summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp2530
1 files changed, 2530 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
new file mode 100644
index 000000000000..3368ee4fb3b9
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
@@ -0,0 +1,2530 @@
+//===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonFrameLowering.h"
+#include "HexagonBlockRanges.h"
+#include "HexagonInstrInfo.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "MCTargetDesc/HexagonBaseInfo.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/LivePhysRegs.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCDwarf.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <limits>
+#include <map>
+#include <utility>
+#include <vector>
+
+#define DEBUG_TYPE "hexagon-pei"
+
+// Hexagon stack frame layout as defined by the ABI:
+//
+// Incoming arguments
+// passed via stack
+// |
+// |
+// SP during function's FP during function's |
+// +-- runtime (top of stack) runtime (bottom) --+ |
+// | | |
+// --++---------------------+------------------+-----------------++-+-------
+// | parameter area for | variable-size | fixed-size |LR| arg
+// | called functions | local objects | local objects |FP|
+// --+----------------------+------------------+-----------------+--+-------
+// <- size known -> <- size unknown -> <- size known ->
+//
+// Low address High address
+//
+// <--- stack growth
+//
+//
+// - In any circumstances, the outgoing function arguments are always accessi-
+// ble using the SP, and the incoming arguments are accessible using the FP.
+// - If the local objects are not aligned, they can always be accessed using
+// the FP.
+// - If there are no variable-sized objects, the local objects can always be
+// accessed using the SP, regardless whether they are aligned or not. (The
+// alignment padding will be at the bottom of the stack (highest address),
+// and so the offset with respect to the SP will be known at the compile-
+// -time.)
+//
+// The only complication occurs if there are both, local aligned objects, and
+// dynamically allocated (variable-sized) objects. The alignment pad will be
+// placed between the FP and the local objects, thus preventing the use of the
+// FP to access the local objects. At the same time, the variable-sized objects
+// will be between the SP and the local objects, thus introducing an unknown
+// distance from the SP to the locals.
+//
+// To avoid this problem, a new register is created that holds the aligned
+// address of the bottom of the stack, referred in the sources as AP (aligned
+// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
+// that aligns AP to the required boundary (a maximum of the alignments of
+// all stack objects, fixed- and variable-sized). All local objects[1] will
+// then use AP as the base pointer.
+// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
+// their name from being allocated at fixed locations on the stack, relative
+// to the FP. In the presence of dynamic allocation and local alignment, such
+// objects can only be accessed through the FP.
+//
+// Illustration of the AP:
+// FP --+
+// |
+// ---------------+---------------------+-----+-----------------------++-+--
+// Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
+// stack frame | (aligned) | | (CSR, spills, etc.) |FP|
+// ---------------+---------------------+-----+-----------------+-----+--+--
+// |<-- Multiple of the -->|
+// stack alignment +-- AP
+//
+// The AP is set up at the beginning of the function. Since it is not a dedi-
+// cated (reserved) register, it needs to be kept live throughout the function
+// to be available as the base register for local object accesses.
+// Normally, an address of a stack objects is obtained by a pseudo-instruction
+// PS_fi. To access local objects with the AP register present, a different
+// pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
+// argument compared to PS_fi: the first input register is the AP register.
+// This keeps the register live between its definition and its uses.
+
+// The AP register is originally set up using pseudo-instruction PS_aligna:
+// AP = PS_aligna A
+// where
+// A - required stack alignment
+// The alignment value must be the maximum of all alignments required by
+// any stack object.
