diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp | 10750 |
1 files changed, 10750 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp new file mode 100644 index 000000000000..db0782e2bf3e --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp @@ -0,0 +1,10750 @@ +//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Custom DAG lowering for SI +// +//===----------------------------------------------------------------------===// + +#if defined(_MSC_VER) || defined(__MINGW32__) +// Provide M_PI. +#define _USE_MATH_DEFINES +#endif + +#include "SIISelLowering.h" +#include "AMDGPU.h" +#include "AMDGPUSubtarget.h" +#include "AMDGPUTargetMachine.h" +#include "SIDefines.h" +#include "SIInstrInfo.h" +#include "SIMachineFunctionInfo.h" +#include "SIRegisterInfo.h" +#include "MCTargetDesc/AMDGPUMCTargetDesc.h" +#include "Utils/AMDGPUBaseInfo.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Twine.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/DAGCombine.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetCallingConv.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetOptions.h" +#include <cassert> +#include <cmath> +#include <cstdint> +#include <iterator> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "si-lower" + +STATISTIC(NumTailCalls, "Number of tail calls"); + +static cl::opt<bool> EnableVGPRIndexMode( + "amdgpu-vgpr-index-mode", + cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), + cl::init(false)); + +static cl::opt<bool> DisableLoopAlignment( + "amdgpu-disable-loop-alignment", + cl::desc("Do not align and prefetch loops"), + cl::init(false)); + +static unsigned findFirstFreeSGPR(CCState &CCInfo) { + unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); + for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { + if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { + return AMDGPU::SGPR0 + Reg; + } + } + llvm_unreachable("Cannot allocate sgpr"); +} + +SITargetLowering::SITargetLowering(const TargetMachine &TM, + const GCNSubtarget &STI) + : AMDGPUTargetLowering(TM, STI), + Subtarget(&STI) { + addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); + addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); + + addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass); + addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); + + addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); + addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); + addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); + + addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); + addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass); + + addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass); + addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass); + + addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); + addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); + + addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); + addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass); + + addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); + addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); + + addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); + addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); + + if (Subtarget->has16BitInsts()) { + addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass); + addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass); + + // Unless there are also VOP3P operations, not operations are really legal. + addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass); + addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass); + addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); + addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); + } + + if (Subtarget->hasMAIInsts()) { + addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); + addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass); + } + + computeRegisterProperties(Subtarget->getRegisterInfo()); + + // We need to custom lower vector stores from local memory + setOperationAction(ISD::LOAD, MVT::v2i32, Custom); + setOperationAction(ISD::LOAD, MVT::v3i32, Custom); + setOperationAction(ISD::LOAD, MVT::v4i32, Custom); + setOperationAction(ISD::LOAD, MVT::v5i32, Custom); + setOperationAction(ISD::LOAD, MVT::v8i32, Custom); + setOperationAction(ISD::LOAD, MVT::v16i32, Custom); + setOperationAction(ISD::LOAD, MVT::i1, Custom); + setOperationAction(ISD::LOAD, MVT::v32i32, Custom); + + setOperationAction(ISD::STORE, MVT::v2i32, Custom); + setOperationAction(ISD::STORE, MVT::v3i32, Custom); + setOperationAction(ISD::STORE, MVT::v4i32, Custom); + setOperationAction(ISD::STORE, MVT::v5i32, Custom); + setOperationAction(ISD::STORE, MVT::v8i32, Custom); + setOperationAction(ISD::STORE, MVT::v16i32, Custom); + setOperationAction(ISD::STORE, MVT::i1, Custom); + setOperationAction(ISD::STORE, MVT::v32i32, Custom); + + setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); + setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); + setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); + setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); + setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); + setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); + setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); + setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); + setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); + setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); + + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); + + setOperationAction(ISD::SELECT, MVT::i1, Promote); + setOperationAction(ISD::SELECT, MVT::i64, Custom); + setOperationAction(ISD::SELECT, MVT::f64, Promote); + AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); + + setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); + + setOperationAction(ISD::SETCC, MVT::i1, Promote); + setOperationAction(ISD::SETCC, MVT::v2i1, Expand); + setOperationAction(ISD::SETCC, MVT::v4i1, Expand); + AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); + + setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); + setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); + + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); + + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); + + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); + + setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); + setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); + setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); + setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); + setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); + + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + setOperationAction(ISD::BR_CC, MVT::i1, Expand); + setOperationAction(ISD::BR_CC, MVT::i32, Expand); + setOperationAction(ISD::BR_CC, MVT::i64, Expand); + setOperationAction(ISD::BR_CC, MVT::f32, Expand); + setOperationAction(ISD::BR_CC, MVT::f64, Expand); + + setOperationAction(ISD::UADDO, MVT::i32, Legal); + setOperationAction(ISD::USUBO, MVT::i32, Legal); + + setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); + setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); + + setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); + setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); + setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); + +#if 0 + setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); + setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); +#endif + + // We only support LOAD/STORE and vector manipulation ops for vectors + // with > 4 elements. + for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, + MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, + MVT::v32i32, MVT::v32f32 }) { + for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { + switch (Op) { + case ISD::LOAD: + case ISD::STORE: + case ISD::BUILD_VECTOR: + case ISD::BITCAST: + case ISD::EXTRACT_VECTOR_ELT: + case ISD::INSERT_VECTOR_ELT: + case ISD::INSERT_SUBVECTOR: + case ISD::EXTRACT_SUBVECTOR: + case ISD::SCALAR_TO_VECTOR: + break; + case ISD::CONCAT_VECTORS: + setOperationAction(Op, VT, Custom); + break; + default: + setOperationAction(Op, VT, Expand); + break; + } + } + } + + setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); + + // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that + // is expanded to avoid having two separate loops in case the index is a VGPR. + + // Most operations are naturally 32-bit vector operations. We only support + // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. + for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { + setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); + AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); + AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); + + setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); + AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); + + setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); + AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); + } + + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); + + setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); + + // Avoid stack access for these. + // TODO: Generalize to more vector types. + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); + + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); + + // Deal with vec3 vector operations when widened to vec4. + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); + + // Deal with vec5 vector operations when widened to vec8. + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); + + // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, + // and output demarshalling + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); + + // We can't return success/failure, only the old value, + // let LLVM add the comparison + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); + + if (Subtarget->hasFlatAddressSpace()) { + setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); + setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); + } + + setOperationAction(ISD::BSWAP, MVT::i32, Legal); + setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); + + // On SI this is s_memtime and s_memrealtime on VI. + setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); + setOperationAction(ISD::TRAP, MVT::Other, Custom); + setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); + + if (Subtarget->has16BitInsts()) { + setOperationAction(ISD::FLOG, MVT::f16, Custom); + setOperationAction(ISD::FEXP, MVT::f16, Custom); + setOperationAction(ISD::FLOG10, MVT::f16, Custom); + } + + // v_mad_f32 does not support denormals according to some sources. + if (!Subtarget->hasFP32Denormals()) + setOperationAction(ISD::FMAD, MVT::f32, Legal); + + if (!Subtarget->hasBFI()) { + // fcopysign can be done in a single instruction with BFI. + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + } + + if (!Subtarget->hasBCNT(32)) + setOperationAction(ISD::CTPOP, MVT::i32, Expand); + + if (!Subtarget->hasBCNT(64)) + setOperationAction(ISD::CTPOP, MVT::i64, Expand); + + if (Subtarget->hasFFBH()) + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); + + if (Subtarget->hasFFBL()) + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); + + // We only really have 32-bit BFE instructions (and 16-bit on VI). + // + // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any + // effort to match them now. We want this to be false for i64 cases when the + // extraction isn't restricted to the upper or lower half. Ideally we would + // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that + // span the midpoint are probably relatively rare, so don't worry about them + // for now. + if (Subtarget->hasBFE()) + setHasExtractBitsInsn(true); + + setOperationAction(ISD::FMINNUM, MVT::f32, Custom); + setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); + setOperationAction(ISD::FMINNUM, MVT::f64, Custom); + setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); + + + // These are really only legal for ieee_mode functions. We should be avoiding + // them for functions that don't have ieee_mode enabled, so just say they are + // legal. + setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); + setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); + setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); + setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); + + + if (Subtarget->haveRoundOpsF64()) { + setOperationAction(ISD::FTRUNC, MVT::f64, Legal); + setOperationAction(ISD::FCEIL, MVT::f64, Legal); + setOperationAction(ISD::FRINT, MVT::f64, Legal); + } else { + setOperationAction(ISD::FCEIL, MVT::f64, Custom); + setOperationAction(ISD::FTRUNC, MVT::f64, Custom); + setOperationAction(ISD::FRINT, MVT::f64, Custom); + setOperationAction(ISD::FFLOOR, MVT::f64, Custom); + } + + setOperationAction(ISD::FFLOOR, MVT::f64, Legal); + + setOperationAction(ISD::FSIN, MVT::f32, Custom); + setOperationAction(ISD::FCOS, MVT::f32, Custom); + setOperationAction(ISD::FDIV, MVT::f32, Custom); + setOperationAction(ISD::FDIV, MVT::f64, Custom); + + if (Subtarget->has16BitInsts()) { + setOperationAction(ISD::Constant, MVT::i16, Legal); + + setOperationAction(ISD::SMIN, MVT::i16, Legal); + setOperationAction(ISD::SMAX, MVT::i16, Legal); + + setOperationAction(ISD::UMIN, MVT::i16, Legal); + setOperationAction(ISD::UMAX, MVT::i16, Legal); + + setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); + AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); + + setOperationAction(ISD::ROTR, MVT::i16, Promote); + setOperationAction(ISD::ROTL, MVT::i16, Promote); + + setOperationAction(ISD::SDIV, MVT::i16, Promote); + setOperationAction(ISD::UDIV, MVT::i16, Promote); + setOperationAction(ISD::SREM, MVT::i16, Promote); + setOperationAction(ISD::UREM, MVT::i16, Promote); + + setOperationAction(ISD::BSWAP, MVT::i16, Promote); + setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); + + setOperationAction(ISD::CTTZ, MVT::i16, Promote); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); + setOperationAction(ISD::CTLZ, MVT::i16, Promote); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); + setOperationAction(ISD::CTPOP, MVT::i16, Promote); + + setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); + + setOperationAction(ISD::BR_CC, MVT::i16, Expand); + + setOperationAction(ISD::LOAD, MVT::i16, Custom); + + setTruncStoreAction(MVT::i64, MVT::i16, Expand); + + setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); + AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); + setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); + AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); + + setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); + setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); + + // F16 - Constant Actions. + setOperationAction(ISD::ConstantFP, MVT::f16, Legal); + + // F16 - Load/Store Actions. + setOperationAction(ISD::LOAD, MVT::f16, Promote); + AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); + setOperationAction(ISD::STORE, MVT::f16, Promote); + AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); + + // F16 - VOP1 Actions. + setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); + setOperationAction(ISD::FCOS, MVT::f16, Promote); + setOperationAction(ISD::FSIN, MVT::f16, Promote); + setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); + setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); + setOperationAction(ISD::FROUND, MVT::f16, Custom); + + // F16 - VOP2 Actions. + setOperationAction(ISD::BR_CC, MVT::f16, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); + + setOperationAction(ISD::FDIV, MVT::f16, Custom); + + // F16 - VOP3 Actions. + setOperationAction(ISD::FMA, MVT::f16, Legal); + if (!Subtarget->hasFP16Denormals() && STI.hasMadF16()) + setOperationAction(ISD::FMAD, MVT::f16, Legal); + + for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { + for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { + switch (Op) { + case ISD::LOAD: + case ISD::STORE: + case ISD::BUILD_VECTOR: + case ISD::BITCAST: + case ISD::EXTRACT_VECTOR_ELT: + case ISD::INSERT_VECTOR_ELT: + case ISD::INSERT_SUBVECTOR: + case ISD::EXTRACT_SUBVECTOR: + case ISD::SCALAR_TO_VECTOR: + break; + case ISD::CONCAT_VECTORS: + setOperationAction(Op, VT, Custom); + break; + default: + setOperationAction(Op, VT, Expand); + break; + } + } + } + + // XXX - Do these do anything? Vector constants turn into build_vector. + setOperationAction(ISD::Constant, MVT::v2i16, Legal); + setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); + + setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); + setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); + + setOperationAction(ISD::STORE, MVT::v2i16, Promote); + AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); + setOperationAction(ISD::STORE, MVT::v2f16, Promote); + AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); + + setOperationAction(ISD::LOAD, MVT::v2i16, Promote); + AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); + setOperationAction(ISD::LOAD, MVT::v2f16, Promote); + AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); + + setOperationAction(ISD::AND, MVT::v2i16, Promote); + AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); + setOperationAction(ISD::OR, MVT::v2i16, Promote); + AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); + setOperationAction(ISD::XOR, MVT::v2i16, Promote); + AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); + + setOperationAction(ISD::LOAD, MVT::v4i16, Promote); + AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); + setOperationAction(ISD::LOAD, MVT::v4f16, Promote); + AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); + + setOperationAction(ISD::STORE, MVT::v4i16, Promote); + AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); + setOperationAction(ISD::STORE, MVT::v4f16, Promote); + AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); + + setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); + setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); + setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); + setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); + + setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); + setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); + setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); + + if (!Subtarget->hasVOP3PInsts()) { + setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); + } + + setOperationAction(ISD::FNEG, MVT::v2f16, Legal); + // This isn't really legal, but this avoids the legalizer unrolling it (and + // allows matching fneg (fabs x) patterns) + setOperationAction(ISD::FABS, MVT::v2f16, Legal); + + setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); + setOperationAction(ISD::FMINNUM, MVT::f16, Custom); + setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); + setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); + + setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); + setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); + + setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); + setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); + } + + if (Subtarget->hasVOP3PInsts()) { + setOperationAction(ISD::ADD, MVT::v2i16, Legal); + setOperationAction(ISD::SUB, MVT::v2i16, Legal); + setOperationAction(ISD::MUL, MVT::v2i16, Legal); + setOperationAction(ISD::SHL, MVT::v2i16, Legal); + setOperationAction(ISD::SRL, MVT::v2i16, Legal); + setOperationAction(ISD::SRA, MVT::v2i16, Legal); + setOperationAction(ISD::SMIN, MVT::v2i16, Legal); + setOperationAction(ISD::UMIN, MVT::v2i16, Legal); + setOperationAction(ISD::SMAX, MVT::v2i16, Legal); + setOperationAction(ISD::UMAX, MVT::v2i16, Legal); + + setOperationAction(ISD::FADD, MVT::v2f16, Legal); + setOperationAction(ISD::FMUL, MVT::v2f16, Legal); + setOperationAction(ISD::FMA, MVT::v2f16, Legal); + + setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); + setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); + + setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); + + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); + + setOperationAction(ISD::SHL, MVT::v4i16, Custom); + setOperationAction(ISD::SRA, MVT::v4i16, Custom); + setOperationAction(ISD::SRL, MVT::v4i16, Custom); + setOperationAction(ISD::ADD, MVT::v4i16, Custom); + setOperationAction(ISD::SUB, MVT::v4i16, Custom); + setOperationAction(ISD::MUL, MVT::v4i16, Custom); + + setOperationAction(ISD::SMIN, MVT::v4i16, Custom); + setOperationAction(ISD::SMAX, MVT::v4i16, Custom); + setOperationAction(ISD::UMIN, MVT::v4i16, Custom); + setOperationAction(ISD::UMAX, MVT::v4i16, Custom); + + setOperationAction(ISD::FADD, MVT::v4f16, Custom); + setOperationAction(ISD::FMUL, MVT::v4f16, Custom); + + setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); + setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); + + setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); + setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); + setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); + + setOperationAction(ISD::FEXP, MVT::v2f16, Custom); + setOperationAction(ISD::SELECT, MVT::v4i16, Custom); + setOperationAction(ISD::SELECT, MVT::v4f16, Custom); + } + + setOperationAction(ISD::FNEG, MVT::v4f16, Custom); + setOperationAction(ISD::FABS, MVT::v4f16, Custom); + + if (Subtarget->has16BitInsts()) { + setOperationAction(ISD::SELECT, MVT::v2i16, Promote); + AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); + setOperationAction(ISD::SELECT, MVT::v2f16, Promote); + AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); + } else { + // Legalization hack. + setOperationAction(ISD::SELECT, MVT::v2i16, Custom); + setOperationAction(ISD::SELECT, MVT::v2f16, Custom); + + setOperationAction(ISD::FNEG, MVT::v2f16, Custom); + setOperationAction(ISD::FABS, MVT::v2f16, Custom); + } + + for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { + setOperationAction(ISD::SELECT, VT, Custom); + } + + setTargetDAGCombine(ISD::ADD); + setTargetDAGCombine(ISD::ADDCARRY); + setTargetDAGCombine(ISD::SUB); + setTargetDAGCombine(ISD::SUBCARRY); + setTargetDAGCombine(ISD::FADD); + setTargetDAGCombine(ISD::FSUB); + setTargetDAGCombine(ISD::FMINNUM); + setTargetDAGCombine(ISD::FMAXNUM); + setTargetDAGCombine(ISD::FMINNUM_IEEE); + setTargetDAGCombine(ISD::FMAXNUM_IEEE); + setTargetDAGCombine(ISD::FMA); + setTargetDAGCombine(ISD::SMIN); + setTargetDAGCombine(ISD::SMAX); + setTargetDAGCombine(ISD::UMIN); + setTargetDAGCombine(ISD::UMAX); + setTargetDAGCombine(ISD::SETCC); + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::OR); + setTargetDAGCombine(ISD::XOR); + setTargetDAGCombine(ISD::SINT_TO_FP); + setTargetDAGCombine(ISD::UINT_TO_FP); + setTargetDAGCombine(ISD::FCANONICALIZE); + setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); + setTargetDAGCombine(ISD::ZERO_EXTEND); + setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); + setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); + + // All memory operations. Some folding on the pointer operand is done to help + // matching the constant offsets in the addressing modes. + setTargetDAGCombine(ISD::LOAD); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::ATOMIC_LOAD); + setTargetDAGCombine(ISD::ATOMIC_STORE); + setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); + setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); + setTargetDAGCombine(ISD::ATOMIC_SWAP); + setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); + setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); + setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); + setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); + setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); + setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); + setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); + setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); + setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); + setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); + setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); + + setSchedulingPreference(Sched::RegPressure); +} + +const GCNSubtarget *SITargetLowering::getSubtarget() const { + return Subtarget; +} + +//===----------------------------------------------------------------------===// +// TargetLowering queries +//===----------------------------------------------------------------------===// + +// v_mad_mix* support a conversion from f16 to f32. +// +// There is only one special case when denormals are enabled we don't currently, +// where this is OK to use. +bool SITargetLowering::isFPExtFoldable(unsigned Opcode, + EVT DestVT, EVT SrcVT) const { + return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || + (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && + DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && + SrcVT.getScalarType() == MVT::f16; +} + +bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { + // SI has some legal vector types, but no legal vector operations. Say no + // shuffles are legal in order to prefer scalarizing some vector operations. + return false; +} + +MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, + CallingConv::ID CC, + EVT VT) const { + // TODO: Consider splitting all arguments into 32-bit pieces. + if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { + EVT ScalarVT = VT.getScalarType(); + unsigned Size = ScalarVT.getSizeInBits(); + if (Size == 32) + return ScalarVT.getSimpleVT(); + + if (Size == 64) + return MVT::i32; + + if (Size == 16 && Subtarget->has16BitInsts()) + return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; + } + + return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); +} + +unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, + CallingConv::ID CC, + EVT VT) const { + if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { + unsigned NumElts = VT.getVectorNumElements(); + EVT ScalarVT = VT.getScalarType(); + unsigned Size = ScalarVT.getSizeInBits(); + + if (Size == 32) + return NumElts; + + if (Size == 64) + return 2 * NumElts; + + if (Size == 16 && Subtarget->has16BitInsts()) + return (VT.getVectorNumElements() + 1) / 2; + } + + return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); +} + +unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( + LLVMContext &Context, CallingConv::ID CC, + EVT VT, EVT &IntermediateVT, + unsigned &NumIntermediates, MVT &RegisterVT) const { + if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { + unsigned NumElts = VT.getVectorNumElements(); + EVT ScalarVT = VT.getScalarType(); + unsigned Size = ScalarVT.getSizeInBits(); + if (Size == 32) { + RegisterVT = ScalarVT.getSimpleVT(); + IntermediateVT = RegisterVT; + NumIntermediates = NumElts; + return NumIntermediates; + } + + if (Size == 64) { + RegisterVT = MVT::i32; + IntermediateVT = RegisterVT; + NumIntermediates = 2 * NumElts; + return NumIntermediates; + } + + // FIXME: We should fix the ABI to be the same on targets without 16-bit + // support, but unless we can properly handle 3-vectors, it will be still be + // inconsistent. + if (Size == 16 && Subtarget->has16BitInsts()) { + RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; + IntermediateVT = RegisterVT; + NumIntermediates = (NumElts + 1) / 2; + return NumIntermediates; + } + } + + return TargetLowering::getVectorTypeBreakdownForCallingConv( + Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); +} + +static MVT memVTFromAggregate(Type *Ty) { + // Only limited forms of aggregate type currently expected. + assert(Ty->isStructTy() && "Expected struct type"); + + + Type *ElementType = nullptr; + unsigned NumElts; + if (Ty->getContainedType(0)->isVectorTy()) { + VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0)); + ElementType = VecComponent->getElementType(); + NumElts = VecComponent->getNumElements(); + } else { + ElementType = Ty->getContainedType(0); + NumElts = 1; + } + + assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type"); + + // Calculate the size of the memVT type from the aggregate + unsigned Pow2Elts = 0; + unsigned ElementSize; + switch (ElementType->getTypeID()) { + default: + llvm_unreachable("Unknown type!"); + case Type::IntegerTyID: + ElementSize = cast<IntegerType>(ElementType)->getBitWidth(); + break; + case Type::HalfTyID: + ElementSize = 16; + break; + case Type::FloatTyID: + ElementSize = 32; + break; + } + unsigned AdditionalElts = ElementSize == 16 ? 2 : 1; + Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts); + + return MVT::getVectorVT(MVT::getVT(ElementType, false), + Pow2Elts); +} + +bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, + const CallInst &CI, + MachineFunction &MF, + unsigned IntrID) const { + if (const AMDGPU::RsrcIntrinsic *RsrcIntr = + AMDGPU::lookupRsrcIntrinsic(IntrID)) { + AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), + (Intrinsic::ID)IntrID); + if (Attr.hasFnAttribute(Attribute::ReadNone)) + return false; + + SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + + if (RsrcIntr->IsImage) { + Info.ptrVal = MFI->getImagePSV( + *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), + CI.getArgOperand(RsrcIntr->RsrcArg)); + Info.align = 0; + } else { + Info.ptrVal = MFI->getBufferPSV( + *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), + CI.getArgOperand(RsrcIntr->RsrcArg)); + } + + Info.flags = MachineMemOperand::MODereferenceable; + if (Attr.hasFnAttribute(Attribute::ReadOnly)) { + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::getVT(CI.getType(), true); + if (Info.memVT == MVT::Other) { + // Some intrinsics return an aggregate type - special case to work out + // the correct memVT + Info.memVT = memVTFromAggregate(CI.getType()); + } + Info.flags |= MachineMemOperand::MOLoad; + } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { + Info.opc = ISD::INTRINSIC_VOID; + Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); + Info.flags |= MachineMemOperand::MOStore; + } else { + // Atomic + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::getVT(CI.getType()); + Info.flags = MachineMemOperand::MOLoad | + MachineMemOperand::MOStore | + MachineMemOperand::MODereferenceable; + + // XXX - Should this be volatile without known ordering? + Info.flags |= MachineMemOperand::MOVolatile; + } + return true; + } + + switch (IntrID) { + case Intrinsic::amdgcn_atomic_inc: + case Intrinsic::amdgcn_atomic_dec: + case Intrinsic::amdgcn_ds_ordered_add: + case Intrinsic::amdgcn_ds_ordered_swap: + case Intrinsic::amdgcn_ds_fadd: + case Intrinsic::amdgcn_ds_fmin: + case Intrinsic::amdgcn_ds_fmax: { + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::getVT(CI.getType()); + Info.ptrVal = CI.getOperand(0); + Info.align = 0; + Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + + const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); + if (!Vol->isZero()) + Info.flags |= MachineMemOperand::MOVolatile; + + return true; + } + case Intrinsic::amdgcn_buffer_atomic_fadd: { + SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + + Info.opc = ISD::INTRINSIC_VOID; + Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); + Info.ptrVal = MFI->getBufferPSV( + *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), + CI.getArgOperand(1)); + Info.align = 0; + Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + + const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); + if (!Vol || !Vol->isZero()) + Info.flags |= MachineMemOperand::MOVolatile; + + return true; + } + case Intrinsic::amdgcn_global_atomic_fadd: { + Info.opc = ISD::INTRINSIC_VOID; + Info.memVT = MVT::getVT(CI.getOperand(0)->getType() + ->getPointerElementType()); + Info.ptrVal = CI.getOperand(0); + Info.align = 0; + Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + + return true; + } + case Intrinsic::amdgcn_ds_append: + case Intrinsic::amdgcn_ds_consume: { + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::getVT(CI.getType()); + Info.ptrVal = CI.getOperand(0); + Info.align = 0; + Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + + const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); + if (!Vol->isZero()) + Info.flags |= MachineMemOperand::MOVolatile; + + return true; + } + case Intrinsic::amdgcn_ds_gws_init: + case Intrinsic::amdgcn_ds_gws_barrier: + case Intrinsic::amdgcn_ds_gws_sema_v: + case Intrinsic::amdgcn_ds_gws_sema_br: + case Intrinsic::amdgcn_ds_gws_sema_p: + case Intrinsic::amdgcn_ds_gws_sema_release_all: { + Info.opc = ISD::INTRINSIC_VOID; + + SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + Info.ptrVal = + MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); + + // This is an abstract access, but we need to specify a type and size. + Info.memVT = MVT::i32; + Info.size = 4; + Info.align = 4; + + Info.flags = MachineMemOperand::MOStore; + if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) + Info.flags = MachineMemOperand::MOLoad; + return true; + } + default: + return false; + } +} + +bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, + SmallVectorImpl<Value*> &Ops, + Type *&AccessTy) const { + switch (II->getIntrinsicID()) { + case Intrinsic::amdgcn_atomic_inc: + case Intrinsic::amdgcn_atomic_dec: + case Intrinsic::amdgcn_ds_ordered_add: + case Intrinsic::amdgcn_ds_ordered_swap: + case Intrinsic::amdgcn_ds_fadd: + case Intrinsic::amdgcn_ds_fmin: + case Intrinsic::amdgcn_ds_fmax: { + Value *Ptr = II->getArgOperand(0); + AccessTy = II->getType(); + Ops.push_back(Ptr); + return true; + } + default: + return false; + } +} + +bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { + if (!Subtarget->hasFlatInstOffsets()) { + // Flat instructions do not have offsets, and only have the register + // address. + return AM.BaseOffs == 0 && AM.Scale == 0; + } + + // GFX9 added a 13-bit signed offset. When using regular flat instructions, + // the sign bit is ignored and is treated as a 12-bit unsigned offset. + + // GFX10 shrinked signed offset to 12 bits. When using regular flat + // instructions, the sign bit is also ignored and is treated as 11-bit + // unsigned offset. + + if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) + return isUInt<11>(AM.BaseOffs) && AM.Scale == 0; + + // Just r + i + return isUInt<12>(AM.BaseOffs) && AM.Scale == 0; +} + +bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { + if (Subtarget->hasFlatGlobalInsts()) + return isInt<13>(AM.BaseOffs) && AM.Scale == 0; + + if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { + // Assume the we will use FLAT for all global memory accesses + // on VI. + // FIXME: This assumption is currently wrong. On VI we still use + // MUBUF instructions for the r + i addressing mode. As currently + // implemented, the MUBUF instructions only work on buffer < 4GB. + // It may be possible to support > 4GB buffers with MUBUF instructions, + // by setting the stride value in the resource descriptor which would + // increase the size limit to (stride * 4GB). However, this is risky, + // because it has never been validated. + return isLegalFlatAddressingMode(AM); + } + + return isLegalMUBUFAddressingMode(AM); +} + +bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { + // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and + // additionally can do r + r + i with addr64. 32-bit has more addressing + // mode options. Depending on the resource constant, it can also do + // (i64 r0) + (i32 r1) * (i14 i). + // + // Private arrays end up using a scratch buffer most of the time, so also + // assume those use MUBUF instructions. Scratch loads / stores are currently + // implemented as mubuf instructions with offen bit set, so slightly + // different than the normal addr64. + if (!isUInt<12>(AM.BaseOffs)) + return false; + + // FIXME: Since we can split immediate into soffset and immediate offset, + // would it make sense to allow any immediate? + + switch (AM.Scale) { + case 0: // r + i or just i, depending on HasBaseReg. + return true; + case 1: + return true; // We have r + r or r + i. + case 2: + if (AM.HasBaseReg) { + // Reject 2 * r + r. + return false; + } + + // Allow 2 * r as r + r + // Or 2 * r + i is allowed as r + r + i. + return true; + default: // Don't allow n * r + return false; + } +} + +bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS, Instruction *I) const { + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + if (AS == AMDGPUAS::GLOBAL_ADDRESS) + return isLegalGlobalAddressingMode(AM); + + if (AS == AMDGPUAS::CONSTANT_ADDRESS || + AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || + AS == AMDGPUAS::BUFFER_FAT_POINTER) { + // If the offset isn't a multiple of 4, it probably isn't going to be + // correctly aligned. + // FIXME: Can we get the real alignment here? + if (AM.BaseOffs % 4 != 0) + return isLegalMUBUFAddressingMode(AM); + + // There are no SMRD extloads, so if we have to do a small type access we + // will use a MUBUF load. + // FIXME?: We also need to do this if unaligned, but we don't know the + // alignment here. + if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) + return isLegalGlobalAddressingMode(AM); + + if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { + // SMRD instructions have an 8-bit, dword offset on SI. + if (!isUInt<8>(AM.BaseOffs / 4)) + return false; + } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { + // On CI+, this can also be a 32-bit literal constant offset. If it fits + // in 8-bits, it can use a smaller encoding. + if (!isUInt<32>(AM.BaseOffs / 4)) + return false; + } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { + // On VI, these use the SMEM format and the offset is 20-bit in bytes. + if (!isUInt<20>(AM.BaseOffs)) + return false; + } else + llvm_unreachable("unhandled generation"); + + if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. + return true; + + if (AM.Scale == 1 && AM.HasBaseReg) + return true; + + return false; + + } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { + return isLegalMUBUFAddressingMode(AM); + } else if (AS == AMDGPUAS::LOCAL_ADDRESS || + AS == AMDGPUAS::REGION_ADDRESS) { + // Basic, single offset DS instructions allow a 16-bit unsigned immediate + // field. + // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have + // an 8-bit dword offset but we don't know the alignment here. + if (!isUInt<16>(AM.BaseOffs)) + return false; + + if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. + return true; + + if (AM.Scale == 1 && AM.HasBaseReg) + return true; + + return false; + } else if (AS == AMDGPUAS::FLAT_ADDRESS || + AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { + // For an unknown address space, this usually means that this is for some + // reason being used for pure arithmetic, and not based on some addressing + // computation. We don't have instructions that compute pointers with any + // addressing modes, so treat them as having no offset like flat + // instructions. + return isLegalFlatAddressingMode(AM); + } else { + llvm_unreachable("unhandled address space"); + } +} + +bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, + const SelectionDAG &DAG) const { + if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { + return (MemVT.getSizeInBits() <= 4 * 32); + } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { + unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); + return (MemVT.getSizeInBits() <= MaxPrivateBits); + } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { + return (MemVT.getSizeInBits() <= 2 * 32); + } + return true; +} + +bool SITargetLowering::allowsMisalignedMemoryAccesses( + EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, + bool *IsFast) const { + if (IsFast) + *IsFast = false; + + // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, + // which isn't a simple VT. + // Until MVT is extended to handle this, simply check for the size and + // rely on the condition below: allow accesses if the size is a multiple of 4. + if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && + VT.getStoreSize() > 16)) { + return false; + } + + if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || + AddrSpace == AMDGPUAS::REGION_ADDRESS) { + // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte + // aligned, 8 byte access in a single operation using ds_read2/write2_b32 + // with adjacent offsets. + bool AlignedBy4 = (Align % 4 == 0); + if (IsFast) + *IsFast = AlignedBy4; + + return AlignedBy4; + } + + // FIXME: We have to be conservative here and assume that flat operations + // will access scratch. If we had access to the IR function, then we + // could determine if any private memory was used in the function. + if (!Subtarget->hasUnalignedScratchAccess() && + (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || + AddrSpace == AMDGPUAS::FLAT_ADDRESS)) { + bool AlignedBy4 = Align >= 4; + if (IsFast) + *IsFast = AlignedBy4; + + return AlignedBy4; + } + + if (Subtarget->hasUnalignedBufferAccess()) { + // If we have an uniform constant load, it still requires using a slow + // buffer instruction if unaligned. + if (IsFast) { + *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || + AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? + (Align % 4 == 0) : true; + } + + return true; + } + + // Smaller than dword value must be aligned. + if (VT.bitsLT(MVT::i32)) + return false; + + // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the + // byte-address are ignored, thus forcing Dword alignment. + // This applies to private, global, and constant memory. + if (IsFast) + *IsFast = true; + + return VT.bitsGT(MVT::i32) && Align % 4 == 0; +} + +EVT SITargetLowering::getOptimalMemOpType( + uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, + bool ZeroMemset, bool MemcpyStrSrc, + const AttributeList &FuncAttributes) const { + // FIXME: Should account for address space here. + + // The default fallback uses the private pointer size as a guess for a type to + // use. Make sure we switch these to 64-bit accesses. + + if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global + return MVT::v4i32; + + if (Size >= 8 && DstAlign >= 4) + return MVT::v2i32; + + // Use the default. + return MVT::Other; +} + +static bool isFlatGlobalAddrSpace(unsigned AS) { + return AS == AMDGPUAS::GLOBAL_ADDRESS || + AS == AMDGPUAS::FLAT_ADDRESS || + AS == AMDGPUAS::CONSTANT_ADDRESS || + AS > AMDGPUAS::MAX_AMDGPU_ADDRESS; +} + +bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, + unsigned DestAS) const { + return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); +} + +bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { + const MemSDNode *MemNode = cast<MemSDNode>(N); + const Value *Ptr = MemNode->getMemOperand()->getValue(); + const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); + return I && I->getMetadata("amdgpu.noclobber"); +} + +bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, + unsigned DestAS) const { + // Flat -> private/local is a simple truncate. + // Flat -> global is no-op + if (SrcAS == AMDGPUAS::FLAT_ADDRESS) + return true; + + return isNoopAddrSpaceCast(SrcAS, DestAS); +} + +bool SITargetLowering::isMemOpUniform(const SDNode *N) const { + const MemSDNode *MemNode = cast<MemSDNode>(N); + + return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); +} + +TargetLoweringBase::LegalizeTypeAction +SITargetLowering::getPreferredVectorAction(MVT VT) const { + if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) + return TypeSplitVector; + + return TargetLoweringBase::getPreferredVectorAction(VT); +} + +bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, + Type *Ty) const { + // FIXME: Could be smarter if called for vector constants. + return true; +} + +bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { + if (Subtarget->has16BitInsts() && VT == MVT::i16) { + switch (Op) { + case ISD::LOAD: + case ISD::STORE: + + // These operations are done with 32-bit instructions anyway. + case ISD::AND: + case ISD::OR: + case ISD::XOR: + case ISD::SELECT: + // TODO: Extensions? + return true; + default: + return false; + } + } + + // SimplifySetCC uses this function to determine whether or not it should + // create setcc with i1 operands. We don't have instructions for i1 setcc. + if (VT == MVT::i1 && Op == ISD::SETCC) + return false; + + return TargetLowering::isTypeDesirableForOp(Op, VT); +} + +SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, + const SDLoc &SL, + SDValue Chain, + uint64_t Offset) const { + const DataLayout &DL = DAG.getDataLayout(); + MachineFunction &MF = DAG.getMachineFunction(); + const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + + const ArgDescriptor *InputPtrReg; + const TargetRegisterClass *RC; + + std::tie(InputPtrReg, RC) + = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); + + MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); + MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); + SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, + MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); + + return DAG.getObjectPtrOffset(SL, BasePtr, Offset); +} + +SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, + const SDLoc &SL) const { + uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), + FIRST_IMPLICIT); + return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); +} + +SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, + const SDLoc &SL, SDValue Val, + bool Signed, + const ISD::InputArg *Arg) const { + // First, if it is a widened vector, narrow it. + if (VT.isVector() && + VT.getVectorNumElements() != MemVT.getVectorNumElements()) { + EVT NarrowedVT = + EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), + VT.getVectorNumElements()); + Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, + DAG.getConstant(0, SL, MVT::i32)); + } + + // Then convert the vector elements or scalar value. + if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && + VT.bitsLT(MemVT)) { + unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; + Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); + } + + if (MemVT.isFloatingPoint()) + Val = getFPExtOrFPTrunc(DAG, Val, SL, VT); + else if (Signed) + Val = DAG.getSExtOrTrunc(Val, SL, VT); + else + Val = DAG.getZExtOrTrunc(Val, SL, VT); + + return Val; +} + +SDValue SITargetLowering::lowerKernargMemParameter( + SelectionDAG &DAG, EVT VT, EVT MemVT, + const SDLoc &SL, SDValue Chain, + uint64_t Offset, unsigned Align, bool Signed, + const ISD::InputArg *Arg) const { + Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); + PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); + MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); + + // Try to avoid using an extload by loading earlier than the argument address, + // and extracting the relevant bits. The load should hopefully be merged with + // the previous argument. + if (MemVT.getStoreSize() < 4 && Align < 4) { + // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). + int64_t AlignDownOffset = alignDown(Offset, 4); + int64_t OffsetDiff = Offset - AlignDownOffset; + + EVT IntVT = MemVT.changeTypeToInteger(); + + // TODO: If we passed in the base kernel offset we could have a better + // alignment than 4, but we don't really need it. + SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); + SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4, + MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant); + + SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); + SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); + + SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); + ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); + ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); + + + return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); + } + + SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); + SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align, + MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant); + + SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); + return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); +} + +SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, + const SDLoc &SL, SDValue Chain, + const ISD::InputArg &Arg) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + + if (Arg.Flags.isByVal()) { + unsigned Size = Arg.Flags.getByValSize(); + int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); + return DAG.getFrameIndex(FrameIdx, MVT::i32); + } + + unsigned ArgOffset = VA.getLocMemOffset(); + unsigned ArgSize = VA.getValVT().getStoreSize(); + + int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); + + // Create load nodes to retrieve arguments from the stack. + SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); + SDValue ArgValue; + + // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) + ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; + MVT MemVT = VA.getValVT(); + + switch (VA.getLocInfo()) { + default: + break; + case CCValAssign::BCvt: + MemVT = VA.getLocVT(); + break; + case CCValAssign::SExt: + ExtType = ISD::SEXTLOAD; + break; + case CCValAssign::ZExt: + ExtType = ISD::ZEXTLOAD; + break; + case CCValAssign::AExt: + ExtType = ISD::EXTLOAD; + break; + } + + ArgValue = DAG.getExtLoad( + ExtType, SL, VA.getLocVT(), Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), + MemVT); + return ArgValue; +} + +SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, + const SIMachineFunctionInfo &MFI, + EVT VT, + AMDGPUFunctionArgInfo::PreloadedValue PVID) const { + const ArgDescriptor *Reg; + const TargetRegisterClass *RC; + + std::tie(Reg, RC) = MFI.getPreloadedValue(PVID); + return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); +} + +static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, + CallingConv::ID CallConv, + ArrayRef<ISD::InputArg> Ins, + BitVector &Skipped, + FunctionType *FType, + SIMachineFunctionInfo *Info) { + for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { + const ISD::InputArg *Arg = &Ins[I]; + + assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && + "vector type argument should have been split"); + + // First check if it's a PS input addr. + if (CallConv == CallingConv::AMDGPU_PS && + !Arg->Flags.isInReg() && PSInputNum <= 15) { + bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); + + // Inconveniently only the first part of the split is marked as isSplit, + // so skip to the end. We only want to increment PSInputNum once for the + // entire split argument. + if (Arg->Flags.isSplit()) { + while (!Arg->Flags.isSplitEnd()) { + assert(!Arg->VT.isVector() && + "unexpected vector split in ps argument type"); + if (!SkipArg) + Splits.push_back(*Arg); + Arg = &Ins[++I]; + } + } + + if (SkipArg) { + // We can safely skip PS inputs. + Skipped.set(Arg->getOrigArgIndex()); + ++PSInputNum; + continue; + } + + Info->markPSInputAllocated(PSInputNum); + if (Arg->Used) + Info->markPSInputEnabled(PSInputNum); + + ++PSInputNum; + } + + Splits.push_back(*Arg); + } +} + +// Allocate special inputs passed in VGPRs. +static void allocateSpecialEntryInputVGPRs(CCState &CCInfo, + MachineFunction &MF, + const SIRegisterInfo &TRI, + SIMachineFunctionInfo &Info) { + if (Info.hasWorkItemIDX()) { + unsigned Reg = AMDGPU::VGPR0; + MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); + + CCInfo.AllocateReg(Reg); + Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); + } + + if (Info.hasWorkItemIDY()) { + unsigned Reg = AMDGPU::VGPR1; + MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); + + CCInfo.AllocateReg(Reg); + Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); + } + + if (Info.hasWorkItemIDZ()) { + unsigned Reg = AMDGPU::VGPR2; + MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); + + CCInfo.AllocateReg(Reg); + Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); + } +} + +// Try to allocate a VGPR at the end of the argument list, or if no argument +// VGPRs are left allocating a stack slot. +// If \p Mask is is given it indicates bitfield position in the register. +// If \p Arg is given use it with new ]p Mask instead of allocating new. +static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, + ArgDescriptor Arg = ArgDescriptor()) { + if (Arg.isSet()) + return ArgDescriptor::createArg(Arg, Mask); + + ArrayRef<MCPhysReg> ArgVGPRs + = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); + unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); + if (RegIdx == ArgVGPRs.size()) { + // Spill to stack required. + int64_t Offset = CCInfo.AllocateStack(4, 4); + + return ArgDescriptor::createStack(Offset, Mask); + } + + unsigned Reg = ArgVGPRs[RegIdx]; + Reg = CCInfo.AllocateReg(Reg); + assert(Reg != AMDGPU::NoRegister); + + MachineFunction &MF = CCInfo.getMachineFunction(); + MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); + return ArgDescriptor::createRegister(Reg, Mask); +} + +static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, + const TargetRegisterClass *RC, + unsigned NumArgRegs) { + ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); + unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); + if (RegIdx == ArgSGPRs.size()) + report_fatal_error("ran out of SGPRs for arguments"); + + unsigned Reg = ArgSGPRs[RegIdx]; + Reg = CCInfo.AllocateReg(Reg); + assert(Reg != AMDGPU::NoRegister); + + MachineFunction &MF = CCInfo.getMachineFunction(); + MF.addLiveIn(Reg, RC); + return ArgDescriptor::createRegister(Reg); +} + +static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { + return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); +} + +static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { + return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); +} + +static void allocateSpecialInputVGPRs(CCState &CCInfo, + MachineFunction &MF, + const SIRegisterInfo &TRI, + SIMachineFunctionInfo &Info) { + const unsigned Mask = 0x3ff; + ArgDescriptor Arg; + + if (Info.hasWorkItemIDX()) { + Arg = allocateVGPR32Input(CCInfo, Mask); + Info.setWorkItemIDX(Arg); + } + + if (Info.hasWorkItemIDY()) { + Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); + Info.setWorkItemIDY(Arg); + } + + if (Info.hasWorkItemIDZ()) + Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); +} + +static void allocateSpecialInputSGPRs(CCState &CCInfo, + MachineFunction &MF, + const SIRegisterInfo &TRI, + SIMachineFunctionInfo &Info) { + auto &ArgInfo = Info.getArgInfo(); + + // TODO: Unify handling with private memory pointers. + + if (Info.hasDispatchPtr()) + ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); + + if (Info.hasQueuePtr()) + ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); + + if (Info.hasKernargSegmentPtr()) + ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo); + + if (Info.hasDispatchID()) + ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); + + // flat_scratch_init is not applicable for non-kernel functions. + + if (Info.hasWorkGroupIDX()) + ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); + + if (Info.hasWorkGroupIDY()) + ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); + + if (Info.hasWorkGroupIDZ()) + ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); + + if (Info.hasImplicitArgPtr()) + ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); +} + +// Allocate special inputs passed in user SGPRs. +static void allocateHSAUserSGPRs(CCState &CCInfo, + MachineFunction &MF, + const SIRegisterInfo &TRI, + SIMachineFunctionInfo &Info) { + if (Info.hasImplicitBufferPtr()) { + unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); + MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(ImplicitBufferPtrReg); + } + + // FIXME: How should these inputs interact with inreg / custom SGPR inputs? + if (Info.hasPrivateSegmentBuffer()) { + unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); + MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); + CCInfo.AllocateReg(PrivateSegmentBufferReg); + } + + if (Info.hasDispatchPtr()) { + unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); + MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(DispatchPtrReg); + } + + if (Info.hasQueuePtr()) { + unsigned QueuePtrReg = Info.addQueuePtr(TRI); + MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(QueuePtrReg); + } + + if (Info.hasKernargSegmentPtr()) { + unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI); + MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(InputPtrReg); + } + + if (Info.hasDispatchID()) { + unsigned DispatchIDReg = Info.addDispatchID(TRI); + MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(DispatchIDReg); + } + + if (Info.hasFlatScratchInit()) { + unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); + MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(FlatScratchInitReg); + } + + // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read + // these from the dispatch pointer. +} + +// Allocate special input registers that are initialized per-wave. +static void allocateSystemSGPRs(CCState &CCInfo, + MachineFunction &MF, + SIMachineFunctionInfo &Info, + CallingConv::ID CallConv, + bool IsShader) { + if (Info.hasWorkGroupIDX()) { + unsigned Reg = Info.addWorkGroupIDX(); + MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Info.hasWorkGroupIDY()) { + unsigned Reg = Info.addWorkGroupIDY(); + MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Info.hasWorkGroupIDZ()) { + unsigned Reg = Info.addWorkGroupIDZ(); + MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Info.hasWorkGroupInfo()) { + unsigned Reg = Info.addWorkGroupInfo(); + MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Info.hasPrivateSegmentWaveByteOffset()) { + // Scratch wave offset passed in system SGPR. + unsigned PrivateSegmentWaveByteOffsetReg; + + if (IsShader) { + PrivateSegmentWaveByteOffsetReg = + Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); + + // This is true if the scratch wave byte offset doesn't have a fixed + // location. + if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { + PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); + Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); + } + } else + PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); + + MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); + CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); + } +} + +static void reservePrivateMemoryRegs(const TargetMachine &TM, + MachineFunction &MF, + const SIRegisterInfo &TRI, + SIMachineFunctionInfo &Info) { + // Now that we've figured out where the scratch register inputs are, see if + // should reserve the arguments and use them directly. + MachineFrameInfo &MFI = MF.getFrameInfo(); + bool HasStackObjects = MFI.hasStackObjects(); + const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); + + // Record that we know we have non-spill stack objects so we don't need to + // check all stack objects later. + if (HasStackObjects) + Info.setHasNonSpillStackObjects(true); + + // Everything live out of a block is spilled with fast regalloc, so it's + // almost certain that spilling will be required. + if (TM.getOptLevel() == CodeGenOpt::None) + HasStackObjects = true; + + // For now assume stack access is needed in any callee functions, so we need + // the scratch registers to pass in. + bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); + + if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { + // If we have stack objects, we unquestionably need the private buffer + // resource. For the Code Object V2 ABI, this will be the first 4 user + // SGPR inputs. We can reserve those and use them directly. + + unsigned PrivateSegmentBufferReg = + Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); + Info.setScratchRSrcReg(PrivateSegmentBufferReg); + } else { + unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); + // We tentatively reserve the last registers (skipping the last registers + // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, + // we'll replace these with the ones immediately after those which were + // really allocated. In the prologue copies will be inserted from the + // argument to these reserved registers. + + // Without HSA, relocations are used for the scratch pointer and the + // buffer resource setup is always inserted in the prologue. Scratch wave + // offset is still in an input SGPR. + Info.setScratchRSrcReg(ReservedBufferReg); + } + + // hasFP should be accurate for kernels even before the frame is finalized. + if (ST.getFrameLowering()->hasFP(MF)) { + MachineRegisterInfo &MRI = MF.getRegInfo(); + + // Try to use s32 as the SP, but move it if it would interfere with input + // arguments. This won't work with calls though. + // + // FIXME: Move SP to avoid any possible inputs, or find a way to spill input + // registers. + if (!MRI.isLiveIn(AMDGPU::SGPR32)) { + Info.setStackPtrOffsetReg(AMDGPU::SGPR32); + } else { + assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); + + if (MFI.hasCalls()) + report_fatal_error("call in graphics shader with too many input SGPRs"); + + for (unsigned Reg : AMDGPU::SGPR_32RegClass) { + if (!MRI.isLiveIn(Reg)) { + Info.setStackPtrOffsetReg(Reg); + break; + } + } + + if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) + report_fatal_error("failed to find register for SP"); + } + + if (MFI.hasCalls()) { + Info.setScratchWaveOffsetReg(AMDGPU::SGPR33); + Info.setFrameOffsetReg(AMDGPU::SGPR33); + } else { + unsigned ReservedOffsetReg = + TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); + Info.setScratchWaveOffsetReg(ReservedOffsetReg); + Info.setFrameOffsetReg(ReservedOffsetReg); + } + } else if (RequiresStackAccess) { + assert(!MFI.hasCalls()); + // We know there are accesses and they will be done relative to SP, so just + // pin it to the input. + // + // FIXME: Should not do this if inline asm is reading/writing these + // registers. + unsigned PreloadedSP = Info.getPreloadedReg( + AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); + + Info.setStackPtrOffsetReg(PreloadedSP); + Info.setScratchWaveOffsetReg(PreloadedSP); + Info.setFrameOffsetReg(PreloadedSP); + } else { + assert(!MFI.hasCalls()); + + // There may not be stack access at all. There may still be spills, or + // access of a constant pointer (in which cases an extra copy will be + // emitted in the prolog). + unsigned ReservedOffsetReg + = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); + Info.setStackPtrOffsetReg(ReservedOffsetReg); + Info.setScratchWaveOffsetReg(ReservedOffsetReg); + Info.setFrameOffsetReg(ReservedOffsetReg); + } +} + +bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { + const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); + return !Info->isEntryFunction(); +} + +void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { + +} + +void SITargetLowering::insertCopiesSplitCSR( + MachineBasicBlock *Entry, + const SmallVectorImpl<MachineBasicBlock *> &Exits) const { + const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); + + const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); + if (!IStart) + return; + + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); + MachineBasicBlock::iterator MBBI = Entry->begin(); + for (const MCPhysReg *I = IStart; *I; ++I) { + const TargetRegisterClass *RC = nullptr; + if (AMDGPU::SReg_64RegClass.contains(*I)) + RC = &AMDGPU::SGPR_64RegClass; + else if (AMDGPU::SReg_32RegClass.contains(*I)) + RC = &AMDGPU::SGPR_32RegClass; + else + llvm_unreachable("Unexpected register class in CSRsViaCopy!"); + + unsigned NewVR = MRI->createVirtualRegister(RC); + // Create copy from CSR to a virtual register. + Entry->addLiveIn(*I); + BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) + .addReg(*I); + + // Insert the copy-back instructions right before the terminator. + for (auto *Exit : Exits) + BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), + TII->get(TargetOpcode::COPY), *I) + .addReg(NewVR); + } +} + +SDValue SITargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); + + MachineFunction &MF = DAG.getMachineFunction(); + const Function &Fn = MF.getFunction(); + FunctionType *FType = MF.getFunction().getFunctionType(); + SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + + if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { + DiagnosticInfoUnsupported NoGraphicsHSA( + Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); + DAG.getContext()->diagnose(NoGraphicsHSA); + return DAG.getEntryNode(); + } + + SmallVector<ISD::InputArg, 16> Splits; + SmallVector<CCValAssign, 16> ArgLocs; + BitVector Skipped(Ins.size()); + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + bool IsShader = AMDGPU::isShader(CallConv); + bool IsKernel = AMDGPU::isKernel(CallConv); + bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); + + if (IsShader) { + processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); + + // At least one interpolation mode must be enabled or else the GPU will + // hang. + // + // Check PSInputAddr instead of PSInputEnable. The idea is that if the user + // set PSInputAddr, the user wants to enable some bits after the compilation + // based on run-time states. Since we can't know what the final PSInputEna + // will look like, so we shouldn't do anything here and the user should take + // responsibility for the correct programming. + // + // Otherwise, the following restrictions apply: + // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. + // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be + // enabled too. + if (CallConv == CallingConv::AMDGPU_PS) { + if ((Info->getPSInputAddr() & 0x7F) == 0 || + ((Info->getPSInputAddr() & 0xF) == 0 && + Info->isPSInputAllocated(11))) { + CCInfo.AllocateReg(AMDGPU::VGPR0); + CCInfo.AllocateReg(AMDGPU::VGPR1); + Info->markPSInputAllocated(0); + Info->markPSInputEnabled(0); + } + if (Subtarget->isAmdPalOS()) { + // For isAmdPalOS, the user does not enable some bits after compilation + // based on run-time states; the register values being generated here are + // the final ones set in hardware. Therefore we need to apply the + // workaround to PSInputAddr and PSInputEnable together. (The case where + // a bit is set in PSInputAddr but not PSInputEnable is where the + // frontend set up an input arg for a particular interpolation mode, but + // nothing uses that input arg. Really we should have an earlier pass + // that removes such an arg.) + unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); + if ((PsInputBits & 0x7F) == 0 || + ((PsInputBits & 0xF) == 0 && + (PsInputBits >> 11 & 1))) + Info->markPSInputEnabled( + countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); + } + } + + assert(!Info->hasDispatchPtr() && + !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && + !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && + !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && + !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && + !Info->hasWorkItemIDZ()); + } else if (IsKernel) { + assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); + } else { + Splits.append(Ins.begin(), Ins.end()); + } + + if (IsEntryFunc) { + allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); + allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); + } + + if (IsKernel) { + analyzeFormalArgumentsCompute(CCInfo, Ins); + } else { + CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); + CCInfo.AnalyzeFormalArguments(Splits, AssignFn); + } + + SmallVector<SDValue, 16> Chains; + + // FIXME: This is the minimum kernel argument alignment. We should improve + // this to the maximum alignment of the arguments. + // + // FIXME: Alignment of explicit arguments totally broken with non-0 explicit + // kern arg offset. + const unsigned KernelArgBaseAlign = 16; + + for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { + const ISD::InputArg &Arg = Ins[i]; + if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { + InVals.push_back(DAG.getUNDEF(Arg.VT)); + continue; + } + + CCValAssign &VA = ArgLocs[ArgIdx++]; + MVT VT = VA.getLocVT(); + + if (IsEntryFunc && VA.isMemLoc()) { + VT = Ins[i].VT; + EVT MemVT = VA.getLocVT(); + + const uint64_t Offset = VA.getLocMemOffset(); + unsigned Align = MinAlign(KernelArgBaseAlign, Offset); + + SDValue Arg = lowerKernargMemParameter( + DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]); + Chains.push_back(Arg.getValue(1)); + + auto *ParamTy = + dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); + if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && + ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || + ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { + // On SI local pointers are just offsets into LDS, so they are always + // less than 16-bits. On CI and newer they could potentially be + // real pointers, so we can't guarantee their size. + Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, + DAG.getValueType(MVT::i16)); + } + + InVals.push_back(Arg); + continue; + } else if (!IsEntryFunc && VA.isMemLoc()) { + SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); + InVals.push_back(Val); + if (!Arg.Flags.isByVal()) + Chains.push_back(Val.getValue(1)); + continue; + } + + assert(VA.isRegLoc() && "Parameter must be in a register!"); + + unsigned Reg = VA.getLocReg(); + const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); + EVT ValVT = VA.getValVT(); + + Reg = MF.addLiveIn(Reg, RC); + SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); + + if (Arg.Flags.isSRet()) { + // The return object should be reasonably addressable. + + // FIXME: This helps when the return is a real sret. If it is a + // automatically inserted sret (i.e. CanLowerReturn returns false), an + // extra copy is inserted in SelectionDAGBuilder which obscures this. + unsigned NumBits + = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); + Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, + DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); + } + + // If this is an 8 or 16-bit value, it is really passed promoted + // to 32 bits. Insert an assert[sz]ext to capture this, then + // truncate to the right size. + switch (VA.getLocInfo()) { + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); + break; + case CCValAssign::SExt: + Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, + DAG.getValueType(ValVT)); + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + case CCValAssign::ZExt: + Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, + DAG.getValueType(ValVT)); + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + case CCValAssign::AExt: + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + default: + llvm_unreachable("Unknown loc info!"); + } + + InVals.push_back(Val); + } + + if (!IsEntryFunc) { + // Special inputs come after user arguments. + allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); + } + + // Start adding system SGPRs. + if (IsEntryFunc) { + allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); + } else { + CCInfo.AllocateReg(Info->getScratchRSrcReg()); + CCInfo.AllocateReg(Info->getScratchWaveOffsetReg()); + CCInfo.AllocateReg(Info->getFrameOffsetReg()); + allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); + } + + auto &ArgUsageInfo = + DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); + ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); + + unsigned StackArgSize = CCInfo.getNextStackOffset(); + Info->setBytesInStackArgArea(StackArgSize); + + return Chains.empty() ? Chain : + DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); +} + +// TODO: If return values can't fit in registers, we should return as many as +// possible in registers before passing on stack. +bool SITargetLowering::CanLowerReturn( + CallingConv::ID CallConv, + MachineFunction &MF, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext &Context) const { + // Replacing returns with sret/stack usage doesn't make sense for shaders. + // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn + // for shaders. Vector types should be explicitly handled by CC. + if (AMDGPU::isEntryFunctionCC(CallConv)) + return true; + + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); + return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); +} + +SDValue +SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &DL, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + + if (AMDGPU::isKernel(CallConv)) { + return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, + OutVals, DL, DAG); + } + + bool IsShader = AMDGPU::isShader(CallConv); + + Info->setIfReturnsVoid(Outs.empty()); + bool IsWaveEnd = Info->returnsVoid() && IsShader; + + // CCValAssign - represent the assignment of the return value to a location. + SmallVector<CCValAssign, 48> RVLocs; + SmallVector<ISD::OutputArg, 48> Splits; + + // CCState - Info about the registers and stack slots. + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + // Analyze outgoing return values. + CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); + + SDValue Flag; + SmallVector<SDValue, 48> RetOps; + RetOps.push_back(Chain); // Operand #0 = Chain (updated below) + + // Add return address for callable functions. + if (!Info->isEntryFunction()) { + const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); + SDValue ReturnAddrReg = CreateLiveInRegister( + DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); + + SDValue ReturnAddrVirtualReg = DAG.getRegister( + MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), + MVT::i64); + Chain = + DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(ReturnAddrVirtualReg); + } + + // Copy the result values into the output registers. + for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; + ++I, ++RealRVLocIdx) { + CCValAssign &VA = RVLocs[I]; + assert(VA.isRegLoc() && "Can only return in registers!"); + // TODO: Partially return in registers if return values don't fit. + SDValue Arg = OutVals[RealRVLocIdx]; + + // Copied from other backends. + switch (VA.getLocInfo()) { + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); + break; + default: + llvm_unreachable("Unknown loc info!"); + } + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + // FIXME: Does sret work properly? + if (!Info->isEntryFunction()) { + const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); + const MCPhysReg *I = + TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); + if (I) { + for (; *I; ++I) { + if (AMDGPU::SReg_64RegClass.contains(*I)) + RetOps.push_back(DAG.getRegister(*I, MVT::i64)); + else if (AMDGPU::SReg_32RegClass.contains(*I)) + RetOps.push_back(DAG.getRegister(*I, MVT::i32)); + else + llvm_unreachable("Unexpected register class in CSRsViaCopy!"); + } + } + } + + // Update chain and glue. + RetOps[0] = Chain; + if (Flag.getNode()) + RetOps.push_back(Flag); + + unsigned Opc = AMDGPUISD::ENDPGM; + if (!IsWaveEnd) + Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; + return DAG.getNode(Opc, DL, MVT::Other, RetOps); +} + +SDValue SITargetLowering::LowerCallResult( + SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, + SDValue ThisVal) const { + CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign VA = RVLocs[i]; + SDValue Val; + + if (VA.isRegLoc()) { + Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); + Chain = Val.getValue(1); + InFlag = Val.getValue(2); + } else if (VA.isMemLoc()) { + report_fatal_error("TODO: return values in memory"); + } else + llvm_unreachable("unknown argument location type"); + + switch (VA.getLocInfo()) { + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); + break; + case CCValAssign::ZExt: + Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, + DAG.getValueType(VA.getValVT())); + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + case CCValAssign::SExt: + Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, + DAG.getValueType(VA.getValVT())); + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + case CCValAssign::AExt: + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + default: + llvm_unreachable("Unknown loc info!"); + } + + InVals.push_back(Val); + } + + return Chain; +} + +// Add code to pass special inputs required depending on used features separate +// from the explicit user arguments present in the IR. +void SITargetLowering::passSpecialInputs( + CallLoweringInfo &CLI, + CCState &CCInfo, + const SIMachineFunctionInfo &Info, + SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, + SmallVectorImpl<SDValue> &MemOpChains, + SDValue Chain) const { + // If we don't have a call site, this was a call inserted by + // legalization. These can never use special inputs. + if (!CLI.CS) + return; + + const Function *CalleeFunc = CLI.CS.getCalledFunction(); + assert(CalleeFunc); + + SelectionDAG &DAG = CLI.DAG; + const SDLoc &DL = CLI.DL; + + const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); + + auto &ArgUsageInfo = + DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); + const AMDGPUFunctionArgInfo &CalleeArgInfo + = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); + + const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); + + // TODO: Unify with private memory register handling. This is complicated by + // the fact that at least in kernels, the input argument is not necessarily + // in the same location as the input. + AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { + AMDGPUFunctionArgInfo::DISPATCH_PTR, + AMDGPUFunctionArgInfo::QUEUE_PTR, + AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR, + AMDGPUFunctionArgInfo::DISPATCH_ID, + AMDGPUFunctionArgInfo::WORKGROUP_ID_X, + AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, + AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, + AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR + }; + + for (auto InputID : InputRegs) { + const ArgDescriptor *OutgoingArg; + const TargetRegisterClass *ArgRC; + + std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID); + if (!OutgoingArg) + continue; + + const ArgDescriptor *IncomingArg; + const TargetRegisterClass *IncomingArgRC; + std::tie(IncomingArg, IncomingArgRC) + = CallerArgInfo.getPreloadedValue(InputID); + assert(IncomingArgRC == ArgRC); + + // All special arguments are ints for now. + EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; + SDValue InputReg; + + if (IncomingArg) { + InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); + } else { + // The implicit arg ptr is special because it doesn't have a corresponding + // input for kernels, and is computed from the kernarg segment pointer. + assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); + InputReg = getImplicitArgPtr(DAG, DL); + } + + if (OutgoingArg->isRegister()) { + RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); + } else { + unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4); + SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, + SpecialArgOffset); + MemOpChains.push_back(ArgStore); + } + } + + // Pack workitem IDs into a single register or pass it as is if already + // packed. + const ArgDescriptor *OutgoingArg; + const TargetRegisterClass *ArgRC; + + std::tie(OutgoingArg, ArgRC) = + CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); + if (!OutgoingArg) + std::tie(OutgoingArg, ArgRC) = + CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); + if (!OutgoingArg) + std::tie(OutgoingArg, ArgRC) = + CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); + if (!OutgoingArg) + return; + + const ArgDescriptor *IncomingArgX + = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first; + const ArgDescriptor *IncomingArgY + = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first; + const ArgDescriptor *IncomingArgZ + = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first; + + SDValue InputReg; + SDLoc SL; + + // If incoming ids are not packed we need to pack them. + if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX) + InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); + + if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) { + SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); + Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, + DAG.getShiftAmountConstant(10, MVT::i32, SL)); + InputReg = InputReg.getNode() ? + DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; + } + + if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) { + SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); + Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, + DAG.getShiftAmountConstant(20, MVT::i32, SL)); + InputReg = InputReg.getNode() ? + DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; + } + + if (!InputReg.getNode()) { + // Workitem ids are already packed, any of present incoming arguments + // will carry all required fields. + ArgDescriptor IncomingArg = ArgDescriptor::createArg( + IncomingArgX ? *IncomingArgX : + IncomingArgY ? *IncomingArgY : + *IncomingArgZ, ~0u); + InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); + } + + if (OutgoingArg->isRegister()) { + RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); + } else { + unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4); + SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, + SpecialArgOffset); + MemOpChains.push_back(ArgStore); + } +} + +static bool canGuaranteeTCO(CallingConv::ID CC) { + return CC == CallingConv::Fast; +} + +/// Return true if we might ever do TCO for calls with this calling convention. +static bool mayTailCallThisCC(CallingConv::ID CC) { + switch (CC) { + case CallingConv::C: + return true; + default: + return canGuaranteeTCO(CC); + } +} + +bool SITargetLowering::isEligibleForTailCallOptimization( + SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { + if (!mayTailCallThisCC(CalleeCC)) + return false; + + MachineFunction &MF = DAG.getMachineFunction(); + const Function &CallerF = MF.getFunction(); + CallingConv::ID CallerCC = CallerF.getCallingConv(); + const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); + const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); + + // Kernels aren't callable, and don't have a live in return address so it + // doesn't make sense to do a tail call with entry functions. + if (!CallerPreserved) + return false; + + bool CCMatch = CallerCC == CalleeCC; + + if (DAG.getTarget().Options.GuaranteedTailCallOpt) { + if (canGuaranteeTCO(CalleeCC) && CCMatch) + return true; + return false; + } + + // TODO: Can we handle var args? + if (IsVarArg) + return false; + + for (const Argument &Arg : CallerF.args()) { + if (Arg.hasByValAttr()) + return false; + } + + LLVMContext &Ctx = *DAG.getContext(); + + // Check that the call results are passed in the same way. + if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, + CCAssignFnForCall(CalleeCC, IsVarArg), + CCAssignFnForCall(CallerCC, IsVarArg))) + return false; + + // The callee has to preserve all registers the caller needs to preserve. + if (!CCMatch) { + const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); + if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) + return false; + } + + // Nothing more to check if the callee is taking no arguments. + if (Outs.empty()) + return true; + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); + + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); + + const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); + // If the stack arguments for this call do not fit into our own save area then + // the call cannot be made tail. + // TODO: Is this really necessary? + if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) + return false; + + const MachineRegisterInfo &MRI = MF.getRegInfo(); + return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); +} + +bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { + if (!CI->isTailCall()) + return false; + + const Function *ParentFn = CI->getParent()->getParent(); + if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) + return false; + + auto Attr = ParentFn->getFnAttribute("disable-tail-calls"); + return (Attr.getValueAsString() != "true"); +} + +// The wave scratch offset register is used as the global base pointer. +SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + const SDLoc &DL = CLI.DL; + SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; + SmallVector<SDValue, 32> &OutVals = CLI.OutVals; + SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &IsTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + