
+ return performExtractVectorEltCombine(N, DCI);
+ case ISD::INSERT_VECTOR_ELT:
+ return performInsertVectorEltCombine(N, DCI);
+ }
+ return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+}
+
+/// Helper function for adjustWritemask
+static unsigned SubIdx2Lane(unsigned Idx) {
+ switch (Idx) {
+ default: return 0;
+ case AMDGPU::sub0: return 0;
+ case AMDGPU::sub1: return 1;
+ case AMDGPU::sub2: return 2;
+ case AMDGPU::sub3: return 3;
+ case AMDGPU::sub4: return 4; // Possible with TFE/LWE
+ }
+}
+
+/// Adjust the writemask of MIMG instructions
+SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
+ SelectionDAG &DAG) const {
+ unsigned Opcode = Node->getMachineOpcode();
+
+ // Subtract 1 because the vdata output is not a MachineSDNode operand.
+ int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
+ if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
+ return Node; // not implemented for D16
+
+ SDNode *Users[5] = { nullptr };
+ unsigned Lane = 0;
+ unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
+ unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
+ unsigned NewDmask = 0;
+ unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
+ unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
+ bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
+ Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
+ unsigned TFCLane = 0;
+ bool HasChain = Node->getNumValues() > 1;
+
+ if (OldDmask == 0) {
+ // These are folded out, but on the chance it happens don't assert.
+ return Node;
+ }
+
+ unsigned OldBitsSet = countPopulation(OldDmask);
+ // Work out which is the TFE/LWE lane if that is enabled.
+ if (UsesTFC) {
+ TFCLane = OldBitsSet;
+ }
+
+ // Try to figure out the used register components
+ for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
+ I != E; ++I) {
+
+ // Don't look at users of the chain.
+ if (I.getUse().getResNo() != 0)
+ continue;
+
+ // Abort if we can't understand the usage
+ if (!I->isMachineOpcode() ||
+ I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
+ return Node;
+
+ // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
+ // Note that subregs are packed, i.e. Lane==0 is the first bit set
+ // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
+ // set, etc.
+ Lane = SubIdx2Lane(I->getConstantOperandVal(1));
+
+ // Check if the use is for the TFE/LWE generated result at VGPRn+1.
+ if (UsesTFC && Lane == TFCLane) {
+ Users[Lane] = *I;
+ } else {
+ // Set which texture component corresponds to the lane.
+ unsigned Comp;
+ for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
+ Comp = countTrailingZeros(Dmask);
+ Dmask &= ~(1 << Comp);
+ }
+
+ // Abort if we have more than one user per component.
+ if (Users[Lane])
+ return Node;
+
+ Users[Lane] = *I;
+ NewDmask |= 1 << Comp;
+ }
+ }
+
+ // Don't allow 0 dmask, as hardware assumes one channel enabled.
+ bool NoChannels = !NewDmask;
+ if (NoChannels) {
+ if (!UsesTFC) {
+ // No uses of the result and not using TFC. Then do nothing.
+ return Node;
+ }
+ // If the original dmask has one channel - then nothing to do
+ if (OldBitsSet == 1)
+ return Node;
+ // Use an arbitrary dmask - required for the instruction to work
+ NewDmask = 1;
+ }
+ // Abort if there's no change
+ if (NewDmask == OldDmask)
+ return Node;
+
+ unsigned BitsSet = countPopulation(NewDmask);
+
+ // Check for TFE or LWE - increase the number of channels by one to account
+ // for the extra return value
+ // This will need adjustment for D16 if this is also included in
+ // adjustWriteMask (this function) but at present D16 are excluded.
+ unsigned NewChannels = BitsSet + UsesTFC;
+
+ int NewOpcode =
+ AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
+ assert(NewOpcode != -1 &&
+ NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
+ "failed to find equivalent MIMG op");
+
+ // Adjust the writemask in the node
+ SmallVector<SDValue, 12> Ops;
+ Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
+ Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
+ Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
+
+ MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
+
+ MVT ResultVT = NewChannels == 1 ?
+ SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
+ NewChannels == 5 ? 8 : NewChannels);
+ SDVTList NewVTList = HasChain ?
+ DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
+
+
+ MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
+ NewVTList, Ops);
+
+ if (HasChain) {
+ // Update chain.