+
+// The dynamic allocation uses a pseudo-instruction PS_alloca:
+// Rd = PS_alloca Rs, A
+// where
+// Rd - address of the allocated space
+// Rs - minimum size (the actual allocated can be larger to accommodate
+// alignment)
+// A - required alignment
+
+using namespace llvm;
+
+static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
+ cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
+
+static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
+ cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
+ cl::ZeroOrMore);
+
+static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
+ cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
+ cl::init(6), cl::ZeroOrMore);
+
+static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
+ cl::Hidden, cl::desc("Specify Os spill func threshold"),
+ cl::init(1), cl::ZeroOrMore);
+
+static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
+ cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
+ cl::init(false), cl::ZeroOrMore);
+
+static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
+ cl::init(true), cl::Hidden, cl::ZeroOrMore,
+ cl::desc("Enable stack frame shrink wrapping"));
+
+static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit",
+ cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore,
+ cl::desc("Max count of stack frame shrink-wraps"));
+
+static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long",
+ cl::Hidden, cl::desc("Enable long calls for save-restore stubs."),
+ cl::init(false), cl::ZeroOrMore);
+
+static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
+ cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
+
+static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
+ cl::init(true), cl::desc("Optimize spill slots"));
+
+#ifndef NDEBUG
+static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
+ cl::init(std::numeric_limits<unsigned>::max()));
+static unsigned SpillOptCount = 0;
+#endif
+
+namespace llvm {
+
+ void initializeHexagonCallFrameInformationPass(PassRegistry&);
+ FunctionPass *createHexagonCallFrameInformation();
+
+} // end namespace llvm
+
+namespace {
+
+ class HexagonCallFrameInformation : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ HexagonCallFrameInformation() : MachineFunctionPass(ID) {
+ PassRegistry &PR = *PassRegistry::getPassRegistry();
+ initializeHexagonCallFrameInformationPass(PR);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+ };
+
+ char HexagonCallFrameInformation::ID = 0;
+
+} // end anonymous namespace
+
+bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
+ auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
+ bool NeedCFI = MF.getMMI().hasDebugInfo() ||
+ MF.getFunction().needsUnwindTableEntry();
+
+ if (!NeedCFI)
+ return false;
+ HFI.insertCFIInstructions(MF);
+ return true;
+}
+
+INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
+ "Hexagon call frame information", false, false)
+
+FunctionPass *llvm::createHexagonCallFrameInformation() {
+ return new HexagonCallFrameInformation();
+}
+
+/// Map a register pair Reg to the subregister that has the greater "number",
+/// i.e. D3 (aka R7:6) will be mapped to R7, etc.
+static unsigned getMax32BitSubRegister(unsigned Reg,
+ const TargetRegisterInfo &TRI,
+ bool hireg = true) {
+ if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
+ return Reg;
+
+ unsigned RegNo = 0;
+ for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
+ if (hireg) {
+ if (*SubRegs > RegNo)
+ RegNo = *SubRegs;
+ } else {
+ if (!RegNo || *SubRegs < RegNo)
+ RegNo = *SubRegs;
+ }
+ }
+ return RegNo;
+}
+
+/// Returns the callee saved register with the largest id in the vector.
+static unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo &TRI) {
+ static_assert(Hexagon::R1 > 0,
+ "Assume physical registers are encoded as positive integers");
+ if (CSI.empty())
+ return 0;
+
+ unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
+ for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
+ unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
+ if (Reg > Max)
+ Max = Reg;
+ }
+ return Max;
+}
+
+/// Checks if the basic block contains any instruction that needs a stack
+/// frame to be already in place.
+static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
+ const HexagonRegisterInfo &HRI) {
+ for (auto &I : MBB) {
+ const MachineInstr *MI = &I;
+ if (MI->isCall())
+ return true;
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case Hexagon::PS_alloca:
+ case Hexagon::PS_aligna:
+ return true;
+ default:
+ break;
+ }
+ // Check individual operands.
+ for (const MachineOperand &MO : MI->operands()) {
+ // While the presence of a frame index does not prove that a stack
+ // frame will be required, all frame indexes should be within alloc-
+ // frame/deallocframe. Otherwise, the code that translates a frame
+ // index into an offset would have to be aware of the placement of
+ // the frame creation/destruction instructions.