bool IsSibCall = false; + bool IsThisReturn = false; + MachineFunction &MF = DAG.getMachineFunction(); + + if (IsVarArg) { + return lowerUnhandledCall(CLI, InVals, + "unsupported call to variadic function "); + } + + if (!CLI.CS.getInstruction()) + report_fatal_error("unsupported libcall legalization"); + + if (!CLI.CS.getCalledFunction()) { + return lowerUnhandledCall(CLI, InVals, + "unsupported indirect call to function "); + } + + if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { + return lowerUnhandledCall(CLI, InVals, + "unsupported required tail call to function "); + } + + if (AMDGPU::isShader(MF.getFunction().getCallingConv())) { + // Note the issue is with the CC of the calling function, not of the call + // itself. + return lowerUnhandledCall(CLI, InVals, + "unsupported call from graphics shader of function "); + } + + if (IsTailCall) { + IsTailCall = isEligibleForTailCallOptimization( + Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); + if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) { + report_fatal_error("failed to perform tail call elimination on a call " + "site marked musttail"); + } + + bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; + + // A sibling call is one where we're under the usual C ABI and not planning + // to change that but can still do a tail call: + if (!TailCallOpt && IsTailCall) + IsSibCall = true; + + if (IsTailCall) + ++NumTailCalls; + } + + const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); + CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); + + CCInfo.AnalyzeCallOperands(Outs, AssignFn); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + + if (IsSibCall) { + // Since we're not changing the ABI to make this a tail call, the memory + // operands are already available in the caller's incoming argument space. + NumBytes = 0; + } + + // FPDiff is the byte offset of the call's argument area from the callee's. + // Stores to callee stack arguments will be placed in FixedStackSlots offset + // by this amount for a tail call. In a sibling call it must be 0 because the + // caller will deallocate the entire stack and the callee still expects its + // arguments to begin at SP+0. Completely unused for non-tail calls. + int32_t FPDiff = 0; + MachineFrameInfo &MFI = MF.getFrameInfo(); + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + + // Adjust the stack pointer for the new arguments... + // These operations are automatically eliminated by the prolog/epilog pass + if (!IsSibCall) { + Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); + + SmallVector<SDValue, 4> CopyFromChains; + + // In the HSA case, this should be an identity copy. + SDValue ScratchRSrcReg + = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); + RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); + CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); + Chain = DAG.getTokenFactor(DL, CopyFromChains); + } + + SmallVector<SDValue, 8> MemOpChains; + MVT PtrVT = MVT::i32; + + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; + ++i, ++realArgIdx) { + CCValAssign &VA = ArgLocs[i]; + SDValue Arg = OutVals[realArgIdx]; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::FPExt: + Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); + break; + default: + llvm_unreachable("Unknown loc info!"); + } + + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + } else { + assert(VA.isMemLoc()); + + SDValue DstAddr; + MachinePointerInfo DstInfo; + + unsigned LocMemOffset = VA.getLocMemOffset(); + int32_t Offset = LocMemOffset; + + SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); + unsigned Align = 0; + + if (IsTailCall) { + ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; + unsigned OpSize = Flags.isByVal() ? + Flags.getByValSize() : VA.getValVT().getStoreSize(); + + // FIXME: We can have better than the minimum byval required alignment. + Align = Flags.isByVal() ? Flags.getByValAlign() : + MinAlign(Subtarget->getStackAlignment(), Offset); + + Offset = Offset + FPDiff; + int FI = MFI.CreateFixedObject(OpSize, Offset, true); + + DstAddr = DAG.getFrameIndex(FI, PtrVT); + DstInfo = MachinePointerInfo::getFixedStack(MF, FI); + + // Make sure any stack arguments overlapping with where we're storing + // are loaded before this eventual operation. Otherwise they'll be + // clobbered. + + // FIXME: Why is this really necessary? This seems to just result in a + // lot of code to copy the stack and write them back to the same + // locations, which are supposed to be immutable? + Chain = addTokenForArgument(Chain, DAG, MFI, FI); + } else { + DstAddr = PtrOff; + DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); + Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset); + } + + if (Outs[i].Flags.isByVal()) { + SDValue SizeNode = + DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); + SDValue Cpy = DAG.getMemcpy( + Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), + /*isVol = */ false, /*AlwaysInline = */ true, + /*isTailCall = */ false, DstInfo, + MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy( + *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS)))); + + MemOpChains.push_back(Cpy); + } else { + SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align); + MemOpChains.push_back(Store); + } + } + } + + // Copy special input registers after user input arguments. + passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into the appropriate regs. + SDValue InFlag; + for (auto &RegToPass : RegsToPass) { + Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, + RegToPass.second, InFlag); + InFlag = Chain.getValue(1); + } + + + SDValue PhysReturnAddrReg; + if (IsTailCall) { + // Since the return is being combined with the call, we need to pass on the + // return address. + + const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); + SDValue ReturnAddrReg = CreateLiveInRegister( + DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); + + PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), + MVT::i64); + Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); + InFlag = Chain.getValue(1); + } + + // We don't usually want to end the call-sequence here because we would tidy + // the frame up *after* the call, however in the ABI-changing tail-call case + // we've carefully laid out the parameters so that when sp is reset they'll be + // in the correct location. + if (IsTailCall && !IsSibCall) { + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getTargetConstant(NumBytes, DL, MVT::i32), + DAG.getTargetConstant(0, DL, MVT::i32), + InFlag, DL); + InFlag = Chain.getValue(1); + } + + std::vector<SDValue> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + // Add a redundant copy of the callee global which will not be legalized, as + // we need direct access to the callee later. + GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee); + const GlobalValue *GV = GSD->getGlobal(); + Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); + + if (IsTailCall) { + // Each tail call may have to adjust the stack by a different amount, so + // this information must travel along with the operation for eventual + // consumption by emitEpilogue. + Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); + + Ops.push_back(PhysReturnAddrReg); + } + + // Add argument registers to the end of the list so that they are known live + // into the call. + for (auto &RegToPass : RegsToPass) { + Ops.push_back(DAG.getRegister(RegToPass.first, + RegToPass.second.getValueType())); + } + + // Add a register mask operand representing the call-preserved registers. + + auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); + const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + // If we're doing a tall call, use a TC_RETURN here rather than an + // actual call instruction. + if (IsTailCall) { + MFI.setHasTailCall(); + return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); + } + + // Returns a chain and a flag for retval copy to use. + SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); + Chain = Call.getValue(0); + InFlag = Call.getValue(1); + + uint64_t CalleePopBytes = NumBytes; + Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), + DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), + InFlag, DL); + if (!Ins.empty()) + InFlag = Chain.getValue(1); + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, + InVals, IsThisReturn, + IsThisReturn ? OutVals[0] : SDValue()); +} + +unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT, + SelectionDAG &DAG) const { + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("m0", AMDGPU::M0) + .Case("exec", AMDGPU::EXEC) + .Case("exec_lo", AMDGPU::EXEC_LO) + .Case("exec_hi", AMDGPU::EXEC_HI) + .Case("flat_scratch", AMDGPU::FLAT_SCR) + .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) + .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) + .Default(AMDGPU::NoRegister); + + if (Reg == AMDGPU::NoRegister) { + report_fatal_error(Twine("invalid register name \"" + + StringRef(RegName) + "\".")); + + } + + if (!Subtarget->hasFlatScrRegister() && + Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { + report_fatal_error(Twine("invalid register \"" + + StringRef(RegName) + "\" for subtarget.")); + } + + switch (Reg) { + case AMDGPU::M0: + case AMDGPU::EXEC_LO: + case AMDGPU::EXEC_HI: + case AMDGPU::FLAT_SCR_LO: + case AMDGPU::FLAT_SCR_HI: + if (VT.getSizeInBits() == 32) + return Reg; + break; + case AMDGPU::EXEC: + case AMDGPU::FLAT_SCR: + if (VT.getSizeInBits() == 64) + return Reg; + break; + default: + llvm_unreachable("missing register type checking"); + } + + report_fatal_error(Twine("invalid type for register \"" + + StringRef(RegName) + "\".")); +} + +// If kill is not the last instruction, split the block so kill is always a +// proper terminator. +MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, + MachineBasicBlock *BB) const { + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + + MachineBasicBlock::iterator SplitPoint(&MI); + ++SplitPoint; + + if (SplitPoint == BB->end()) { + // Don't bother with a new block. + MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); + return BB; + } + + MachineFunction *MF = BB->getParent(); + MachineBasicBlock *SplitBB + = MF->CreateMachineBasicBlock(BB->getBasicBlock()); + + MF->insert(++MachineFunction::iterator(BB), SplitBB); + SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); + + SplitBB->transferSuccessorsAndUpdatePHIs(BB); + BB->addSuccessor(SplitBB); + + MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); + return SplitBB; +} + +// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, +// \p MI will be the only instruction in the loop body block. Otherwise, it will +// be the first instruction in the remainder block. +// +/// \returns { LoopBody, Remainder } +static std::pair<MachineBasicBlock *, MachineBasicBlock *> +splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { + MachineFunction *MF = MBB.getParent(); + MachineBasicBlock::iterator I(&MI); + + // To insert the loop we need to split the block. Move everything after this + // point to a new block, and insert a new empty block between the two. + MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); + MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); + MachineFunction::iterator MBBI(MBB); + ++MBBI; + + MF->insert(MBBI, LoopBB); + MF->insert(MBBI, RemainderBB); + + LoopBB->addSuccessor(LoopBB); + LoopBB->addSuccessor(RemainderBB); + + // Move the rest of the block into a new block. + RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); + + if (InstInLoop) { + auto Next = std::next(I); + + // Move instruction to loop body. + LoopBB->splice(LoopBB->begin(), &MBB, I, Next); + + // Move the rest of the block. + RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); + } else { + RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); + } + + MBB.addSuccessor(LoopBB); + + return std::make_pair(LoopBB, RemainderBB); +} + +MachineBasicBlock * +SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, + MachineBasicBlock *BB) const { + const DebugLoc &DL = MI.getDebugLoc(); + + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + + MachineBasicBlock *LoopBB; + MachineBasicBlock *RemainderBB; + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + + MachineBasicBlock::iterator Prev = std::prev(MI.getIterator()); + + std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); + + MachineBasicBlock::iterator I = LoopBB->end(); + MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0); + + const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( + AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); + + // Clear TRAP_STS.MEM_VIOL + BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) + .addImm(0) + .addImm(EncodedReg); + + // This is a pain, but we're not allowed to have physical register live-ins + // yet. Insert a pair of copies if the VGPR0 hack is necessary. + if (Src && TargetRegisterInfo::isPhysicalRegister(Src->getReg())) { + unsigned Data0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); + BuildMI(*BB, std::next(Prev), DL, TII->get(AMDGPU::COPY), Data0) + .add(*Src); + + BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::COPY), Src->getReg()) + .addReg(Data0); + + MRI.setSimpleHint(Data0, Src->getReg()); + } + + BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_WAITCNT)) + .addImm(0); + + unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); + + // Load and check TRAP_STS.MEM_VIOL + BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) + .addImm(EncodedReg); + + // FIXME: Do we need to use an isel pseudo that may clobber scc? + BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) + .addReg(Reg, RegState::Kill) + .addImm(0); + BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) + .addMBB(LoopBB); + + return RemainderBB; +} + +// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the +// wavefront. If the value is uniform and just happens to be in a VGPR, this +// will only do one iteration. In the worst case, this will loop 64 times. +// +// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. +static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( + const SIInstrInfo *TII, + MachineRegisterInfo &MRI, + MachineBasicBlock &OrigBB, + MachineBasicBlock &LoopBB, + const DebugLoc &DL, + const MachineOperand &IdxReg, + unsigned InitReg, + unsigned ResultReg, + unsigned PhiReg, + unsigned InitSaveExecReg, + int Offset, + bool UseGPRIdxMode, + bool IsIndirectSrc) { + MachineFunction *MF = OrigBB.getParent(); + const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = ST.getRegisterInfo(); + MachineBasicBlock::iterator I = LoopBB.begin(); + + const TargetRegisterClass *BoolRC = TRI->getBoolRC(); + unsigned PhiExec = MRI.createVirtualRegister(BoolRC); + unsigned NewExec = MRI.createVirtualRegister(BoolRC); + unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); + unsigned CondReg = MRI.createVirtualRegister(BoolRC); + + BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) + .addReg(InitReg) + .addMBB(&OrigBB) + .addReg(ResultReg) + .addMBB(&LoopBB); + + BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) + .addReg(InitSaveExecReg) + .addMBB(&OrigBB) + .addReg(NewExec) + .addMBB(&LoopBB); + + // Read the next variant <- also loop target. + BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) + .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); + + // Compare the just read M0 value to all possible Idx values. + BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) + .addReg(CurrentIdxReg) + .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); + + // Update EXEC, save the original EXEC value to VCC. + BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 + : AMDGPU::S_AND_SAVEEXEC_B64), + NewExec) + .addReg(CondReg, RegState::Kill); + + MRI.setSimpleHint(NewExec, CondReg); + + if (UseGPRIdxMode) { + unsigned IdxReg; + if (Offset == 0) { + IdxReg = CurrentIdxReg; + } else { + IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); + BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) + .addReg(CurrentIdxReg, RegState::Kill) + .addImm(Offset); + } + unsigned IdxMode = IsIndirectSrc ? + AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; + MachineInstr *SetOn = + BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) + .addReg(IdxReg, RegState::Kill) + .addImm(IdxMode); + SetOn->getOperand(3).setIsUndef(); + } else { + // Move index from VCC into M0 + if (Offset == 0) { + BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) + .addReg(CurrentIdxReg, RegState::Kill); + } else { + BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) + .addReg(CurrentIdxReg, RegState::Kill) + .addImm(Offset); + } + } + + // Update EXEC, switch all done bits to 0 and all todo bits to 1. + unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; + MachineInstr *InsertPt = + BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term + : AMDGPU::S_XOR_B64_term), Exec) + .addReg(Exec) + .addReg(NewExec); + + // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use + // s_cbranch_scc0? + + // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. + BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) + .addMBB(&LoopBB); + + return InsertPt->getIterator(); +} + +// This has slightly sub-optimal regalloc when the source vector is killed by +// the read. The register allocator does not understand that the kill is +// per-workitem, so is kept alive for the whole loop so we end up not re-using a +// subregister from it, using 1 more VGPR than necessary. This was saved when +// this was expanded after register allocation. +static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, + MachineBasicBlock &MBB, + MachineInstr &MI, + unsigned InitResultReg, + unsigned PhiReg, + int Offset, + bool UseGPRIdxMode, + bool IsIndirectSrc) { + MachineFunction *MF = MBB.getParent(); + const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = ST.getRegisterInfo(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + const DebugLoc &DL = MI.getDebugLoc(); + MachineBasicBlock::iterator I(&MI); + + const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); + unsigned DstReg = MI.getOperand(0).getReg(); + unsigned SaveExec = MRI.createVirtualRegister(BoolXExecRC); + unsigned TmpExec = MRI.createVirtualRegister(BoolXExecRC); + unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; + unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; + + BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); + + // Save the EXEC mask + BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) + .addReg(Exec); + + MachineBasicBlock *LoopBB; + MachineBasicBlock *RemainderBB; + std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); + + const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); + + auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, + InitResultReg, DstReg, PhiReg, TmpExec, + Offset, UseGPRIdxMode, IsIndirectSrc); + + MachineBasicBlock::iterator First = RemainderBB->begin(); + BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec) + .addReg(SaveExec); + + return InsPt; +} + +// Returns subreg index, offset +static std::pair<unsigned, int> +computeIndirectRegAndOffset(const SIRegisterInfo &TRI, + const TargetRegisterClass *SuperRC, + unsigned VecReg, + int Offset) { + int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; + + // Skip out of bounds offsets, or else we would end up using an undefined + // register. + if (Offset >= NumElts || Offset < 0) + return std::make_pair(AMDGPU::sub0, Offset); + + return std::make_pair(AMDGPU::sub0 + Offset, 0); +} + +// Return true if the index is an SGPR and was set. +static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, + MachineRegisterInfo &MRI, + MachineInstr &MI, + int Offset, + bool UseGPRIdxMode, + bool IsIndirectSrc) { + MachineBasicBlock *MBB = MI.getParent(); + const DebugLoc &DL = MI.getDebugLoc(); + MachineBasicBlock::iterator I(&MI); + + const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); + const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); + + assert(Idx->getReg() != AMDGPU::NoRegister); + + if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) + return false; + + if (UseGPRIdxMode) { + unsigned IdxMode = IsIndirectSrc ? + AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE; + if (Offset == 0) { + MachineInstr *SetOn = + BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) + .add(*Idx) + .addImm(IdxMode); + + SetOn->getOperand(3).setIsUndef(); + } else { + unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); + BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) + .add(*Idx) + .addImm(Offset); + MachineInstr *SetOn = + BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) + .addReg(Tmp, RegState::Kill) + .addImm(IdxMode); + + SetOn->getOperand(3).setIsUndef(); + } + + return true; + } + + if (Offset == 0) { + BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) + .add(*Idx); + } else { + BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) + .add(*Idx) + .addImm(Offset); + } + + return true; +} + +// Control flow needs to be inserted if indexing with a VGPR. +static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, + MachineBasicBlock &MBB, + const GCNSubtarget &ST) { + const SIInstrInfo *TII = ST.getInstrInfo(); + const SIRegisterInfo &TRI = TII->getRegisterInfo(); + MachineFunction *MF = MBB.getParent(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + + unsigned Dst = MI.getOperand(0).getReg(); + unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); + int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); + + const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); + + unsigned SubReg; + std::tie(SubReg, Offset) + = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); + + bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); + + if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { + MachineBasicBlock::iterator I(&MI); + const DebugLoc &DL = MI.getDebugLoc(); + + if (UseGPRIdxMode) { + // TODO: Look at the uses to avoid the copy. This may require rescheduling + // to avoid interfering with other uses, so probably requires a new + // optimization pass. + BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) + .addReg(SrcReg, RegState::Undef, SubReg) + .addReg(SrcReg, RegState::Implicit) + .addReg(AMDGPU::M0, RegState::Implicit); + BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); + } else { + BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) + .addReg(SrcReg, RegState::Undef, SubReg) + .addReg(SrcReg, RegState::Implicit); + } + + MI.eraseFromParent(); + + return &MBB; + } + + const DebugLoc &DL = MI.getDebugLoc(); + MachineBasicBlock::iterator I(&MI); + + unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); + unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); + + BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); + + auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, + Offset, UseGPRIdxMode, true); + MachineBasicBlock *LoopBB = InsPt->getParent(); + + if (UseGPRIdxMode) { + BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) + .addReg(SrcReg, RegState::Undef, SubReg) + .addReg(SrcReg, RegState::Implicit) + .addReg(AMDGPU::M0, RegState::Implicit); + BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); + } else { + BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) + .addReg(SrcReg, RegState::Undef, SubReg) + .addReg(SrcReg, RegState::Implicit); + } + + MI.eraseFromParent(); + + return LoopBB; +} + +static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI, + const TargetRegisterClass *VecRC) { + switch (TRI.getRegSizeInBits(*VecRC)) { + case 32: // 4 bytes + return AMDGPU::V_MOVRELD_B32_V1; + case 64: // 8 bytes + return AMDGPU::V_MOVRELD_B32_V2; + case 128: // 16 bytes + return AMDGPU::V_MOVRELD_B32_V4; + case 256: // 32 bytes + return AMDGPU::V_MOVRELD_B32_V8; + case 512: // 64 bytes + return AMDGPU::V_MOVRELD_B32_V16; + default: + llvm_unreachable("unsupported size for MOVRELD pseudos"); + } +} + +static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, + MachineBasicBlock &MBB, + const GCNSubtarget &ST) { + const SIInstrInfo *TII = ST.getInstrInfo(); + const SIRegisterInfo &TRI = TII->getRegisterInfo(); + MachineFunction *MF = MBB.getParent(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + + unsigned Dst = MI.getOperand(0).getReg(); + const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); + const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); + const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); + int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); + const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); + + // This can be an immediate, but will be folded later. + assert(Val->getReg()); + + unsigned SubReg; + std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, + SrcVec->getReg(), + Offset); + bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); + + if (Idx->getReg() == AMDGPU::NoRegister) { + MachineBasicBlock::iterator I(&MI); + const DebugLoc &DL = MI.getDebugLoc(); + + assert(Offset == 0); + + BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) + .add(*SrcVec) + .add(*Val) + .addImm(SubReg); + + MI.eraseFromParent(); + return &MBB; + } + + if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { + MachineBasicBlock::iterator I(&MI); + const DebugLoc &DL = MI.getDebugLoc(); + + if (UseGPRIdxMode) { + BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) + .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst + .add(*Val) + .addReg(Dst, RegState::ImplicitDefine) + .addReg(SrcVec->getReg(), RegState::Implicit) + .addReg(AMDGPU::M0, RegState::Implicit); + + BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); + } else { + const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); + + BuildMI(MBB, I, DL, MovRelDesc) + .addReg(Dst, RegState::Define) + .addReg(SrcVec->getReg()) + .add(*Val) + .addImm(SubReg - AMDGPU::sub0); + } + + MI.eraseFromParent(); + return &MBB; + } + + if (Val->isReg()) + MRI.clearKillFlags(Val->getReg()); + + const DebugLoc &DL = MI.getDebugLoc(); + + unsigned PhiReg = MRI.createVirtualRegister(VecRC); + + auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, + Offset, UseGPRIdxMode, false); + MachineBasicBlock *LoopBB = InsPt->getParent(); + + if (UseGPRIdxMode) { + BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) + .addReg(PhiReg, RegState::Undef, SubReg) // vdst + .add(*Val) // src0 + .addReg(Dst, RegState::ImplicitDefine) + .addReg(PhiReg, RegState::Implicit) + .addReg(AMDGPU::M0, RegState::Implicit); + BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); + } else { + const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); + + BuildMI(*LoopBB, InsPt, DL, MovRelDesc) + .addReg(Dst, RegState::Define) + .addReg(PhiReg) + .add(*Val) + .addImm(SubReg - AMDGPU::sub0); + } + + MI.eraseFromParent(); + + return LoopBB; +} + +MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( + MachineInstr &MI, MachineBasicBlock *BB) const { + + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + MachineFunction *MF = BB->getParent(); + SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); + + if (TII->isMIMG(MI)) { + if (MI.memoperands_empty() && MI.mayLoadOrStore()) { + report_fatal_error("missing mem operand from MIMG instruction"); + } + // Add a memoperand for mimg instructions so that they aren't assumed to + // be ordered memory instuctions. + + return BB; + } + + switch (MI.getOpcode()) { + case AMDGPU::S_ADD_U64_PSEUDO: + case AMDGPU::S_SUB_U64_PSEUDO: { + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = ST.getRegisterInfo(); + const TargetRegisterClass *BoolRC = TRI->getBoolRC(); + const DebugLoc &DL = MI.getDebugLoc(); + + MachineOperand &Dest = MI.getOperand(0); + MachineOperand &Src0 = MI.getOperand(1); + MachineOperand &Src1 = MI.getOperand(2); + + unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); + unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); + + MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, + Src0, BoolRC, AMDGPU::sub0, + &AMDGPU::SReg_32_XM0RegClass); + MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, + Src0, BoolRC, AMDGPU::sub1, + &AMDGPU::SReg_32_XM0RegClass); + + MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, + Src1, BoolRC, AMDGPU::sub0, + &AMDGPU::SReg_32_XM0RegClass); + MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, + Src1, BoolRC, AMDGPU::sub1, + &AMDGPU::SReg_32_XM0RegClass); + + bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); + + unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; + unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; + BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) + .add(Src0Sub0) + .add(Src1Sub0); + BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) + .add(Src0Sub1) + .add(Src1Sub1); + BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) + .addReg(DestSub0) + .addImm(AMDGPU::sub0) + .addReg(DestSub1) + .addImm(AMDGPU::sub1); + MI.eraseFromParent(); + return BB; + } + case AMDGPU::SI_INIT_M0: { + BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), + TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) + .add(MI.getOperand(0)); + MI.eraseFromParent(); + return BB; + } + case AMDGPU::SI_INIT_EXEC: + // This should be before all vector instructions. + BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), + AMDGPU::EXEC) + .addImm(MI.getOperand(0).getImm()); + MI.eraseFromParent(); + return BB; + + case AMDGPU::SI_INIT_EXEC_LO: + // This should be before all vector instructions. + BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), + AMDGPU::EXEC_LO) + .addImm(MI.getOperand(0).getImm()); + MI.eraseFromParent(); + return BB; + + case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { + // Extract the thread count from an SGPR input and set EXEC accordingly. + // Since BFM can't shift by 64, handle that case with CMP + CMOV. + // + // S_BFE_U32 count, input, {shift, 7} + // S_BFM_B64 exec, count, 0 + // S_CMP_EQ_U32 count, 64 + // S_CMOV_B64 exec, -1 + MachineInstr *FirstMI = &*BB->begin(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + unsigned InputReg = MI.getOperand(0).getReg(); + unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); + bool Found = false; + + // Move the COPY of the input reg to the beginning, so that we can use it. + for (auto I = BB->begin(); I != &MI; I++) { + if (I->getOpcode() != TargetOpcode::COPY || + I->getOperand(0).getReg() != InputReg) + continue; + + if (I == FirstMI) { + FirstMI = &*++BB->begin(); + } else { + I->removeFromParent(); + BB->insert(FirstMI, &*I); + } + Found = true; + break; + } + assert(Found); + (void)Found; + + // This should be before all vector instructions. + unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1; + bool isWave32 = getSubtarget()->isWave32(); + unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; + BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) + .addReg(InputReg) + .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); + BuildMI(*BB, FirstMI, DebugLoc(), + TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), + Exec) + .addReg(CountReg) + .addImm(0); + BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) + .addReg(CountReg, RegState::Kill) + .addImm(getSubtarget()->getWavefrontSize()); + BuildMI(*BB, FirstMI, DebugLoc(), + TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), + Exec) + .addImm(-1); + MI.eraseFromParent(); + return BB; + } + + case AMDGPU::GET_GROUPSTATICSIZE: { + assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || + getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); + DebugLoc DL = MI.getDebugLoc(); + BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) + .add(MI.getOperand(0)) + .addImm(MFI->getLDSSize()); + MI.eraseFromParent(); + return BB; + } + case AMDGPU::SI_INDIRECT_SRC_V1: + case AMDGPU::SI_INDIRECT_SRC_V2: + case AMDGPU::SI_INDIRECT_SRC_V4: + case AMDGPU::SI_INDIRECT_SRC_V8: + case AMDGPU::SI_INDIRECT_SRC_V16: + return emitIndirectSrc(MI, *BB, *getSubtarget()); + case AMDGPU::SI_INDIRECT_DST_V1: + case AMDGPU::SI_INDIRECT_DST_V2: + case AMDGPU::SI_INDIRECT_DST_V4: + case AMDGPU::SI_INDIRECT_DST_V8: + case AMDGPU::SI_INDIRECT_DST_V16: + return emitIndirectDst(MI, *BB, *getSubtarget()); + case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: + case AMDGPU::SI_KILL_I1_PSEUDO: + return splitKillBlock(MI, BB); + case AMDGPU::V_CNDMASK_B64_PSEUDO: { + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = ST.getRegisterInfo(); + + unsigned Dst = MI.getOperand(0).getReg(); + unsigned Src0 = MI.getOperand(1).getReg(); + unsigned Src1 = MI.getOperand(2).getReg(); + const DebugLoc &DL = MI.getDebugLoc(); + unsigned SrcCond = MI.getOperand(3).getReg(); + + unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); + unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); + const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); + unsigned SrcCondCopy = MRI.createVirtualRegister(CondRC); + + BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) + .addReg(SrcCond); + BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) + .addImm(0) + .addReg(Src0, 0, AMDGPU::sub0) + .addImm(0) + .addReg(Src1, 0, AMDGPU::sub0) + .addReg(SrcCondCopy); + BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) + .addImm(0) + .addReg(Src0, 0, AMDGPU::sub1) + .addImm(0) + .addReg(Src1, 0, AMDGPU::sub1) + .addReg(SrcCondCopy); + + BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) + .addReg(DstLo) + .addImm(AMDGPU::sub0) + .addReg(DstHi) + .addImm(AMDGPU::sub1); + MI.eraseFromParent(); + return BB; + } + case AMDGPU::SI_BR_UNDEF: { + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + const DebugLoc &DL = MI.getDebugLoc(); + MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) + .add(MI.getOperand(0)); + Br->getOperand(1).setIsUndef(true); // read undef SCC + MI.eraseFromParent(); + return BB; + } + case AMDGPU::ADJCALLSTACKUP: + case AMDGPU::ADJCALLSTACKDOWN: { + const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); + MachineInstrBuilder MIB(*MF, &MI); + + // Add an implicit use of the frame offset reg to prevent the restore copy + // inserted after the call from being reorderd after stack operations in the + // the caller's frame. + MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) + .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit) + .addReg(Info->getFrameOffsetReg(), RegState::Implicit); + return BB; + } + case AMDGPU::SI_CALL_ISEL: { + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + const DebugLoc &DL = MI.getDebugLoc(); + + unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); + + MachineInstrBuilder MIB; + MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); + + for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) + MIB.add(MI.getOperand(I)); + + MIB.cloneMemRefs(MI); + MI.eraseFromParent(); + return BB; + } + case AMDGPU::V_ADD_I32_e32: + case AMDGPU::V_SUB_I32_e32: + case AMDGPU::V_SUBREV_I32_e32: { + // TODO: Define distinct V_*_I32_Pseudo instructions instead. + const DebugLoc &DL = MI.getDebugLoc(); + unsigned Opc = MI.getOpcode(); + + bool NeedClampOperand = false; + if (TII->pseudoToMCOpcode(Opc) == -1) { + Opc = AMDGPU::getVOPe64(Opc); + NeedClampOperand = true; + } + + auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); + if (TII->isVOP3(*I)) { + const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = ST.getRegisterInfo(); + I.addReg(TRI->getVCC(), RegState::Define); + } + I.add(MI.getOperand(1)) + .add(MI.getOperand(2)); + if (NeedClampOperand) + I.addImm(0); // clamp bit for e64 encoding + + TII->legalizeOperands(*I); + + MI.eraseFromParent(); + return BB; + } + case AMDGPU::DS_GWS_INIT: + case AMDGPU::DS_GWS_SEMA_V: + case AMDGPU::DS_GWS_SEMA_BR: + case AMDGPU::DS_GWS_SEMA_P: + case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: + case AMDGPU::DS_GWS_BARRIER: + if (getSubtarget()->hasGWSAutoReplay()) + return BB; + return emitGWSMemViolTestLoop(MI, BB); + default: + return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); + } +} + +bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { + return isTypeLegal(VT.getScalarType()); +} + +bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { + // This currently forces unfolding various combinations of fsub into fma with + // free fneg'd operands. As long as we have fast FMA (controlled by + // isFMAFasterThanFMulAndFAdd), we should perform these. + + // When fma is quarter rate, for f64 where add / sub are at best half rate, + // most of these combines appear to be cycle neutral but save on instruction + // count / code size. + return true; +} + +EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, + EVT VT) const { + if (!VT.isVector()) { + return MVT::i1; + } + return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); +} + +MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { + // TODO: Should i16 be used always if legal? For now it would force VALU + // shifts. + return (VT == MVT::i16) ? MVT::i16 : MVT::i32; +} + +// Answering this is somewhat tricky and depends on the specific device which +// have different rates for fma or all f64 operations. +// +// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other +// regardless of which device (although the number of cycles differs between +// devices), so it is always profitable for f64. +// +// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable +// only on full rate devices. Normally, we should prefer selecting v_mad_f32 +// which we can always do even without fused FP ops since it returns the same +// result as the separate operations and since it is always full +// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 +// however does not support denormals, so we do report fma as faster if we have +// a fast fma device and require denormals. +// +bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { + VT = VT.getScalarType(); + + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f32: { + // This is as fast on some subtargets. However, we always have full rate f32 + // mad available which returns the same result as the separate operations + // which we should prefer over fma. We can't use this if we want to support + // denormals, so only report this in these cases. + if (Subtarget->hasFP32Denormals()) + return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); + + // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. + return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); + } + case MVT::f64: + return true; + case MVT::f16: + return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals(); + default: + break; + } + + return false; +} + +//===----------------------------------------------------------------------===// +// Custom DAG Lowering Operations +//===----------------------------------------------------------------------===// + +// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the +// wider vector type is legal. +SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, + SelectionDAG &DAG) const { + unsigned Opc = Op.getOpcode(); + EVT VT = Op.getValueType(); + assert(VT == MVT::v4f16); + + SDValue Lo, Hi; + std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); + + SDLoc SL(Op); + SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, + Op->getFlags()); + SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, + Op->getFlags()); + + return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); +} + +// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the +// wider vector type is legal. +SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, + SelectionDAG &DAG) const { + unsigned Opc = Op.getOpcode(); + EVT VT = Op.getValueType(); + assert(VT == MVT::v4i16 || VT == MVT::v4f16); + + SDValue Lo0, Hi0; + std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); + SDValue Lo1, Hi1; + std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); + + SDLoc SL(Op); + + SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, + Op->getFlags()); + SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, + Op->getFlags()); + + return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); +} + +SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); + case ISD::LOAD: { + SDValue Result = LowerLOAD(Op, DAG); + assert((!Result.getNode() || + Result.getNode()->getNumValues() == 2) && + "Load should return a value and a chain"); + return Result; + } + + case ISD::FSIN: + case ISD::FCOS: + return LowerTrig(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::FDIV: return LowerFDIV(Op, DAG); + case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); + case ISD::STORE: return LowerSTORE(Op, DAG); + case ISD::GlobalAddress: { + MachineFunction &MF = DAG.getMachineFunction(); + SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + return LowerGlobalAddress(MFI, Op, DAG); + } + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); + case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); + case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); + case ISD::INSERT_SUBVECTOR: + return lowerINSERT_SUBVECTOR(Op, DAG); + case ISD::INSERT_VECTOR_ELT: + return lowerINSERT_VECTOR_ELT(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: + return lowerEXTRACT_VECTOR_ELT(Op, DAG); + case ISD::VECTOR_SHUFFLE: + return lowerVECTOR_SHUFFLE(Op, DAG); + case ISD::BUILD_VECTOR: + return lowerBUILD_VECTOR(Op, DAG); + case ISD::FP_ROUND: + return lowerFP_ROUND(Op, DAG); + case ISD::TRAP: + return lowerTRAP(Op, DAG); + case ISD::DEBUGTRAP: + return lowerDEBUGTRAP(Op, DAG); + case ISD::FABS: + case ISD::FNEG: + case ISD::FCANONICALIZE: + return splitUnaryVectorOp(Op, DAG); + case ISD::FMINNUM: + case ISD::FMAXNUM: + return lowerFMINNUM_FMAXNUM(Op, DAG); + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + case ISD::ADD: + case ISD::SUB: + case ISD::MUL: + case ISD::SMIN: + case ISD::SMAX: + case ISD::UMIN: + case ISD::UMAX: + case ISD::FADD: + case ISD::FMUL: + case ISD::FMINNUM_IEEE: + case ISD::FMAXNUM_IEEE: + return splitBinaryVectorOp(Op, DAG); + } + return SDValue(); +} + +static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, + const