diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp | 847 |
1 files changed, 847 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp b/contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp new file mode 100644 index 000000000000..5389d09bf7d7 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp @@ -0,0 +1,847 @@ +//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Armv6 introduced instructions to perform 32-bit SIMD operations. The +/// purpose of this pass is do some IR pattern matching to create ACLE +/// DSP intrinsics, which map on these 32-bit SIMD operations. +/// This pass runs only when unaligned accesses is supported/enabled. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/NoFolder.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Pass.h" +#include "llvm/PassRegistry.h" +#include "llvm/PassSupport.h" +#include "llvm/Support/Debug.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "ARM.h" +#include "ARMSubtarget.h" + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "arm-parallel-dsp" + +STATISTIC(NumSMLAD , "Number of smlad instructions generated"); + +static cl::opt<bool> +DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), + cl::desc("Disable the ARM Parallel DSP pass")); + +namespace { + struct OpChain; + struct BinOpChain; + class Reduction; + + using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; + using ReductionList = SmallVector<Reduction, 8>; + using ValueList = SmallVector<Value*, 8>; + using MemInstList = SmallVector<LoadInst*, 8>; + using PMACPair = std::pair<BinOpChain*,BinOpChain*>; + using PMACPairList = SmallVector<PMACPair, 8>; + using Instructions = SmallVector<Instruction*,16>; + using MemLocList = SmallVector<MemoryLocation, 4>; + + struct OpChain { + Instruction *Root; + ValueList AllValues; + MemInstList VecLd; // List of all load instructions. + MemInstList Loads; + bool ReadOnly = true; + + OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } + virtual ~OpChain() = default; + + void PopulateLoads() { + for (auto *V : AllValues) { + if (auto *Ld = dyn_cast<LoadInst>(V)) + Loads.push_back(Ld); + } + } + + unsigned size() const { return AllValues.size(); } + }; + + // 'BinOpChain' holds the multiplication instructions that are candidates + // for parallel execution. + struct BinOpChain : public OpChain { + ValueList LHS; // List of all (narrow) left hand operands. + ValueList RHS; // List of all (narrow) right hand operands. + bool Exchange = false; + + BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : + OpChain(I, lhs), LHS(lhs), RHS(rhs) { + for (auto *V : RHS) + AllValues.push_back(V); + } + + bool AreSymmetrical(BinOpChain *Other); + }; + + /// Represent a sequence of multiply-accumulate operations with the aim to + /// perform the multiplications in parallel. + class Reduction { + Instruction *Root = nullptr; + Value *Acc = nullptr; + OpChainList Muls; + PMACPairList MulPairs; + SmallPtrSet<Instruction*, 4> Adds; + + public: + Reduction() = delete; + + Reduction (Instruction *Add) : Root(Add) { } + + /// Record an Add instruction that is a part of the this reduction. + void InsertAdd(Instruction *I) { Adds.insert(I); } + + /// Record a BinOpChain, rooted at a Mul instruction, that is a part of + /// this reduction. + void InsertMul(Instruction *I, ValueList &LHS, ValueList &RHS) { + Muls.push_back(make_unique<BinOpChain>(I, LHS, RHS)); + } + + /// Add the incoming accumulator value, returns true if a value had not + /// already been added. Returning false signals to the user that this + /// reduction already has a value to initialise the accumulator. + bool InsertAcc(Value *V) { + if (Acc) + return false; + Acc = V; + return true; + } + + /// Set two BinOpChains, rooted at muls, that can be executed as a single + /// parallel operation. + void AddMulPair(BinOpChain *Mul0, BinOpChain *Mul1) { + MulPairs.push_back(std::make_pair(Mul0, Mul1)); + } + + /// Return true if enough mul operations are found that can be executed in + /// parallel. + bool CreateParallelPairs(); + + /// Return the add instruction which is the root of the reduction. + Instruction *getRoot() { return Root; } + + /// Return the incoming value to be accumulated. This maybe null. + Value *getAccumulator() { return Acc; } + + /// Return the set of adds that comprise the reduction. + SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; } + + /// Return the BinOpChain, rooted at mul instruction, that comprise the + /// the reduction. + OpChainList &getMuls() { return Muls; } + + /// Return the BinOpChain, rooted at mul instructions, that have been + /// paired for parallel execution. + PMACPairList &getMulPairs() { return MulPairs; } + + /// To finalise, replace the uses of the root with the intrinsic call. + void UpdateRoot(Instruction *SMLAD) { + Root->replaceAllUsesWith(SMLAD); + } + }; + + class WidenedLoad { + LoadInst *NewLd = nullptr; + SmallVector<LoadInst*, 4> Loads; + + public: + WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) + : NewLd(Wide) { + for (auto *I : Lds) + Loads.push_back(I); + } + LoadInst *getLoad() { + return NewLd; + } + }; + + class ARMParallelDSP : public LoopPass { + ScalarEvolution *SE; + AliasAnalysis *AA; + TargetLibraryInfo *TLI; + DominatorTree *DT; + LoopInfo *LI; + Loop *L; + const DataLayout *DL; + Module *M; + std::map<LoadInst*, LoadInst*> LoadPairs; + SmallPtrSet<LoadInst*, 4> OffsetLoads; + std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; + + template<unsigned> + bool IsNarrowSequence(Value *V, ValueList &VL); + + bool RecordMemoryOps(BasicBlock *BB); + void InsertParallelMACs(Reduction &Reduction); + bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); + LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, + IntegerType *LoadTy); + bool CreateParallelPairs(Reduction &R); + + /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate + /// Dual performs two signed 16x16-bit multiplications. It adds the + /// products to a 32-bit accumulate operand. Optionally, the instruction can + /// exchange the halfwords of the second operand before performing the + /// arithmetic. + bool MatchSMLAD(Loop *L); + + public: + static char ID; + + ARMParallelDSP() : LoopPass(ID) { } + + bool doInitialization(Loop *L, LPPassManager &LPM) override { + LoadPairs.clear(); + WideLoads.clear(); + return true; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + LoopPass::getAnalysisUsage(AU); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<TargetPassConfig>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.setPreservesCFG(); + } + + bool runOnLoop(Loop *TheLoop, LPPassManager &) override { + if (DisableParallelDSP) + return false; + L = TheLoop; + SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto &TPC = getAnalysis<TargetPassConfig>(); + + BasicBlock *Header = TheLoop->getHeader(); + if (!Header) + return false; + + // TODO: We assume the loop header and latch to be the same block. + // This is not a fundamental restriction, but lifting this would just + // require more work to do the transformation and then patch up the CFG. + if (Header != TheLoop->getLoopLatch()) { + LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " + "running pass ARMParallelDSP\n"); + return false; + } + + if (!TheLoop->getLoopPreheader()) + InsertPreheaderForLoop(L, DT, LI, nullptr, true); + + Function &F = *Header->getParent(); + M = F.getParent(); + DL = &M->getDataLayout(); + + auto &TM = TPC.getTM<TargetMachine>(); + auto *ST = &TM.getSubtarget<ARMSubtarget>(F); + + if (!ST->allowsUnalignedMem()) { + LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " + "running pass ARMParallelDSP\n"); + return false; + } + + if (!ST->hasDSP()) { + LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " + "ARMParallelDSP\n"); + return false; + } + + if (!ST->isLittle()) { + LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " + << "ARMParallelDSP\n"); + return false; + } + + LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); + + LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); + LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); + + if (!RecordMemoryOps(Header)) { + LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); + return false; + } + + bool Changes = MatchSMLAD(L); + return Changes; + } + }; +} + +template<typename MemInst> +static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, + const DataLayout &DL, ScalarEvolution &SE) { + if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) + return true; + return false; +} + +bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, + MemInstList &VecMem) { + if (!Ld0 || !Ld1) + return false; + + if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) + return false; + + LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; + dbgs() << "Ld0:"; Ld0->dump(); + dbgs() << "Ld1:"; Ld1->dump(); + ); + + VecMem.clear(); + VecMem.push_back(Ld0); + VecMem.push_back(Ld1); + return true; +} + +// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP +// instructions, which is set to 16. So here we should collect all i8 and i16 +// narrow operations. +// TODO: we currently only collect i16, and will support i8 later, so that's +// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. +template<unsigned MaxBitWidth> +bool ARMParallelDSP::IsNarrowSequence(Value *V, ValueList &VL) { + ConstantInt *CInt; + + if (match(V, m_ConstantInt(CInt))) { + // TODO: if a constant is used, it needs to fit within the bit width. + return false; + } + + auto *I = dyn_cast<Instruction>(V); + if (!I) + return false; + + Value *Val, *LHS, *RHS; + if (match(V, m_Trunc(m_Value(Val)))) { + if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) + return IsNarrowSequence<MaxBitWidth>(Val, VL); + } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { + // TODO: we need to implement sadd16/sadd8 for this, which enables to + // also do the rewrite for smlad8.ll, but it is unsupported for now. + return false; + } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { + if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) + return false; + + if (match(Val, m_Load(m_Value()))) { + auto *Ld = cast<LoadInst>(Val); + + // Check that these load could be paired. + if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld)) + return false; + + VL.push_back(Val); + VL.push_back(I); + return true; + } + } + return false; +} + +/// Iterate through the block and record base, offset pairs of loads which can +/// be widened into a single load. +bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { + SmallVector<LoadInst*, 8> Loads; + SmallVector<Instruction*, 8> Writes; + + // Collect loads and instruction that may write to memory. For now we only + // record loads which are simple, sign-extended and have a single user. + // TODO: Allow zero-extended loads. + for (auto &I : *BB) { + if (I.mayWriteToMemory()) + Writes.push_back(&I); + auto *Ld = dyn_cast<LoadInst>(&I); + if (!Ld || !Ld->isSimple() || + !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) + continue; + Loads.push_back(Ld); + } + + using InstSet = std::set<Instruction*>; + using DepMap = std::map<Instruction*, InstSet>; + DepMap RAWDeps; + + // Record any writes that may alias a load. + const auto Size = LocationSize::unknown(); + for (auto Read : Loads) { + for (auto Write : Writes) { + MemoryLocation ReadLoc = + MemoryLocation(Read->getPointerOperand(), Size); + + if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), + ModRefInfo::ModRef))) + continue; + if (DT->dominates(Write, Read)) + RAWDeps[Read].insert(Write); + } + } + + // Check whether there's not a write between the two loads which would + // prevent them from being safely merged. + auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { + LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; + LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; + + if (RAWDeps.count(Dominated)) { + InstSet &WritesBefore = RAWDeps[Dominated]; + + for (auto Before : WritesBefore) { + + // We can't move the second load backward, past a write, to merge + // with the first load. + if (DT->dominates(Dominator, Before)) + return false; + } + } + return true; + }; + + // Record base, offset load pairs. + for (auto *Base : Loads) { + for (auto *Offset : Loads) { + if (Base == Offset) + continue; + + if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && + SafeToPair(Base, Offset)) { + LoadPairs[Base] = Offset; + OffsetLoads.insert(Offset); + break; + } + } + } + + LLVM_DEBUG(if (!LoadPairs.empty()) { + dbgs() << "Consecutive load pairs:\n"; + for (auto &MapIt : LoadPairs) { + LLVM_DEBUG(dbgs() << *MapIt.first << ", " + << *MapIt.second << "\n"); + } + }); + return LoadPairs.size() > 1; +} + +// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector +// multiplications. +// To use SMLAD: +// 1) we first need to find integer add then look for this pattern: +// +// acc0 = ... +// ld0 = load i16 +// sext0 = sext i16 %ld0 to i32 +// ld1 = load i16 +// sext1 = sext i16 %ld1 to i32 +// mul0 = mul %sext0, %sext1 +// ld2 = load i16 +// sext2 = sext i16 %ld2 to i32 +// ld3 = load i16 +// sext3 = sext i16 %ld3 to i32 +// mul1 = mul i32 %sext2, %sext3 +// add0 = add i32 %mul0, %acc0 +// acc1 = add i32 %add0, %mul1 +// +// Which can be selected to: +// +// ldr r0 +// ldr r1 +// smlad r2, r0, r1, r2 +// +// If constants are used instead of loads, these will need to be hoisted +// out and into a register. +// +// If loop invariants are used instead of loads, these need to be packed +// before the loop begins. +// +bool ARMParallelDSP::MatchSMLAD(Loop *L) { + // Search recursively back through the operands to find a tree of values that + // form a multiply-accumulate chain. The search records the Add and Mul + // instructions that form the reduction and allows us to find a single value + // to be used as the initial input to the accumlator. + std::function<bool(Value*, Reduction&)> Search = [&] + (Value *V, Reduction &R) -> bool { + + // If we find a non-instruction, try to use it as the initial accumulator + // value. This may have already been found during the search in which case + // this function will return false, signaling a search fail. + auto *I = dyn_cast<Instruction>(V); + if (!I) + return R.InsertAcc(V); + + switch (I->getOpcode()) { + default: + break; + case Instruction::PHI: + // Could be the accumulator value. + return R.InsertAcc(V); + case Instruction::Add: { + // Adds should be adding together two muls, or another add and a mul to + // be within the mac chain. One of the operands may also be the + // accumulator value at which point we should stop searching. + bool ValidLHS = Search(I->getOperand(0), R); + bool ValidRHS = Search(I->getOperand(1), R); + if (!ValidLHS && !ValidLHS) + return false; + else if (ValidLHS && ValidRHS) { + R.InsertAdd(I); + return true; + } else { + R.InsertAdd(I); + return R.InsertAcc(I); + } + } + case Instruction::Mul: { + Value *MulOp0 = I->getOperand(0); + Value *MulOp1 = I->getOperand(1); + if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) { + ValueList LHS; + ValueList RHS; + if (IsNarrowSequence<16>(MulOp0, LHS) && + IsNarrowSequence<16>(MulOp1, RHS)) { + R.InsertMul(I, LHS, RHS); + return true; + } + } + return false; + } + case Instruction::SExt: + return Search(I->getOperand(0), R); + } + return false; + }; + + bool Changed = false; + SmallPtrSet<Instruction*, 4> AllAdds; + BasicBlock *Latch = L->getLoopLatch(); + + for (Instruction &I : reverse(*Latch)) { + if (I.getOpcode() != Instruction::Add) + continue; + + if (AllAdds.count(&I)) + continue; + + const auto *Ty = I.getType(); + if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) + continue; + + Reduction R(&I); + if (!Search(&I, R)) + continue; + + if (!CreateParallelPairs(R)) + continue; + + InsertParallelMACs(R); + Changed = true; + AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); + } + + return Changed; +} + +bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { + + // Not enough mul operations to make a pair. + if (R.getMuls().size() < 2) + return false; + + // Check that the muls operate directly upon sign extended loads. + for (auto &MulChain : R.getMuls()) { + // A mul has 2 operands, and a narrow op consist of sext and a load; thus + // we expect at least 4 items in this operand value list. + if (MulChain->size() < 4) { + LLVM_DEBUG(dbgs() << "Operand list too short.\n"); + return false; + } + MulChain->PopulateLoads(); + ValueList &LHS = static_cast<BinOpChain*>(MulChain.get())->LHS; + ValueList &RHS = static_cast<BinOpChain*>(MulChain.get())->RHS; + + // Use +=2 to skip over the expected extend instructions. + for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { + if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) + return false; + } + } + + auto CanPair = [&](Reduction &R, BinOpChain *PMul0, BinOpChain *PMul1) { + if (!PMul0->AreSymmetrical(PMul1)) + return false; + + // The first elements of each vector should be loads with sexts. If we + // find that its two pairs of consecutive loads, then these can be + // transformed into two wider loads and the users can be replaced with + // DSP intrinsics. + for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { + auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]); + auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]); + auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]); + auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]); + + if (!Ld0 || !Ld1 || !Ld2 || !Ld3) + return false; + + LLVM_DEBUG(dbgs() << "Loads:\n" + << " - " << *Ld0 << "\n" + << " - " << *Ld1 << "\n" + << " - " << *Ld2 << "\n" + << " - " << *Ld3 << "\n"); + + if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { + if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { + LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); + R.AddMulPair(PMul0, PMul1); + return true; + } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { + LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); + LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); + PMul1->Exchange = true; + R.AddMulPair(PMul0, PMul1); + return true; + } + } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && + AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { + LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); + LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); + LLVM_DEBUG(dbgs() << " and swapping muls\n"); + PMul0->Exchange = true; + // Only the second operand can be exchanged, so swap the muls. + R.AddMulPair(PMul1, PMul0); + return true; + } + } + return false; + }; + + OpChainList &Muls = R.getMuls(); + const unsigned Elems = Muls.size(); + SmallPtrSet<const Instruction*, 4> Paired; + for (unsigned i = 0; i < Elems; ++i) { + BinOpChain *PMul0 = static_cast<BinOpChain*>(Muls[i].get()); + if (Paired.count(PMul0->Root)) + continue; + + for (unsigned j = 0; j < Elems; ++j) { + if (i == j) + continue; + + BinOpChain *PMul1 = static_cast<BinOpChain*>(Muls[j].get()); + if (Paired.count(PMul1->Root)) + continue; + + const Instruction *Mul0 = PMul0->Root; + const Instruction *Mul1 = PMul1->Root; + if (Mul0 == Mul1) + continue; + + assert(PMul0 != PMul1 && "expected different chains"); + + if (CanPair(R, PMul0, PMul1)) { + Paired.insert(Mul0); + Paired.insert(Mul1); + break; + } + } + } + return !R.getMulPairs().empty(); +} + + +void ARMParallelDSP::InsertParallelMACs(Reduction &R) { + + auto CreateSMLADCall = [&](SmallVectorImpl<LoadInst*> &VecLd0, + SmallVectorImpl<LoadInst*> &VecLd1, + Value *Acc, bool Exchange, + Instruction *InsertAfter) { + // Replace the reduction chain with an intrinsic call + IntegerType *Ty = IntegerType::get(M->getContext(), 32); + LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? + WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty); + LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? + WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty); + + Value* Args[] = { WideLd0, WideLd1, Acc }; + Function *SMLAD = nullptr; + if (Exchange) + SMLAD = Acc->getType()->isIntegerTy(32) ? + Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : + Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); + else + SMLAD = Acc->getType()->isIntegerTy(32) ? + Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : + Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); + + IRBuilder<NoFolder> Builder(InsertAfter->getParent(), + ++BasicBlock::iterator(InsertAfter)); + Instruction *Call = Builder.CreateCall(SMLAD, Args); + NumSMLAD++; + return Call; + }; + + Instruction *InsertAfter = R.getRoot(); + Value *Acc = R.getAccumulator(); + if (!Acc) + Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); + + LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n" + << "Acc: " << *Acc << "\n"); + for (auto &Pair : R.getMulPairs()) { + BinOpChain *PMul0 = Pair.first; + BinOpChain *PMul1 = Pair.second; + LLVM_DEBUG(dbgs() << "Muls:\n" + << "- " << *PMul0->Root << "\n" + << "- " << *PMul1->Root << "\n"); + + Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, + InsertAfter); + InsertAfter = cast<Instruction>(Acc); + } + R.UpdateRoot(cast<Instruction>(Acc)); +} + +LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, + IntegerType *LoadTy) { + assert(Loads.size() == 2 && "currently only support widening two loads"); + + LoadInst *Base = Loads[0]; + LoadInst *Offset = Loads[1]; + + Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); + Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); + + assert((BaseSExt && OffsetSExt) + && "Loads should have a single, extending, user"); + + std::function<void(Value*, Value*)> MoveBefore = + [&](Value *A, Value *B) -> void { + if (!isa<Instruction>(A) || !isa<Instruction>(B)) + return; + + auto *Source = cast<Instruction>(A); + auto *Sink = cast<Instruction>(B); + + if (DT->dominates(Source, Sink) || + Source->getParent() != Sink->getParent() || + isa<PHINode>(Source) || isa<PHINode>(Sink)) + return; + + Source->moveBefore(Sink); + for (auto &U : Source->uses()) + MoveBefore(Source, U.getUser()); + }; + + // Insert the load at the point of the original dominating load. + LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; + IRBuilder<NoFolder> IRB(DomLoad->getParent(), + ++BasicBlock::iterator(DomLoad)); + + // Bitcast the pointer to a wider type and create the wide load, while making + // sure to maintain the original alignment as this prevents ldrd from being + // generated when it could be illegal due to memory alignment. + const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); + Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), + LoadTy->getPointerTo(AddrSpace)); + LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, + Base->getAlignment()); + + // Make sure everything is in the correct order in the basic block. + MoveBefore(Base->getPointerOperand(), VecPtr); + MoveBefore(VecPtr, WideLoad); + + // From the wide load, create two values that equal the original two loads. + // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. + // TODO: Support big-endian as well. + Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); + BaseSExt->setOperand(0, Bottom); + + IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); + Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); + Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); + Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); + OffsetSExt->setOperand(0, Trunc); + + WideLoads.emplace(std::make_pair(Base, + make_unique<WidenedLoad>(Loads, WideLoad))); + return WideLoad; +} + +// Compare the value lists in Other to this chain. +bool BinOpChain::AreSymmetrical(BinOpChain *Other) { + // Element-by-element comparison of Value lists returning true if they are + // instructions with the same opcode or constants with the same value. + auto CompareValueList = [](const ValueList &VL0, + const ValueList &VL1) { + if (VL0.size() != VL1.size()) { + LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " + << VL0.size() << " != " << VL1.size() << "\n"); + return false; + } + + const unsigned Pairs = VL0.size(); + + for (unsigned i = 0; i < Pairs; ++i) { + const Value *V0 = VL0[i]; + const Value *V1 = VL1[i]; + const auto *Inst0 = dyn_cast<Instruction>(V0); + const auto *Inst1 = dyn_cast<Instruction>(V1); + + if (!Inst0 || !Inst1) + return false; + + if (Inst0->isSameOperationAs(Inst1)) + continue; + + const APInt *C0, *C1; + if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) + return false; + } + + return true; + }; + + return CompareValueList(LHS, Other->LHS) && + CompareValueList(RHS, Other->RHS); +} + +Pass *llvm::createARMParallelDSPPass() { + return new ARMParallelDSP(); +} + +char ARMParallelDSP::ID = 0; + +INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", + "Transform loops to use DSP intrinsics", false, false) +INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", + "Transform loops to use DSP intrinsics", false, false) |
