summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIShrinkInstructions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/SIShrinkInstructions.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/SIShrinkInstructions.cpp802
1 files changed, 802 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIShrinkInstructions.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIShrinkInstructions.cpp
new file mode 100644
index 000000000000..7ee178149c7a
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIShrinkInstructions.cpp
@@ -0,0 +1,802 @@
+//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+/// The pass tries to use the 32-bit encoding for instructions when possible.
+//===----------------------------------------------------------------------===//
+//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "SIInstrInfo.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+
+#define DEBUG_TYPE "si-shrink-instructions"
+
+STATISTIC(NumInstructionsShrunk,
+ "Number of 64-bit instruction reduced to 32-bit.");
+STATISTIC(NumLiteralConstantsFolded,
+ "Number of literal constants folded into 32-bit instructions.");
+
+using namespace llvm;
+
+namespace {
+
+class SIShrinkInstructions : public MachineFunctionPass {
+public:
+ static char ID;
+
+ void shrinkMIMG(MachineInstr &MI);
+
+public:
+ SIShrinkInstructions() : MachineFunctionPass(ID) {
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ StringRef getPassName() const override { return "SI Shrink Instructions"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // End anonymous namespace.
+
+INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
+ "SI Shrink Instructions", false, false)
+
+char SIShrinkInstructions::ID = 0;
+
+FunctionPass *llvm::createSIShrinkInstructionsPass() {
+ return new SIShrinkInstructions();
+}
+
+/// This function checks \p MI for operands defined by a move immediate
+/// instruction and then folds the literal constant into the instruction if it
+/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions.
+static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
+ MachineRegisterInfo &MRI, bool TryToCommute = true) {
+ assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));
+
+ int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
+
+ // Try to fold Src0
+ MachineOperand &Src0 = MI.getOperand(Src0Idx);
+ if (Src0.isReg()) {
+ unsigned Reg = Src0.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg) && MRI.hasOneUse(Reg)) {
+ MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
+ if (Def && Def->isMoveImmediate()) {
+ MachineOperand &MovSrc = Def->getOperand(1);
+ bool ConstantFolded = false;
+
+ if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) ||
+ isUInt<32>(MovSrc.getImm()))) {
+ // It's possible to have only one component of a super-reg defined by
+ // a single mov, so we need to clear any subregister flag.
+ Src0.setSubReg(0);
+ Src0.ChangeToImmediate(MovSrc.getImm());
+ ConstantFolded = true;
+ } else if (MovSrc.isFI()) {
+ Src0.setSubReg(0);
+ Src0.ChangeToFrameIndex(MovSrc.getIndex());
+ ConstantFolded = true;
+ } else if (MovSrc.isGlobal()) {
+ Src0.ChangeToGA(MovSrc.getGlobal(), MovSrc.getOffset(),
+ MovSrc.getTargetFlags());
+ ConstantFolded = true;
+ }
+
+ if (ConstantFolded) {
+ assert(MRI.use_empty(Reg));
+ Def->eraseFromParent();
+ ++NumLiteralConstantsFolded;
+ return true;
+ }
+ }
+ }
+ }
+
+ // We have failed to fold src0, so commute the instruction and try again.
+ if (TryToCommute && MI.isCommutable()) {
+ if (TII->commuteInstruction(MI)) {
+ if (foldImmediates(MI, TII, MRI, false))
+ return true;
+
+ // Commute back.
+ TII->commuteInstruction(MI);
+ }
+ }
+
+ return false;
+}
+
+static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
+ return isInt<16>(Src.getImm()) &&
+ !TII->isInlineConstant(*Src.getParent(),
+ Src.getParent()->getOperandNo(&Src));
+}
+
+static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
+ return isUInt<16>(Src.getImm()) &&
+ !TII->isInlineConstant(*Src.getParent(),
+ Src.getParent()->getOperandNo(&Src));
+}
+
+static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
+ const MachineOperand &Src,
+ bool &IsUnsigned) {
+ if (isInt<16>(Src.getImm())) {
+ IsUnsigned = false;
+ return !TII->isInlineConstant(Src);
+ }
+
+ if (isUInt<16>(Src.getImm())) {
+ IsUnsigned = true;
+ return !TII->isInlineConstant(Src);
+ }
+
+ return false;
+}
+
+/// \returns true if the constant in \p Src should be replaced with a bitreverse
+/// of an inline immediate.