+ if (MO.isFI())
+ return true;
+ if (MO.isReg()) {
+ unsigned R = MO.getReg();
+ // Virtual registers will need scavenging, which then may require
+ // a stack slot.
+ if (TargetRegisterInfo::isVirtualRegister(R))
+ return true;
+ for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
+ if (CSR[*S])
+ return true;
+ continue;
+ }
+ if (MO.isRegMask()) {
+ // A regmask would normally have all callee-saved registers marked
+ // as preserved, so this check would not be needed, but in case of
+ // ever having other regmasks (for other calling conventions),
+ // make sure they would be processed correctly.
+ const uint32_t *BM = MO.getRegMask();
+ for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
+ unsigned R = x;
+ // If this regmask does not preserve a CSR, a frame will be needed.
+ if (!(BM[R/32] & (1u << (R%32))))
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+}
+
+ /// Returns true if MBB has a machine instructions that indicates a tail call
+ /// in the block.
+static bool hasTailCall(const MachineBasicBlock &MBB) {
+ MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return false;
+ unsigned RetOpc = I->getOpcode();
+ return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
+}
+
+/// Returns true if MBB contains an instruction that returns.
+static bool hasReturn(const MachineBasicBlock &MBB) {
+ for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
+ if (I->isReturn())
+ return true;
+ return false;
+}
+
+/// Returns the "return" instruction from this block, or nullptr if there
+/// isn't any.
+static MachineInstr *getReturn(MachineBasicBlock &MBB) {
+ for (auto &I : MBB)
+ if (I.isReturn())
+ return &I;
+ return nullptr;
+}
+
+static bool isRestoreCall(unsigned Opc) {
+ switch (Opc) {
+ case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
+ case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
+ case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
+ case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
+ case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
+ case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
+ case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
+ case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
+ return true;
+ }
+ return false;
+}
+
+static inline bool isOptNone(const MachineFunction &MF) {
+ return MF.getFunction().hasOptNone() ||
+ MF.getTarget().getOptLevel() == CodeGenOpt::None;
+}
+
+static inline bool isOptSize(const MachineFunction &MF) {
+ const Function &F = MF.getFunction();
+ return F.hasOptSize() && !F.hasMinSize();
+}
+
+static inline bool isMinSize(const MachineFunction &MF) {
+ return MF.getFunction().hasMinSize();
+}
+
+/// Implements shrink-wrapping of the stack frame. By default, stack frame
+/// is created in the function entry block, and is cleaned up in every block
+/// that returns. This function finds alternate blocks: one for the frame
+/// setup (prolog) and one for the cleanup (epilog).
+void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
+ MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
+ static unsigned ShrinkCounter = 0;
+
+ if (ShrinkLimit.getPosition()) {
+ if (ShrinkCounter >= ShrinkLimit)
+ return;
+ ShrinkCounter++;
+ }
+
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+
+ MachineDominatorTree MDT;
+ MDT.runOnMachineFunction(MF);
+ MachinePostDominatorTree MPT;
+ MPT.runOnMachineFunction(MF);
+
+ using UnsignedMap = DenseMap<unsigned, unsigned>;
+ using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
+
+ UnsignedMap RPO;
+ RPOTType RPOT(&MF);
+ unsigned RPON = 0;
+ for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
+ RPO[(*I)->getNumber()] = RPON++;
+
+ // Don't process functions that have loops, at least for now. Placement
+ // of prolog and epilog must take loop structure into account. For simpli-
+ // city don't do it right now.
+ for (auto &I : MF) {
+ unsigned BN = RPO[I.getNumber()];
+ for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
+ // If found a back-edge, return.
+ if (RPO[(*SI)->getNumber()] <= BN)
+ return;
+ }
+ }
+
+ // Collect the set of blocks that need a stack frame to execute. Scan
+ // each block for uses/defs of callee-saved registers, calls, etc.