SDLoc &DL, + SelectionDAG &DAG, bool Unpacked) { + if (!LoadVT.isVector()) + return Result; + + if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. + // Truncate to v2i16/v4i16. + EVT IntLoadVT = LoadVT.changeTypeToInteger(); + + // Workaround legalizer not scalarizing truncate after vector op + // legalization byt not creating intermediate vector trunc. + SmallVector<SDValue, 4> Elts; + DAG.ExtractVectorElements(Result, Elts); + for (SDValue &Elt : Elts) + Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); + + Result = DAG.getBuildVector(IntLoadVT, DL, Elts); + + // Bitcast to original type (v2f16/v4f16). + return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); + } + + // Cast back to the original packed type. + return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result); +} + +SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, + MemSDNode *M, + SelectionDAG &DAG, + ArrayRef<SDValue> Ops, + bool IsIntrinsic) const { + SDLoc DL(M); + + bool Unpacked = Subtarget->hasUnpackedD16VMem(); + EVT LoadVT = M->getValueType(0); + + EVT EquivLoadVT = LoadVT; + if (Unpacked && LoadVT.isVector()) { + EquivLoadVT = LoadVT.isVector() ? + EVT::getVectorVT(*DAG.getContext(), MVT::i32, + LoadVT.getVectorNumElements()) : LoadVT; + } + + // Change from v4f16/v2f16 to EquivLoadVT. + SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); + + SDValue Load + = DAG.getMemIntrinsicNode( + IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, + VTList, Ops, M->getMemoryVT(), + M->getMemOperand()); + if (!Unpacked) // Just adjusted the opcode. + return Load; + + SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); + + return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); +} + +static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, + SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); + int CondCode = CD->getSExtValue(); + if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE || + CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE) + return DAG.getUNDEF(VT); + + ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); + + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + + SDLoc DL(N); + + EVT CmpVT = LHS.getValueType(); + if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { + unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? + ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); + RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); + } + + ISD::CondCode CCOpcode = getICmpCondCode(IcInput); + + unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); + EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); + + SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, + DAG.getCondCode(CCOpcode)); + if (VT.bitsEq(CCVT)) + return SetCC; + return DAG.getZExtOrTrunc(SetCC, DL, VT); +} + +static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, + SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); + + int CondCode = CD->getSExtValue(); + if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE || + CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) { + return DAG.getUNDEF(VT); + } + + SDValue Src0 = N->getOperand(1); + SDValue Src1 = N->getOperand(2); + EVT CmpVT = Src0.getValueType(); + SDLoc SL(N); + + if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { + Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); + Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); + } + + FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); + ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); + unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); + EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); + SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, + Src1, DAG.getCondCode(CCOpcode)); + if (VT.bitsEq(CCVT)) + return SetCC; + return DAG.getZExtOrTrunc(SetCC, SL, VT); +} + +void SITargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + switch (N->getOpcode()) { + case ISD::INSERT_VECTOR_ELT: { + if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) + Results.push_back(Res); + return; + } + case ISD::EXTRACT_VECTOR_ELT: { + if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) + Results.push_back(Res); + return; + } + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); + switch (IID) { + case Intrinsic::amdgcn_cvt_pkrtz: { + SDValue Src0 = N->getOperand(1); + SDValue Src1 = N->getOperand(2); + SDLoc SL(N); + SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, + Src0, Src1); + Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); + return; + } + case Intrinsic::amdgcn_cvt_pknorm_i16: + case Intrinsic::amdgcn_cvt_pknorm_u16: + case Intrinsic::amdgcn_cvt_pk_i16: + case Intrinsic::amdgcn_cvt_pk_u16: { + SDValue Src0 = N->getOperand(1); + SDValue Src1 = N->getOperand(2); + SDLoc SL(N); + unsigned Opcode; + + if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) + Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; + else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) + Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; + else if (IID == Intrinsic::amdgcn_cvt_pk_i16) + Opcode = AMDGPUISD::CVT_PK_I16_I32; + else + Opcode = AMDGPUISD::CVT_PK_U16_U32; + + EVT VT = N->getValueType(0); + if (isTypeLegal(VT)) + Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); + else { + SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); + Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); + } + return; + } + } + break; + } + case ISD::INTRINSIC_W_CHAIN: { + if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { + Results.push_back(Res); + Results.push_back(Res.getValue(1)); + return; + } + + break; + } + case ISD::SELECT: { + SDLoc SL(N); + EVT VT = N->getValueType(0); + EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); + SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); + SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); + + EVT SelectVT = NewVT; + if (NewVT.bitsLT(MVT::i32)) { + LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); + RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); + SelectVT = MVT::i32; + } + + SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, + N->getOperand(0), LHS, RHS); + + if (NewVT != SelectVT) + NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); + Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); + return; + } + case ISD::FNEG: { + if (N->getValueType(0) != MVT::v2f16) + break; + + SDLoc SL(N); + SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); + + SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, + BC, + DAG.getConstant(0x80008000, SL, MVT::i32)); + Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); + return; + } + case ISD::FABS: { + if (N->getValueType(0) != MVT::v2f16) + break; + + SDLoc SL(N); + SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); + + SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, + BC, + DAG.getConstant(0x7fff7fff, SL, MVT::i32)); + Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); + return; + } + default: + break; + } +} + +/// Helper function for LowerBRCOND +static SDNode *findUser(SDValue Value, unsigned Opcode) { + + SDNode *Parent = Value.getNode(); + for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); + I != E; ++I) { + + if (I.getUse().get() != Value) + continue; + + if (I->getOpcode() == Opcode) + return *I; + } + return nullptr; +} + +unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { + if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { + switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { + case Intrinsic::amdgcn_if: + return AMDGPUISD::IF; + case Intrinsic::amdgcn_else: + return AMDGPUISD::ELSE; + case Intrinsic::amdgcn_loop: + return AMDGPUISD::LOOP; + case Intrinsic::amdgcn_end_cf: + llvm_unreachable("should not occur"); + default: + return 0; + } + } + + // break, if_break, else_break are all only used as inputs to loop, not + // directly as branch conditions. + return 0; +} + +bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { + const Triple &TT = getTargetMachine().getTargetTriple(); + return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || + GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && + AMDGPU::shouldEmitConstantsToTextSection(TT); +} + +bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { + // FIXME: Either avoid relying on address space here or change the default + // address space for functions to avoid the explicit check. + return (GV->getValueType()->isFunctionTy() || + GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || + GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || + GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && + !shouldEmitFixup(GV) && + !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); +} + +bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { + return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); +} + +/// This transforms the control flow intrinsics to get the branch destination as +/// last parameter, also switches branch target with BR if the need arise +SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, + SelectionDAG &DAG) const { + SDLoc DL(BRCOND); + + SDNode *Intr = BRCOND.getOperand(1).getNode(); + SDValue Target = BRCOND.getOperand(2); + SDNode *BR = nullptr; + SDNode *SetCC = nullptr; + + if (Intr->getOpcode() == ISD::SETCC) { + // As long as we negate the condition everything is fine + SetCC = Intr; + Intr = SetCC->getOperand(0).getNode(); + + } else { + // Get the target from BR if we don't negate the condition + BR = findUser(BRCOND, ISD::BR); + Target = BR->getOperand(1); + } + + // FIXME: This changes the types of the intrinsics instead of introducing new + // nodes with the correct types. + // e.g. llvm.amdgcn.loop + + // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3 + // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088> + + unsigned CFNode = isCFIntrinsic(Intr); + if (CFNode == 0) { + // This is a uniform branch so we don't need to legalize. + return BRCOND; + } + + bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || + Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; + + assert(!SetCC || + (SetCC->getConstantOperandVal(1) == 1 && + cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == + ISD::SETNE)); + + // operands of the new intrinsic call + SmallVector<SDValue, 4> Ops; + if (HaveChain) + Ops.push_back(BRCOND.getOperand(0)); + + Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); + Ops.push_back(Target); + + ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); + + // build the new intrinsic call + SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); + + if (!HaveChain) { + SDValue Ops[] = { + SDValue(Result, 0), + BRCOND.getOperand(0) + }; + + Result = DAG.getMergeValues(Ops, DL).getNode(); + } + + if (BR) { + // Give the branch instruction our target + SDValue Ops[] = { + BR->getOperand(0), + BRCOND.getOperand(2) + }; + SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); + DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); + BR = NewBR.getNode(); + } + + SDValue Chain = SDValue(Result, Result->getNumValues() - 1); + + // Copy the intrinsic results to registers + for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { + SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); + if (!CopyToReg) + continue; + + Chain = DAG.getCopyToReg( + Chain, DL, + CopyToReg->getOperand(1), + SDValue(Result, i - 1), + SDValue()); + + DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); + } + + // Remove the old intrinsic from the chain + DAG.ReplaceAllUsesOfValueWith( + SDValue(Intr, Intr->getNumValues() - 1), + Intr->getOperand(0)); + + return Chain; +} + +SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + MVT VT = Op.getSimpleValueType(); + SDLoc DL(Op); + // Checking the depth + if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) + return DAG.getConstant(0, DL, VT); + + MachineFunction &MF = DAG.getMachineFunction(); + const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + // Check for kernel and shader functions + if (Info->isEntryFunction()) + return DAG.getConstant(0, DL, VT); + + MachineFrameInfo &MFI = MF.getFrameInfo(); + // There is a call to @llvm.returnaddress in this function + MFI.setReturnAddressIsTaken(true); + + const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); + // Get the return address reg and mark it as an implicit live-in + unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); + + return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); +} + +SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG, + SDValue Op, + const SDLoc &DL, + EVT VT) const { + return Op.getValueType().bitsLE(VT) ? + DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : + DAG.getNode(ISD::FTRUNC, DL, VT, Op); +} + +SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { + assert(Op.getValueType() == MVT::f16 && + "Do not know how to custom lower FP_ROUND for non-f16 type"); + + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + if (SrcVT != MVT::f64) + return Op; + + SDLoc DL(Op); + + SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); + return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); +} + +SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + const MachineFunction &MF = DAG.getMachineFunction(); + const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + bool IsIEEEMode = Info->getMode().IEEE; + + // FIXME: Assert during eslection that this is only selected for + // ieee_mode. Currently a combine can produce the ieee version for non-ieee + // mode functions, but this happens to be OK since it's only done in cases + // where there is known no sNaN. + if (IsIEEEMode) + return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); + + if (VT == MVT::v4f16) + return splitBinaryVectorOp(Op, DAG); + return Op; +} + +SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Chain = Op.getOperand(0); + + if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || + !Subtarget->isTrapHandlerEnabled()) + return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); + + MachineFunction &MF = DAG.getMachineFunction(); + SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + unsigned UserSGPR = Info->getQueuePtrUserSGPR(); + assert(UserSGPR != AMDGPU::NoRegister); + SDValue QueuePtr = CreateLiveInRegister( + DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); + SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); + SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, + QueuePtr, SDValue()); + SDValue Ops[] = { + ToReg, + DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16), + SGPR01, + ToReg.getValue(1) + }; + return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); +} + +SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Chain = Op.getOperand(0); + MachineFunction &MF = DAG.getMachineFunction(); + + if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa || + !Subtarget->isTrapHandlerEnabled()) { + DiagnosticInfoUnsupported NoTrap(MF.getFunction(), + "debugtrap handler not supported", + Op.getDebugLoc(), + DS_Warning); + LLVMContext &Ctx = MF.getFunction().getContext(); + Ctx.diagnose(NoTrap); + return Chain; + } + + SDValue Ops[] = { + Chain, + DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16) + }; + return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); +} + +SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, + SelectionDAG &DAG) const { + // FIXME: Use inline constants (src_{shared, private}_base) instead. + if (Subtarget->hasApertureRegs()) { + unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? + AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : + AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; + unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? + AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : + AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; + unsigned Encoding = + AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | + Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | + WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; + + SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); + SDValue ApertureReg = SDValue( + DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); + SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); + return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); + } + + MachineFunction &MF = DAG.getMachineFunction(); + SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + unsigned UserSGPR = Info->getQueuePtrUserSGPR(); + assert(UserSGPR != AMDGPU::NoRegister); + + SDValue QueuePtr = CreateLiveInRegister( + DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); + + // Offset into amd_queue_t for group_segment_aperture_base_hi / + // private_segment_aperture_base_hi. + uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; + + SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); + + // TODO: Use custom target PseudoSourceValue. + // TODO: We should use the value from the IR intrinsic call, but it might not + // be available and how do we get it? + Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()), + AMDGPUAS::CONSTANT_ADDRESS)); + + MachinePointerInfo PtrInfo(V, StructOffset); + return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, + MinAlign(64, StructOffset), + MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant); +} + +SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, + SelectionDAG &DAG) const { + SDLoc SL(Op); + const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); + + SDValue Src = ASC->getOperand(0); + SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); + + const AMDGPUTargetMachine &TM = + static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); + + // flat -> local/private + if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { + unsigned DestAS = ASC->getDestAddressSpace(); + + if (DestAS == AMDGPUAS::LOCAL_ADDRESS || + DestAS == AMDGPUAS::PRIVATE_ADDRESS) { + unsigned NullVal = TM.getNullPointerValue(DestAS); + SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); + SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); + SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); + + return DAG.getNode(ISD::SELECT, SL, MVT::i32, + NonNull, Ptr, SegmentNullPtr); + } + } + + // local/private -> flat + if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { + unsigned SrcAS = ASC->getSrcAddressSpace(); + + if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || + SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { + unsigned NullVal = TM.getNullPointerValue(SrcAS); + SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); + + SDValue NonNull + = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); + + SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); + SDValue CvtPtr + = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); + + return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, + DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), + FlatNullPtr); + } + } + + // global <-> flat are no-ops and never emitted. + + const MachineFunction &MF = DAG.getMachineFunction(); + DiagnosticInfoUnsupported InvalidAddrSpaceCast( + MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); + DAG.getContext()->diagnose(InvalidAddrSpaceCast); + + return DAG.getUNDEF(ASC->getValueType(0)); +} + +// This lowers an INSERT_SUBVECTOR by extracting the individual elements from +// the small vector and inserting them into the big vector. That is better than +// the default expansion of doing it via a stack slot. Even though the use of +// the stack slot would be optimized away afterwards, the stack slot itself +// remains. +SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDValue Vec = Op.getOperand(0); + SDValue Ins = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + EVT VecVT = Vec.getValueType(); + EVT InsVT = Ins.getValueType(); + EVT EltVT = VecVT.getVectorElementType(); + unsigned InsNumElts = InsVT.getVectorNumElements(); + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + SDLoc SL(Op); + + for (unsigned I = 0; I != InsNumElts; ++I) { + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, + DAG.getConstant(I, SL, MVT::i32)); + Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, + DAG.getConstant(IdxVal + I, SL, MVT::i32)); + } + return Vec; +} + +SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + SDValue Vec = Op.getOperand(0); + SDValue InsVal = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + EVT VecVT = Vec.getValueType(); + EVT EltVT = VecVT.getVectorElementType(); + unsigned VecSize = VecVT.getSizeInBits(); + unsigned EltSize = EltVT.getSizeInBits(); + + + assert(VecSize <= 64); + + unsigned NumElts = VecVT.getVectorNumElements(); + SDLoc SL(Op); + auto KIdx = dyn_cast<ConstantSDNode>(Idx); + + if (NumElts == 4 && EltSize == 16 && KIdx) { + SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); + + SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, + DAG.getConstant(0, SL, MVT::i32)); + SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, + DAG.getConstant(1, SL, MVT::i32)); + + SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); + SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); + + unsigned Idx = KIdx->getZExtValue(); + bool InsertLo = Idx < 2; + SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, + InsertLo ? LoVec : HiVec, + DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), + DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); + + InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); + + SDValue Concat = InsertLo ? + DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : + DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); + + return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); + } + + if (isa<ConstantSDNode>(Idx)) + return SDValue(); + + MVT IntVT = MVT::getIntegerVT(VecSize); + + // Avoid stack access for dynamic indexing. + // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec + + // Create a congruent vector with the target value in each element so that + // the required element can be masked and ORed into the target vector. + SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, + DAG.getSplatBuildVector(VecVT, SL, InsVal)); + + assert(isPowerOf2_32(EltSize)); + SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); + + // Convert vector index to bit-index. + SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); + + SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); + SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, + DAG.getConstant(0xffff, SL, IntVT), + ScaledIdx); + + SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); + SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, + DAG.getNOT(SL, BFM, IntVT), BCVec); + + SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); + return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); +} + +SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + SDLoc SL(Op); + + EVT ResultVT = Op.getValueType(); + SDValue Vec = Op.getOperand(0); + SDValue Idx = Op.getOperand(1); + EVT VecVT = Vec.getValueType(); + unsigned VecSize = VecVT.getSizeInBits(); + EVT EltVT = VecVT.getVectorElementType(); + assert(VecSize <= 64); + + DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); + + // Make sure we do any optimizations that will make it easier to fold + // source modifiers before obscuring it with bit operations. + + // XXX - Why doesn't this get called when vector_shuffle is expanded? + if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) + return Combined; + + unsigned EltSize = EltVT.getSizeInBits(); + assert(isPowerOf2_32(EltSize)); + + MVT IntVT = MVT::getIntegerVT(VecSize); + SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); + + // Convert vector index to bit-index (* EltSize) + SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); + + SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); + SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); + + if (ResultVT == MVT::f16) { + SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); + return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); + } + + return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); +} + +static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { + assert(Elt % 2 == 0); + return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); +} + +SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc SL(Op); + EVT ResultVT = Op.getValueType(); + ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); + + EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; + EVT EltVT = PackVT.getVectorElementType(); + int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); + + // vector_shuffle <0,1,6,7> lhs, rhs + // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) + // + // vector_shuffle <6,7,2,3> lhs, rhs + // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) + // + // vector_shuffle <6,7,0,1> lhs, rhs + // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) + + // Avoid scalarizing when both halves are reading from consecutive elements. + SmallVector<SDValue, 4> Pieces; + for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { + if (elementPairIsContiguous(SVN->getMask(), I)) { + const int Idx = SVN->getMaskElt(I); + int VecIdx = Idx < SrcNumElts ? 0 : 1; + int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; + SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, + PackVT, SVN->getOperand(VecIdx), + DAG.getConstant(EltIdx, SL, MVT::i32)); + Pieces.push_back(SubVec); + } else { + const int Idx0 = SVN->getMaskElt(I); + const int Idx1 = SVN->getMaskElt(I + 1); + int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; + int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; + int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; + int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; + + SDValue Vec0 = SVN->getOperand(VecIdx0); + SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, + Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); + + SDValue Vec1 = SVN->getOperand(VecIdx1); + SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, + Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); + Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); + } + } + + return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); +} + +SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc SL(Op); + EVT VT = Op.getValueType(); + + if (VT == MVT::v4i16 || VT == MVT::v4f16) { + EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); + + // Turn into pair of packed build_vectors. + // TODO: Special case for constants that can be materialized with s_mov_b64. + SDValue Lo = DAG.getBuildVector(HalfVT, SL, + { Op.getOperand(0), Op.getOperand(1) }); + SDValue Hi = DAG.getBuildVector(HalfVT, SL, + { Op.getOperand(2), Op.getOperand(3) }); + + SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); + SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); + + SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); + return DAG.getNode(ISD::BITCAST, SL, VT, Blend); + } + + assert(VT == MVT::v2f16 || VT == MVT::v2i16); + assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); + + SDValue Lo = Op.getOperand(0); + SDValue Hi = Op.getOperand(1); + + // Avoid adding defined bits with the zero_extend. + if (Hi.isUndef()) { + Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); + SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); + return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); + } + + Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); + Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); + + SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, + DAG.getConstant(16, SL, MVT::i32)); + if (Lo.isUndef()) + return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); + + Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); + Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); + + SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); + return DAG.getNode(ISD::BITCAST, SL, VT, Or); +} + +bool +SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // We can fold offsets for anything that doesn't require a GOT relocation. + return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || + GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || + GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && + !shouldEmitGOTReloc(GA->getGlobal()); +} + +static SDValue +buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, + const SDLoc &DL, unsigned Offset, EVT PtrVT, + unsigned GAFlags = SIInstrInfo::MO_NONE) { + // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is + // lowered to the following code sequence: + // + // For constant address space: + // s_getpc_b64 s[0:1] + // s_add_u32 s0, s0, $symbol + // s_addc_u32 s1, s1, 0 + // + // s_getpc_b64 returns the address of the s_add_u32 instruction and then + // a fixup or relocation is emitted to replace $symbol with a literal + // constant, which is a pc-relative offset from the encoding of the $symbol + // operand to the global variable. + // + // For global address space: + // s_getpc_b64 s[0:1] + // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo + // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi + // + // s_getpc_b64 returns the address of the s_add_u32 instruction and then + // fixups or relocations are emitted to replace $symbol@*@lo and + // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, + // which is a 64-bit pc-relative offset from the encoding of the $symbol + // operand to the global variable. + // + // What we want here is an offset from the value returned by s_getpc + // (which is the address of the s_add_u32 instruction) to the global + // variable, but since the encoding of $symbol starts 4 bytes after the start + // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too + // small. This requires us to add 4 to the global variable offset in order to + // compute the correct address. + unsigned LoFlags = GAFlags; + if (LoFlags == SIInstrInfo::MO_NONE) + LoFlags = SIInstrInfo::MO_REL32; + SDValue PtrLo = + DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, LoFlags); + SDValue PtrHi; + if (GAFlags == SIInstrInfo::MO_NONE) { + PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); + } else { + PtrHi = + DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1); + } + return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); +} + +SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, + SDValue Op, + SelectionDAG &DAG) const { + GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = GSD->getGlobal(); + if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && + (!GV->hasExternalLinkage() || + getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || + getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) || + GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || + GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) + return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); + + SDLoc DL(GSD); + EVT PtrVT = Op.getValueType(); + + if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { + SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), + SIInstrInfo::MO_ABS32_LO); + return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); + } + + if (shouldEmitFixup(GV)) + return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); + else if (shouldEmitPCReloc(GV)) + return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, + SIInstrInfo::MO_REL32); + + SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, + SIInstrInfo::MO_GOTPCREL32); + + Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); + PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); + const DataLayout &DataLayout = DAG.getDataLayout(); + unsigned Align = DataLayout.getABITypeAlignment(PtrTy); + MachinePointerInfo PtrInfo + = MachinePointerInfo::getGOT(DAG.getMachineFunction()); + + return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align, + MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant); +} + +SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, + const SDLoc &DL, SDValue V) const { + // We can't use S_MOV_B32 directly, because there is no way to specify m0 as + // the destination register. + // + // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, + // so we will end up with redundant moves to m0. + // + // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. + + // A Null SDValue creates a glue result. + SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, + V, Chain); + return SDValue(M0, 0); +} + +SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, + SDValue Op, + MVT VT, + unsigned Offset) const { + SDLoc SL(Op); + SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL, + DAG.getEntryNode(), Offset, 4, false); + // The local size values will have the hi 16-bits as zero. + return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, + DAG.getValueType(VT)); +} + +static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, + EVT VT) { + DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), + "non-hsa intrinsic with hsa target", + DL.getDebugLoc()); + DAG.getContext()->diagnose(BadIntrin); + return DAG.getUNDEF(VT); +} + +static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, + EVT VT) { + DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), + "intrinsic not supported on subtarget", + DL.getDebugLoc()); + DAG.getContext()->diagnose(BadIntrin); + return DAG.getUNDEF(VT); +} + +static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, + ArrayRef<SDValue> Elts) { + assert(!Elts.empty()); + MVT Type; + unsigned NumElts; + + if (Elts.size() == 1) { + Type = MVT::f32; + NumElts = 1; + } else if (Elts.size() == 2) { + Type = MVT::v2f32; + NumElts = 2; + } else if (Elts.size() <= 4) { + Type = MVT::v4f32; + NumElts = 4; + } else if (Elts.size() <= 8) { + Type = MVT::v8f32; + NumElts = 8; + } else { + assert(Elts.size() <= 16); + Type = MVT::v16f32; + NumElts = 16; + } + + SmallVector<SDValue, 16> VecElts(NumElts); + for (unsigned i = 0; i < Elts.size(); ++i) { + SDValue Elt = Elts[i]; + if (Elt.getValueType() != MVT::f32) + Elt = DAG.getBitcast(MVT::f32, Elt); + VecElts[i] = Elt; + } + for (unsigned i = Elts.size(); i < NumElts; ++i) + VecElts[i] = DAG.getUNDEF(MVT::f32); + + if (NumElts == 1) + return VecElts[0]; + return DAG.getBuildVector(Type, DL, VecElts); +} + +static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG, + SDValue *GLC, SDValue *SLC, SDValue *DLC) { + auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode()); + + uint64_t Value = CachePolicyConst->getZExtValue(); + SDLoc DL(CachePolicy); + if (GLC) { + *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); + Value &= ~(uint64_t)0x1; + } + if (SLC) { + *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); + Value &= ~(uint64_t)0x2; + } + if (DLC) { + *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32); + Value &= ~(uint64_t)0x4; + } + + return Value == 0; +} + +// Re-construct the required return value for a image load intrinsic. +// This is more complicated due to the optional use TexFailCtrl which means the required +// return type is an aggregate +static SDValue constructRetValue(SelectionDAG &DAG, + MachineSDNode *Result, + ArrayRef<EVT> ResultTypes, + bool IsTexFail, bool Unpacked, bool IsD16, + int DMaskPop, int NumVDataDwords, + const SDLoc &DL, LLVMContext &Context) { + // Determine the required return type. This is the same regardless of IsTexFail flag + EVT ReqRetVT = ResultTypes[0]; + EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT; + int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; + EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT; + EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts) + : AdjEltVT + : ReqRetVT; + + // Extract data part of the result + // Bitcast the result to the same type as the required return type + int NumElts; + if (IsD16 && !Unpacked) + NumElts = NumVDataDwords << 1; + else + NumElts = NumVDataDwords; + + EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts) + : AdjEltVT; + + // Special case for v6f16. Rather than add support for this, use v3i32 to + // extract the data elements + bool V6F16Special = false; + if (NumElts == 6) { + CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2); + DMaskPop >>= 1; + ReqRetNumElts >>= 1; + V6F16Special = true; + AdjVT = MVT::v2i32; + } + + SDValue N = SDValue(Result, 0); + SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N); + + // Iterate over the result + SmallVector<SDValue, 4> BVElts; + + if (CastVT.isVector()) { + DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop); + } else { + BVElts.push_back(CastRes); + } + int ExtraElts = ReqRetNumElts - DMaskPop; + while(ExtraElts--) + BVElts.push_back(DAG.getUNDEF(AdjEltVT)); + + SDValue PreTFCRes; + if (ReqRetNumElts > 1) { + SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts); + if (IsD16 && Unpacked) + PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked); + else + PreTFCRes = NewVec; + } else { + PreTFCRes = BVElts[0]; + } + + if (V6F16Special) + PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes); + + if (!IsTexFail) { + if (Result->getNumValues() > 1) + return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL); + else + return PreTFCRes; + } + + // Extract the TexFail result and insert into aggregate return + SmallVector<SDValue, 1> TFCElt; + DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1); + SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]); + return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL); +} + +static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, + SDValue *LWE, bool &IsTexFail) { + auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); + + uint64_t Value = TexFailCtrlConst->getZExtValue(); + if (Value) { + IsTexFail = true; + } + + SDLoc DL(TexFailCtrlConst); + *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); + Value &= ~(uint64_t)0x1; + *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); + Value &= ~(uint64_t)0x2; + + return Value == 0; +} + +SDValue SITargetLowering::lowerImage(SDValue Op, + const AMDGPU::ImageDimIntrinsicInfo *Intr, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MachineFunction &MF = DAG.getMachineFunction(); + const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); + const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = + AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); + const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); + const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = + AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); + const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = + AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); + unsigned IntrOpcode = Intr->BaseOpcode; + bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; + + SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end()); + SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end()); + bool IsD16 = false; + bool IsA16 = false; + SDValue VData; + int NumVDataDwords; + bool AdjustRetType = false; + + unsigned AddrIdx; // Index of first address argument + unsigned DMask; + unsigned DMaskLanes = 0; + + if (BaseOpcode->Atomic) { + VData = Op.getOperand(2); + + bool Is64Bit = VData.getValueType() == MVT::i64; + if (BaseOpcode->AtomicX2) { + SDValue VData2 = Op.getOperand(3); + VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, + {VData, VData2}); + if (Is64Bit) + VData = DAG.getBitcast(MVT::v4i32, VData); + + ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; + DMask = Is64Bit ? 0xf : 0x3; + NumVDataDwords = Is64Bit ? 4 : 2; + AddrIdx = 4; + } else { + DMask = Is64Bit ? 0x3 : 0x1; + NumVDataDwords = Is64Bit ? 