+static bool isReverseInlineImm(const SIInstrInfo *TII,
+ const MachineOperand &Src,
+ int32_t &ReverseImm) {
+ if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
+ return false;
+
+ ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
+ return ReverseImm >= -16 && ReverseImm <= 64;
+}
+
+/// Copy implicit register operands from specified instruction to this
+/// instruction that are not part of the instruction definition.
+static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF,
+ const MachineInstr &MI) {
+ for (unsigned i = MI.getDesc().getNumOperands() +
+ MI.getDesc().getNumImplicitUses() +
+ MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands();
+ i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
+ NewMI.addOperand(MF, MO);
+ }
+}
+
+static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) {
+ // cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
+ // get constants on the RHS.
+ if (!MI.getOperand(0).isReg())
+ TII->commuteInstruction(MI, false, 0, 1);
+
+ const MachineOperand &Src1 = MI.getOperand(1);
+ if (!Src1.isImm())
+ return;
+
+ int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
+ if (SOPKOpc == -1)
+ return;
+
+ // eq/ne is special because the imm16 can be treated as signed or unsigned,
+ // and initially selectd to the unsigned versions.
+ if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
+ bool HasUImm;
+ if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) {
+ if (!HasUImm) {
+ SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
+ AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
+ }
+
+ MI.setDesc(TII->get(SOPKOpc));
+ }
+
+ return;
+ }
+
+ const MCInstrDesc &NewDesc = TII->get(SOPKOpc);
+
+ if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) ||
+ (!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) {
+ MI.setDesc(NewDesc);
+ }
+}
+
+// Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding.
+void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) {
+ const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
+ if (Info->MIMGEncoding != AMDGPU::MIMGEncGfx10NSA)
+ return;
+
+ MachineFunction *MF = MI.getParent()->getParent();
+ const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
+ const SIInstrInfo *TII = ST.getInstrInfo();
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+ int VAddr0Idx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
+ unsigned NewAddrDwords = Info->VAddrDwords;
+ const TargetRegisterClass *RC;
+
+ if (Info->VAddrDwords == 2) {
+ RC = &AMDGPU::VReg_64RegClass;
+ } else if (Info->VAddrDwords == 3) {
+ RC = &AMDGPU::VReg_96RegClass;
+ } else if (Info->VAddrDwords == 4) {
+ RC = &AMDGPU::VReg_128RegClass;
+ } else if (Info->VAddrDwords <= 8) {
+ RC = &AMDGPU::VReg_256RegClass;
+ NewAddrDwords = 8;
+ } else {
+ RC = &AMDGPU::VReg_512RegClass;
+ NewAddrDwords = 16;
+ }
+
+ unsigned VgprBase = 0;
+ bool IsUndef = true;
+ bool IsKill = NewAddrDwords == Info->VAddrDwords;
+ for (unsigned i = 0; i < Info->VAddrDwords; ++i) {
+ const MachineOperand &Op = MI.getOperand(VAddr0Idx + i);
+ unsigned Vgpr = TRI.getHWRegIndex(Op.getReg());
+
+ if (i == 0) {
+ VgprBase = Vgpr;
+ } else if (VgprBase + i != Vgpr)
+ return;
+
+ if (!Op.isUndef())
+ IsUndef = false;
+ if (!Op.isKill())
+ IsKill = false;
+ }
+
+ if (VgprBase + NewAddrDwords > 256)
+ return;
+
+ // Further check for implicit tied operands - this may be present if TFE is
+ // enabled
+ int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
+ int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe);
+ unsigned TFEVal = MI.getOperand(TFEIdx).getImm();
+ unsigned LWEVal = MI.getOperand(LWEIdx).getImm();
+ int ToUntie = -1;
+ if (TFEVal || LWEVal) {
+ // TFE/LWE is enabled so we need to deal with an implicit tied operand
+ for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) {
+ if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() &&
+ MI.getOperand(i).isImplicit()) {
+ // This is the tied operand
+ assert(
+ ToUntie == -1 &&
+ "found more than one tied implicit operand when expecting only 1");
+ ToUntie = i;
+ MI.untieRegOperand(ToUntie);
+ }
+ }
+ }
+
+ unsigned NewOpcode =
+ AMDGPU::getMIMGOpcode(Info->BaseOpcode, AMDGPU::MIMGEncGfx10Default,
+ Info->VDataDwords, NewAddrDwords);
+ MI.setDesc(TII->get(NewOpcode));
+ MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase));
+ MI.getOperand(VAddr0Idx).setIsUndef(IsUndef);
+ MI.getOperand(VAddr0Idx).setIsKill(IsKill);
+
+ for (unsigned i = 1; i < Info->VAddrDwords; ++i)
+ MI.RemoveOperand(VAddr0Idx + 1);
+
+ if (ToUntie >= 0) {
+ MI.tieOperands(
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata),
+ ToUntie - (Info->VAddrDwords - 1));
+ }
+}
+
+/// Attempt to shink AND/OR/XOR operations requiring non-inlineable literals.