+ DAG.setNodeMemRefs(NewNode, Node->memoperands());
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
+ }
+
+ if (NewChannels == 1) {
+ assert(Node->hasNUsesOfValue(1, 0));
+ SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
+ SDLoc(Node), Users[Lane]->getValueType(0),
+ SDValue(NewNode, 0));
+ DAG.ReplaceAllUsesWith(Users[Lane], Copy);
+ return nullptr;
+ }
+
+ // Update the users of the node with the new indices
+ for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
+ SDNode *User = Users[i];
+ if (!User) {
+ // Handle the special case of NoChannels. We set NewDmask to 1 above, but
+ // Users[0] is still nullptr because channel 0 doesn't really have a use.
+ if (i || !NoChannels)
+ continue;
+ } else {
+ SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
+ DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
+ }
+
+ switch (Idx) {
+ default: break;
+ case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
+ case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
+ case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
+ case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
+ }
+ }
+
+ DAG.RemoveDeadNode(Node);
+ return nullptr;
+}
+
+static bool isFrameIndexOp(SDValue Op) {
+ if (Op.getOpcode() == ISD::AssertZext)
+ Op = Op.getOperand(0);
+
+ return isa<FrameIndexSDNode>(Op);
+}
+
+/// Legalize target independent instructions (e.g. INSERT_SUBREG)
+/// with frame index operands.
+/// LLVM assumes that inputs are to these instructions are registers.
+SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
+ SelectionDAG &DAG) const {
+ if (Node->getOpcode() == ISD::CopyToReg) {
+ RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
+ SDValue SrcVal = Node->getOperand(2);
+
+ // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
+ // to try understanding copies to physical registers.
+ if (SrcVal.getValueType() == MVT::i1 &&
+ TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
+ SDLoc SL(Node);
+ MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
+ SDValue VReg = DAG.getRegister(
+ MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
+
+ SDNode *Glued = Node->getGluedNode();
+ SDValue ToVReg
+ = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
+ SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
+ SDValue ToResultReg
+ = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
+ VReg, ToVReg.getValue(1));
+ DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
+ DAG.RemoveDeadNode(Node);
+ return ToResultReg.getNode();
+ }
+ }
+
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
+ if (!isFrameIndexOp(Node->getOperand(i))) {
+ Ops.push_back(Node->getOperand(i));
+ continue;
+ }
+
+ SDLoc DL(Node);
+ Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
+ Node->getOperand(i).getValueType(),
+ Node->getOperand(i)), 0));
+ }
+
+ return DAG.UpdateNodeOperands(Node, Ops);
+}
+
+/// Fold the instructions after selecting them.
+/// Returns null if users were already updated.
+SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
+ SelectionDAG &DAG) const {
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+ unsigned Opcode = Node->getMachineOpcode();
+
+ if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
+ !TII->isGather4(Opcode)) {
+ return adjustWritemask(Node, DAG);
+ }
+
+ if (Opcode == AMDGPU::INSERT_SUBREG ||
+ Opcode == AMDGPU::REG_SEQUENCE) {
+ legalizeTargetIndependentNode(Node, DAG);
+ return Node;
+ }
+
+ switch (Opcode) {
+ case AMDGPU::V_DIV_SCALE_F32:
+ case AMDGPU::V_DIV_SCALE_F64: {
+ // Satisfy the operand register constraint when one of the inputs is
+ // undefined. Ordinarily each undef value will have its own implicit_def of
+ // a vreg, so force these to use a single register.
+ SDValue Src0 = Node->getOperand(0);
+ SDValue Src1 = Node->getOperand(1);
+ SDValue Src2 = Node->getOperand(2);
+
+ if ((Src0.isMachineOpcode() &&
+ Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
+ (Src0 == Src1 || Src0 == Src2))
+ break;
+
+ MVT VT = Src0.getValueType().getSimpleVT();
+ const TargetRegisterClass *RC =
+ getRegClassFor(VT, Src0.getNode()->isDivergent());
+
+ MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
+ SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
+
+ SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
+ UndefReg, Src0, SDValue());
+
+ // src0 must be the same register as src1 or src2, even if the value is
+ // undefined, so make sure we don't violate this constraint.