+ SmallVector<MachineBasicBlock*,16> SFBlocks;
+ BitVector CSR(Hexagon::NUM_TARGET_REGS);
+ for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
+ for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
+ CSR[*S] = true;
+
+ for (auto &I : MF)
+ if (needsStackFrame(I, CSR, HRI))
+ SFBlocks.push_back(&I);
+
+ LLVM_DEBUG({
+ dbgs() << "Blocks needing SF: {";
+ for (auto &B : SFBlocks)
+ dbgs() << " " << printMBBReference(*B);
+ dbgs() << " }\n";
+ });
+ // No frame needed?
+ if (SFBlocks.empty())
+ return;
+
+ // Pick a common dominator and a common post-dominator.
+ MachineBasicBlock *DomB = SFBlocks[0];
+ for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
+ DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
+ if (!DomB)
+ break;
+ }
+ MachineBasicBlock *PDomB = SFBlocks[0];
+ for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
+ PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
+ if (!PDomB)
+ break;
+ }
+ LLVM_DEBUG({
+ dbgs() << "Computed dom block: ";
+ if (DomB)
+ dbgs() << printMBBReference(*DomB);
+ else
+ dbgs() << "<null>";
+ dbgs() << ", computed pdom block: ";
+ if (PDomB)
+ dbgs() << printMBBReference(*PDomB);
+ else
+ dbgs() << "<null>";
+ dbgs() << "\n";
+ });
+ if (!DomB || !PDomB)
+ return;
+
+ // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
+ if (!MDT.dominates(DomB, PDomB)) {
+ LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
+ return;
+ }
+ if (!MPT.dominates(PDomB, DomB)) {
+ LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
+ return;
+ }
+
+ // Finally, everything seems right.
+ PrologB = DomB;
+ EpilogB = PDomB;
+}
+
+/// Perform most of the PEI work here:
+/// - saving/restoring of the callee-saved registers,
+/// - stack frame creation and destruction.
+/// Normally, this work is distributed among various functions, but doing it
+/// in one place allows shrink-wrapping of the stack frame.
+void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
+
+ MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
+ if (EnableShrinkWrapping)
+ findShrunkPrologEpilog(MF, PrologB, EpilogB);
+
+ bool PrologueStubs = false;
+ insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
+ insertPrologueInBlock(*PrologB, PrologueStubs);
+ updateEntryPaths(MF, *PrologB);
+
+ if (EpilogB) {
+ insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
+ insertEpilogueInBlock(*EpilogB);
+ } else {
+ for (auto &B : MF)
+ if (B.isReturnBlock())
+ insertCSRRestoresInBlock(B, CSI, HRI);
+
+ for (auto &B : MF)
+ if (B.isReturnBlock())
+ insertEpilogueInBlock(B);
+
+ for (auto &B : MF) {
+ if (B.empty())
+ continue;
+ MachineInstr *RetI = getReturn(B);
+ if (!RetI || isRestoreCall(RetI->getOpcode()))
+ continue;
+ for (auto &R : CSI)
+ RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
+ }
+ }
+
+ if (EpilogB) {
+ // If there is an epilog block, it may not have a return instruction.
+ // In such case, we need to add the callee-saved registers as live-ins
+ // in all blocks on all paths from the epilog to any return block.
+ unsigned MaxBN = MF.getNumBlockIDs();
+ BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
+ updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
+ }
+}
+
+/// Returns true if the target can safely skip saving callee-saved registers
+/// for noreturn nounwind functions.
+bool HexagonFrameLowering::enableCalleeSaveSkip(
+ const MachineFunction &MF) const {
+ const auto &F = MF.getFunction();
+ assert(F.hasFnAttribute(Attribute::NoReturn) &&
+ F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
+ !F.getFunction().hasFnAttribute(Attribute::UWTable));
+ (void)F;
+
+ // No need to save callee saved registers if the function does not return.