+/// For AND or OR, try using S_BITSET{0,1} to clear or set bits.
+/// If the inverse of the immediate is legal, use ANDN2, ORN2 or
+/// XNOR (as a ^ b == ~(a ^ ~b)).
+/// \returns true if the caller should continue the machine function iterator
+static bool shrinkScalarLogicOp(const GCNSubtarget &ST,
+ MachineRegisterInfo &MRI,
+ const SIInstrInfo *TII,
+ MachineInstr &MI) {
+ unsigned Opc = MI.getOpcode();
+ const MachineOperand *Dest = &MI.getOperand(0);
+ MachineOperand *Src0 = &MI.getOperand(1);
+ MachineOperand *Src1 = &MI.getOperand(2);
+ MachineOperand *SrcReg = Src0;
+ MachineOperand *SrcImm = Src1;
+
+ if (SrcImm->isImm() &&
+ !AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST.hasInv2PiInlineImm())) {
+ uint32_t Imm = static_cast<uint32_t>(SrcImm->getImm());
+ uint32_t NewImm = 0;
+
+ if (Opc == AMDGPU::S_AND_B32) {
+ if (isPowerOf2_32(~Imm)) {
+ NewImm = countTrailingOnes(Imm);
+ Opc = AMDGPU::S_BITSET0_B32;
+ } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
+ NewImm = ~Imm;
+ Opc = AMDGPU::S_ANDN2_B32;
+ }
+ } else if (Opc == AMDGPU::S_OR_B32) {
+ if (isPowerOf2_32(Imm)) {
+ NewImm = countTrailingZeros(Imm);
+ Opc = AMDGPU::S_BITSET1_B32;
+ } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
+ NewImm = ~Imm;
+ Opc = AMDGPU::S_ORN2_B32;
+ }
+ } else if (Opc == AMDGPU::S_XOR_B32) {
+ if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
+ NewImm = ~Imm;
+ Opc = AMDGPU::S_XNOR_B32;
+ }
+ } else {
+ llvm_unreachable("unexpected opcode");
+ }
+
+ if ((Opc == AMDGPU::S_ANDN2_B32 || Opc == AMDGPU::S_ORN2_B32) &&
+ SrcImm == Src0) {
+ if (!TII->commuteInstruction(MI, false, 1, 2))
+ NewImm = 0;
+ }
+
+ if (NewImm != 0) {
+ if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) &&
+ SrcReg->isReg()) {
+ MRI.setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg());
+ MRI.setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg());
+ return true;
+ }
+
+ if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) {
+ MI.setDesc(TII->get(Opc));
+ if (Opc == AMDGPU::S_BITSET0_B32 ||
+ Opc == AMDGPU::S_BITSET1_B32) {
+ Src0->ChangeToImmediate(NewImm);
+ // Remove the immediate and add the tied input.
+ MI.getOperand(2).ChangeToRegister(Dest->getReg(), false);
+ MI.tieOperands(0, 2);
+ } else {
+ SrcImm->setImm(NewImm);
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+// This is the same as MachineInstr::readsRegister/modifiesRegister except
+// it takes subregs into account.