+ if (Src0.isMachineOpcode() &&
+ Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
+ if (Src1.isMachineOpcode() &&
+ Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
+ Src0 = Src1;
+ else if (Src2.isMachineOpcode() &&
+ Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
+ Src0 = Src2;
+ else {
+ assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
+ Src0 = UndefReg;
+ Src1 = UndefReg;
+ }
+ } else
+ break;
+
+ SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
+ for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
+ Ops.push_back(Node->getOperand(I));
+
+ Ops.push_back(ImpDef.getValue(1));
+ return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
+ }
+ case AMDGPU::V_PERMLANE16_B32:
+ case AMDGPU::V_PERMLANEX16_B32: {
+ ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0));
+ ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2));
+ if (!FI->getZExtValue() && !BC->getZExtValue())
+ break;
+ SDValue VDstIn = Node->getOperand(6);
+ if (VDstIn.isMachineOpcode()
+ && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)
+ break;
+ MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ SDLoc(Node), MVT::i32);
+ SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1),
+ SDValue(BC, 0), Node->getOperand(3),
+ Node->getOperand(4), Node->getOperand(5),
+ SDValue(ImpDef, 0), Node->getOperand(7) };
+ return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
+ }
+ default:
+ break;
+ }
+
+ return Node;
+}
+
+/// Assign the register class depending on the number of
+/// bits set in the writemask
+void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
+ SDNode *Node) const {
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+
+ MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+
+ if (TII->isVOP3(MI.getOpcode())) {
+ // Make sure constant bus requirements are respected.
+ TII->legalizeOperandsVOP3(MRI, MI);
+
+ // Prefer VGPRs over AGPRs in mAI instructions where possible.
+ // This saves a chain-copy of registers and better ballance register
+ // use between vgpr and agpr as agpr tuples tend to be big.
+ if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
+ unsigned Opc = MI.getOpcode();
+ const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
+ for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
+ AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
+ if (I == -1)
+ break;
+ MachineOperand &Op = MI.getOperand(I);
+ if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
+ OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
+ !TargetRegisterInfo::isVirtualRegister(Op.getReg()) ||
+ !TRI->isAGPR(MRI, Op.getReg()))
+ continue;
+ auto *Src = MRI.getUniqueVRegDef(Op.getReg());
+ if (!Src || !Src->isCopy() ||
+ !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
+ continue;
+ auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
+ auto *NewRC = TRI->getEquivalentVGPRClass(RC);
+ // All uses of agpr64 and agpr32 can also accept vgpr except for
+ // v_accvgpr_read, but we do not produce agpr reads during selection,
+ // so no use checks are needed.
+ MRI.setRegClass(Op.getReg(), NewRC);
+ }
+ }
+
+ return;
+ }
+
+ // Replace unused atomics with the no return version.
+ int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
+ if (NoRetAtomicOp != -1) {
+ if (!Node->hasAnyUseOfValue(0)) {
+ MI.setDesc(TII->get(NoRetAtomicOp));
+ MI.RemoveOperand(0);
+ return;
+ }
+
+ // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
+ // instruction, because the return type of these instructions is a vec2 of
+ // the memory type, so it can be tied to the input operand.
+ // This means these instructions always have a use, so we need to add a
+ // special case to check if the atomic has only one extract_subreg use,
+ // which itself has no uses.
+ if ((Node->hasNUsesOfValue(1, 0) &&
+ Node->use_begin()->isMachineOpcode() &&
+ Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
+ !Node->use_begin()->hasAnyUseOfValue(0))) {
+ unsigned Def = MI.getOperand(0).getReg();
+
+ // Change this into a noret atomic.
+ MI.setDesc(TII->get(NoRetAtomicOp));
+ MI.RemoveOperand(0);
+
+ // If we only remove the def operand from the atomic instruction, the
+ // extract_subreg will be left with a use of a vreg without a def.
+ // So we need to insert an implicit_def to avoid machine verifier
+ // errors.
+ BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
+ TII->get(AMDGPU::IMPLICIT_DEF), Def);
+ }
+ return;
+ }
+}
+
+static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
+ uint64_t Val) {
+ SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
+ return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
+}
+
+MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
+ const SDLoc &DL,
+ SDValue Ptr) const {
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+
+ // Build the half of the subregister with the constants before building the
+ // full 128-bit register. If we are building multiple resource descriptors,
+ // this will allow CSEing of the 2-component register.