+ return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
+}
+
+// Helper function used to determine when to eliminate the stack frame for
+// functions marked as noreturn and when the noreturn-stack-elim options are
+// specified. When both these conditions are true, then a FP may not be needed
+// if the function makes a call. It is very similar to enableCalleeSaveSkip,
+// but it used to check if the allocframe can be eliminated as well.
+static bool enableAllocFrameElim(const MachineFunction &MF) {
+ const auto &F = MF.getFunction();
+ const auto &MFI = MF.getFrameInfo();
+ const auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ assert(!MFI.hasVarSizedObjects() &&
+ !HST.getRegisterInfo()->needsStackRealignment(MF));
+ return F.hasFnAttribute(Attribute::NoReturn) &&
+ F.hasFnAttribute(Attribute::NoUnwind) &&
+ !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
+ MFI.getStackSize() == 0;
+}
+
+void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
+ bool PrologueStubs) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+ auto &HRI = *HST.getRegisterInfo();
+
+ unsigned MaxAlign = std::max(MFI.getMaxAlignment(), getStackAlignment());
+
+ // Calculate the total stack frame size.
+ // Get the number of bytes to allocate from the FrameInfo.
+ unsigned FrameSize = MFI.getStackSize();
+ // Round up the max call frame size to the max alignment on the stack.
+ unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
+ MFI.setMaxCallFrameSize(MaxCFA);
+
+ FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
+ MFI.setStackSize(FrameSize);
+
+ bool AlignStack = (MaxAlign > getStackAlignment());
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ unsigned NumBytes = MFI.getStackSize();
+ unsigned SP = HRI.getStackRegister();
+ unsigned MaxCF = MFI.getMaxCallFrameSize();
+ MachineBasicBlock::iterator InsertPt = MBB.begin();
+
+ SmallVector<MachineInstr *, 4> AdjustRegs;
+ for (auto &MBB : MF)
+ for (auto &MI : MBB)
+ if (MI.getOpcode() == Hexagon::PS_alloca)
+ AdjustRegs.push_back(&MI);
+
+ for (auto MI : AdjustRegs) {
+ assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
+ expandAlloca(MI, HII, SP, MaxCF);
+ MI->eraseFromParent();
+ }
+
+ DebugLoc dl = MBB.findDebugLoc(InsertPt);
+
+ if (hasFP(MF)) {
+ insertAllocframe(MBB, InsertPt, NumBytes);
+ if (AlignStack) {
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
+ .addReg(SP)
+ .addImm(-int64_t(MaxAlign));
+ }
+ // If the stack-checking is enabled, and we spilled the callee-saved
+ // registers inline (i.e. did not use a spill function), then call
+ // the stack checker directly.
+ if (EnableStackOVFSanitizer && !PrologueStubs)
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
+ .addExternalSymbol("__runtime_stack_check");
+ } else if (NumBytes > 0) {
+ assert(alignTo(NumBytes, 8) == NumBytes);
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
+ .addReg(SP)
+ .addImm(-int(NumBytes));
+ }
+}
+
+void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
+ MachineFunction &MF = *MBB.getParent();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+ auto &HRI = *HST.getRegisterInfo();
+ unsigned SP = HRI.getStackRegister();
+
+ MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
+ DebugLoc dl = MBB.findDebugLoc(InsertPt);
+
+ if (!hasFP(MF)) {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ if (unsigned NumBytes = MFI.getStackSize()) {
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
+ .addReg(SP)
+ .addImm(NumBytes);
+ }
+ return;
+ }
+
+ MachineInstr *RetI = getReturn(MBB);
+ unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
+
+ // Handle EH_RETURN.
+ if (RetOpc == Hexagon::EH_RETURN_JMPR) {
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
+ .addDef(Hexagon::D15)
+ .addReg(Hexagon::R30);
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
+ .addReg(SP)
+ .addReg(Hexagon::R28);
+ return;
+ }
+
+ // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
+ // frame instruction if we encounter it.