+static bool instAccessReg(iterator_range<MachineInstr::const_mop_iterator> &&R,
+ unsigned Reg, unsigned SubReg,
+ const SIRegisterInfo &TRI) {
+ for (const MachineOperand &MO : R) {
+ if (!MO.isReg())
+ continue;
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ if (TRI.regsOverlap(Reg, MO.getReg()))
+ return true;
+ } else if (MO.getReg() == Reg &&
+ TargetRegisterInfo::isVirtualRegister(Reg)) {
+ LaneBitmask Overlap = TRI.getSubRegIndexLaneMask(SubReg) &
+ TRI.getSubRegIndexLaneMask(MO.getSubReg());
+ if (Overlap.any())
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool instReadsReg(const MachineInstr *MI,
+ unsigned Reg, unsigned SubReg,
+ const SIRegisterInfo &TRI) {
+ return instAccessReg(MI->uses(), Reg, SubReg, TRI);
+}
+
+static bool instModifiesReg(const MachineInstr *MI,
+ unsigned Reg, unsigned SubReg,
+ const SIRegisterInfo &TRI) {
+ return instAccessReg(MI->defs(), Reg, SubReg, TRI);
+}
+
+static TargetInstrInfo::RegSubRegPair
+getSubRegForIndex(unsigned Reg, unsigned Sub, unsigned I,
+ const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) {
+ if (TRI.getRegSizeInBits(Reg, MRI) != 32) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ Reg = TRI.getSubReg(Reg, TRI.getSubRegFromChannel(I));
+ } else {
+ LaneBitmask LM = TRI.getSubRegIndexLaneMask(Sub);
+ Sub = TRI.getSubRegFromChannel(I + countTrailingZeros(LM.getAsInteger()));
+ }
+ }
+ return TargetInstrInfo::RegSubRegPair(Reg, Sub);
+}
+
+// Match:
+// mov t, x
+// mov x, y
+// mov y, t
+//
+// =>
+//
+// mov t, x (t is potentially dead and move eliminated)
+// v_swap_b32 x, y
+//
+// Returns next valid instruction pointer if was able to create v_swap_b32.
+//
+// This shall not be done too early not to prevent possible folding which may
+// remove matched moves, and this should prefereably be done before RA to
+// release saved registers and also possibly after RA which can insert copies
+// too.
+//
+// This is really just a generic peephole that is not a canocical shrinking,
+// although requirements match the pass placement and it reduces code size too.
+static MachineInstr* matchSwap(MachineInstr &MovT, MachineRegisterInfo &MRI,
+ const SIInstrInfo *TII) {
+ assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
+ MovT.getOpcode() == AMDGPU::COPY);
+
+ unsigned T = MovT.getOperand(0).getReg();
+ unsigned Tsub = MovT.getOperand(0).getSubReg();
+ MachineOperand &Xop = MovT.getOperand(1);
+
+ if (!Xop.isReg())
+ return nullptr;
+ unsigned X = Xop.getReg();
+ unsigned Xsub = Xop.getSubReg();
+
+ unsigned Size = TII->getOpSize(MovT, 0) / 4;
+
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+ if (!TRI.isVGPR(MRI, X))
+ return nullptr;
+
+ for (MachineOperand &YTop : MRI.use_nodbg_operands(T)) {
+ if (YTop.getSubReg() != Tsub)
+ continue;
+
+ MachineInstr &MovY = *YTop.getParent();
+ if ((MovY.getOpcode() != AMDGPU::V_MOV_B32_e32 &&
+ MovY.getOpcode() != AMDGPU::COPY) ||
+ MovY.getOperand(1).getSubReg() != Tsub)
+ continue;
+
+ unsigned Y = MovY.getOperand(0).getReg();
+ unsigned Ysub = MovY.getOperand(0).getSubReg();
+
+ if (!TRI.isVGPR(MRI, Y) || MovT.getParent() != MovY.getParent())
+ continue;
+
+ MachineInstr *MovX = nullptr;
+ auto I = std::next(MovT.getIterator()), E = MovT.getParent()->instr_end();
+ for (auto IY = MovY.getIterator(); I != E && I != IY; ++I) {
+ if (instReadsReg(&*I, X, Xsub, TRI) ||
+ instModifiesReg(&*I, Y, Ysub, TRI) ||
+ instModifiesReg(&*I, T, Tsub, TRI) ||
+ (MovX && instModifiesReg(&*I, X, Xsub, TRI))) {
+ MovX = nullptr;
+ break;
+ }
+ if (!instReadsReg(&*I, Y, Ysub, TRI)) {
+ if (!MovX && instModifiesReg(&*I, X, Xsub, TRI)) {
+ MovX = nullptr;
+ break;
+ }
+ continue;
+ }
+ if (MovX ||
+ (I->getOpcode() != AMDGPU::V_MOV_B32_e32 &&
+ I->getOpcode() != AMDGPU::COPY) ||
+ I->getOperand(0).getReg() != X ||