+ const SDValue Ops0[] = {
+ DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
+ buildSMovImm32(DAG, DL, 0),
+ DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
+ buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
+ DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
+ };
+
+ SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
+ MVT::v2i32, Ops0), 0);
+
+ // Combine the constants and the pointer.
+ const SDValue Ops1[] = {
+ DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
+ Ptr,
+ DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
+ SubRegHi,
+ DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
+ };
+
+ return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
+}
+
+/// Return a resource descriptor with the 'Add TID' bit enabled
+/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
+/// of the resource descriptor) to create an offset, which is added to
+/// the resource pointer.
+MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
+ SDValue Ptr, uint32_t RsrcDword1,
+ uint64_t RsrcDword2And3) const {
+ SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
+ SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
+ if (RsrcDword1) {
+ PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
+ DAG.getConstant(RsrcDword1, DL, MVT::i32)),
+ 0);
+ }
+
+ SDValue DataLo = buildSMovImm32(DAG, DL,
+ RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
+ SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
+
+ const SDValue Ops[] = {
+ DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
+ PtrLo,
+ DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
+ PtrHi,
+ DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
+ DataLo,
+ DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
+ DataHi,
+ DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
+ };
+
+ return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
+}
+
+//===----------------------------------------------------------------------===//
+// SI Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+std::pair<unsigned, const TargetRegisterClass *>
+SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+ const TargetRegisterClass *RC = nullptr;
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default:
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+ case 's':
+ case 'r':
+ switch (VT.getSizeInBits()) {
+ default:
+ return std::make_pair(0U, nullptr);
+ case 32:
+ case 16:
+ RC = &AMDGPU::SReg_32_XM0RegClass;
+ break;
+ case 64:
+ RC = &AMDGPU::SGPR_64RegClass;
+ break;
+ case 96:
+ RC = &AMDGPU::SReg_96RegClass;
+ break;
+ case 128:
+ RC = &AMDGPU::SReg_128RegClass;
+ break;
+ case 160:
+ RC = &AMDGPU::SReg_160RegClass;
+ break;
+ case 256:
+ RC = &AMDGPU::SReg_256RegClass;
+ break;
+ case 512:
+ RC = &AMDGPU::SReg_512RegClass;
+ break;
+ }
+ break;
+ case 'v':
+ switch (VT.getSizeInBits()) {
+ default:
+ return std::make_pair(0U, nullptr);
+ case 32:
+ case 16:
+ RC = &AMDGPU::VGPR_32RegClass;
+ break;
+ case 64:
+ RC = &AMDGPU::VReg_64RegClass;
+ break;
+ case 96:
+ RC = &AMDGPU::VReg_96RegClass;
+ break;
+ case 128:
+ RC = &AMDGPU::VReg_128RegClass;
+ break;
+ case 160:
+ RC = &AMDGPU::VReg_160RegClass;
+ break;
+ case 256:
+ RC = &AMDGPU::VReg_256RegClass;
+ break;
+ case 512:
+ RC = &AMDGPU::VReg_512RegClass;
+ break;
+ }
+ break;
+ case 'a':
+ switch (VT.getSizeInBits()) {
+ default:
+ return std::make_pair(0U, nullptr);
+ case 32:
+ case 16:
+ RC = &AMDGPU::AGPR_32RegClass;
+ break;
+ case 64:
+ RC = &AMDGPU::AReg_64RegClass;
+ break;
+ case 128:
+ RC = &AMDGPU::AReg_128RegClass;
+ break;
+ case 512:
+ RC = &AMDGPU::AReg_512RegClass;
+ break;
+ case 1024:
+ RC = &AMDGPU::AReg_1024RegClass;
+ // v32 types are not legal but we support them here.
+ return std::make_pair(0U, RC);
+ }
+ break;
+ }
+ // We actually support i128, i16 and f16 as inline parameters
+ // even if they are not reported as legal
+ if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
+ VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
+ return std::make_pair(0U, RC);
+ }
+
+ if (Constraint.size() > 1) {
+ if (Constraint[1] == 'v') {
+ RC = &AMDGPU::VGPR_32RegClass;
+ } else if (Constraint[1] == 's') {
+ RC = &AMDGPU::SGPR_32RegClass;
+ } else if (Constraint[1] == 'a') {
+ RC = &AMDGPU::AGPR_32RegClass;
+ }
+
+ if (RC) {
+ uint32_t Idx;
+ bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
+ if (!Failed && Idx < RC->getNumRegs())
+ return std::make_pair(RC->getRegister(Idx), RC);
+ }
+ }
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+}
+
+SITargetLowering::ConstraintType
+SITargetLowering::getConstraintType(StringRef Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 's':
+ case 'v':
+ case 'a':
+ return C_RegisterClass;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+// Figure out which registers should be reserved for stack access. Only after
+// the function is legalized do we know all of the non-spill stack objects or if
+// calls are present.