+ if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
+ RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
+ RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
+ RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
+ MachineBasicBlock::iterator It = RetI;
+ ++It;
+ // Delete all instructions after the RESTORE (except labels).
+ while (It != MBB.end()) {
+ if (!It->isLabel())
+ It = MBB.erase(It);
+ else
+ ++It;
+ }
+ return;
+ }
+
+ // It is possible that the restoring code is a call to a library function.
+ // All of the restore* functions include "deallocframe", so we need to make
+ // sure that we don't add an extra one.
+ bool NeedsDeallocframe = true;
+ if (!MBB.empty() && InsertPt != MBB.begin()) {
+ MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
+ unsigned COpc = PrevIt->getOpcode();
+ if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
+ COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
+ COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
+ COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
+ COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
+ NeedsDeallocframe = false;
+ }
+
+ if (!NeedsDeallocframe)
+ return;
+ // If the returning instruction is PS_jmpret, replace it with dealloc_return,
+ // otherwise just add deallocframe. The function could be returning via a
+ // tail call.
+ if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
+ .addDef(Hexagon::D15)
+ .addReg(Hexagon::R30);
+ return;
+ }
+ unsigned NewOpc = Hexagon::L4_return;
+ MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
+ .addDef(Hexagon::D15)
+ .addReg(Hexagon::R30);
+ // Transfer the function live-out registers.
+ NewI->copyImplicitOps(MF, *RetI);
+ MBB.erase(RetI);
+}
+
+void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
+ MachineFunction &MF = *MBB.getParent();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+ auto &HRI = *HST.getRegisterInfo();
+
+ // Check for overflow.
+ // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
+ const unsigned int ALLOCFRAME_MAX = 16384;
+
+ // Create a dummy memory operand to avoid allocframe from being treated as
+ // a volatile memory reference.
+ auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
+ MachineMemOperand::MOStore, 4, 4);
+
+ DebugLoc dl = MBB.findDebugLoc(InsertPt);
+ unsigned SP = HRI.getStackRegister();
+
+ if (NumBytes >= ALLOCFRAME_MAX) {
+ // Emit allocframe(#0).
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
+ .addDef(SP)
+ .addReg(SP)
+ .addImm(0)
+ .addMemOperand(MMO);
+
+ // Subtract the size from the stack pointer.
+ unsigned SP = HRI.getStackRegister();
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
+ .addReg(SP)
+ .addImm(-int(NumBytes));
+ } else {
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
+ .addDef(SP)
+ .addReg(SP)
+ .addImm(NumBytes)
+ .addMemOperand(MMO);
+ }
+}
+
+void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
+ MachineBasicBlock &SaveB) const {
+ SetVector<unsigned> Worklist;
+
+ MachineBasicBlock &EntryB = MF.front();
+ Worklist.insert(EntryB.getNumber());
+
+ unsigned SaveN = SaveB.getNumber();
+ auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
+
+ for (unsigned i = 0; i < Worklist.size(); ++i) {
+ unsigned BN = Worklist[i];
+ MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
+ for (auto &R : CSI)
+ if (!MBB.isLiveIn(R.getReg()))
+ MBB.addLiveIn(R.getReg());
+ if (BN != SaveN)
+ for (auto &SB : MBB.successors())
+ Worklist.insert(SB->getNumber());
+ }
+}
+
+bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
+ MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
+ BitVector &Path) const {
+ assert(MBB.getNumber() >= 0);
+ unsigned BN = MBB.getNumber();
+ if (Path[BN] || DoneF[BN])
+ return false;
+ if (DoneT[BN])
+ return true;
+
+ auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
+
+ Path[BN] = true;
+ bool ReachedExit = false;
+ for (auto &SB : MBB.successors())
+ ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
+
+ if (!MBB.empty() && MBB.back().isReturn()) {
+ // Add implicit uses of all callee-saved registers to the reached
+ // return instructions. This is to prevent the anti-dependency breaker
+ // from renaming these registers.