2 : 1; + AddrIdx = 3; + } + } else { + unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1; + auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx)); + DMask = DMaskConst->getZExtValue(); + DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); + + if (BaseOpcode->Store) { + VData = Op.getOperand(2); + + MVT StoreVT = VData.getSimpleValueType(); + if (StoreVT.getScalarType() == MVT::f16) { + if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) + return Op; // D16 is unsupported for this instruction + + IsD16 = true; + VData = handleD16VData(VData, DAG); + } + + NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; + } else { + // Work out the num dwords based on the dmask popcount and underlying type + // and whether packing is supported. + MVT LoadVT = ResultTypes[0].getSimpleVT(); + if (LoadVT.getScalarType() == MVT::f16) { + if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) + return Op; // D16 is unsupported for this instruction + + IsD16 = true; + } + + // Confirm that the return type is large enough for the dmask specified + if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || + (!LoadVT.isVector() && DMaskLanes > 1)) + return Op; + + if (IsD16 && !Subtarget->hasUnpackedD16VMem()) + NumVDataDwords = (DMaskLanes + 1) / 2; + else + NumVDataDwords = DMaskLanes; + + AdjustRetType = true; + } + + AddrIdx = DMaskIdx + 1; + } + + unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0; + unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0; + unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0; + unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients + + NumCoords + NumLCM; + unsigned NumMIVAddrs = NumVAddrs; + + SmallVector<SDValue, 4> VAddrs; + + // Optimize _L to _LZ when _L is zero + if (LZMappingInfo) { + if (auto ConstantLod = + dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { + if (ConstantLod->isZero() || ConstantLod->isNegative()) { + IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l + NumMIVAddrs--; // remove 'lod' + } + } + } + + // Optimize _mip away, when 'lod' is zero + if (MIPMappingInfo) { + if (auto ConstantLod = + dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) { + if (ConstantLod->isNullValue()) { + IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip + NumMIVAddrs--; // remove 'lod' + } + } + } + + // Check for 16 bit addresses and pack if true. + unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs; + MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType(); + const MVT VAddrScalarVT = VAddrVT.getScalarType(); + if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) && + ST->hasFeature(AMDGPU::FeatureR128A16)) { + IsA16 = true; + const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; + for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) { + SDValue AddrLo, AddrHi; + // Push back extra arguments. + if (i < DimIdx) { + AddrLo = Op.getOperand(i); + } else { + AddrLo = Op.getOperand(i); + // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, + // in 1D, derivatives dx/dh and dx/dv are packed with undef. + if (((i + 1) >= (AddrIdx + NumMIVAddrs)) || + ((NumGradients / 2) % 2 == 1 && + (i == DimIdx + (NumGradients / 2) - 1 || + i == DimIdx + NumGradients - 1))) { + AddrHi = DAG.getUNDEF(MVT::f16); + } else { + AddrHi = Op.getOperand(i + 1); + i++; + } + AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT, + {AddrLo, AddrHi}); + AddrLo = DAG.getBitcast(MVT::i32, AddrLo); + } + VAddrs.push_back(AddrLo); + } + } else { + for (unsigned i = 0; i < NumMIVAddrs; ++i) + VAddrs.push_back(Op.getOperand(AddrIdx + i)); + } + + // If the register allocator cannot place the address registers contiguously + // without introducing moves, then using the non-sequential address encoding + // is always preferable, since it saves VALU instructions and is usually a + // wash in terms of code size or even better. + // + // However, we currently have no way of hinting to the register allocator that + // MIMG addresses should be placed contiguously when it is possible to do so, + // so force non-NSA for the common 2-address case as a heuristic. + // + // SIShrinkInstructions will convert NSA encodings to non-NSA after register + // allocation when possible. + bool UseNSA = + ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3; + SDValue VAddr; + if (!UseNSA) + VAddr = getBuildDwordsVector(DAG, DL, VAddrs); + + SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); + SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); + unsigned CtrlIdx; // Index of texfailctrl argument + SDValue Unorm; + if (!BaseOpcode->Sampler) { + Unorm = True; + CtrlIdx = AddrIdx + NumVAddrs + 1; + } else { + auto UnormConst = + cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2)); + + Unorm = UnormConst->getZExtValue() ? True : False; + CtrlIdx = AddrIdx + NumVAddrs + 3; + } + + SDValue TFE; + SDValue LWE; + SDValue TexFail = Op.getOperand(CtrlIdx); + bool IsTexFail = false; + if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) + return Op; + + if (IsTexFail) { + if (!DMaskLanes) { + // Expecting to get an error flag since TFC is on - and dmask is 0 + // Force dmask to be at least 1 otherwise the instruction will fail + DMask = 0x1; + DMaskLanes = 1; + NumVDataDwords = 1; + } + NumVDataDwords += 1; + AdjustRetType = true; + } + + // Has something earlier tagged that the return type needs adjusting + // This happens if the instruction is a load or has set TexFailCtrl flags + if (AdjustRetType) { + // NumVDataDwords reflects the true number of dwords required in the return type + if (DMaskLanes == 0 && !BaseOpcode->Store) { + // This is a no-op load. This can be eliminated + SDValue Undef = DAG.getUNDEF(Op.getValueType()); + if (isa<MemSDNode>(Op)) + return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); + return Undef; + } + + EVT NewVT = NumVDataDwords > 1 ? + EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords) + : MVT::f32; + + ResultTypes[0] = NewVT; + if (ResultTypes.size() == 3) { + // Original result was aggregate type used for TexFailCtrl results + // The actual instruction returns as a vector type which has now been + // created. Remove the aggregate result. + ResultTypes.erase(&ResultTypes[1]); + } + } + + SDValue GLC; + SDValue SLC; + SDValue DLC; + if (BaseOpcode->Atomic) { + GLC = True; // TODO no-return optimization + if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC, + IsGFX10 ? &DLC : nullptr)) + return Op; + } else { + if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC, + IsGFX10 ? &DLC : nullptr)) + return Op; + } + + SmallVector<SDValue, 26> Ops; + if (BaseOpcode->Store || BaseOpcode->Atomic) + Ops.push_back(VData); // vdata + if (UseNSA) { + for (const SDValue &Addr : VAddrs) + Ops.push_back(Addr); + } else { + Ops.push_back(VAddr); + } + Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc + if (BaseOpcode->Sampler) + Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler + Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); + if (IsGFX10) + Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); + Ops.push_back(Unorm); + if (IsGFX10) + Ops.push_back(DLC); + Ops.push_back(GLC); + Ops.push_back(SLC); + Ops.push_back(IsA16 && // a16 or r128 + ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); + Ops.push_back(TFE); // tfe + Ops.push_back(LWE); // lwe + if (!IsGFX10) + Ops.push_back(DimInfo->DA ? True : False); + if (BaseOpcode->HasD16) + Ops.push_back(IsD16 ? True : False); + if (isa<MemSDNode>(Op)) + Ops.push_back(Op.getOperand(0)); // chain + + int NumVAddrDwords = + UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; + int Opcode = -1; + + if (IsGFX10) { + Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, + UseNSA ? AMDGPU::MIMGEncGfx10NSA + : AMDGPU::MIMGEncGfx10Default, + NumVDataDwords, NumVAddrDwords); + } else { + if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) + Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, + NumVDataDwords, NumVAddrDwords); + if (Opcode == -1) + Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, + NumVDataDwords, NumVAddrDwords); + } + assert(Opcode != -1); + + MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); + if (auto MemOp = dyn_cast<MemSDNode>(Op)) { + MachineMemOperand *MemRef = MemOp->getMemOperand(); + DAG.setNodeMemRefs(NewNode, {MemRef}); + } + + if (BaseOpcode->AtomicX2) { + SmallVector<SDValue, 1> Elt; + DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); + return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); + } else if (!BaseOpcode->Store) { + return constructRetValue(DAG, NewNode, + OrigResultTypes, IsTexFail, + Subtarget->hasUnpackedD16VMem(), IsD16, + DMaskLanes, NumVDataDwords, DL, + *DAG.getContext()); + } + + return SDValue(NewNode, 0); +} + +SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, + SDValue Offset, SDValue GLC, SDValue DLC, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo(), + MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant, + VT.getStoreSize(), VT.getStoreSize()); + + if (!Offset->isDivergent()) { + SDValue Ops[] = { + Rsrc, + Offset, // Offset + GLC, + DLC, + }; + return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, + DAG.getVTList(VT), Ops, VT, MMO); + } + + // We have a divergent offset. Emit a MUBUF buffer load instead. We can + // assume that the buffer is unswizzled. + SmallVector<SDValue, 4> Loads; + unsigned NumLoads = 1; + MVT LoadVT = VT.getSimpleVT(); + unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; + assert((LoadVT.getScalarType() == MVT::i32 || + LoadVT.getScalarType() == MVT::f32) && + isPowerOf2_32(NumElts)); + + if (NumElts == 8 || NumElts == 16) { + NumLoads = NumElts == 16 ? 4 : 2; + LoadVT = MVT::v4i32; + } + + SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); + unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue(); + SDValue Ops[] = { + DAG.getEntryNode(), // Chain + Rsrc, // rsrc + DAG.getConstant(0, DL, MVT::i32), // vindex + {}, // voffset + {}, // soffset + {}, // offset + DAG.getConstant(CachePolicy, DL, MVT::i32), // cachepolicy + DAG.getConstant(0, DL, MVT::i1), // idxen + }; + + // Use the alignment to ensure that the required offsets will fit into the + // immediate offsets. + setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4); + + uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); + for (unsigned i = 0; i < NumLoads; ++i) { + Ops[5] = DAG.getConstant(InstOffset + 16 * i, DL, MVT::i32); + Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, + Ops, LoadVT, MMO)); + } + + if (VT == MVT::v8i32 || VT == MVT::v16i32) + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); + + return Loads[0]; +} + +SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + auto MFI = MF.getInfo<SIMachineFunctionInfo>(); + + EVT VT = Op.getValueType(); + SDLoc DL(Op); + unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + + // TODO: Should this propagate fast-math-flags? + + switch (IntrinsicID) { + case Intrinsic::amdgcn_implicit_buffer_ptr: { + if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) + return emitNonHSAIntrinsicError(DAG, DL, VT); + return getPreloadedValue(DAG, *MFI, VT, + AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); + } + case Intrinsic::amdgcn_dispatch_ptr: + case Intrinsic::amdgcn_queue_ptr: { + if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { + DiagnosticInfoUnsupported BadIntrin( + MF.getFunction(), "unsupported hsa intrinsic without hsa target", + DL.getDebugLoc()); + DAG.getContext()->diagnose(BadIntrin); + return DAG.getUNDEF(VT); + } + + auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? + AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; + return getPreloadedValue(DAG, *MFI, VT, RegID); + } + case Intrinsic::amdgcn_implicitarg_ptr: { + if (MFI->isEntryFunction()) + return getImplicitArgPtr(DAG, DL); + return getPreloadedValue(DAG, *MFI, VT, + AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); + } + case Intrinsic::amdgcn_kernarg_segment_ptr: { + return getPreloadedValue(DAG, *MFI, VT, + AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); + } + case Intrinsic::amdgcn_dispatch_id: { + return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); + } + case Intrinsic::amdgcn_rcp: + return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); + case Intrinsic::amdgcn_rsq: + return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); + case Intrinsic::amdgcn_rsq_legacy: + if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) + return emitRemovedIntrinsicError(DAG, DL, VT); + + return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); + case Intrinsic::amdgcn_rcp_legacy: + if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) + return emitRemovedIntrinsicError(DAG, DL, VT); + return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); + case Intrinsic::amdgcn_rsq_clamp: { + if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) + return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); + + Type *Type = VT.getTypeForEVT(*DAG.getContext()); + APFloat Max = APFloat::getLargest(Type->getFltSemantics()); + APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); + + SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); + SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, + DAG.getConstantFP(Max, DL, VT)); + return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, + DAG.getConstantFP(Min, DL, VT)); + } + case Intrinsic::r600_read_ngroups_x: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::NGROUPS_X, 4, false); + case Intrinsic::r600_read_ngroups_y: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::NGROUPS_Y, 4, false); + case Intrinsic::r600_read_ngroups_z: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::NGROUPS_Z, 4, false); + case Intrinsic::r600_read_global_size_x: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false); + case Intrinsic::r600_read_global_size_y: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false); + case Intrinsic::r600_read_global_size_z: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false); + case Intrinsic::r600_read_local_size_x: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerImplicitZextParam(DAG, Op, MVT::i16, + SI::KernelInputOffsets::LOCAL_SIZE_X); + case Intrinsic::r600_read_local_size_y: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerImplicitZextParam(DAG, Op, MVT::i16, + SI::KernelInputOffsets::LOCAL_SIZE_Y); + case Intrinsic::r600_read_local_size_z: + if (Subtarget->isAmdHsaOS()) + return emitNonHSAIntrinsicError(DAG, DL, VT); + + return lowerImplicitZextParam(DAG, Op, MVT::i16, + SI::KernelInputOffsets::LOCAL_SIZE_Z); + case Intrinsic::amdgcn_workgroup_id_x: + case Intrinsic::r600_read_tgid_x: + return getPreloadedValue(DAG, *MFI, VT, + AMDGPUFunctionArgInfo::WORKGROUP_ID_X); + case Intrinsic::amdgcn_workgroup_id_y: + case Intrinsic::r600_read_tgid_y: + return getPreloadedValue(DAG, *MFI, VT, + AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); + case Intrinsic::amdgcn_workgroup_id_z: + case Intrinsic::r600_read_tgid_z: + return getPreloadedValue(DAG, *MFI, VT, + AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); + case Intrinsic::amdgcn_workitem_id_x: + case Intrinsic::r600_read_tidig_x: + return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, + SDLoc(DAG.getEntryNode()), + MFI->getArgInfo().WorkItemIDX); + case Intrinsic::amdgcn_workitem_id_y: + case Intrinsic::r600_read_tidig_y: + return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, + SDLoc(DAG.getEntryNode()), + MFI->getArgInfo().WorkItemIDY); + case Intrinsic::amdgcn_workitem_id_z: + case Intrinsic::r600_read_tidig_z: + return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, + SDLoc(DAG.getEntryNode()), + MFI->getArgInfo().WorkItemIDZ); + case Intrinsic::amdgcn_wavefrontsize: + return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), + SDLoc(Op), MVT::i32); + case Intrinsic::amdgcn_s_buffer_load: { + bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10; + SDValue GLC; + SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1); + if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr, + IsGFX10 ? &DLC : nullptr)) + return Op; + return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC, + DAG); + } + case Intrinsic::amdgcn_fdiv_fast: + return lowerFDIV_FAST(Op, DAG); + case Intrinsic::amdgcn_interp_mov: { + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); + SDValue Glue = M0.getValue(1); + return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3), Glue); + } + case Intrinsic::amdgcn_interp_p1: { + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); + SDValue Glue = M0.getValue(1); + return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3), Glue); + } + case Intrinsic::amdgcn_interp_p2: { + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); + SDValue Glue = SDValue(M0.getNode(), 1); + return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), + Glue); + } + case Intrinsic::amdgcn_interp_p1_f16: { + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); + SDValue Glue = M0.getValue(1); + if (getSubtarget()->getLDSBankCount() == 16) { + // 16 bank LDS + SDValue S = DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, + DAG.getConstant(2, DL, MVT::i32), // P0 + Op.getOperand(2), // Attrchan + Op.getOperand(3), // Attr + Glue); + SDValue Ops[] = { + Op.getOperand(1), // Src0 + Op.getOperand(2), // Attrchan + Op.getOperand(3), // Attr + DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers + S, // Src2 - holds two f16 values selected by high + DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers + Op.getOperand(4), // high + DAG.getConstant(0, DL, MVT::i1), // $clamp + DAG.getConstant(0, DL, MVT::i32) // $omod + }; + return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops); + } else { + // 32 bank LDS + SDValue Ops[] = { + Op.getOperand(1), // Src0 + Op.getOperand(2), // Attrchan + Op.getOperand(3), // Attr + DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers + Op.getOperand(4), // high + DAG.getConstant(0, DL, MVT::i1), // $clamp + DAG.getConstant(0, DL, MVT::i32), // $omod + Glue + }; + return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops); + } + } + case Intrinsic::amdgcn_interp_p2_f16: { + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(6)); + SDValue Glue = SDValue(M0.getNode(), 1); + SDValue Ops[] = { + Op.getOperand(2), // Src0 + Op.getOperand(3), // Attrchan + Op.getOperand(4), // Attr + DAG.getConstant(0, DL, MVT::i32), // $src0_modifiers + Op.getOperand(1), // Src2 + DAG.getConstant(0, DL, MVT::i32), // $src2_modifiers + Op.getOperand(5), // high + DAG.getConstant(0, DL, MVT::i1), // $clamp + Glue + }; + return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops); + } + case Intrinsic::amdgcn_sin: + return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); + + case Intrinsic::amdgcn_cos: + return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); + + case Intrinsic::amdgcn_mul_u24: + return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); + case Intrinsic::amdgcn_mul_i24: + return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); + + case Intrinsic::amdgcn_log_clamp: { + if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) + return SDValue(); + + DiagnosticInfoUnsupported BadIntrin( + MF.getFunction(), "intrinsic not supported on subtarget", + DL.getDebugLoc()); + DAG.getContext()->diagnose(BadIntrin); + return DAG.getUNDEF(VT); + } + case Intrinsic::amdgcn_ldexp: + return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, + Op.getOperand(1), Op.getOperand(2)); + + case Intrinsic::amdgcn_fract: + return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); + + case Intrinsic::amdgcn_class: + return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, + Op.getOperand(1), Op.getOperand(2)); + case Intrinsic::amdgcn_div_fmas: + return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), + Op.getOperand(4)); + + case Intrinsic::amdgcn_div_fixup: + return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case Intrinsic::amdgcn_trig_preop: + return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, + Op.getOperand(1), Op.getOperand(2)); + case Intrinsic::amdgcn_div_scale: { + const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); + + // Translate to the operands expected by the machine instruction. The + // first parameter must be the same as the first instruction. + SDValue Numerator = Op.getOperand(1); + SDValue Denominator = Op.getOperand(2); + + // Note this order is opposite of the machine instruction's operations, + // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The + // intrinsic has the numerator as the first operand to match a normal + // division operation. + + SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; + + return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, + Denominator, Numerator); + } + case Intrinsic::amdgcn_icmp: { + // There is a Pat that handles this variant, so return it as-is. + if (Op.getOperand(1).getValueType() == MVT::i1 && + Op.getConstantOperandVal(2) == 0 && + Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) + return Op; + return lowerICMPIntrinsic(*this, Op.getNode(), DAG); + } + case Intrinsic::amdgcn_fcmp: { + return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); + } + case Intrinsic::amdgcn_fmed3: + return DAG.getNode(AMDGPUISD::FMED3, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + case Intrinsic::amdgcn_fdot2: + return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), + Op.getOperand(4)); + case Intrinsic::amdgcn_fmul_legacy: + return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, + Op.getOperand(1), Op.getOperand(2)); + case Intrinsic::amdgcn_sffbh: + return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); + case Intrinsic::amdgcn_sbfe: + return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + case Intrinsic::amdgcn_ubfe: + return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + case Intrinsic::amdgcn_cvt_pkrtz: + case Intrinsic::amdgcn_cvt_pknorm_i16: + case Intrinsic::amdgcn_cvt_pknorm_u16: + case Intrinsic::amdgcn_cvt_pk_i16: + case Intrinsic::amdgcn_cvt_pk_u16: { + // FIXME: Stop adding cast if v2f16/v2i16 are legal. + EVT VT = Op.getValueType(); + unsigned Opcode; + + if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) + Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; + else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) + Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; + else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) + Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; + else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) + Opcode = AMDGPUISD::CVT_PK_I16_I32; + else + Opcode = AMDGPUISD::CVT_PK_U16_U32; + + if (isTypeLegal(VT)) + return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); + + SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, + Op.getOperand(1), Op.getOperand(2)); + return DAG.getNode(ISD::BITCAST, DL, VT, Node); + } + case Intrinsic::amdgcn_wqm: { + SDValue Src = Op.getOperand(1); + return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src), + 0); + } + case Intrinsic::amdgcn_wwm: { + SDValue Src = Op.getOperand(1); + return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src), + 0); + } + case Intrinsic::amdgcn_fmad_ftz: + return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3)); + + case Intrinsic::amdgcn_if_break: + return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, + Op->getOperand(1), Op->getOperand(2)), 0); + + case Intrinsic::amdgcn_groupstaticsize: { + Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); + if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) + return Op; + + const Module *M = MF.getFunction().getParent(); + const GlobalValue *GV = + M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); + SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, + SIInstrInfo::MO_ABS32_LO); + return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; + } + default: + if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = + AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) + return lowerImage(Op, ImageDimIntr, DAG); + + return Op; + } +} + +SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + SDLoc DL(Op); + + switch (IntrID) { + case Intrinsic::amdgcn_ds_ordered_add: + case Intrinsic::amdgcn_ds_ordered_swap: { + MemSDNode *M = cast<MemSDNode>(Op); + SDValue Chain = M->getOperand(0); + SDValue M0 = M->getOperand(2); + SDValue Value = M->getOperand(3); + unsigned IndexOperand = M->getConstantOperandVal(7); + unsigned WaveRelease = M->getConstantOperandVal(8); + unsigned WaveDone = M->getConstantOperandVal(9); + unsigned ShaderType; + unsigned Instruction; + + unsigned OrderedCountIndex = IndexOperand & 0x3f; + IndexOperand &= ~0x3f; + unsigned CountDw = 0; + + if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { + CountDw = (IndexOperand >> 24) & 0xf; + IndexOperand &= ~(0xf << 24); + + if (CountDw < 1 || CountDw > 4) { + report_fatal_error( + "ds_ordered_count: dword count must be between 1 and 4"); + } + } + + if (IndexOperand) + report_fatal_error("ds_ordered_count: bad index operand"); + + switch (IntrID) { + case Intrinsic::amdgcn_ds_ordered_add: + Instruction = 0; + break; + case Intrinsic::amdgcn_ds_ordered_swap: + Instruction = 1; + break; + } + + if (WaveDone && !WaveRelease) + report_fatal_error("ds_ordered_count: wave_done requires wave_release"); + + switch (DAG.getMachineFunction().getFunction().getCallingConv()) { + case CallingConv::AMDGPU_CS: + case CallingConv::AMDGPU_KERNEL: + ShaderType = 0; + break; + case CallingConv::AMDGPU_PS: + ShaderType = 1; + break; + case CallingConv::AMDGPU_VS: + ShaderType = 2; + break; + case CallingConv::AMDGPU_GS: + ShaderType = 3; + break; + default: + report_fatal_error("ds_ordered_count unsupported for this calling conv"); + } + + unsigned Offset0 = OrderedCountIndex << 2; + unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | + (Instruction << 4); + + if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) + Offset1 |= (CountDw - 1) << 6; + + unsigned Offset = Offset0 | (Offset1 << 8); + + SDValue Ops[] = { + Chain, + Value, + DAG.getTargetConstant(Offset, DL, MVT::i16), + copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue + }; + return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, + M->getVTList(), Ops, M->getMemoryVT(), + M->getMemOperand()); + } + case Intrinsic::amdgcn_ds_fadd: { + MemSDNode *M = cast<MemSDNode>(Op); + unsigned Opc; + switch (IntrID) { + case Intrinsic::amdgcn_ds_fadd: + Opc = ISD::ATOMIC_LOAD_FADD; + break; + } + + return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), + M->getOperand(0), M->getOperand(2), M->getOperand(3), + M->getMemOperand()); + } + case Intrinsic::amdgcn_atomic_inc: + case Intrinsic::amdgcn_atomic_dec: + case Intrinsic::amdgcn_ds_fmin: + case Intrinsic::amdgcn_ds_fmax: { + MemSDNode *M = cast<MemSDNode>(Op); + unsigned Opc; + switch (IntrID) { + case Intrinsic::amdgcn_atomic_inc: + Opc = AMDGPUISD::ATOMIC_INC; + break; + case Intrinsic::amdgcn_atomic_dec: + Opc = AMDGPUISD::ATOMIC_DEC; + break; + case Intrinsic::amdgcn_ds_fmin: + Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; + break; + case Intrinsic::amdgcn_ds_fmax: + Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; + break; + default: + llvm_unreachable("Unknown intrinsic!"); + } + SDValue Ops[] = { + M->getOperand(0), // Chain + M->getOperand(2), // Ptr + M->getOperand(3) // Value + }; + + return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, + M->getMemoryVT(), M->getMemOperand()); + } + case Intrinsic::amdgcn_buffer_load: + case Intrinsic::amdgcn_buffer_load_format: { + unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); + unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); + unsigned IdxEn = 1; + if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) + IdxEn = Idx->getZExtValue() != 0; + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // rsrc + Op.getOperand(3), // vindex + SDValue(), // voffset -- will be set by setBufferOffsets + SDValue(), // soffset -- will be set by setBufferOffsets + SDValue(), // offset -- will be set by setBufferOffsets + DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy + DAG.getConstant(IdxEn, DL, MVT::i1), // idxen + }; + + setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); + unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? + AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; + + EVT VT = Op.getValueType(); + EVT IntVT = VT.changeTypeToInteger(); + auto *M = cast<MemSDNode>(Op); + EVT LoadVT = Op.getValueType(); + + if (LoadVT.getScalarType() == MVT::f16) + return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, + M, DAG, Ops); + + // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics + if (LoadVT.getScalarType() == MVT::i8 || + LoadVT.getScalarType() == MVT::i16) + return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); + + return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, + M->getMemOperand(), DAG); + } + case Intrinsic::amdgcn_raw_buffer_load: + case Intrinsic::amdgcn_raw_buffer_load_format: { + auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // rsrc + DAG.getConstant(0, DL, MVT::i32), // vindex + Offsets.first, // voffset + Op.getOperand(4), // soffset + Offsets.second, // offset + Op.getOperand(5), // cachepolicy + DAG.getConstant(0, DL, MVT::i1), // idxen + }; + + unsigned Opc = (IntrID == Intrinsic::amdgcn_raw_buffer_load) ? + AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; + + EVT VT = Op.getValueType(); + EVT IntVT = VT.changeTypeToInteger(); + auto *M = cast<MemSDNode>(Op); + EVT LoadVT = Op.getValueType(); + + if (LoadVT.getScalarType() == MVT::f16) + return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, + M, DAG, Ops); + + // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics + if (LoadVT.getScalarType() == MVT::i8 || + LoadVT.getScalarType() == MVT::i16) + return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); + + return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, + M->getMemOperand(), DAG); + } + case Intrinsic::amdgcn_struct_buffer_load: + case Intrinsic::amdgcn_struct_buffer_load_format: { + auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // rsrc + Op.getOperand(3), // vindex + Offsets.first, // voffset + Op.getOperand(5), // soffset + Offsets.second, // offset + Op.getOperand(6), // cachepolicy + DAG.getConstant(1, DL, MVT::i1), // idxen + }; + + unsigned Opc = (IntrID == Intrinsic::amdgcn_struct_buffer_load) ? + AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; + + EVT VT = Op.getValueType(); + EVT IntVT = VT.changeTypeToInteger(); + auto *M = cast<MemSDNode>(Op); + EVT LoadVT = Op.getValueType(); + + if (LoadVT.getScalarType() == MVT::f16) + return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, + M, DAG, Ops); + + // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics + if (LoadVT.getScalarType() == MVT::i8 || + LoadVT.getScalarType() == MVT::i16) + return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); + + return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, + M->getMemOperand(), DAG); + } + case Intrinsic::amdgcn_tbuffer_load: { + MemSDNode *M = cast<MemSDNode>(Op); + EVT LoadVT = Op.getValueType(); + + unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); + unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); + unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); + unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); + unsigned IdxEn = 1; + if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3))) + IdxEn = Idx->getZExtValue() != 0; + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // rsrc + Op.getOperand(3), // vindex + Op.getOperand(4), // voffset + Op.getOperand(5), // soffset + Op.getOperand(6), // offset + DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format + DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy + DAG.getConstant(IdxEn, DL, MVT::i1), // idxen + }; + + if (LoadVT.getScalarType() == MVT::f16) + return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, + M, DAG, Ops); + return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, + Op->getVTList(), Ops, LoadVT, M->getMemOperand(), + DAG); + } + case Intrinsic::amdgcn_raw_tbuffer_load: { + MemSDNode *M = cast<MemSDNode>(Op); + EVT LoadVT = Op.getValueType(); + auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); + + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // rsrc + DAG.getConstant(0, DL, MVT::i32), // vindex + Offsets.first, // voffset + Op.getOperand(4), // soffset + Offsets.second, // offset + Op.getOperand(5), // format + Op.getOperand(6), // cachepolicy + DAG.getConstant(0, DL, MVT::i1), // idxen + }; + + if (LoadVT.getScalarType() == MVT::f16) + return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, + M, DAG, Ops); + return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, + Op->getVTList(), Ops, LoadVT, M->getMemOperand(), + DAG); + } + case Intrinsic::amdgcn_struct_tbuffer_load: { + MemSDNode *M = cast<MemSDNode>(Op); + EVT LoadVT = Op.getValueType(); + auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); + + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // rsrc + Op.getOperand(3), // vindex + Offsets.first, // voffset + Op.getOperand(5), // soffset + Offsets.second, // offset + Op.getOperand(6), // format + Op.getOperand(7), // cachepolicy + DAG.getConstant(1, DL, MVT::i1), // idxen + }; + + if (LoadVT.getScalarType() == MVT::f16) + return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, + M, DAG, Ops); + return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, + Op->getVTList(), Ops, LoadVT, M->getMemOperand(), + DAG); + } + case Intrinsic::amdgcn_buffer_atomic_swap: + case Intrinsic::amdgcn_buffer_atomic_add: + case Intrinsic::amdgcn_buffer_atomic_sub: + case Intrinsic::amdgcn_buffer_atomic_smin: + case Intrinsic::amdgcn_buffer_atomic_umin: + case Intrinsic::amdgcn_buffer_atomic_smax: + case Intrinsic::amdgcn_buffer_atomic_umax: + case Intrinsic::amdgcn_buffer_atomic_and: + case Intrinsic::amdgcn_buffer_atomic_or: + case Intrinsic::amdgcn_buffer_atomic_xor: { + unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); + unsigned IdxEn = 1; + if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) + IdxEn = Idx->getZExtValue() != 0; + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // vdata + Op.getOperand(3), // rsrc + Op.getOperand(4), // vindex + SDValue(), // voffset -- will be set by setBufferOffsets + SDValue(), // soffset -- will be set by setBufferOffsets + SDValue(), // offset -- will be set by setBufferOffsets + DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy + DAG.getConstant(IdxEn, DL, MVT::i1), // idxen + }; + setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); + EVT VT = Op.getValueType(); + + auto *M = cast<MemSDNode>(Op); + unsigned Opcode = 0; + + switch (IntrID) { + case Intrinsic::amdgcn_buffer_atomic_swap: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; + break; + case Intrinsic::amdgcn_buffer_atomic_add: + Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; + break; + case Intrinsic::amdgcn_buffer_atomic_sub: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; + break; + case Intrinsic::amdgcn_buffer_atomic_smin: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; + break; + case Intrinsic::amdgcn_buffer_atomic_umin: + Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; + break; + case Intrinsic::amdgcn_buffer_atomic_smax: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; + break; + case Intrinsic::amdgcn_buffer_atomic_umax: + Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; + break; + case Intrinsic::amdgcn_buffer_atomic_and: + Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; + break; + case Intrinsic::amdgcn_buffer_atomic_or: + Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; + break; + case Intrinsic::amdgcn_buffer_atomic_xor: + Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; + break; + default: + llvm_unreachable("unhandled atomic opcode"); + } + + return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, + M->getMemOperand()); + } + case Intrinsic::amdgcn_raw_buffer_atomic_swap: + case Intrinsic::amdgcn_raw_buffer_atomic_add: + case Intrinsic::amdgcn_raw_buffer_atomic_sub: + case Intrinsic::amdgcn_raw_buffer_atomic_smin: + case Intrinsic::amdgcn_raw_buffer_atomic_umin: + case Intrinsic::amdgcn_raw_buffer_atomic_smax: + case Intrinsic::amdgcn_raw_buffer_atomic_umax: + case Intrinsic::amdgcn_raw_buffer_atomic_and: + case Intrinsic::amdgcn_raw_buffer_atomic_or: + case Intrinsic::amdgcn_raw_buffer_atomic_xor: { + auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // vdata + Op.getOperand(3), // rsrc + DAG.getConstant(0, DL, MVT::i32), // vindex + Offsets.first, // voffset + Op.getOperand(5), // soffset + Offsets.second, // offset + Op.getOperand(6), // cachepolicy + DAG.getConstant(0, DL, MVT::i1), // idxen + }; + EVT VT = Op.getValueType(); + + auto *M = cast<MemSDNode>(Op); + unsigned Opcode = 0; + + switch (IntrID) { + case Intrinsic::amdgcn_raw_buffer_atomic_swap: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_add: + Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_sub: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_smin: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_umin: + Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_smax: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_umax: + Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_and: + Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_or: + Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; + break; + case Intrinsic::amdgcn_raw_buffer_atomic_xor: + Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; + break; + default: + llvm_unreachable("unhandled atomic opcode"); + } + + return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, + M->getMemOperand()); + } + case Intrinsic::amdgcn_struct_buffer_atomic_swap: + case Intrinsic::amdgcn_struct_buffer_atomic_add: + case Intrinsic::amdgcn_struct_buffer_atomic_sub: + case Intrinsic::amdgcn_struct_buffer_atomic_smin: + case Intrinsic::amdgcn_struct_buffer_atomic_umin: + case Intrinsic::amdgcn_struct_buffer_atomic_smax: + case Intrinsic::amdgcn_struct_buffer_atomic_umax: + case Intrinsic::amdgcn_struct_buffer_atomic_and: + case Intrinsic::amdgcn_struct_buffer_atomic_or: + case Intrinsic::amdgcn_struct_buffer_atomic_xor: { + auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // vdata + Op.getOperand(3), // rsrc + Op.getOperand(4), // vindex + Offsets.first, // voffset + Op.getOperand(6), // soffset + Offsets.second, // offset + Op.getOperand(7), // cachepolicy + DAG.getConstant(1, DL, MVT::i1), // idxen + }; + EVT VT = Op.getValueType(); + + auto *M = cast<MemSDNode>(Op); + unsigned Opcode = 0; + + switch (IntrID) { + case Intrinsic::amdgcn_struct_buffer_atomic_swap: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_add: + Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_sub: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_smin: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_umin: + Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_smax: + Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_umax: + Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_and: + Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_or: + Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; + break; + case Intrinsic::amdgcn_struct_buffer_atomic_xor: + Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; + break; + default: + llvm_unreachable("unhandled atomic opcode"); + } + + return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, + M->getMemOperand()); + } + case Intrinsic::amdgcn_buffer_atomic_cmpswap: { + unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); + unsigned IdxEn = 1; + if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5))) + IdxEn = Idx->getZExtValue() != 0; + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // src + Op.getOperand(3), // cmp + Op.getOperand(4), // rsrc + Op.getOperand(5), // vindex + SDValue(), // voffset -- will be set by setBufferOffsets + SDValue(), // soffset -- will be set by setBufferOffsets + SDValue(), // offset -- will be set by setBufferOffsets + DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy + DAG.getConstant(IdxEn, DL, MVT::i1), // idxen + }; + setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); + EVT VT = Op.getValueType(); + auto *M = cast<MemSDNode>(Op); + + return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, + Op->getVTList(), Ops, VT, M->getMemOperand()); + } + case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { + auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // src + Op.getOperand(3), // cmp + Op.getOperand(4), // rsrc + DAG.getConstant(0, DL, MVT::i32), // vindex + Offsets.first, // voffset + Op.getOperand(6), // soffset + Offsets.second, // offset + Op.getOperand(7), // cachepolicy + DAG.getConstant(0, DL, MVT::i1), // idxen + }; + EVT VT = Op.getValueType(); + auto *M = cast<MemSDNode>(Op); + + return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, + Op->getVTList(), Ops, VT, M->getMemOperand()); + } + case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { + auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); + SDValue Ops[] = { + Op.getOperand(0), // Chain + Op.getOperand(2), // src + Op.getOperand(3), // cmp + Op.getOperand(4), // rsrc + Op.getOperand(5), // vindex + Offsets.first, // voffset + Op.getOperand(7), // soffset + Offsets.second, // offset + Op.getOperand(8), // cachepolicy + DAG.getConstant(1, DL, MVT::i1), // idxen + }; + EVT VT = Op.getValueType(); + auto *M = cast<MemSDNode>(Op); + + return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, + Op->getVTList(), Ops, VT, M->getMemOperand()); + } + + default: + if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = + AMDGPU::getImageDimIntrinsicInfo(IntrID)) + return lowerImage(Op, ImageDimIntr, DAG); + + return SDValue(); + } +} + +// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to +// dwordx4 if on SI. +SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, + SDVTList VTList, + ArrayRef<SDValue> Ops, EVT MemVT, + MachineMemOperand *MMO, + SelectionDAG &DAG) const { + EVT VT = VTList.VTs[0]; + EVT WidenedVT = VT; + EVT WidenedMemVT = MemVT; + if (!Subtarget->hasDwordx3LoadStores() && + (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { + WidenedVT = EVT::getVectorVT(*DAG.getContext(), + WidenedVT.getVectorElementType(), 4); + WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), + WidenedMemVT.getVectorElementType(), 4); + MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); + } + + assert(VTList.NumVTs == 2); + SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); + + auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, + WidenedMemVT, MMO); + if (WidenedVT != VT) { + auto Extract = DAG.getNode( + ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, + DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); + NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); + } + return NewOp; +} + +SDValue SITargetLowering::handleD16VData(SDValue VData, + SelectionDAG &DAG) const { + EVT StoreVT = VData.getValueType(); + + // No change for f16 and legal vector D16 types. + if (!StoreVT.isVector()) + return VData; + + SDLoc DL(VData); + assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16"); + + if (Subtarget->hasUnpackedD16VMem()) { + // We need to unpack the packed data to store. + EVT IntStoreVT = StoreVT.changeTypeToInteger(); + SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); + + EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, + StoreVT.getVectorNumElements()); + SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); + return DAG.UnrollVectorOp(ZExt.getNode()); + } + + assert(isTypeLegal(StoreVT)); + return VData; +} + +SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Chain = Op.getOperand(0); + unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + MachineFunction &MF = DAG.getMachineFunction(); + + switch (IntrinsicID) { + case Intrinsic::amdgcn_exp: { + const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); + const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); + const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8)); + const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9)); + + const SDValue Ops[] = { + Chain, + DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt + DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en + Op.getOperand(4), // src0 + Op.getOperand(5), // src1 + Op.getOperand(6), // src2 + Op.getOperand(7), // src3 + DAG.getTargetConstant(0, DL, MVT::i1), // compr + DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) + }; + + unsigned Opc = Done->isNullValue() ? + AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; + return DAG.getNode(Opc, DL, Op->getVTList(), Ops); + } + case Intrinsic::amdgcn_exp_compr: { + const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2)); + const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3)); + SDValue Src0 = Op.getOperand(4); + SDValue Src1 = Op.getOperand(5); + const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); + const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7)); + + SDValue Undef = DAG.getUNDEF(MVT::f32); + const SDValue Ops[] = { + Chain, + DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt + DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en + DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), + DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), + Undef, // src2 + Undef, // src3 + DAG.getTargetConstant(1, DL, MVT::i1), // compr + DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) + }; + + unsigned Opc = Done->isNullValue() ? + AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; + return DAG.getNode(Opc, DL, Op->getVTList(), Ops); + } + case Intrinsic::amdgcn_s_sendmsg: + case Intrinsic::amdgcn_s_sendmsghalt: { + unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ? + AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT; + Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); + SDValue Glue = Chain.getValue(1); + return DAG.getNode(NodeOp, DL, MVT::Other, Chain, + Op.getOperand(2), Glue); + } + case Intrinsic::amdgcn_init_exec: { + return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain, + Op.getOperand(2)); + } + case Intrinsic::amdgcn_init_exec_from_input: { + return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain, + Op.getOperand(2), Op.getOperand(3)); + } + case Intrinsic::amdgcn_s_barrier: { + if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { + const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); + unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; + if (WGSize <= ST.getWavefrontSize()) + return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, + Op.getOperand(0)), 0); + } + return SDValue(); + }; + case Intrinsic::amdgcn_tbuffer_store: { + SDValue VData = Op.getOperand(2); + bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); + if (IsD16) + VData = handleD16VData(VData, DAG); + unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); + unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); + unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); + unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); + unsigned IdxEn = 1; + if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) + IdxEn = Idx->getZExtValue() != 0; + SDValue Ops[] = { + Chain, + VData, // vdata + Op.getOperand(3), // rsrc + Op.getOperand(4), // vindex + Op.getOperand(5), // voffset + Op.getOperand(6), // soffset + Op.getOperand(7), // offset + DAG.getConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format + DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy + DAG.getConstant(IdxEn, DL, MVT::i1), // idexen + }; + unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : + AMDGPUISD::TBUFFER_STORE_FORMAT; + MemSDNode *M = cast<MemSDNode>(Op); + return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, + M->getMemoryVT(), M->getMemOperand()); + } + + case Intrinsic::amdgcn_struct_tbuffer_store: { + SDValue VData = Op.getOperand(2); + bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); + if (IsD16) + VData = handleD16VData(VData, DAG); + auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); + SDValue Ops[] = { + Chain, + VData, // vdata + Op.getOperand(3), // rsrc + Op.getOperand(4), // vindex + Offsets.first, // voffset + Op.getOperand(6), // soffset + Offsets.second, // offset + Op.getOperand(7), // format + Op.getOperand(8), // cachepolicy + DAG.getConstant(1, DL, MVT::i1), // idexen + }; + unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : + AMDGPUISD::TBUFFER_STORE_FORMAT; + MemSDNode *M = cast<MemSDNode>(Op); + return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, + M->getMemoryVT(), M->getMemOperand()); + } + + case Intrinsic::amdgcn_raw_tbuffer_store: { + SDValue VData = Op.getOperand(2); + bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); + if (IsD16) + VData = handleD16VData(VData, DAG); + auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); + SDValue Ops[] = { + Chain, + VData, // vdata + Op.getOperand(3), // rsrc + DAG.getConstant(0, DL, MVT::i32), // vindex + Offsets.first, // voffset + Op.getOperand(5), // soffset + Offsets.second, // offset + Op.getOperand(6), // format + Op.getOperand(7), // cachepolicy + DAG.getConstant(0, DL, MVT::i1), // idexen + }; + unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : + AMDGPUISD::TBUFFER_STORE_FORMAT; + MemSDNode *M = cast<MemSDNode>(Op); + return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, + M->getMemoryVT(), M->getMemOperand()); + } + + case Intrinsic::amdgcn_buffer_store: + case Intrinsic::amdgcn_buffer_store_format: { + SDValue VData = Op.getOperand(2); + bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); + if (IsD16) + VData = handleD16VData(VData, DAG); + unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); + unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); + unsigned IdxEn = 1; + if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) + IdxEn = Idx->getZExtValue() != 0; + SDValue Ops[] = { + Chain, + VData, + Op.getOperand(3), // rsrc + Op.getOperand(4), // vindex + SDValue(), // voffset -- will be set by setBufferOffsets + SDValue(), // soffset -- will be set by setBufferOffsets + SDValue(), // offset -- will be set by setBufferOffsets + DAG.getConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy + DAG.getConstant(IdxEn, DL, MVT::i1), // idxen + }; + setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); + unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? + AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; + Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; + MemSDNode *M = cast<MemSDNode>(Op); + + // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics + EVT VDataType = VData.getValueType().getScalarType(); + if (VDataType == MVT::i8 || VDataType == MVT::i16) + return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); + + return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, + M->getMemoryVT(), M->getMemOperand()); + } + + case Intrinsic::amdgcn_raw_buffer_store: + case Intrinsic::amdgcn_raw_buffer_store_format: { + SDValue VData = Op.getOperand(2); + bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); + if (IsD16) + VData = handleD16VData(VData, DAG); + auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); + SDValue Ops[] = { + Chain, + VData, + Op.getOperand(3), // rsrc + DAG.getConstant(0, DL, MVT::i32), // vindex + Offsets.first, // voffset + Op.getOperand(5), // soffset + Offsets.second, // offset + Op.getOperand(6), // cachepolicy + DAG.getConstant(0, DL, MVT::i1), // idxen + }; + unsigned Opc = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store ? + AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; + Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; + MemSDNode *M = cast<MemSDNode>(Op); + + // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics + EVT VDataType = VData.getValueType().getScalarType(); + if (VDataType == MVT::i8 || VDataType == MVT::i16) + return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); + + return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, + M->getMemoryVT(), M->getMemOperand()); + } + + case Intrinsic::amdgcn_struct_buffer_store: + case Intrinsic::amdgcn_struct_buffer_store_format: { + SDValue VData = Op.getOperand(2); + bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); + if (IsD16) + VData = handleD16VData(VData, DAG); + auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); + SDValue Ops[] = { + Chain, + VData, + Op.getOperand(3), // rsrc + Op.getOperand(4), // vindex + Offsets.first, // voffset + Op.getOperand(6), // soffset + Offsets.second, // offset + Op.getOperand(7), // cachepolicy + DAG.getConstant(1, DL, MVT::i1), // idxen + }; + unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? + AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; + Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; + MemSDNode *M = cast<MemSDNode>(Op); + + // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics + EVT VDataType = VData.getValueType().getScalarType(); + if (VDataType == MVT::i8 || VDataType == MVT::i16) + return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); + + return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, + M->getMemoryVT(), M->getMemOperand()); + } + + case Intrinsic::amdgcn_buffer_atomic_fadd: { + unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); + unsigned IdxEn = 1; + if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4))) + IdxEn = Idx->getZExtValue() != 0; + SDValue Ops[] = { + Chain, + Op.getOperand(2), // vdata + Op.getOperand(3), // rsrc + Op.getOperand(4), // vindex + SDValue(), // voffset -- will be set by setBufferOffsets + SDValue(), // soffset -- will be set by setBufferOffsets + SDValue(), // offset -- will be set by setBufferOffsets + DAG.getConstant(Slc << 1, DL, MVT::i32), // cachepolicy + DAG.getConstant(IdxEn, DL, MVT::i1), // idxen + }; + setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); + EVT VT = Op.getOperand(2).getValueType(); + + auto *M = cast<MemSDNode>(Op); + unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD + : AMDGPUISD::BUFFER_ATOMIC_FADD; + + return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, + M->getMemOperand()); + } + + case Intrinsic::amdgcn_global_atomic_fadd: { + SDValue Ops[] = { + Chain, + Op.getOperand(2), // ptr + Op.getOperand(3) // vdata + }; + EVT VT = Op.getOperand(3).getValueType(); + + auto *M = cast<MemSDNode>(Op); + unsigned Opcode = VT.isVector() ? AMDGPUISD::ATOMIC_PK_FADD + : AMDGPUISD::ATOMIC_FADD; + + return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, + M->getMemOperand()); + } + + case Intrinsic::amdgcn_end_cf: + return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, + Op->getOperand(2), Chain), 0); + + default: { + if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = + AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) + return lowerImage(Op, ImageDimIntr, DAG); + + return Op; + } + } +} + +// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: +// offset (the offset that is included in bounds checking and swizzling, to be +// split between the instruction's voffset and immoffset fields) and soffset +// (the offset that is excluded from bounds checking and swizzling, to go in +// the instruction's soffset field). This function takes the first kind of +// offset and figures out how to split it between voffset and immoffset. +std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( + SDValue Offset, SelectionDAG &DAG) const { + SDLoc DL(Offset); + const unsigned MaxImm = 4095; + SDValue N0 = Offset; + ConstantSDNode *C1 = nullptr; + + if ((C1 = dyn_cast<ConstantSDNode>(N0))) + N0 = SDValue(); + else if (DAG.isBaseWithConstantOffset(N0)) { + C1 = cast<ConstantSDNode>(N0.getOperand(1)); + N0 = N0.getOperand(0); + } + + if (C1) { + unsigned ImmOffset = C1->getZExtValue(); + // If the immediate value is too big for the immoffset field, put the value + // and -4096 into the immoffset field so that the value that is copied/added + // for the voffset field is a multiple of 4096, and it stands more chance + // of being CSEd with the copy/add for another similar load/store. + // However, do not do that rounding down to a multiple of 4096 if that is a + // negative number, as it appears to be illegal to have a negative offset + // in the vgpr, even if adding the immediate offset makes it positive. + unsigned Overflow = ImmOffset & ~MaxImm; + ImmOffset -= Overflow; + if ((int32_t)Overflow < 0) { + Overflow += ImmOffset; + ImmOffset = 0; + } + C1 = cast<ConstantSDNode>(DAG.getConstant(ImmOffset, DL, MVT::i32)); + if (Overflow) { + auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); + if (!N0) + N0 = OverflowVal; + else { + SDValue Ops[] = { N0, OverflowVal }; + N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); + } + } + } + if (!N0) + N0 = DAG.getConstant(0, DL, MVT::i32); + if (!C1) + C1 = cast<ConstantSDNode>(DAG.getConstant(0, DL, MVT::i32)); + return {N0, SDValue(C1, 0)}; +} + +// Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the +// three offsets (voffset, soffset and instoffset) into the SDValue[3] array +// pointed to by Offsets. +void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, + SelectionDAG &DAG, SDValue *Offsets, + unsigned Align) const { + SDLoc DL(CombinedOffset); + if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { + uint32_t Imm = C->getZExtValue(); + uint32_t SOffset, ImmOffset; + if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) { + Offsets[0] = DAG.getConstant(0, DL, MVT::i32); + Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); + Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32); + return; + } + } + if (DAG.isBaseWithConstantOffset(CombinedOffset)) { + SDValue N0 = CombinedOffset.getOperand(0); + SDValue N1 = CombinedOffset.getOperand(1); + uint32_t SOffset, ImmOffset; + int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); + if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, + Subtarget, Align)) { + Offsets[0] = N0; + Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); + Offsets[2] = DAG.getConstant(ImmOffset, DL, MVT::i32); + return; + } + } + Offsets[0] = CombinedOffset; + Offsets[1] = DAG.getConstant(0, DL, MVT::i32); + Offsets[2] = DAG.getConstant(0, DL, MVT::i32); +} + +// Handle 8 bit and 16 bit buffer loads +SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, + EVT LoadVT, SDLoc DL, + ArrayRef<SDValue> Ops, + MemSDNode *M) const { + EVT IntVT = LoadVT.changeTypeToInteger(); + unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? + AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; + + SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); + SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, + Ops, IntVT, + M->getMemOperand()); + SDValue BufferLoadTrunc = DAG.getNode(ISD::TRUNCATE, DL, + LoadVT.getScalarType(), BufferLoad); + return DAG.getMergeValues({BufferLoadTrunc, BufferLoad.getValue(1)}, DL); +} + +// Handle 8 bit and 16 bit buffer stores +SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, + EVT VDataType, SDLoc DL, + SDValue Ops[], + MemSDNode *M) const { + SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); + Ops[1] = BufferStoreExt; + unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : + AMDGPUISD::BUFFER_STORE_SHORT; + ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); + return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, + M->getMemOperand()); +} + +static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, + ISD::LoadExtType ExtType, SDValue Op, + const SDLoc &SL, EVT VT) { + if (VT.bitsLT(Op.getValueType())) + return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); + + switch (ExtType) { + case ISD::SEXTLOAD: + return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); + case ISD::ZEXTLOAD: + return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); + case ISD::EXTLOAD: + return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); + case ISD::NON_EXTLOAD: + return Op; + } + + llvm_unreachable("invalid ext type"); +} + +SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + if (Ld->getAlignment() < 4 || Ld->isDivergent()) + return SDValue(); + + // FIXME: Constant loads should all be marked invariant. + unsigned AS = Ld->getAddressSpace(); + if (AS != AMDGPUAS::CONSTANT_ADDRESS && + AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && + (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) + return SDValue(); + + // Don't do this early, since it may interfere with adjacent load merging for + // illegal types. We can avoid losing alignment information for exotic types + // pre-legalize. + EVT MemVT = Ld->getMemoryVT(); + if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || + MemVT.getSizeInBits() >= 32) + return SDValue(); + + SDLoc SL(Ld); + + assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && + "unexpected vector extload"); + + // TODO: Drop only high part of range. + SDValue Ptr = Ld->getBasePtr(); + SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, + MVT::i32, SL, Ld->getChain(), Ptr, + Ld->getOffset(), + Ld->getPointerInfo(), MVT::i32, + Ld->getAlignment(), + Ld->getMemOperand()->getFlags(), + Ld->getAAInfo(), + nullptr); // Drop ranges + + EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); + if (MemVT.isFloatingPoint()) { + assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && + "unexpected fp extload"); + TruncVT = MemVT.changeTypeToInteger(); + } + + SDValue Cvt = NewLoad; + if (Ld->getExtensionType() == ISD::SEXTLOAD) { + Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, + DAG.getValueType(TruncVT)); + } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || + Ld->getExtensionType() == ISD::NON_EXTLOAD) { + Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); + } else { + assert(Ld->getExtensionType() == ISD::EXTLOAD); + } + + EVT VT = Ld->getValueType(0); + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); + + DCI.AddToWorklist(Cvt.getNode()); + + // We may need to handle exotic cases, such as i16->i64 extloads, so insert + // the appropriate extension from the 32-bit load. + Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); + DCI.AddToWorklist(Cvt.getNode()); + + // Handle conversion back to floating point if necessary. + Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); + + return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); +} + +SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + LoadSDNode *Load = cast<LoadSDNode>(Op); + ISD::LoadExtType ExtType = Load->getExtensionType(); + EVT MemVT = Load->getMemoryVT(); + + if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { + if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) + return SDValue(); + + // FIXME: Copied from PPC + // First, load into 32 bits, then truncate to 1 bit. + + SDValue Chain = Load->getChain(); + SDValue BasePtr = Load->getBasePtr(); + MachineMemOperand *MMO = Load->getMemOperand(); + + EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; + + SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, + BasePtr, RealMemVT, MMO); + + if (!MemVT.isVector()) { + SDValue Ops[] = { + DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), + NewLD.getValue(1) + }; + + return DAG.getMergeValues(Ops, DL); + } + + SmallVector<SDValue, 3> Elts; + for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { + SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, + DAG.getConstant(I, DL, MVT::i32)); + + Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); + } + + SDValue Ops[] = { + DAG.getBuildVector(MemVT, DL, Elts), + NewLD.getValue(1) + }; + + return DAG.getMergeValues(Ops, DL); + } + + if (!MemVT.isVector()) + return SDValue(); + + assert(Op.getValueType().getVectorElementType() == MVT::i32 && + "Custom lowering for non-i32 vectors hasn't been implemented."); + + if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, + *Load->getMemOperand())) { + SDValue Ops[2]; + std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); + return DAG.getMergeValues(Ops, DL); + } + + unsigned Alignment = Load->getAlignment(); + unsigned AS = Load->getAddressSpace(); + if (Subtarget->hasLDSMisalignedBug() && + AS == AMDGPUAS::FLAT_ADDRESS && + Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { + return SplitVectorLoad(Op, DAG); + } + + MachineFunction &MF = DAG.getMachineFunction(); + SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + // If there is a possibilty that flat instruction access scratch memory + // then we need to use the same legalization rules we use for private. + if (AS == AMDGPUAS::FLAT_ADDRESS) + AS = MFI->hasFlatScratchInit() ? + AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; + + unsigned NumElements = MemVT.getVectorNumElements(); + + if (AS == AMDGPUAS::CONSTANT_ADDRESS || + AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { + if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { + if (MemVT.isPow2VectorType()) + return SDValue(); + if (NumElements == 3) + return WidenVectorLoad(Op, DAG); + return SplitVectorLoad(Op, DAG); + } + // Non-uniform loads will be selected to MUBUF instructions, so they + // have the same legalization requirements as global and private + // loads. + // + } + + if (AS == AMDGPUAS::CONSTANT_ADDRESS || + AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || + AS == AMDGPUAS::GLOBAL_ADDRESS) { + if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && + !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) && + Alignment >= 4 && NumElements < 32) { + if (MemVT.isPow2VectorType()) + return SDValue(); + if (NumElements == 3) + return WidenVectorLoad(Op, DAG); + return SplitVectorLoad(Op, DAG); + } + // Non-uniform loads will be selected to MUBUF instructions, so they + // have the same legalization requirements as global and private + // loads. + // + } + if (AS == AMDGPUAS::CONSTANT_ADDRESS || + AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || + AS == AMDGPUAS::GLOBAL_ADDRESS || + AS == AMDGPUAS::FLAT_ADDRESS) { + if (NumElements > 4) + return SplitVectorLoad(Op, DAG); + // v3 loads not supported on SI. + if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) + return WidenVectorLoad(Op, DAG); + // v3 and v4 loads are supported for private and global memory. + return SDValue(); + } + if (AS == AMDGPUAS::PRIVATE_ADDRESS) { + // Depending on the setting of the private_element_size field in the + // resource descriptor, we can only make private accesses up to a certain + // size. + switch (Subtarget->getMaxPrivateElementSize()) { + case 4: + return scalarizeVectorLoad(Load, DAG); + case 8: + if (NumElements > 2) + return SplitVectorLoad(Op, DAG); + return SDValue(); + case 16: + // Same as global/flat + if (NumElements > 4) + return SplitVectorLoad(Op, DAG); + // v3 loads not supported on SI. + if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) + return WidenVectorLoad(Op, DAG); + return SDValue(); + default: + llvm_unreachable("unsupported private_element_size"); + } + } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { + // Use ds_read_b128 if possible. + if (Subtarget->useDS128() && Load->getAlignment() >= 16 && + MemVT.getStoreSize() == 16) + return SDValue(); + + if (NumElements > 2) + return SplitVectorLoad(Op, DAG); + + // SI has a hardware bug in the LDS / GDS boounds checking: if the base + // address is negative, then the instruction is incorrectly treated as + // out-of-bounds even if base + offsets is in bounds. Split vectorized + // loads here to avoid emitting ds_read2_b32. We may re-combine the + // load later in the SILoadStoreOptimizer. + if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && + NumElements == 2 && MemVT.getStoreSize() == 8 && + Load->getAlignment() < 8) { + return SplitVectorLoad(Op, DAG); + } + } + return SDValue(); +} + +SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + assert(VT.getSizeInBits() == 64); + + SDLoc DL(Op); + SDValue Cond = Op.getOperand(0); + + SDValue Zero = DAG.getConstant(0, DL, MVT::i32); + SDValue One = DAG.getConstant(1, DL, MVT::i32); + + SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); + SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); + + SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); + SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); + + SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); + + SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); + SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); + + SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); + + SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); + return DAG.getNode(ISD::BITCAST, DL, VT, Res); +} + +// Catch division cases where we can use shortcuts with rcp and rsq +// instructions. +SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, + SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + EVT VT = Op.getValueType(); + const SDNodeFlags Flags = Op->getFlags(); + bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal(); + + if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals()) + return SDValue(); + + if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { + if (Unsafe || VT == MVT::f32 || VT == MVT::f16) { + if (CLHS->isExactlyValue(1.0)) { + // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to + // the CI documentation has a worst case error of 1 ulp. + // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to + // use it as long as we aren't trying to use denormals. + // + // v_rcp_f16 and v_rsq_f16 DO support denormals. + + // 1.0 / sqrt(x) -> rsq(x) + + // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP + // error seems really high at 2^29 ULP. + if (RHS.getOpcode() == ISD::FSQRT) + return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); + + // 1.0 / x -> rcp(x) + return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); + } + + // Same as for 1.0, but expand the sign out of the constant. + if (CLHS->isExactlyValue(-1.0)) { + // -1.0 / x -> rcp (fneg x) + SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); + return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); + } + } + } + + if (Unsafe) { + // Turn into multiply by the reciprocal. + // x / y -> x * (1.0 / y) + SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); + return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); + } + + return SDValue(); +} + +static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, + EVT VT, SDValue A, SDValue B, SDValue GlueChain) { + if (GlueChain->getNumValues() <= 1) { + return DAG.getNode(Opcode, SL, VT, A, B); + } + + assert(GlueChain->getNumValues() == 3); + + SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); + switch (Opcode) { + default: llvm_unreachable("no chain equivalent for opcode"); + case ISD::FMUL: + Opcode = AMDGPUISD::FMUL_W_CHAIN; + break; + } + + return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, + GlueChain.getValue(2)); +} + +static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, + EVT VT, SDValue A, SDValue B, SDValue C, + SDValue GlueChain) { + if (GlueChain->getNumValues() <= 1) { + return DAG.getNode(Opcode, SL, VT, A, B, C); + } + + assert(GlueChain->getNumValues() == 3); + + SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); + switch (Opcode) { + default: llvm_unreachable("no chain equivalent for opcode"); + case ISD::FMA: + Opcode = AMDGPUISD::FMA_W_CHAIN; + break; + } + + return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C, + GlueChain.getValue(2)); +} + +SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { + if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) + return FastLowered; + + SDLoc SL(Op); + SDValue Src0 = Op.getOperand(0); + SDValue Src1 = Op.getOperand(1); + + SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); + SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); + + SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); + SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); + + SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); + SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); + + return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); +} + +// Faster 2.5 ULP division that does not support denormals. +SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + + SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); + + const APFloat K0Val(BitsToFloat(0x6f800000)); + const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); + + const APFloat K1Val(BitsToFloat(0x2f800000)); + const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); + + const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); + + SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); + + SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); + + // TODO: Should this propagate fast-math-flags? + r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); + + // rcp does not support denormals. + SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); + + SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); + + return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); +} + +SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { + if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) + return FastLowered; + + SDLoc SL(Op); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + + const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); + + SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); + + SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, + RHS, RHS, LHS); + SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, + LHS, RHS, LHS); + + // Denominator is scaled to not be denormal, so using rcp is ok. + SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, + DenominatorScaled); + SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, + DenominatorScaled); + + const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | + (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | + (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); + + const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16); + + if (!Subtarget->hasFP32Denormals()) { + SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); + const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, + SL, MVT::i32); + SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs, + DAG.getEntryNode(), + EnableDenormValue, BitField); + SDValue Ops[3] = { + NegDivScale0, + EnableDenorm.getValue(0), + EnableDenorm.getValue(1) + }; + + NegDivScale0 = DAG.getMergeValues(Ops, SL); + } + + SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, + ApproxRcp, One, NegDivScale0); + + SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, + ApproxRcp, Fma0); + + SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, + Fma1, Fma1); + + SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, + NumeratorScaled, Mul); + + SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2); + + SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, + NumeratorScaled, Fma3); + + if (!Subtarget->hasFP32Denormals()) { + const SDValue DisableDenormValue = + DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); + SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other, + Fma4.getValue(1), + DisableDenormValue, + BitField, + Fma4.getValue(2)); + + SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, + DisableDenorm, DAG.getRoot()); + DAG.setRoot(OutputChain); + } + + SDValue Scale = NumeratorScaled.getValue(1); + SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, + Fma4, Fma1, Fma3, Scale); + + return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS); +} + +SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { + if (DAG.getTarget().Options.UnsafeFPMath) + return lowerFastUnsafeFDIV(Op, DAG); + + SDLoc SL(Op); + SDValue X = Op.getOperand(0); + SDValue Y = Op.getOperand(1); + + const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); + + SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); + + SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); + + SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); + + SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); + + SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); + + SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); + + SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); + + SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); + + SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); + SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); + + SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, + NegDivScale0, Mul, DivScale1); + + SDValue Scale; + + if (!Subtarget->hasUsableDivScaleConditionOutput()) { + // Workaround a hardware bug on SI where the condition output from div_scale + // is not usable. + + const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); + + // Figure out if the scale to use for div_fmas. + SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); + SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); + SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); + SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); + + SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); + SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); + + SDValue Scale0Hi + = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); + SDValue Scale1Hi + = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); + + SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); + SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); + Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); + } else { + Scale = DivScale1.getValue(1); + } + + SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, + Fma4, Fma3, Mul, Scale); + + return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); +} + +SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + + if (VT == MVT::f32) + return LowerFDIV32(Op, DAG); + + if (VT == MVT::f64) + return LowerFDIV64(Op, DAG); + + if (VT == MVT::f16) + return LowerFDIV16(Op, DAG); + + llvm_unreachable("Unexpected type for fdiv"); +} + +SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + StoreSDNode *Store = cast<StoreSDNode>(Op); + EVT VT = Store->getMemoryVT(); + + if (VT == MVT::i1) { + return DAG.getTruncStore(Store->getChain(), DL, + DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), + Store->getBasePtr(), MVT::i1, Store->getMemOperand()); + } + + assert(VT.isVector() && + Store->getValue().getValueType().getScalarType() == MVT::i32); + + if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, + *Store->getMemOperand())) { + return expandUnalignedStore(Store, DAG); + } + + unsigned AS = Store->getAddressSpace(); + if (Subtarget->hasLDSMisalignedBug() && + AS == AMDGPUAS::FLAT_ADDRESS && + Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { + return SplitVectorStore(Op, DAG); + } + + MachineFunction &MF = DAG.getMachineFunction(); + SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + // If there is a possibilty that flat instruction access scratch memory + // then we need to use the same legalization rules we use for private. + if (AS == AMDGPUAS::FLAT_ADDRESS) + AS = MFI->hasFlatScratchInit() ? + AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; + + unsigned NumElements = VT.getVectorNumElements(); + if (AS == AMDGPUAS::GLOBAL_ADDRESS || + AS == AMDGPUAS::FLAT_ADDRESS) { + if (NumElements > 4) + return SplitVectorStore(Op, DAG); + // v3 stores not supported on SI. + if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) + return SplitVectorStore(Op, DAG); + return SDValue(); + } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { + switch (Subtarget->getMaxPrivateElementSize()) { + case 4: + return scalarizeVectorStore(Store, DAG); + case 8: + if (NumElements > 2) + return SplitVectorStore(Op, DAG); + return SDValue(); + case 16: + if (NumElements > 4 || NumElements == 3) + return SplitVectorStore(Op, DAG); + return SDValue(); + default: + llvm_unreachable("unsupported private_element_size"); + } + } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { + // Use ds_write_b128 if possible. + if (Subtarget->useDS128() && Store->getAlignment() >= 16 && + VT.getStoreSize() == 16 && NumElements != 3) + return SDValue(); + + if (NumElements > 2) + return SplitVectorStore(Op, DAG); + + // SI has a hardware bug in the LDS / GDS boounds checking: if the base + // address is negative, then the instruction is incorrectly treated as + // out-of-bounds even if base + offsets is in bounds. Split vectorized + // stores here to avoid emitting ds_write2_b32. We may re-combine the + // store later in the SILoadStoreOptimizer. + if (!Subtarget->hasUsableDSOffset() && + NumElements == 2 && VT.getStoreSize() == 8 && + Store->getAlignment() < 8) { + return SplitVectorStore(Op, DAG); + } + + return SDValue(); + } else { + llvm_unreachable("unhandled address space"); + } +} + +SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + SDValue Arg = Op.getOperand(0); + SDValue TrigVal; + + // TODO: Should this propagate fast-math-flags? + + SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT); + + if (Subtarget->hasTrigReducedRange()) { + SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); + TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal); + } else { + TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi); + } + + switch (Op.getOpcode()) { + case ISD::FCOS: + return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal); + case ISD::FSIN: + return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal); + default: + llvm_unreachable("Wrong trig opcode"); + } +} + +SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { + AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); + assert(AtomicNode->isCompareAndSwap()); + unsigned AS = AtomicNode->getAddressSpace(); + + // No custom lowering required for local address space + if (!isFlatGlobalAddrSpace(AS)) + return Op; + + // Non-local address space requires custom lowering for atomic compare + // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 + SDLoc DL(Op); + SDValue ChainIn = Op.getOperand(0); + SDValue Addr = Op.getOperand(1); + SDValue Old = Op.getOperand(2); + SDValue New = Op.getOperand(3); + EVT VT = Op.getValueType(); + MVT SimpleVT = VT.getSimpleVT(); + MVT VecType = MVT::getVectorVT(SimpleVT, 2); + + SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); + SDValue Ops[] = { ChainIn, Addr, NewOld }; + + return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), + Ops, VT, AtomicNode->getMemOperand()); +} + +//===----------------------------------------------------------------------===// +// Custom DAG optimizations +//===----------------------------------------------------------------------===// + +SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + EVT ScalarVT = VT.getScalarType(); + if (ScalarVT != MVT::f32) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + SDValue Src = N->getOperand(0); + EVT SrcVT = Src.getValueType(); + + // TODO: We could try to match extracting the higher bytes, which would be + // easier if i8 vectors weren't promoted to i32 vectors, particularly after + // types are legalized. v4i8 -> v4f32 is probably the only case to worry + // about in practice. + if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { + if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { + SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); + DCI.AddToWorklist(Cvt.getNode()); + return Cvt; + } + } + + return SDValue(); +} + +// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) + +// This is a variant of +// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), +// +// The normal DAG combiner will do this, but only if the add has one use since +// that would increase the number of instructions. +// +// This prevents us from seeing a constant offset that can be folded into a +// memory instruction's addressing mode. If we know the resulting add offset of +// a pointer can be folded into an addressing offset, we can replace the pointer +// operand with the add of new constant offset. This eliminates one of the uses, +// and may allow the remaining use to also be simplified. +// +SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, + unsigned AddrSpace, + EVT MemVT, + DAGCombinerInfo &DCI) const { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // We only do this to handle cases where it's profitable when there are + // multiple uses of the add, so defer to the standard combine. + if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || + N0->hasOneUse()) + return SDValue(); + + const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); + if (!CN1) + return SDValue(); + + const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!CAdd) + return SDValue(); + + // If the resulting offset is too large, we can't fold it into the addressing + // mode offset. + APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); + Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); + + AddrMode AM; + AM.HasBaseReg = true; + AM.BaseOffs = Offset.getSExtValue(); + if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + EVT VT = N->getValueType(0); + + SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); + SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); + + SDNodeFlags Flags; + Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && + (N0.getOpcode() == ISD::OR || + N0->getFlags().hasNoUnsignedWrap())); + + return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); +} + +SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, + DAGCombinerInfo &DCI) const { + SDValue Ptr = N->getBasePtr(); + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + + // TODO: We could also do this for multiplies. + if (Ptr.getOpcode() == ISD::SHL) { + SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), + N->getMemoryVT(), DCI); + if (NewPtr) { + SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); + + NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; + return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); + } + } + + return SDValue(); +} + +static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { + return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || + (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || + (Opc == ISD::XOR && Val == 0); +} + +// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This +// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit +// integer combine opportunities since most 64-bit operations are decomposed +// this way. TODO: We won't want this for SALU especially if it is an inline +// immediate. +SDValue SITargetLowering::splitBinaryBitConstantOp( + DAGCombinerInfo &DCI, + const SDLoc &SL, + unsigned Opc, SDValue LHS, + const ConstantSDNode *CRHS) const { + uint64_t Val = CRHS->getZExtValue(); + uint32_t ValLo = Lo_32(Val); + uint32_t ValHi = Hi_32(Val); + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + + if ((bitOpWithConstantIsReducible(Opc, ValLo) || + bitOpWithConstantIsReducible(Opc, ValHi)) || + (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { + // If we need to materialize a 64-bit immediate, it will be split up later + // anyway. Avoid creating the harder to understand 64-bit immediate + // materialization. + return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); + } + + return SDValue(); +} + +// Returns true if argument is a boolean value which is not serialized into +// memory or argument and does not require v_cmdmask_b32 to be deserialized. +static bool isBoolSGPR(SDValue V) { + if (V.getValueType() != MVT::i1) + return false; + switch (V.getOpcode()) { + default: break; + case ISD::SETCC: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + case AMDGPUISD::FP_CLASS: + return true; + } + return false; +} + +// If a constant has all zeroes or all ones within each byte return it. +// Otherwise return 0. +static uint32_t getConstantPermuteMask(uint32_t C) { + // 0xff for any zero byte in the mask + uint32_t ZeroByteMask = 0; + if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; + if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; + if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; + if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; + uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte + if ((NonZeroByteMask & C) != NonZeroByteMask) + return 0; // Partial bytes selected. + return C; +} + +// Check if a node selects whole bytes from its operand 0 starting at a byte +// boundary while masking the rest. Returns select mask as in the v_perm_b32 +// or -1 if not succeeded. +// Note byte select encoding: +// value 0-3 selects corresponding source byte; +// value 0xc selects zero; +// value 0xff selects 0xff. +static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { + assert(V.getValueSizeInBits() == 32); + + if (V.getNumOperands() != 2) + return ~0; + + ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); + if (!N1) + return ~0; + + uint32_t C = N1->getZExtValue(); + + switch (V.getOpcode()) { + default: + break; + case ISD::AND: + if (uint32_t ConstMask = getConstantPermuteMask(C)) { + return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); + } + break; + + case ISD::OR: + if (uint32_t ConstMask = getConstantPermuteMask(C)) { + return (0x03020100 & ~ConstMask) | ConstMask; + } + break; + + case ISD::SHL: + if (C % 8) + return ~0; + + return uint32_t((0x030201000c0c0c0cull << C) >> 32); + + case ISD::SRL: + if (C % 8) + return ~0; + + return uint32_t(0x0c0c0c0c03020100ull >> C); + } + + return ~0; +} + +SDValue SITargetLowering::performAndCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (DCI.isBeforeLegalize()) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + + const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); + if (VT == MVT::i64 && CRHS) { + if (SDValue Split + = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) + return Split; + } + + if (CRHS && VT == MVT::i32) { + // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb + // nb = number of trailing zeroes in mask + // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, + // given that we are selecting 8 or 16 bit fields starting at byte boundary. + uint64_t Mask = CRHS->getZExtValue(); + unsigned Bits = countPopulation(Mask); + if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && + (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { + if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { + unsigned Shift = CShift->getZExtValue(); + unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); + unsigned Offset = NB + Shift; + if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. + SDLoc SL(N); + SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, + LHS->getOperand(0), + DAG.getConstant(Offset, SL, MVT::i32), + DAG.getConstant(Bits, SL, MVT::i32)); + EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); + SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, + DAG.getValueType(NarrowVT)); + SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, + DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); + return Shl; + } + } + } + + // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) + if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && + isa<ConstantSDNode>(LHS.getOperand(2))) { + uint32_t Sel = getConstantPermuteMask(Mask); + if (!Sel) + return SDValue(); + + // Select 0xc for all zero bytes + Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); + SDLoc DL(N); + return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), + LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); + } + } + + // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> + // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) + if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { + ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); + ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); + + SDValue X = LHS.getOperand(0); + SDValue Y = RHS.getOperand(0); + if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) + return SDValue(); + + if (LCC == ISD::SETO) { + if (X != LHS.getOperand(1)) + return SDValue(); + + if (RCC == ISD::SETUNE) { + const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); + if (!C1 || !C1->isInfinity() || C1->isNegative()) + return SDValue(); + + const uint32_t Mask = SIInstrFlags::N_NORMAL | + SIInstrFlags::N_SUBNORMAL | + SIInstrFlags::N_ZERO | + SIInstrFlags::P_ZERO | + SIInstrFlags::P_SUBNORMAL | + SIInstrFlags::P_NORMAL; + + static_assert(((~(SIInstrFlags::S_NAN | + SIInstrFlags::Q_NAN | + SIInstrFlags::N_INFINITY | + SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, + "mask not equal"); + + SDLoc DL(N); + return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, + X, DAG.getConstant(Mask, DL, MVT::i32)); + } + } + } + + if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) + std::swap(LHS, RHS); + + if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && + RHS.hasOneUse()) { + ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); + // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) + // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) + const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); + if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && + (RHS.getOperand(0) == LHS.getOperand(0) && + LHS.getOperand(0) == LHS.getOperand(1))) { + const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; + unsigned NewMask = LCC == ISD::SETO ? + Mask->getZExtValue() & ~OrdMask : + Mask->getZExtValue() & OrdMask; + + SDLoc DL(N); + return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), + DAG.getConstant(NewMask, DL, MVT::i32)); + } + } + + if (VT == MVT::i32 && + (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { + // and x, (sext cc from i1) => select cc, x, 0 + if (RHS.getOpcode() != ISD::SIGN_EXTEND) + std::swap(LHS, RHS); + if (isBoolSGPR(RHS.getOperand(0))) + return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), + LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); + } + + // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && + N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { + uint32_t LHSMask = getPermuteMask(DAG, LHS); + uint32_t RHSMask = getPermuteMask(DAG, RHS); + if (LHSMask != ~0u && RHSMask != ~0u) { + // Canonicalize the expression in an attempt to have fewer unique masks + // and therefore fewer registers used to hold the masks. + if (LHSMask > RHSMask) { + std::swap(LHSMask, RHSMask); + std::swap(LHS, RHS); + } + + // Select 0xc for each lane used from source operand. Zero has 0xc mask + // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. + uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; + uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; + + // Check of we need to combine values from two sources within a byte. + if (!(LHSUsedLanes & RHSUsedLanes) && + // If we select high and lower word keep it for SDWA. + // TODO: teach SDWA to work with v_perm_b32 and remove the check. + !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { + // Each byte in each mask is either selector mask 0-3, or has higher + // bits set in either of masks, which can be 0xff for 0xff or 0x0c for + // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise + // mask which is not 0xff wins. By anding both masks we have a correct + // result except that 0x0c shall be corrected to give 0x0c only. + uint32_t Mask = LHSMask & RHSMask; + for (unsigned I = 0; I < 32; I += 8) { + uint32_t ByteSel = 0xff << I; + if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) + Mask &= (0x0c << I) & 0xffffffff; + } + + // Add 4 to each active LHS lane. It will not affect any existing 0xff + // or 0x0c. + uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); + SDLoc DL(N); + + return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, + LHS.getOperand(0), RHS.getOperand(0), + DAG.getConstant(Sel, DL, MVT::i32)); + } + } + } + + return SDValue(); +} + +SDValue SITargetLowering::performOrCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + EVT VT = N->getValueType(0); + if (VT == MVT::i1) { + // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) + if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && + RHS.getOpcode() == AMDGPUISD::FP_CLASS) { + SDValue Src = LHS.getOperand(0); + if (Src != RHS.getOperand(0)) + return SDValue(); + + const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); + const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); + if (!CLHS || !CRHS) + return SDValue(); + + // Only 10 bits are used. + static const uint32_t MaxMask = 0x3ff; + + uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; + SDLoc DL(N); + return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, + Src, DAG.getConstant(NewMask, DL, MVT::i32)); + } + + return SDValue(); + } + + // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) + if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && + LHS.getOpcode() == AMDGPUISD::PERM && + isa<ConstantSDNode>(LHS.getOperand(2))) { + uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); + if (!Sel) + return SDValue(); + + Sel |= LHS.getConstantOperandVal(2); + SDLoc DL(N); + return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), + LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); + } + + // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && + N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) { + uint32_t LHSMask = getPermuteMask(DAG, LHS); + uint32_t RHSMask = getPermuteMask(DAG, RHS); + if (LHSMask != ~0u && RHSMask != ~0u) { + // Canonicalize the expression in an attempt to have fewer unique masks + // and therefore fewer registers used to hold the masks. + if (LHSMask > RHSMask) { + std::swap(LHSMask, RHSMask); + std::swap(LHS, RHS); + } + + // Select 0xc for each lane used from source operand. Zero has 0xc mask + // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. + uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; + uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; + + // Check of we need to combine values from two sources within a byte. + if (!(LHSUsedLanes & RHSUsedLanes) && + // If we select high and lower word keep it for SDWA. + // TODO: teach SDWA to work with v_perm_b32 and remove the check. + !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { + // Kill zero bytes selected by other mask. Zero value is 0xc. + LHSMask &= ~RHSUsedLanes; + RHSMask &= ~LHSUsedLanes; + // Add 4 to each active LHS lane + LHSMask |= LHSUsedLanes & 0x04040404; + // Combine masks + uint32_t Sel = LHSMask | RHSMask; + SDLoc DL(N); + + return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, + LHS.getOperand(0), RHS.getOperand(0), + DAG.getConstant(Sel, DL, MVT::i32)); + } + } + } + + if (VT != MVT::i64) + return SDValue(); + + // TODO: This could be a generic combine with a predicate for extracting the + // high half of an integer being free. + + // (or i64:x, (zero_extend i32:y)) -> + // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) + if (LHS.getOpcode() == ISD::ZERO_EXTEND && + RHS.getOpcode() != ISD::ZERO_EXTEND) + std::swap(LHS, RHS); + + if (RHS.getOpcode() == ISD::ZERO_EXTEND) { + SDValue ExtSrc = RHS.getOperand(0); + EVT SrcVT = ExtSrc.getValueType(); + if (SrcVT == MVT::i32) { + SDLoc SL(N); + SDValue LowLHS, HiBits; + std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); + SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); + + DCI.AddToWorklist(LowOr.getNode()); + DCI.AddToWorklist(HiBits.getNode()); + + SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, + LowOr, HiBits); + return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); + } + } + + const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (CRHS) { + if (SDValue Split + = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) + return Split; + } + + return SDValue(); +} + +SDValue SITargetLowering::performXorCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + if (VT != MVT::i64) + return SDValue(); + + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); + if (CRHS) { + if (SDValue Split + = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) + return Split; + } + + return SDValue(); +} + +// Instructions that will be lowered with a final instruction that zeros the +// high result bits. +// XXX - probably only need to list legal operations. +static bool fp16SrcZerosHighBits(unsigned Opc) { + switch (Opc) { + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + case ISD::FMA: + case ISD::FMAD: + case ISD::FCANONICALIZE: + case ISD::FP_ROUND: + case ISD::UINT_TO_FP: + case ISD::SINT_TO_FP: + case ISD::FABS: + // Fabs is lowered to a bit operation, but it's an and which will clear the + // high bits anyway. + case ISD::FSQRT: + case ISD::FSIN: + case ISD::FCOS: + case ISD::FPOWI: + case ISD::FPOW: + case ISD::FLOG: + case ISD::FLOG2: + case ISD::FLOG10: + case ISD::FEXP: + case ISD::FEXP2: + case ISD::FCEIL: + case ISD::FTRUNC: + case ISD::FRINT: + case ISD::FNEARBYINT: + case ISD::FROUND: + case ISD::FFLOOR: + case ISD::FMINNUM: + case ISD::FMAXNUM: + case AMDGPUISD::FRACT: + case AMDGPUISD::CLAMP: + case AMDGPUISD::COS_HW: + case AMDGPUISD::SIN_HW: + case AMDGPUISD::FMIN3: + case AMDGPUISD::FMAX3: + case AMDGPUISD::FMED3: + case AMDGPUISD::FMAD_FTZ: + case AMDGPUISD::RCP: + case AMDGPUISD::RSQ: + case AMDGPUISD::RCP_IFLAG: + case AMDGPUISD::LDEXP: + return true; + default: + // fcopysign, select and others may be lowered to 32-bit bit operations + // which don't zero the high bits. + return false; + } +} + +SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (!Subtarget->has16BitInsts() || + DCI.getDAGCombineLevel() < AfterLegalizeDAG) + return SDValue(); + + EVT VT = N->getValueType(0); + if (VT != MVT::i32) + return SDValue(); + + SDValue Src = N->getOperand(0); + if (Src.getValueType() != MVT::i16) + return SDValue(); + + // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src + // FIXME: It is not universally true that the high bits are zeroed on gfx9. + if (Src.getOpcode() == ISD::BITCAST) { + SDValue BCSrc = Src.getOperand(0); + if (BCSrc.getValueType() == MVT::f16 && + fp16SrcZerosHighBits(BCSrc.getOpcode())) + return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); + } + + return SDValue(); +} + +SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, + DAGCombinerInfo &DCI) + const { + SDValue Src = N->getOperand(0); + auto *VTSign = cast<VTSDNode>(N->getOperand(1)); + + if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && + VTSign->getVT() == MVT::i8) || + (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && + VTSign->getVT() == MVT::i16)) && + Src.hasOneUse()) { + auto *M = cast<MemSDNode>(Src); + SDValue Ops[] = { + Src.getOperand(0), // Chain + Src.getOperand(1), // rsrc + Src.getOperand(2), // vindex + Src.getOperand(3), // voffset + Src.getOperand(4), // soffset + Src.getOperand(5), // offset + Src.getOperand(6), + Src.getOperand(7) + }; + // replace with BUFFER_LOAD_BYTE/SHORT + SDVTList ResList = DCI.DAG.getVTList(MVT::i32, + Src.getOperand(0).getValueType()); + unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? + AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; + SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), + ResList, + Ops, M->getMemoryVT(), + M->getMemOperand()); + return DCI.DAG.getMergeValues({BufferLoadSignExt, + BufferLoadSignExt.getValue(1)}, SDLoc(N)); + } + return SDValue(); +} + +SDValue SITargetLowering::performClassCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDValue Mask = N->getOperand(1); + + // fp_class x, 0 -> false + if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { + if (CMask->isNullValue()) + return DAG.getConstant(0, SDLoc(N), MVT::i1); + } + + if (N->getOperand(0).isUndef()) + return DAG.getUNDEF(MVT::i1); + + return SDValue(); +} + +SDValue SITargetLowering::performRcpCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + + if (N0.isUndef()) + return N0; + + if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || + N0.getOpcode() == ISD::SINT_TO_FP)) { + return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, + N->getFlags()); + } + + return AMDGPUTargetLowering::performRcpCombine(N, DCI); +} + +bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, + unsigned MaxDepth) const { + unsigned Opcode = Op.getOpcode(); + if (Opcode == ISD::FCANONICALIZE) + return true; + + if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { + auto F = CFP->getValueAPF(); + if (F.isNaN() && F.isSignaling()) + return false; + return !F.isDenormal() || denormalsEnabledForType(Op.getValueType()); + } + + // If source is a result of another standard FP operation it is already in + // canonical form. + if (MaxDepth == 0) + return false; + + switch (Opcode) { + // These will flush denorms if required. + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FCEIL: + case ISD::FFLOOR: + case ISD::FMA: + case ISD::FMAD: + case ISD::FSQRT: + case ISD::FDIV: + case ISD::FREM: + case ISD::FP_ROUND: + case ISD::FP_EXTEND: + case AMDGPUISD::FMUL_LEGACY: + case AMDGPUISD::FMAD_FTZ: + case AMDGPUISD::RCP: + case AMDGPUISD::RSQ: + case AMDGPUISD::RSQ_CLAMP: + case AMDGPUISD::RCP_LEGACY: + case AMDGPUISD::RSQ_LEGACY: + case AMDGPUISD::RCP_IFLAG: + case AMDGPUISD::TRIG_PREOP: + case AMDGPUISD::DIV_SCALE: + case AMDGPUISD::DIV_FMAS: + case AMDGPUISD::DIV_FIXUP: + case AMDGPUISD::FRACT: + case AMDGPUISD::LDEXP: + case AMDGPUISD::CVT_PKRTZ_F16_F32: + case AMDGPUISD::CVT_F32_UBYTE0: + case AMDGPUISD::CVT_F32_UBYTE1: + case AMDGPUISD::CVT_F32_UBYTE2: + case AMDGPUISD::CVT_F32_UBYTE3: + return true; + + // It can/will be lowered or combined as a bit operation. + // Need to check their input recursively to handle. + case ISD::FNEG: + case ISD::FABS: + case ISD::FCOPYSIGN: + return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); + + case ISD::FSIN: + case ISD::FCOS: + case ISD::FSINCOS: + return Op.getValueType().getScalarType() != MVT::f16; + + case ISD::FMINNUM: + case ISD::FMAXNUM: + case ISD::FMINNUM_IEEE: + case ISD::FMAXNUM_IEEE: + case AMDGPUISD::CLAMP: + case AMDGPUISD::FMED3: + case AMDGPUISD::FMAX3: + case AMDGPUISD::FMIN3: { + // FIXME: Shouldn't treat the generic operations different based these. + // However, we aren't really required to flush the result from + // minnum/maxnum.. + + // snans will be quieted, so we only need to worry about denormals. + if (Subtarget->supportsMinMaxDenormModes() || + denormalsEnabledForType(Op.getValueType())) + return true; + + // Flushing may be required. + // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such + // targets need to check their input recursively. + + // FIXME: Does this apply with clamp? It's implemented with max. + for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { + if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) + return false; + } + + return true; + } + case ISD::SELECT: { + return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && + isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); + } + case ISD::BUILD_VECTOR: { + for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { + SDValue SrcOp = Op.getOperand(i); + if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) + return false; + } + + return true; + } + case ISD::EXTRACT_VECTOR_ELT: + case ISD::EXTRACT_SUBVECTOR: { + return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); + } + case ISD::INSERT_VECTOR_ELT: { + return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && + isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); + } + case ISD::UNDEF: + // Could be anything. + return false; + + case ISD::BITCAST: { + // Hack round the mess we make when legalizing extract_vector_elt + SDValue Src = Op.getOperand(0); + if (Src.getValueType() == MVT::i16 && + Src.getOpcode() == ISD::TRUNCATE) { + SDValue TruncSrc = Src.getOperand(0); + if (TruncSrc.getValueType() == MVT::i32 && + TruncSrc.getOpcode() == ISD::BITCAST && + TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { + return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); + } + } + + return false; + } + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IntrinsicID + = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + // TODO: Handle more intrinsics + switch (IntrinsicID) { + case Intrinsic::amdgcn_cvt_pkrtz: + case Intrinsic::amdgcn_cubeid: + case Intrinsic::amdgcn_frexp_mant: + case Intrinsic::amdgcn_fdot2: + return true; + default: + break; + } + + LLVM_FALLTHROUGH; + } + default: + return denormalsEnabledForType(Op.getValueType()) && + DAG.isKnownNeverSNaN(Op); + } + + llvm_unreachable("invalid operation"); +} + +// Constant fold canonicalize. +SDValue SITargetLowering::getCanonicalConstantFP( + SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { + // Flush denormals to 0 if not enabled. + if (C.isDenormal() && !denormalsEnabledForType(VT)) + return DAG.getConstantFP(0.0, SL, VT); + + if (C.isNaN()) { + APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); + if (C.isSignaling()) { + // Quiet a signaling NaN. + // FIXME: Is this supposed to preserve payload bits? + return DAG.getConstantFP(CanonicalQNaN, SL, VT); + } + + // Make sure it is the canonical NaN bitpattern. + // + // TODO: Can we use -1 as the canonical NaN value since it's an inline + // immediate? + if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) + return DAG.getConstantFP(CanonicalQNaN, SL, VT); + } + + // Already canonical. + return DAG.getConstantFP(C, SL, VT); +} + +static bool vectorEltWillFoldAway(SDValue Op) { + return Op.isUndef() || isa<ConstantFPSDNode>(Op); +} + +SDValue SITargetLowering::performFCanonicalizeCombine( + SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fcanonicalize undef -> qnan + if (N0.isUndef()) { + APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); + return DAG.getConstantFP(QNaN, SDLoc(N), VT); + } + + if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { + EVT VT = N->getValueType(0); + return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); + } + + // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), + // (fcanonicalize k) + // + // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 + + // TODO: This could be better with wider vectors that will be split to v2f16, + // and to consider uses since there aren't that many packed operations. + if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && + isTypeLegal(MVT::v2f16)) { + SDLoc SL(N); + SDValue NewElts[2]; + SDValue Lo = N0.getOperand(0); + SDValue Hi = N0.getOperand(1); + EVT EltVT = Lo.getValueType(); + + if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { + for (unsigned I = 0; I != 2; ++I) { + SDValue Op = N0.getOperand(I); + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { + NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, + CFP->getValueAPF()); + } else if (Op.isUndef()) { + // Handled below based on what the other operand is. + NewElts[I] = Op; + } else { + NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); + } + } + + // If one half is undef, and one is constant, perfer a splat vector rather + // than the normal qNaN. If it's a register, prefer 0.0 since that's + // cheaper to use and may be free with a packed operation. + if (NewElts[0].isUndef()) { + if (isa<ConstantFPSDNode>(NewElts[1])) + NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? + NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); + } + + if (NewElts[1].isUndef()) { + NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? + NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); + } + + return DAG.getBuildVector(VT, SL, NewElts); + } + } + + unsigned SrcOpc = N0.getOpcode(); + + // If it's free to do so, push canonicalizes further up the source, which may + // find a canonical source. + // + // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for + // sNaNs. + if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { + auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); + if (CRHS && N0.hasOneUse()) { + SDLoc SL(N); + SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, + N0.getOperand(0)); + SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); + DCI.AddToWorklist(Canon0.getNode()); + + return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); + } + } + + return isCanonicalized(DAG, N0) ? N0 : SDValue(); +} + +static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { + switch (Opc) { + case ISD::FMAXNUM: + case ISD::FMAXNUM_IEEE: + return AMDGPUISD::FMAX3; + case ISD::SMAX: + return AMDGPUISD::SMAX3; + case ISD::UMAX: + return AMDGPUISD::UMAX3; + case ISD::FMINNUM: + case ISD::FMINNUM_IEEE: + return AMDGPUISD::FMIN3; + case ISD::SMIN: + return AMDGPUISD::SMIN3; + case ISD::UMIN: + return AMDGPUISD::UMIN3; + default: + llvm_unreachable("Not a min/max opcode"); + } +} + +SDValue SITargetLowering::performIntMed3ImmCombine( + SelectionDAG &DAG, const SDLoc &SL, + SDValue Op0, SDValue Op1, bool Signed) const { + ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); + if (!K1) + return SDValue(); + + ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); + if (!K0) + return SDValue(); + + if (Signed) { + if (K0->getAPIntValue().sge(K1->getAPIntValue())) + return SDValue(); + } else { + if (K0->getAPIntValue().uge(K1->getAPIntValue())) + return SDValue(); + } + + EVT VT = K0->getValueType(0); + unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; + if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { + return DAG.getNode(Med3Opc, SL, VT, + Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); + } + + // If there isn't a 16-bit med3 operation, convert to 32-bit. + MVT NVT = MVT::i32; + unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + + SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); + SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); + SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); + + SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); + return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); +} + +static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) + return C; + + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { + if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) + return C; + } + + return nullptr; +} + +SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, + const SDLoc &SL, + SDValue Op0, + SDValue Op1) const { + ConstantFPSDNode *K1 = getSplatConstantFP(Op1); + if (!K1) + return SDValue(); + + ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); + if (!K0) + return SDValue(); + + // Ordered >= (although NaN inputs should have folded away by now). + APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF()); + if (Cmp == APFloat::cmpGreaterThan) + return SDValue(); + + const MachineFunction &MF = DAG.getMachineFunction(); + const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + + // TODO: Check IEEE bit enabled? + EVT VT = Op0.getValueType(); + if (Info->getMode().DX10Clamp) { + // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the + // hardware fmed3 behavior converting to a min. + // FIXME: Should this be allowing -0.0? + if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) + return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); + } + + // med3 for f16 is only available on gfx9+, and not available for v2f16. + if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { + // This isn't safe with signaling NaNs because in IEEE mode, min/max on a + // signaling NaN gives a quiet NaN. The quiet NaN input to the min would + // then give the other result, which is different from med3 with a NaN + // input. + SDValue Var = Op0.getOperand(0); + if (!DAG.isKnownNeverSNaN(Var)) + return SDValue(); + + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + + if ((!K0->hasOneUse() || + TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && + (!K1->hasOneUse() || + TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { + return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), + Var, SDValue(K0, 0), SDValue(K1, 0)); + } + } + + return SDValue(); +} + +SDValue SITargetLowering::performMinMaxCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + + EVT VT = N->getValueType(0); + unsigned Opc = N->getOpcode(); + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // Only do this if the inner op has one use since this will just increases + // register pressure for no benefit. + + if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && + !VT.isVector() && + (VT == MVT::i32 || VT == MVT::f32 || + ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { + // max(max(a, b), c) -> max3(a, b, c) + // min(min(a, b), c) -> min3(a, b, c) + if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { + SDLoc DL(N); + return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), + DL, + N->getValueType(0), + Op0.getOperand(0), + Op0.getOperand(1), + Op1); + } + + // Try commuted. + // max(a, max(b, c)) -> max3(a, b, c) + // min(a, min(b, c)) -> min3(a, b, c) + if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { + SDLoc DL(N); + return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), + DL, + N->getValueType(0), + Op0, + Op1.getOperand(0), + Op1.getOperand(1)); + } + } + + // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) + if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { + if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) + return Med3; + } + + if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { + if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) + return Med3; + } + + // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) + if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || + (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || + (Opc == AMDGPUISD::FMIN_LEGACY && + Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && + (VT == MVT::f32 || VT == MVT::f64 || + (VT == MVT::f16 && Subtarget->has16BitInsts()) || + (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && + Op0.hasOneUse()) { + if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) + return Res; + } + + return SDValue(); +} + +static bool isClampZeroToOne(SDValue A, SDValue B) { + if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { + if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { + // FIXME: Should this be allowing -0.0? + return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || + (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); + } + } + + return false; +} + +// FIXME: Should only worry about snans for version with chain. +SDValue SITargetLowering::performFMed3Combine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and + // NaNs. With a NaN input, the order of the operands may change the result. + + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + + SDValue Src0 = N->getOperand(0); + SDValue Src1 = N->getOperand(1); + SDValue Src2 = N->getOperand(2); + + if (isClampZeroToOne(Src0, Src1)) { + // const_a, const_b, x -> clamp is safe in all cases including signaling + // nans. + // FIXME: Should this be allowing -0.0? + return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); + } + + const MachineFunction &MF = DAG.getMachineFunction(); + const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + + // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother + // handling no dx10-clamp? + if (Info->getMode().DX10Clamp) { + // If NaNs is clamped to 0, we are free to reorder the inputs. + + if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) + std::swap(Src0, Src1); + + if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) + std::swap(Src1, Src2); + + if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) + std::swap(Src0, Src1); + + if (isClampZeroToOne(Src1, Src2)) + return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); + } + + return SDValue(); +} + +SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SDValue Src0 = N->getOperand(0); + SDValue Src1 = N->getOperand(1); + if (Src0.isUndef() && Src1.isUndef()) + return DCI.DAG.getUNDEF(N->getValueType(0)); + return SDValue(); +} + +SDValue SITargetLowering::performExtractVectorEltCombine( + SDNode *N, DAGCombinerInfo &DCI) const { + SDValue Vec = N->getOperand(0); + SelectionDAG &DAG = DCI.DAG; + + EVT VecVT = Vec.getValueType(); + EVT EltVT = VecVT.getVectorElementType(); + + if ((Vec.getOpcode() == ISD::FNEG || + Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { + SDLoc SL(N); + EVT EltVT = N->getValueType(0); + SDValue Idx = N->getOperand(1); + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, + Vec.getOperand(0), Idx); + return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); + } + + // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) + // => + // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) + // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) + // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt + if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { + SDLoc SL(N); + EVT EltVT = N->getValueType(0); + SDValue Idx = N->getOperand(1); + unsigned Opc = Vec.getOpcode(); + + switch(Opc) { + default: + break; + // TODO: Support other binary operations. + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::ADD: + case ISD::UMIN: + case ISD::UMAX: + case ISD::SMIN: + case ISD::SMAX: + case ISD::FMAXNUM: + case ISD::FMINNUM: + case ISD::FMAXNUM_IEEE: + case ISD::FMINNUM_IEEE: { + SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, + Vec.getOperand(0), Idx); + SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, + Vec.getOperand(1), Idx); + + DCI.AddToWorklist(Elt0.getNode()); + DCI.AddToWorklist(Elt1.getNode()); + return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); + } + } + } + + unsigned VecSize = VecVT.getSizeInBits(); + unsigned EltSize = EltVT.getSizeInBits(); + + // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) + // This elminates non-constant index and subsequent movrel or scratch access. + // Sub-dword vectors of size 2 dword or less have better implementation. + // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 + // instructions. + if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) && + !isa<ConstantSDNode>(N->getOperand(1))) { + SDLoc SL(N); + SDValue Idx = N->getOperand(1); + EVT IdxVT = Idx.getValueType(); + SDValue V; + for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { + SDValue IC = DAG.getConstant(I, SL, IdxVT); + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); + if (I == 0) + V = Elt; + else + V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); + } + return V; + } + + if (!DCI.isBeforeLegalize()) + return SDValue(); + + // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit + // elements. This exposes more load reduction opportunities by replacing + // multiple small extract_vector_elements with a single 32-bit extract. + auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (isa<MemSDNode>(Vec) && + EltSize <= 16 && + EltVT.isByteSized() && + VecSize > 32 && + VecSize % 32 == 0 && + Idx) { + EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); + + unsigned BitIndex = Idx->getZExtValue() * EltSize; + unsigned EltIdx = BitIndex / 32; + unsigned LeftoverBitIdx = BitIndex % 32; + SDLoc SL(N); + + SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); + DCI.AddToWorklist(Cast.getNode()); + + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, + DAG.getConstant(EltIdx, SL, MVT::i32)); + DCI.AddToWorklist(Elt.getNode()); + SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, + DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); + DCI.AddToWorklist(Srl.getNode()); + + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); + DCI.AddToWorklist(Trunc.getNode()); + return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); + } + + return SDValue(); +} + +SDValue +SITargetLowering::performInsertVectorEltCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SDValue Vec = N->getOperand(0); + SDValue Idx = N->getOperand(2); + EVT VecVT = Vec.getValueType(); + EVT EltVT = VecVT.getVectorElementType(); + unsigned VecSize = VecVT.getSizeInBits(); + unsigned EltSize = EltVT.getSizeInBits(); + + // INSERT_VECTOR_ELT (<n x e>, var-idx) + // => BUILD_VECTOR n x select (e, const-idx) + // This elminates non-constant index and subsequent movrel or scratch access. + // Sub-dword vectors of size 2 dword or less have better implementation. + // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32 + // instructions. + if (isa<ConstantSDNode>(Idx) || + VecSize > 256 || (VecSize <= 64 && EltSize < 32)) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + SDValue Ins = N->getOperand(1); + EVT IdxVT = Idx.getValueType(); + + SmallVector<SDValue, 16> Ops; + for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { + SDValue IC = DAG.getConstant(I, SL, IdxVT); + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); + SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); + Ops.push_back(V); + } + + return DAG.getBuildVector(VecVT, SL, Ops); +} + +unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, + const SDNode *N0, + const SDNode *N1) const { + EVT VT = N0->getValueType(0); + + // Only do this if we are not trying to support denormals. v_mad_f32 does not + // support denormals ever. + if (((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) || + (VT == MVT::f16 && !Subtarget->hasFP16Denormals() && + getSubtarget()->hasMadF16())) && + isOperationLegal(ISD::FMAD, VT)) + return ISD::FMAD; + + const TargetOptions &Options = DAG.getTarget().Options; + if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || + (N0->getFlags().hasAllowContract() && + N1->getFlags().hasAllowContract())) && + isFMAFasterThanFMulAndFAdd(VT)) { + return ISD::FMA; + } + + return 0; +} + +// For a reassociatable opcode perform: +// op x, (op y, z) -> op (op x, z), y, if x and z are uniform +SDValue SITargetLowering::reassociateScalarOps(SDNode *N, + SelectionDAG &DAG) const { + EVT VT = N->getValueType(0); + if (VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + unsigned Opc = N->getOpcode(); + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + if (!(Op0->isDivergent() ^ Op1->isDivergent())) + return SDValue(); + + if (Op0->isDivergent()) + std::swap(Op0, Op1); + + if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) + return SDValue(); + + SDValue Op2 = Op1.getOperand(1); + Op1 = Op1.getOperand(0); + if (!