+void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
+
+ if (Info->isEntryFunction()) {
+ // Callable functions have fixed registers used for stack access.
+ reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
+ }
+
+ assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
+ Info->getStackPtrOffsetReg()));
+ if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
+ MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
+
+ // We need to worry about replacing the default register with itself in case
+ // of MIR testcases missing the MFI.
+ if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
+ MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
+
+ if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
+ MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
+
+ if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) {
+ MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
+ Info->getScratchWaveOffsetReg());
+ }
+
+ Info->limitOccupancy(MF);
+
+ if (ST.isWave32() && !MF.empty()) {
+ // Add VCC_HI def because many instructions marked as imp-use VCC where
+ // we may only define VCC_LO. If nothing defines VCC_HI we may end up
+ // having a use of undef.
+
+ const SIInstrInfo *TII = ST.getInstrInfo();
+ DebugLoc DL;
+
+ MachineBasicBlock &MBB = MF.front();
+ MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
+ BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
+
+ for (auto &MBB : MF) {
+ for (auto &MI : MBB) {
+ TII->fixImplicitOperands(MI);
+ }
+ }
+ }
+
+ TargetLoweringBase::finalizeLowering(MF);
+}
+
+void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
+ KnownBits &Known,
+ const APInt &DemandedElts,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
+ DAG, Depth);
+
+ // Set the high bits to zero based on the maximum allowed scratch size per
+ // wave. We can't use vaddr in MUBUF instructions if we don't know the address
+ // calculation won't overflow, so assume the sign bit is never set.
+ Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
+}
+
+unsigned SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
+ const unsigned PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
+ const unsigned CacheLineAlign = 6; // log2(64)
+
+ // Pre-GFX10 target did not benefit from loop alignment
+ if (!ML || DisableLoopAlignment ||
+ (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
+ getSubtarget()->hasInstFwdPrefetchBug())
+ return PrefAlign;
+
+ // On GFX10 I$ is 4 x 64 bytes cache lines.
+ // By default prefetcher keeps one cache line behind and reads two ahead.
+ // We can modify it with S_INST_PREFETCH for larger loops to have two lines
+ // behind and one ahead.
+ // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
+ // If loop fits 64 bytes it always spans no more than two cache lines and
+ // does not need an alignment.
+ // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
+ // Else if loop is less or equal 192 bytes we need two lines behind.
+
+ const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
+ const MachineBasicBlock *Header = ML->getHeader();
+ if (Header->getAlignment() != PrefAlign)
+ return Header->getAlignment(); // Already processed.
+
+ unsigned LoopSize = 0;
+ for (const MachineBasicBlock *MBB : ML->blocks()) {
+ // If inner loop block is aligned assume in average half of the alignment
+ // size to be added as nops.
+ if (MBB != Header)
+ LoopSize += (1 << MBB->getAlignment()) / 2;
+
+ for (const MachineInstr &MI : *MBB) {
+ LoopSize += TII->getInstSizeInBytes(MI);
+ if (LoopSize > 192)
+ return PrefAlign;
+ }
+ }
+
+ if (LoopSize <= 64)
+ return PrefAlign;
+
+ if (LoopSize <= 128)
+ return CacheLineAlign;
+
+ // If any of parent loops is surrounded by prefetch instructions do not
+ // insert new for inner loop, which would reset parent's settings.