+ MachineInstr &RetI = MBB.back();
+ if (!isRestoreCall(RetI.getOpcode()))
+ for (auto &R : CSI)
+ RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
+ ReachedExit = true;
+ }
+
+ // We don't want to add unnecessary live-ins to the restore block: since
+ // the callee-saved registers are being defined in it, the entry of the
+ // restore block cannot be on the path from the definitions to any exit.
+ if (ReachedExit && &MBB != &RestoreB) {
+ for (auto &R : CSI)
+ if (!MBB.isLiveIn(R.getReg()))
+ MBB.addLiveIn(R.getReg());
+ DoneT[BN] = true;
+ }
+ if (!ReachedExit)
+ DoneF[BN] = true;
+
+ Path[BN] = false;
+ return ReachedExit;
+}
+
+static Optional<MachineBasicBlock::iterator>
+findCFILocation(MachineBasicBlock &B) {
+ // The CFI instructions need to be inserted right after allocframe.
+ // An exception to this is a situation where allocframe is bundled
+ // with a call: then the CFI instructions need to be inserted before
+ // the packet with the allocframe+call (in case the call throws an
+ // exception).
+ auto End = B.instr_end();
+
+ for (MachineInstr &I : B) {
+ MachineBasicBlock::iterator It = I.getIterator();
+ if (!I.isBundle()) {
+ if (I.getOpcode() == Hexagon::S2_allocframe)
+ return std::next(It);
+ continue;
+ }
+ // I is a bundle.
+ bool HasCall = false, HasAllocFrame = false;
+ auto T = It.getInstrIterator();
+ while (++T != End && T->isBundled()) {
+ if (T->getOpcode() == Hexagon::S2_allocframe)
+ HasAllocFrame = true;
+ else if (T->isCall())
+ HasCall = true;
+ }
+ if (HasAllocFrame)
+ return HasCall ? It : std::next(It);
+ }
+ return None;
+}
+
+void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
+ for (auto &B : MF) {
+ auto At = findCFILocation(B);
+ if (At.hasValue())
+ insertCFIInstructionsAt(B, At.getValue());
+ }
+}
+
+void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator At) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+ auto &HRI = *HST.getRegisterInfo();
+
+ // If CFI instructions have debug information attached, something goes
+ // wrong with the final assembly generation: the prolog_end is placed
+ // in a wrong location.
+ DebugLoc DL;
+ const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
+
+ MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
+ bool HasFP = hasFP(MF);
+
+ if (HasFP) {
+ unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
+ unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
+
+ // Define CFA via an offset from the value of FP.
+ //
+ // -8 -4 0 (SP)
+ // --+----+----+---------------------
+ // | FP | LR | increasing addresses -->
+ // --+----+----+---------------------
+ // | +-- Old SP (before allocframe)
+ // +-- New FP (after allocframe)
+ //
+ // MCCFIInstruction::createDefCfa subtracts the offset from the register.
+ // MCCFIInstruction::createOffset takes the offset without sign change.
+ auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MF.addFrameInst(DefCfa));
+ // R31 (return addr) = CFA - 4
+ auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MF.addFrameInst(OffR31));
+ // R30 (frame ptr) = CFA - 8
+ auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MF.addFrameInst(OffR30));
+ }
+
+ static unsigned int RegsToMove[] = {
+ Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
+ Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
+ Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
+ Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
+ Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9,
+ Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
+ Hexagon::NoRegister
+ };
+
+ const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
+
+ for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
+ unsigned Reg = RegsToMove[i];
+ auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
+ return C.getReg() == Reg;
+ };
+ auto F = find_if(CSI, IfR);
+ if (F == CSI.end())
+ continue;
+
+ int64_t Offset;
+ if (HasFP) {
+ // If the function has a frame pointer (i.e. has an allocframe),
+ // then the CFA has been defined in terms of FP. Any offsets in
+ // the following CFI instructions have to be defined relative
+ // to FP, which points to the bottom of the stack frame.