+ I->getOperand(0).getSubReg() != Xsub) {
+ MovX = nullptr;
+ break;
+ }
+ MovX = &*I;
+ }
+
+ if (!MovX || I == E)
+ continue;
+
+ LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << MovY);
+
+ for (unsigned I = 0; I < Size; ++I) {
+ TargetInstrInfo::RegSubRegPair X1, Y1;
+ X1 = getSubRegForIndex(X, Xsub, I, TRI, MRI);
+ Y1 = getSubRegForIndex(Y, Ysub, I, TRI, MRI);
+ BuildMI(*MovT.getParent(), MovX->getIterator(), MovT.getDebugLoc(),
+ TII->get(AMDGPU::V_SWAP_B32))
+ .addDef(X1.Reg, 0, X1.SubReg)
+ .addDef(Y1.Reg, 0, Y1.SubReg)
+ .addReg(Y1.Reg, 0, Y1.SubReg)
+ .addReg(X1.Reg, 0, X1.SubReg).getInstr();
+ }
+ MovX->eraseFromParent();
+ MovY.eraseFromParent();
+ MachineInstr *Next = &*std::next(MovT.getIterator());
+ if (MRI.use_nodbg_empty(T))
+ MovT.eraseFromParent();
+ else
+ Xop.setIsKill(false);
+
+ return Next;
+ }
+
+ return nullptr;
+}
+
+bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+ const SIInstrInfo *TII = ST.getInstrInfo();
+ unsigned VCCReg = ST.isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC;
+
+ std::vector<unsigned> I1Defs;
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ MachineBasicBlock::iterator I, Next;
+ for (I = MBB.begin(); I != MBB.end(); I = Next) {
+ Next = std::next(I);
+ MachineInstr &MI = *I;
+
+ if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
+ // If this has a literal constant source that is the same as the
+ // reversed bits of an inline immediate, replace with a bitreverse of
+ // that constant. This saves 4 bytes in the common case of materializing
+ // sign bits.
+
+ // Test if we are after regalloc. We only want to do this after any
+ // optimizations happen because this will confuse them.
+ // XXX - not exactly a check for post-regalloc run.
+ MachineOperand &Src = MI.getOperand(1);
+ if (Src.isImm() &&
+ TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) {
+ int32_t ReverseImm;
+ if (isReverseInlineImm(TII, Src, ReverseImm)) {
+ MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
+ Src.setImm(ReverseImm);
+ continue;
+ }
+ }
+ }
+
+ if (ST.hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
+ MI.getOpcode() == AMDGPU::COPY)) {
+ if (auto *NextMI = matchSwap(MI, MRI, TII)) {
+ Next = NextMI->getIterator();
+ continue;
+ }
+ }
+
+ // Combine adjacent s_nops to use the immediate operand encoding how long
+ // to wait.
+ //
+ // s_nop N
+ // s_nop M
+ // =>
+ // s_nop (N + M)
+ if (MI.getOpcode() == AMDGPU::S_NOP &&
+ Next != MBB.end() &&
+ (*Next).getOpcode() == AMDGPU::S_NOP) {
+
+ MachineInstr &NextMI = *Next;
+ // The instruction encodes the amount to wait with an offset of 1,
+ // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
+ // after adding.
+ uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
+ uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;
+
+ // Make sure we don't overflow the bounds.
+ if (Nop0 + Nop1 <= 8) {
+ NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
+ MI.eraseFromParent();
+ }
+
+ continue;
+ }
+
+ // FIXME: We also need to consider movs of constant operands since
+ // immediate operands are not folded if they have more than one use, and
+ // the operand folding pass is unaware if the immediate will be free since
+ // it won't know if the src == dest constraint will end up being
+ // satisfied.
+ if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
+ MI.getOpcode() == AMDGPU::S_MUL_I32) {
+ const MachineOperand *Dest = &MI.getOperand(0);
+ MachineOperand *Src0 = &MI.getOperand(1);
+ MachineOperand *Src1 = &MI.getOperand(2);
+
+ if (!Src0->isReg() && Src1->isReg()) {
+ if (TII->commuteInstruction(MI, false, 1, 2))
+ std::swap(Src0, Src1);
+ }
+
+ // FIXME: This could work better if hints worked with subregisters. If
+ // we have a vector add of a constant, we usually don't get the correct
+ // allocation due to the subregister usage.