+ for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
+ if (MachineBasicBlock *Exit = P->getExitBlock()) {
+ auto I = Exit->getFirstNonDebugInstr();
+ if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
+ return CacheLineAlign;
+ }
+ }
+
+ MachineBasicBlock *Pre = ML->getLoopPreheader();
+ MachineBasicBlock *Exit = ML->getExitBlock();
+
+ if (Pre && Exit) {
+ BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
+ TII->get(AMDGPU::S_INST_PREFETCH))
+ .addImm(1); // prefetch 2 lines behind PC
+
+ BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
+ TII->get(AMDGPU::S_INST_PREFETCH))
+ .addImm(2); // prefetch 1 line behind PC
+ }
+
+ return CacheLineAlign;
+}
+
+LLVM_ATTRIBUTE_UNUSED
+static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
+ assert(N->getOpcode() == ISD::CopyFromReg);
+ do {
+ // Follow the chain until we find an INLINEASM node.
+ N = N->getOperand(0).getNode();
+ if (N->getOpcode() == ISD::INLINEASM ||
+ N->getOpcode() == ISD::INLINEASM_BR)
+ return true;
+ } while (N->getOpcode() == ISD::CopyFromReg);
+ return false;
+}
+
+bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
+ FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
+{
+ switch (N->getOpcode()) {
+ case ISD::CopyFromReg:
+ {
+ const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
+ const MachineFunction * MF = FLI->MF;
+ const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
+ const MachineRegisterInfo &MRI = MF->getRegInfo();
+ const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
+ unsigned Reg = R->getReg();
+ if (TRI.isPhysicalRegister(Reg))
+ return !TRI.isSGPRReg(MRI, Reg);
+
+ if (MRI.isLiveIn(Reg)) {
+ // workitem.id.x workitem.id.y workitem.id.z
+ // Any VGPR formal argument is also considered divergent
+ if (!TRI.isSGPRReg(MRI, Reg))
+ return true;
+ // Formal arguments of non-entry functions
+ // are conservatively considered divergent
+ else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
+ return true;
+ return false;
+ }
+ const Value *V = FLI->getValueFromVirtualReg(Reg);
+ if (V)
+ return KDA->isDivergent(V);
+ assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
+ return !TRI.isSGPRReg(MRI, Reg);
+ }
+ break;
+ case ISD::LOAD: {
+ const LoadSDNode *L = cast<LoadSDNode>(N);
+ unsigned AS = L->getAddressSpace();
+ // A flat load may access private memory.
+ return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
+ } break;
+ case ISD::CALLSEQ_END:
+ return true;
+ break;
+ case ISD::INTRINSIC_WO_CHAIN:
+ {
+
+ }
+ return AMDGPU::isIntrinsicSourceOfDivergence(
+ cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
+ case ISD::INTRINSIC_W_CHAIN:
+ return AMDGPU::isIntrinsicSourceOfDivergence(
+ cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
+ // In some cases intrinsics that are a source of divergence have been
+ // lowered to AMDGPUISD so we also need to check those too.
+ case AMDGPUISD::INTERP_MOV:
+ case AMDGPUISD::INTERP_P1:
+ case AMDGPUISD::INTERP_P2:
+ return true;
+ }
+ return false;
+}
+
+bool SITargetLowering::denormalsEnabledForType(EVT VT) const {
+ switch (VT.getScalarType().getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ return Subtarget->hasFP32Denormals();
+ case MVT::f64:
+ return Subtarget->hasFP64Denormals();
+ case MVT::f16:
+ return Subtarget->hasFP16Denormals();
+ default:
+ return false;
+ }
+}
+
+bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
+ const SelectionDAG &DAG,
+ bool SNaN,
+ unsigned Depth) const {
+ if (Op.getOpcode() == AMDGPUISD::CLAMP) {
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ if (Info->getMode().DX10Clamp)
+ return true; // Clamped to 0.
+ return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
+ }
+
+ return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
+ SNaN, Depth);
+}
+
+TargetLowering::AtomicExpansionKind
+SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
+ switch (RMW->getOperation()) {
+ case AtomicRMWInst::FAdd: {
+ Type *Ty = RMW->getType();
+
+ // We don't have a way to support 16-bit atomics now, so just leave them
+ // as-is.
+ if (Ty->isHalfTy())
+ return AtomicExpansionKind::None;
+
+ if (!Ty->isFloatTy())
+ return AtomicExpansionKind::CmpXChg;
+
+ // TODO: Do have these for flat. Older targets also had them for buffers.
+ unsigned AS = RMW->getPointerAddressSpace();
+ return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
+ AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
+ }
+ default:
+ break;
+ }
+
+ return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
+}