(Op1->isDivergent() ^ Op2->isDivergent())) + return SDValue(); + + if (Op1->isDivergent()) + std::swap(Op1, Op2); + + // If either operand is constant this will conflict with + // DAGCombiner::ReassociateOps(). + if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || + DAG.isConstantIntBuildVectorOrConstantInt(Op1)) + return SDValue(); + + SDLoc SL(N); + SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); + return DAG.getNode(Opc, SL, VT, Add1, Op2); +} + +static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, + EVT VT, + SDValue N0, SDValue N1, SDValue N2, + bool Signed) { + unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; + SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); + SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); + return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); +} + +SDValue SITargetLowering::performAddCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + SDLoc SL(N); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) + && Subtarget->hasMad64_32() && + !VT.isVector() && VT.getScalarSizeInBits() > 32 && + VT.getScalarSizeInBits() <= 64) { + if (LHS.getOpcode() != ISD::MUL) + std::swap(LHS, RHS); + + SDValue MulLHS = LHS.getOperand(0); + SDValue MulRHS = LHS.getOperand(1); + SDValue AddRHS = RHS; + + // TODO: Maybe restrict if SGPR inputs. + if (numBitsUnsigned(MulLHS, DAG) <= 32 && + numBitsUnsigned(MulRHS, DAG) <= 32) { + MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); + MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); + AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); + return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); + } + + if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { + MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); + MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); + AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); + return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); + } + + return SDValue(); + } + + if (SDValue V = reassociateScalarOps(N, DAG)) { + return V; + } + + if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) + return SDValue(); + + // add x, zext (setcc) => addcarry x, 0, setcc + // add x, sext (setcc) => subcarry x, 0, setcc + unsigned Opc = LHS.getOpcode(); + if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || + Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) + std::swap(RHS, LHS); + + Opc = RHS.getOpcode(); + switch (Opc) { + default: break; + case ISD::ZERO_EXTEND: + case ISD::SIGN_EXTEND: + case ISD::ANY_EXTEND: { + auto Cond = RHS.getOperand(0); + if (!isBoolSGPR(Cond)) + break; + SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); + SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; + Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; + return DAG.getNode(Opc, SL, VTList, Args); + } + case ISD::ADDCARRY: { + // add x, (addcarry y, 0, cc) => addcarry x, y, cc + auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); + if (!C || C->getZExtValue() != 0) break; + SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; + return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); + } + } + return SDValue(); +} + +SDValue SITargetLowering::performSubCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + + if (VT != MVT::i32) + return SDValue(); + + SDLoc SL(N); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + if (LHS.getOpcode() == ISD::SUBCARRY) { + // sub (subcarry x, 0, cc), y => subcarry x, y, cc + auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); + if (!C || !C->isNullValue()) + return SDValue(); + SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; + return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); + } + return SDValue(); +} + +SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + + if (N->getValueType(0) != MVT::i32) + return SDValue(); + + auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!C || C->getZExtValue() != 0) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDValue LHS = N->getOperand(0); + + // addcarry (add x, y), 0, cc => addcarry x, y, cc + // subcarry (sub x, y), 0, cc => subcarry x, y, cc + unsigned LHSOpc = LHS.getOpcode(); + unsigned Opc = N->getOpcode(); + if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || + (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { + SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; + return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); + } + return SDValue(); +} + +SDValue SITargetLowering::performFAddCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + + SDLoc SL(N); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + // These should really be instruction patterns, but writing patterns with + // source modiifiers is a pain. + + // fadd (fadd (a, a), b) -> mad 2.0, a, b + if (LHS.getOpcode() == ISD::FADD) { + SDValue A = LHS.getOperand(0); + if (A == LHS.getOperand(1)) { + unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); + if (FusedOp != 0) { + const SDValue Two = DAG.getConstantFP(2.0, SL, VT); + return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); + } + } + } + + // fadd (b, fadd (a, a)) -> mad 2.0, a, b + if (RHS.getOpcode() == ISD::FADD) { + SDValue A = RHS.getOperand(0); + if (A == RHS.getOperand(1)) { + unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); + if (FusedOp != 0) { + const SDValue Two = DAG.getConstantFP(2.0, SL, VT); + return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); + } + } + } + + return SDValue(); +} + +SDValue SITargetLowering::performFSubCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + EVT VT = N->getValueType(0); + assert(!VT.isVector()); + + // Try to get the fneg to fold into the source modifier. This undoes generic + // DAG combines and folds them into the mad. + // + // Only do this if we are not trying to support denormals. v_mad_f32 does + // not support denormals ever. + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + if (LHS.getOpcode() == ISD::FADD) { + // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) + SDValue A = LHS.getOperand(0); + if (A == LHS.getOperand(1)) { + unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); + if (FusedOp != 0){ + const SDValue Two = DAG.getConstantFP(2.0, SL, VT); + SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); + + return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); + } + } + } + + if (RHS.getOpcode() == ISD::FADD) { + // (fsub c, (fadd a, a)) -> mad -2.0, a, c + + SDValue A = RHS.getOperand(0); + if (A == RHS.getOperand(1)) { + unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); + if (FusedOp != 0){ + const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); + return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); + } + } + } + + return SDValue(); +} + +SDValue SITargetLowering::performFMACombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + SDLoc SL(N); + + if (!Subtarget->hasDot2Insts() || VT != MVT::f32) + return SDValue(); + + // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> + // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) + SDValue Op1 = N->getOperand(0); + SDValue Op2 = N->getOperand(1); + SDValue FMA = N->getOperand(2); + + if (FMA.getOpcode() != ISD::FMA || + Op1.getOpcode() != ISD::FP_EXTEND || + Op2.getOpcode() != ISD::FP_EXTEND) + return SDValue(); + + // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, + // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract + // is sufficient to allow generaing fdot2. + const TargetOptions &Options = DAG.getTarget().Options; + if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || + (N->getFlags().hasAllowContract() && + FMA->getFlags().hasAllowContract())) { + Op1 = Op1.getOperand(0); + Op2 = Op2.getOperand(0); + if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + SDValue Vec1 = Op1.getOperand(0); + SDValue Idx1 = Op1.getOperand(1); + SDValue Vec2 = Op2.getOperand(0); + + SDValue FMAOp1 = FMA.getOperand(0); + SDValue FMAOp2 = FMA.getOperand(1); + SDValue FMAAcc = FMA.getOperand(2); + + if (FMAOp1.getOpcode() != ISD::FP_EXTEND || + FMAOp2.getOpcode() != ISD::FP_EXTEND) + return SDValue(); + + FMAOp1 = FMAOp1.getOperand(0); + FMAOp2 = FMAOp2.getOperand(0); + if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + SDValue Vec3 = FMAOp1.getOperand(0); + SDValue Vec4 = FMAOp2.getOperand(0); + SDValue Idx2 = FMAOp1.getOperand(1); + + if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || + // Idx1 and Idx2 cannot be the same. + Idx1 == Idx2) + return SDValue(); + + if (Vec1 == Vec2 || Vec3 == Vec4) + return SDValue(); + + if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) + return SDValue(); + + if ((Vec1 == Vec3 && Vec2 == Vec4) || + (Vec1 == Vec4 && Vec2 == Vec3)) { + return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, + DAG.getTargetConstant(0, SL, MVT::i1)); + } + } + return SDValue(); +} + +SDValue SITargetLowering::performSetCCCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + EVT VT = LHS.getValueType(); + ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); + + auto CRHS = dyn_cast<ConstantSDNode>(RHS); + if (!CRHS) { + CRHS = dyn_cast<ConstantSDNode>(LHS); + if (CRHS) { + std::swap(LHS, RHS); + CC = getSetCCSwappedOperands(CC); + } + } + + if (CRHS) { + if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && + isBoolSGPR(LHS.getOperand(0))) { + // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 + // setcc (sext from i1 cc), -1, eq|sle|uge) => cc + // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 + // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc + if ((CRHS->isAllOnesValue() && + (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || + (CRHS->isNullValue() && + (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) + return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), + DAG.getConstant(-1, SL, MVT::i1)); + if ((CRHS->isAllOnesValue() && + (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || + (CRHS->isNullValue() && + (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) + return LHS.getOperand(0); + } + + uint64_t CRHSVal = CRHS->getZExtValue(); + if ((CC == ISD::SETEQ || CC == ISD::SETNE) && + LHS.getOpcode() == ISD::SELECT && + isa<ConstantSDNode>(LHS.getOperand(1)) && + isa<ConstantSDNode>(LHS.getOperand(2)) && + LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && + isBoolSGPR(LHS.getOperand(0))) { + // Given CT != FT: + // setcc (select cc, CT, CF), CF, eq => xor cc, -1 + // setcc (select cc, CT, CF), CF, ne => cc + // setcc (select cc, CT, CF), CT, ne => xor cc, -1 + // setcc (select cc, CT, CF), CT, eq => cc + uint64_t CT = LHS.getConstantOperandVal(1); + uint64_t CF = LHS.getConstantOperandVal(2); + + if ((CF == CRHSVal && CC == ISD::SETEQ) || + (CT == CRHSVal && CC == ISD::SETNE)) + return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), + DAG.getConstant(-1, SL, MVT::i1)); + if ((CF == CRHSVal && CC == ISD::SETNE) || + (CT == CRHSVal && CC == ISD::SETEQ)) + return LHS.getOperand(0); + } + } + + if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && + VT != MVT::f16)) + return SDValue(); + + // Match isinf/isfinite pattern + // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) + // (fcmp one (fabs x), inf) -> (fp_class x, + // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) + if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { + const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); + if (!CRHS) + return SDValue(); + + const APFloat &APF = CRHS->getValueAPF(); + if (APF.isInfinity() && !APF.isNegative()) { + const unsigned IsInfMask = SIInstrFlags::P_INFINITY | + SIInstrFlags::N_INFINITY; + const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | + SIInstrFlags::P_ZERO | + SIInstrFlags::N_NORMAL | + SIInstrFlags::P_NORMAL | + SIInstrFlags::N_SUBNORMAL | + SIInstrFlags::P_SUBNORMAL; + unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; + return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), + DAG.getConstant(Mask, SL, MVT::i32)); + } + } + + return SDValue(); +} + +SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; + + SDValue Src = N->getOperand(0); + SDValue Srl = N->getOperand(0); + if (Srl.getOpcode() == ISD::ZERO_EXTEND) + Srl = Srl.getOperand(0); + + // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero. + if (Srl.getOpcode() == ISD::SRL) { + // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x + // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x + // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x + + if (const ConstantSDNode *C = + dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { + Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)), + EVT(MVT::i32)); + + unsigned SrcOffset = C->getZExtValue() + 8 * Offset; + if (SrcOffset < 32 && SrcOffset % 8 == 0) { + return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL, + MVT::f32, Srl); + } + } + } + + APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); + + KnownBits Known; + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) { + DCI.CommitTargetLoweringOpt(TLO); + } + + return SDValue(); +} + +SDValue SITargetLowering::performClampCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); + if (!CSrc) + return SDValue(); + + const MachineFunction &MF = DCI.DAG.getMachineFunction(); + const APFloat &F = CSrc->getValueAPF(); + APFloat Zero = APFloat::getZero(F.getSemantics()); + APFloat::cmpResult Cmp0 = F.compare(Zero); + if (Cmp0 == APFloat::cmpLessThan || + (Cmp0 == APFloat::cmpUnordered && + MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { + return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); + } + + APFloat One(F.getSemantics(), "1.0"); + APFloat::cmpResult Cmp1 = F.compare(One); + if (Cmp1 == APFloat::cmpGreaterThan) + return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); + + return SDValue(CSrc, 0); +} + + +SDValue SITargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (getTargetMachine().getOptLevel() == CodeGenOpt::None) + return SDValue(); + switch (N->getOpcode()) { + default: + return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); + case ISD::ADD: + return performAddCombine(N, DCI); + case ISD::SUB: + return performSubCombine(N, DCI); + case ISD::ADDCARRY: + case ISD::SUBCARRY: + return performAddCarrySubCarryCombine(N, DCI); + case ISD::FADD: + return performFAddCombine(N, DCI); + case ISD::FSUB: + return performFSubCombine(N, DCI); + case ISD::SETCC: + return performSetCCCombine(N, DCI); + case ISD::FMAXNUM: + case ISD::FMINNUM: + case ISD::FMAXNUM_IEEE: + case ISD::FMINNUM_IEEE: + case ISD::SMAX: + case ISD::SMIN: + case ISD::UMAX: + case ISD::UMIN: + case AMDGPUISD::FMIN_LEGACY: + case AMDGPUISD::FMAX_LEGACY: + return performMinMaxCombine(N, DCI); + case ISD::FMA: + return performFMACombine(N, DCI); + case ISD::LOAD: { + if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) + return Widended; + LLVM_FALLTHROUGH; + } + case ISD::STORE: + case ISD::ATOMIC_LOAD: + case ISD::ATOMIC_STORE: + case ISD::ATOMIC_CMP_SWAP: + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: + case ISD::ATOMIC_LOAD_FADD: + case AMDGPUISD::ATOMIC_INC: + case AMDGPUISD::ATOMIC_DEC: + case AMDGPUISD::ATOMIC_LOAD_FMIN: + case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics. + if (DCI.isBeforeLegalize()) + break; + return performMemSDNodeCombine(cast<MemSDNode>(N), DCI); + case ISD::AND: + return performAndCombine(N, DCI); + case ISD::OR: + return performOrCombine(N, DCI); + case ISD::XOR: + return performXorCombine(N, DCI); + case ISD::ZERO_EXTEND: + return performZeroExtendCombine(N, DCI); + case ISD::SIGN_EXTEND_INREG: + return performSignExtendInRegCombine(N , DCI); + case AMDGPUISD::FP_CLASS: + return performClassCombine(N, DCI); + case ISD::FCANONICALIZE: + return performFCanonicalizeCombine(N, DCI); + case AMDGPUISD::RCP: + return performRcpCombine(N, DCI); + case AMDGPUISD::FRACT: + case AMDGPUISD::RSQ: + case AMDGPUISD::RCP_LEGACY: + case AMDGPUISD::RSQ_LEGACY: + case AMDGPUISD::RCP_IFLAG: + case AMDGPUISD::RSQ_CLAMP: + case AMDGPUISD::LDEXP: { + SDValue Src = N->getOperand(0); + if (Src.isUndef()) + return Src; + break; + } + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + return performUCharToFloatCombine(N, DCI); + case AMDGPUISD::CVT_F32_UBYTE0: + case AMDGPUISD::CVT_F32_UBYTE1: + case AMDGPUISD::CVT_F32_UBYTE2: + case AMDGPUISD::CVT_F32_UBYTE3: + return performCvtF32UByteNCombine(N, DCI); + case AMDGPUISD::FMED3: + return performFMed3Combine(N, DCI); + case AMDGPUISD::CVT_PKRTZ_F16_F32: + return performCvtPkRTZCombine(N, DCI); + case AMDGPUISD::CLAMP: + return performClampCombine(N, DCI); + case ISD::SCALAR_TO_VECTOR: { + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + + // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) + if (VT == MVT::v2i16 || VT == MVT::v2f16) { + SDLoc SL(N); + SDValue Src = N->getOperand(0); + EVT EltVT = Src.getValueType(); + if (EltVT == MVT::f16) + Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); + + SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); + return DAG.getNode(ISD::BITCAST, SL, VT, Ext); + } + + break; + } + case ISD::EXTRACT_VECTOR_ELT: + return performExtractVectorEltCombine(N, DCI); + case ISD::INSERT_VECTOR_ELT: + return performInsertVectorEltCombine(N, DCI); + } + return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); +} + +/// Helper function for adjustWritemask +static unsigned SubIdx2Lane(unsigned Idx) { + switch (Idx) { + default: return 0; + case AMDGPU::sub0: return 0; + case AMDGPU::sub1: return 1; + case AMDGPU::sub2: return 2; + case AMDGPU::sub3: return 3; + case AMDGPU::sub4: return 4; // Possible with TFE/LWE + } +} + +/// Adjust the writemask of MIMG instructions +SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, + SelectionDAG &DAG) const { + unsigned Opcode = Node->getMachineOpcode(); + + // Subtract 1 because the vdata output is not a MachineSDNode operand. + int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; + if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) + return Node; // not implemented for D16 + + SDNode *Users[5] = { nullptr }; + unsigned Lane = 0; + unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; + unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); + unsigned NewDmask = 0; + unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; + unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; + bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) || + Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; + unsigned TFCLane = 0; + bool HasChain = Node->getNumValues() > 1; + + if (OldDmask == 0) { + // These are folded out, but on the chance it happens don't assert. + return Node; + } + + unsigned OldBitsSet = countPopulation(OldDmask); + // Work out which is the TFE/LWE lane if that is enabled. + if (UsesTFC) { + TFCLane = OldBitsSet; + } + + // Try to figure out the used register components + for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); + I != E; ++I) { + + // Don't look at users of the chain. + if (I.getUse().getResNo() != 0) + continue; + + // Abort if we can't understand the usage + if (!I->isMachineOpcode() || + I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) + return Node; + + // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. + // Note that subregs are packed, i.e. Lane==0 is the first bit set + // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit + // set, etc. + Lane = SubIdx2Lane(I->getConstantOperandVal(1)); + + // Check if the use is for the TFE/LWE generated result at VGPRn+1. + if (UsesTFC && Lane == TFCLane) { + Users[Lane] = *I; + } else { + // Set which texture component corresponds to the lane. + unsigned Comp; + for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { + Comp = countTrailingZeros(Dmask); + Dmask &= ~(1 << Comp); + } + + // Abort if we have more than one user per component. + if (Users[Lane]) + return Node; + + Users[Lane] = *I; + NewDmask |= 1 << Comp; + } + } + + // Don't allow 0 dmask, as hardware assumes one channel enabled. + bool NoChannels = !NewDmask; + if (NoChannels) { + if (!UsesTFC) { + // No uses of the result and not using TFC. Then do nothing. + return Node; + } + // If the original dmask has one channel - then nothing to do + if (OldBitsSet == 1) + return Node; + // Use an arbitrary dmask - required for the instruction to work + NewDmask = 1; + } + // Abort if there's no change + if (NewDmask == OldDmask) + return Node; + + unsigned BitsSet = countPopulation(NewDmask); + + // Check for TFE or LWE - increase the number of channels by one to account + // for the extra return value + // This will need adjustment for D16 if this is also included in + // adjustWriteMask (this function) but at present D16 are excluded. + unsigned NewChannels = BitsSet + UsesTFC; + + int NewOpcode = + AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); + assert(NewOpcode != -1 && + NewOpcode != static_cast<int>(Node->getMachineOpcode()) && + "failed to find equivalent MIMG op"); + + // Adjust the writemask in the node + SmallVector<SDValue, 12> Ops; + Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); + Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); + Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); + + MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); + + MVT ResultVT = NewChannels == 1 ? + SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : + NewChannels == 5 ? 8 : NewChannels); + SDVTList NewVTList = HasChain ? + DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); + + + MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), + NewVTList, Ops); + + if (HasChain) { + // Update chain. + DAG.setNodeMemRefs(NewNode, Node->memoperands()); + DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); + } + + if (NewChannels == 1) { + assert(Node->hasNUsesOfValue(1, 0)); + SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, + SDLoc(Node), Users[Lane]->getValueType(0), + SDValue(NewNode, 0)); + DAG.ReplaceAllUsesWith(Users[Lane], Copy); + return nullptr; + } + + // Update the users of the node with the new indices + for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { + SDNode *User = Users[i]; + if (!User) { + // Handle the special case of NoChannels. We set NewDmask to 1 above, but + // Users[0] is still nullptr because channel 0 doesn't really have a use. + if (i || !NoChannels) + continue; + } else { + SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); + DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); + } + + switch (Idx) { + default: break; + case AMDGPU::sub0: Idx = AMDGPU::sub1; break; + case AMDGPU::sub1: Idx = AMDGPU::sub2; break; + case AMDGPU::sub2: Idx = AMDGPU::sub3; break; + case AMDGPU::sub3: Idx = AMDGPU::sub4; break; + } + } + + DAG.RemoveDeadNode(Node); + return nullptr; +} + +static bool isFrameIndexOp(SDValue Op) { + if (Op.getOpcode() == ISD::AssertZext) + Op = Op.getOperand(0); + + return isa<FrameIndexSDNode>(Op); +} + +/// Legalize target independent instructions (e.g. INSERT_SUBREG) +/// with frame index operands. +/// LLVM assumes that inputs are to these instructions are registers. +SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, + SelectionDAG &DAG) const { + if (Node->getOpcode() == ISD::CopyToReg) { + RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); + SDValue SrcVal = Node->getOperand(2); + + // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have + // to try understanding copies to physical registers. + if (SrcVal.getValueType() == MVT::i1 && + TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) { + SDLoc SL(Node); + MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); + SDValue VReg = DAG.getRegister( + MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); + + SDNode *Glued = Node->getGluedNode(); + SDValue ToVReg + = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, + SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); + SDValue ToResultReg + = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), + VReg, ToVReg.getValue(1)); + DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); + DAG.RemoveDeadNode(Node); + return ToResultReg.getNode(); + } + } + + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0; i < Node->getNumOperands(); ++i) { + if (!isFrameIndexOp(Node->getOperand(i))) { + Ops.push_back(Node->getOperand(i)); + continue; + } + + SDLoc DL(Node); + Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, + Node->getOperand(i).getValueType(), + Node->getOperand(i)), 0)); + } + + return DAG.UpdateNodeOperands(Node, Ops); +} + +/// Fold the instructions after selecting them. +/// Returns null if users were already updated. +SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, + SelectionDAG &DAG) const { + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + unsigned Opcode = Node->getMachineOpcode(); + + if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && + !TII->isGather4(Opcode)) { + return adjustWritemask(Node, DAG); + } + + if (Opcode == AMDGPU::INSERT_SUBREG || + Opcode == AMDGPU::REG_SEQUENCE) { + legalizeTargetIndependentNode(Node, DAG); + return Node; + } + + switch (Opcode) { + case AMDGPU::V_DIV_SCALE_F32: + case AMDGPU::V_DIV_SCALE_F64: { + // Satisfy the operand register constraint when one of the inputs is + // undefined. Ordinarily each undef value will have its own implicit_def of + // a vreg, so force these to use a single register. + SDValue Src0 = Node->getOperand(0); + SDValue Src1 = Node->getOperand(1); + SDValue Src2 = Node->getOperand(2); + + if ((Src0.isMachineOpcode() && + Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && + (Src0 == Src1 || Src0 == Src2)) + break; + + MVT VT = Src0.getValueType().getSimpleVT(); + const TargetRegisterClass *RC = + getRegClassFor(VT, Src0.getNode()->isDivergent()); + + MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); + SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); + + SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), + UndefReg, Src0, SDValue()); + + // src0 must be the same register as src1 or src2, even if the value is + // undefined, so make sure we don't violate this constraint. + if (Src0.isMachineOpcode() && + Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { + if (Src1.isMachineOpcode() && + Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) + Src0 = Src1; + else if (Src2.isMachineOpcode() && + Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) + Src0 = Src2; + else { + assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); + Src0 = UndefReg; + Src1 = UndefReg; + } + } else + break; + + SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 }; + for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) + Ops.push_back(Node->getOperand(I)); + + Ops.push_back(ImpDef.getValue(1)); + return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); + } + case AMDGPU::V_PERMLANE16_B32: + case AMDGPU::V_PERMLANEX16_B32: { + ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0)); + ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2)); + if (!FI->getZExtValue() && !BC->getZExtValue()) + break; + SDValue VDstIn = Node->getOperand(6); + if (VDstIn.isMachineOpcode() + && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) + break; + MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, + SDLoc(Node), MVT::i32); + SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1), + SDValue(BC, 0), Node->getOperand(3), + Node->getOperand(4), Node->getOperand(5), + SDValue(ImpDef, 0), Node->getOperand(7) }; + return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); + } + default: + break; + } + + return Node; +} + +/// Assign the register class depending on the number of +/// bits set in the writemask +void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, + SDNode *Node) const { + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + + MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + + if (TII->isVOP3(MI.getOpcode())) { + // Make sure constant bus requirements are respected. + TII->legalizeOperandsVOP3(MRI, MI); + + // Prefer VGPRs over AGPRs in mAI instructions where possible. + // This saves a chain-copy of registers and better ballance register + // use between vgpr and agpr as agpr tuples tend to be big. + if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) { + unsigned Opc = MI.getOpcode(); + const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); + for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), + AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { + if (I == -1) + break; + MachineOperand &Op = MI.getOperand(I); + if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID && + OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) || + !TargetRegisterInfo::isVirtualRegister(Op.getReg()) || + !TRI->isAGPR(MRI, Op.getReg())) + continue; + auto *Src = MRI.getUniqueVRegDef(Op.getReg()); + if (!Src || !Src->isCopy() || + !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) + continue; + auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); + auto *NewRC = TRI->getEquivalentVGPRClass(RC); + // All uses of agpr64 and agpr32 can also accept vgpr except for + // v_accvgpr_read, but we do not produce agpr reads during selection, + // so no use checks are needed. + MRI.setRegClass(Op.getReg(), NewRC); + } + } + + return; + } + + // Replace unused atomics with the no return version. + int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); + if (NoRetAtomicOp != -1) { + if (!Node->hasAnyUseOfValue(0)) { + MI.setDesc(TII->get(NoRetAtomicOp)); + MI.RemoveOperand(0); + return; + } + + // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg + // instruction, because the return type of these instructions is a vec2 of + // the memory type, so it can be tied to the input operand. + // This means these instructions always have a use, so we need to add a + // special case to check if the atomic has only one extract_subreg use, + // which itself has no uses. + if ((Node->hasNUsesOfValue(1, 0) && + Node->use_begin()->isMachineOpcode() && + Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && + !Node->use_begin()->hasAnyUseOfValue(0))) { + unsigned Def = MI.getOperand(0).getReg(); + + // Change this into a noret atomic. + MI.setDesc(TII->get(NoRetAtomicOp)); + MI.RemoveOperand(0); + + // If we only remove the def operand from the atomic instruction, the + // extract_subreg will be left with a use of a vreg without a def. + // So we need to insert an implicit_def to avoid machine verifier + // errors. + BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), + TII->get(AMDGPU::IMPLICIT_DEF), Def); + } + return; + } +} + +static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, + uint64_t Val) { + SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); + return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); +} + +MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, + const SDLoc &DL, + SDValue Ptr) const { + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + + // Build the half of the subregister with the constants before building the + // full 128-bit register. If we are building multiple resource descriptors, + // this will allow CSEing of the 2-component register. + const SDValue Ops0[] = { + DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), + buildSMovImm32(DAG, DL, 0), + DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), + buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), + DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) + }; + + SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, + MVT::v2i32, Ops0), 0); + + // Combine the constants and the pointer. + const SDValue Ops1[] = { + DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), + Ptr, + DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), + SubRegHi, + DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) + }; + + return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); +} + +/// Return a resource descriptor with the 'Add TID' bit enabled +/// The TID (Thread ID) is multiplied by the stride value (bits [61:48] +/// of the resource descriptor) to create an offset, which is added to +/// the resource pointer. +MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, + SDValue Ptr, uint32_t RsrcDword1, + uint64_t RsrcDword2And3) const { + SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); + SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); + if (RsrcDword1) { + PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, + DAG.getConstant(RsrcDword1, DL, MVT::i32)), + 0); + } + + SDValue DataLo = buildSMovImm32(DAG, DL, + RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); + SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); + + const SDValue Ops[] = { + DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), + PtrLo, + DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), + PtrHi, + DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), + DataLo, + DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), + DataHi, + DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) + }; + + return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); +} + +//===----------------------------------------------------------------------===// +// SI Inline Assembly Support +//===----------------------------------------------------------------------===// + +std::pair<unsigned, const TargetRegisterClass *> +SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + const TargetRegisterClass *RC = nullptr; + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default: + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); + case 's': + case 'r': + switch (VT.getSizeInBits()) { + default: + return std::make_pair(0U, nullptr); + case 32: + case 16: + RC = &AMDGPU::SReg_32_XM0RegClass; + break; + case 64: + RC = &AMDGPU::SGPR_64RegClass; + break; + case 96: + RC = &AMDGPU::SReg_96RegClass; + break; + case 128: + RC = &AMDGPU::SReg_128RegClass; + break; + case 160: + RC = &AMDGPU::SReg_160RegClass; + break; + case 256: + RC = &AMDGPU::SReg_256RegClass; + break; + case 512: + RC = &AMDGPU::SReg_512RegClass; + break; + } + break; + case 'v': + switch (VT.getSizeInBits()) { + default: + return std::make_pair(0U, nullptr); + case 32: + case 16: + RC = &AMDGPU::VGPR_32RegClass; + break; + case 64: + RC = &AMDGPU::VReg_64RegClass; + break; + case 96: + RC = &AMDGPU::VReg_96RegClass; + break; + case 128: + RC = &AMDGPU::VReg_128RegClass; + break; + case 160: + RC = &AMDGPU::VReg_160RegClass; + break; + case 256: + RC = &AMDGPU::VReg_256RegClass; + break; + case 512: + RC = &AMDGPU::VReg_512RegClass; + break; + } + break; + case 'a': + switch (VT.getSizeInBits()) { + default: + return std::make_pair(0U, nullptr); + case 32: + case 16: + RC = &AMDGPU::AGPR_32RegClass; + break; + case 64: + RC = &AMDGPU::AReg_64RegClass; + break; + case 128: + RC = &AMDGPU::AReg_128RegClass; + break; + case 512: + RC = &AMDGPU::AReg_512RegClass; + break; + case 1024: + RC = &AMDGPU::AReg_1024RegClass; + // v32 types are not legal but we support them here. + return std::make_pair(0U, RC); + } + break; + } + // We actually support i128, i16 and f16 as inline parameters + // even if they are not reported as legal + if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || + VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) + return std::make_pair(0U, RC); + } + + if (Constraint.size() > 1) { + if (Constraint[1] == 'v') { + RC = &AMDGPU::VGPR_32RegClass; + } else if (Constraint[1] == 's') { + RC = &AMDGPU::SGPR_32RegClass; + } else if (Constraint[1] == 'a') { + RC = &AMDGPU::AGPR_32RegClass; + } + + if (RC) { + uint32_t Idx; + bool Failed = Constraint.substr(2).getAsInteger(10, Idx); + if (!Failed && Idx < RC->getNumRegs()) + return std::make_pair(RC->getRegister(Idx), RC); + } + } + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +SITargetLowering::ConstraintType +SITargetLowering::getConstraintType(StringRef Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default: break; + case 's': + case 'v': + case 'a': + return C_RegisterClass; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +// Figure out which registers should be reserved for stack access. Only after +// the function is legalized do we know all of the non-spill stack objects or if +// calls are present. +void SITargetLowering::finalizeLowering(MachineFunction &MF) const { + MachineRegisterInfo &MRI = MF.getRegInfo(); + SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); + + if (Info->isEntryFunction()) { + // Callable functions have fixed registers used for stack access. + reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); + } + + assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), + Info->getStackPtrOffsetReg())); + if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) + MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); + + // We need to worry about replacing the default register with itself in case + // of MIR testcases missing the MFI. + if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) + MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); + + if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) + MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); + + if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) { + MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG, + Info->getScratchWaveOffsetReg()); + } + + Info->limitOccupancy(MF); + + if (ST.isWave32() && !MF.empty()) { + // Add VCC_HI def because many instructions marked as imp-use VCC where + // we may only define VCC_LO. If nothing defines VCC_HI we may end up + // having a use of undef. + + const SIInstrInfo *TII = ST.getInstrInfo(); + DebugLoc DL; + + MachineBasicBlock &MBB = MF.front(); + MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr(); + BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI); + + for (auto &MBB : MF) { + for (auto &MI : MBB) { + TII->fixImplicitOperands(MI); + } + } + } + + TargetLoweringBase::finalizeLowering(MF); +} + +void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth) const { + TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts, + DAG, Depth); + + // Set the high bits to zero based on the maximum allowed scratch size per + // wave. We can't use vaddr in MUBUF instructions if we don't know the address + // calculation won't overflow, so assume the sign bit is never set. + Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); +} + +unsigned SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { + const unsigned PrefAlign = TargetLowering::getPrefLoopAlignment(ML); + const unsigned CacheLineAlign = 6; // log2(64) + + // Pre-GFX10 target did not benefit from loop alignment + if (!ML || DisableLoopAlignment || + (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || + getSubtarget()->hasInstFwdPrefetchBug()) + return PrefAlign; + + // On GFX10 I$ is 4 x 64 bytes cache lines. + // By default prefetcher keeps one cache line behind and reads two ahead. + // We can modify it with S_INST_PREFETCH for larger loops to have two lines + // behind and one ahead. + // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. + // If loop fits 64 bytes it always spans no more than two cache lines and + // does not need an alignment. + // Else if loop is less or equal 128 bytes we do not need to modify prefetch, + // Else if loop is less or equal 192 bytes we need two lines behind. + + const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); + const MachineBasicBlock *Header = ML->getHeader(); + if (Header->getAlignment() != PrefAlign) + return Header->getAlignment(); // Already processed. + + unsigned LoopSize = 0; + for (const MachineBasicBlock *MBB : ML->blocks()) { + // If inner loop block is aligned assume in average half of the alignment + // size to be added as nops. + if (MBB != Header) + LoopSize += (1 << MBB->getAlignment()) / 2; + + for (const MachineInstr &MI : *MBB) { + LoopSize += TII->getInstSizeInBytes(MI); + if (LoopSize > 192) + return PrefAlign; + } + } + + if (LoopSize <= 64) + return PrefAlign; + + if (LoopSize <= 128) + return CacheLineAlign; + + // If any of parent loops is surrounded by prefetch instructions do not + // insert new for inner loop, which would reset parent's settings. + for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { + if (MachineBasicBlock *Exit = P->getExitBlock()) { + auto I = Exit->getFirstNonDebugInstr(); + if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) + return CacheLineAlign; + } + } + + MachineBasicBlock *Pre = ML->getLoopPreheader(); + MachineBasicBlock *Exit = ML->getExitBlock(); + + if (Pre && Exit) { + BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), + TII->get(AMDGPU::S_INST_PREFETCH)) + .addImm(1); // prefetch 2 lines behind PC + + BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), + TII->get(AMDGPU::S_INST_PREFETCH)) + .addImm(2); // prefetch 1 line behind PC + } + + return CacheLineAlign; +} + +LLVM_ATTRIBUTE_UNUSED +static bool isCopyFromRegOfInlineAsm(const SDNode *N) { + assert(N->getOpcode() == ISD::CopyFromReg); + do { + // Follow the chain until we find an INLINEASM node. + N = N->getOperand(0).getNode(); + if (N->getOpcode() == ISD::INLINEASM || + N->getOpcode() == ISD::INLINEASM_BR) + return true; + } while (N->getOpcode() == ISD::CopyFromReg); + return false; +} + +bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, + FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const +{ + switch (N->getOpcode()) { + case ISD::CopyFromReg: + { + const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); + const MachineFunction * MF = FLI->MF; + const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); + const MachineRegisterInfo &MRI = MF->getRegInfo(); + const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); + unsigned Reg = R->getReg(); + if (TRI.isPhysicalRegister(Reg)) + return !TRI.isSGPRReg(MRI, Reg); + + if (MRI.isLiveIn(Reg)) { + // workitem.id.x workitem.id.y workitem.id.z + // Any VGPR formal argument is also considered divergent + if (!TRI.isSGPRReg(MRI, Reg)) + return true; + // Formal arguments of non-entry functions + // are conservatively considered divergent + else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) + return true; + return false; + } + const Value *V = FLI->getValueFromVirtualReg(Reg); + if (V) + return KDA->isDivergent(V); + assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); + return !TRI.isSGPRReg(MRI, Reg); + } + break; + case ISD::LOAD: { + const LoadSDNode *L = cast<LoadSDNode>(N); + unsigned AS = L->getAddressSpace(); + // A flat load may access private memory. + return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; + } break; + case ISD::CALLSEQ_END: + return true; + break; + case ISD::INTRINSIC_WO_CHAIN: + { + + } + return AMDGPU::isIntrinsicSourceOfDivergence( + cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); + case ISD::INTRINSIC_W_CHAIN: + return AMDGPU::isIntrinsicSourceOfDivergence( + cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); + // In some cases intrinsics that are a source of divergence have been + // lowered to AMDGPUISD so we also need to check those too. + case AMDGPUISD::INTERP_MOV: + case AMDGPUISD::INTERP_P1: + case AMDGPUISD::INTERP_P2: + return true; + } + return false; +} + +bool SITargetLowering::denormalsEnabledForType(EVT VT) const { + switch (VT.getScalarType().getSimpleVT().SimpleTy) { + case MVT::f32: + return Subtarget->hasFP32Denormals(); + case MVT::f64: + return Subtarget->hasFP64Denormals(); + case MVT::f16: + return Subtarget->hasFP16Denormals(); + default: + return false; + } +} + +bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, + const SelectionDAG &DAG, + bool SNaN, + unsigned Depth) const { + if (Op.getOpcode() == AMDGPUISD::CLAMP) { + const MachineFunction &MF = DAG.getMachineFunction(); + const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + + if (Info->getMode().DX10Clamp) + return true; // Clamped to 0. + return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); + } + + return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, + SNaN, Depth); +} + +TargetLowering::AtomicExpansionKind +SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { + switch (RMW->getOperation()) { + case AtomicRMWInst::FAdd: { + Type *Ty = RMW->getType(); + + // We don't have a way to support 16-bit atomics now, so just leave them + // as-is. + if (Ty->isHalfTy()) + return AtomicExpansionKind::None; + + if (!Ty->isFloatTy()) + return AtomicExpansionKind::CmpXChg; + + // TODO: Do have these for flat. Older targets also had them for buffers. + unsigned AS = RMW->getPointerAddressSpace(); + return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ? + AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg; + } + default: + break; + } + + return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); +} |