+ if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) &&
+ Src0->isReg()) {
+ MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
+ MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
+ continue;
+ }
+
+ if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
+ if (Src1->isImm() && isKImmOperand(TII, *Src1)) {
+ unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
+ AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;
+
+ MI.setDesc(TII->get(Opc));
+ MI.tieOperands(0, 1);
+ }
+ }
+ }
+
+ // Try to use s_cmpk_*
+ if (MI.isCompare() && TII->isSOPC(MI)) {
+ shrinkScalarCompare(TII, MI);
+ continue;
+ }
+
+ // Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
+ if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
+ const MachineOperand &Dst = MI.getOperand(0);
+ MachineOperand &Src = MI.getOperand(1);
+
+ if (Src.isImm() &&
+ TargetRegisterInfo::isPhysicalRegister(Dst.getReg())) {
+ int32_t ReverseImm;
+ if (isKImmOperand(TII, Src))
+ MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
+ else if (isReverseInlineImm(TII, Src, ReverseImm)) {
+ MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
+ Src.setImm(ReverseImm);
+ }
+ }
+
+ continue;
+ }
+
+ // Shrink scalar logic operations.
+ if (MI.getOpcode() == AMDGPU::S_AND_B32 ||
+ MI.getOpcode() == AMDGPU::S_OR_B32 ||
+ MI.getOpcode() == AMDGPU::S_XOR_B32) {
+ if (shrinkScalarLogicOp(ST, MRI, TII, MI))
+ continue;
+ }
+
+ if (TII->isMIMG(MI.getOpcode()) &&
+ ST.getGeneration() >= AMDGPUSubtarget::GFX10 &&
+ MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::NoVRegs)) {
+ shrinkMIMG(MI);
+ continue;
+ }
+
+ if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
+ continue;
+
+ if (!TII->canShrink(MI, MRI)) {
+ // Try commuting the instruction and see if that enables us to shrink
+ // it.
+ if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
+ !TII->canShrink(MI, MRI))
+ continue;
+ }
+
+ // getVOPe32 could be -1 here if we started with an instruction that had
+ // a 32-bit encoding and then commuted it to an instruction that did not.
+ if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
+ continue;
+
+ int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
+
+ if (TII->isVOPC(Op32)) {
+ unsigned DstReg = MI.getOperand(0).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ // VOPC instructions can only write to the VCC register. We can't
+ // force them to use VCC here, because this is only one register and
+ // cannot deal with sequences which would require multiple copies of
+ // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
+ //
+ // So, instead of forcing the instruction to write to VCC, we provide
+ // a hint to the register allocator to use VCC and then we will run
+ // this pass again after RA and shrink it if it outputs to VCC.
+ MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, VCCReg);
+ continue;
+ }
+ if (DstReg != VCCReg)
+ continue;
+ }
+
+ if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
+ // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
+ // instructions.
+ const MachineOperand *Src2 =
+ TII->getNamedOperand(MI, AMDGPU::OpName::src2);
+ if (!Src2->isReg())
+ continue;
+ unsigned SReg = Src2->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(SReg)) {
+ MRI.setRegAllocationHint(SReg, 0, VCCReg);
+ continue;
+ }
+ if (SReg != VCCReg)
+ continue;
+ }
+
+ // Check for the bool flag output for instructions like V_ADD_I32_e64.
+ const MachineOperand *SDst = TII->getNamedOperand(MI,
+ AMDGPU::OpName::sdst);
+
+ // Check the carry-in operand for v_addc_u32_e64.
+ const MachineOperand *Src2 = TII->getNamedOperand(MI,
+ AMDGPU::OpName::src2);
+
+ if (SDst) {
+ bool Next = false;
+
+ if (SDst->getReg() != VCCReg) {
+ if (TargetRegisterInfo::isVirtualRegister(SDst->getReg()))
+ MRI.setRegAllocationHint(SDst->getReg(), 0, VCCReg);
+ Next = true;
+ }
+
+ // All of the instructions with carry outs also have an SGPR input in
+ // src2.
+ if (Src2 && Src2->getReg() != VCCReg) {
+ if (TargetRegisterInfo::isVirtualRegister(Src2->getReg()))
+ MRI.setRegAllocationHint(Src2->getReg(), 0, VCCReg);
+ Next = true;
+ }
+
+ if (Next)
+ continue;
+ }
+
+ // We can shrink this instruction
+ LLVM_DEBUG(dbgs() << "Shrinking " << MI);
+
+ MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32);
+ ++NumInstructionsShrunk;
+
+ // Copy extra operands not present in the instruction definition.
+ copyExtraImplicitOps(*Inst32, MF, MI);
+
+ MI.eraseFromParent();
+ foldImmediates(*Inst32, TII, MRI);
+
+ LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
+ }
+ }
+ return false;
+}