+ // The function getFrameIndexReference can still choose to use SP
+ // for the offset calculation, so we cannot simply call it here.
+ // Instead, get the offset (relative to the FP) directly.
+ Offset = MFI.getObjectOffset(F->getFrameIdx());
+ } else {
+ unsigned FrameReg;
+ Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg);
+ }
+ // Subtract 8 to make room for R30 and R31, which are added above.
+ Offset -= 8;
+
+ if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
+ unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
+ auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
+ Offset);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MF.addFrameInst(OffReg));
+ } else {
+ // Split the double regs into subregs, and generate appropriate
+ // cfi_offsets.
+ // The only reason, we are split double regs is, llvm-mc does not
+ // understand paired registers for cfi_offset.
+ // Eg .cfi_offset r1:0, -64
+
+ unsigned HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
+ unsigned LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
+ unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
+ unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
+ auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
+ Offset+4);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MF.addFrameInst(OffHi));
+ auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
+ Offset);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MF.addFrameInst(OffLo));
+ }
+ }
+}
+
+bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
+ if (MF.getFunction().hasFnAttribute(Attribute::Naked))
+ return false;
+
+ auto &MFI = MF.getFrameInfo();
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+ bool HasExtraAlign = HRI.needsStackRealignment(MF);
+ bool HasAlloca = MFI.hasVarSizedObjects();
+
+ // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
+ // that this shouldn't be required, but doing so now because gcc does and
+ // gdb can't break at the start of the function without it. Will remove if
+ // this turns out to be a gdb bug.
+ //
+ if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
+ return true;
+
+ // By default we want to use SP (since it's always there). FP requires
+ // some setup (i.e. ALLOCFRAME).
+ // Both, alloca and stack alignment modify the stack pointer by an
+ // undetermined value, so we need to save it at the entry to the function
+ // (i.e. use allocframe).
+ if (HasAlloca || HasExtraAlign)
+ return true;
+
+ if (MFI.getStackSize() > 0) {
+ // If FP-elimination is disabled, we have to use FP at this point.
+ const TargetMachine &TM = MF.getTarget();
+ if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
+ return true;
+ if (EnableStackOVFSanitizer)
+ return true;
+ }
+
+ const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
+ if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
+ return true;
+
+ return false;
+}
+
+enum SpillKind {
+ SK_ToMem,
+ SK_FromMem,
+ SK_FromMemTailcall
+};
+
+static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
+ bool Stkchk = false) {
+ const char * V4SpillToMemoryFunctions[] = {
+ "__save_r16_through_r17",
+ "__save_r16_through_r19",
+ "__save_r16_through_r21",
+ "__save_r16_through_r23",
+ "__save_r16_through_r25",
+ "__save_r16_through_r27" };
+
+ const char * V4SpillToMemoryStkchkFunctions[] = {
+ "__save_r16_through_r17_stkchk",
+ "__save_r16_through_r19_stkchk",
+ "__save_r16_through_r21_stkchk",
+ "__save_r16_through_r23_stkchk",
+ "__save_r16_through_r25_stkchk",
+ "__save_r16_through_r27_stkchk" };
+
+ const char * V4SpillFromMemoryFunctions[] = {
+ "__restore_r16_through_r17_and_deallocframe",
+ "__restore_r16_through_r19_and_deallocframe",
+ "__restore_r16_through_r21_and_deallocframe",
+ "__restore_r16_through_r23_and_deallocframe",
+ "__restore_r16_through_r25_and_deallocframe",
+ "__restore_r16_through_r27_and_deallocframe" };
+
+ const char * V4SpillFromMemoryTailcallFunctions[] = {
+ "__restore_r16_through_r17_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r19_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r21_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r23_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r25_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r27_and_deallocframe_before_tailcall"
+ };
+
+ const char **SpillFunc = nullptr;
+
+ switch(SpillType) {
+ case SK_ToMem:
+ SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
+ : V4SpillToMemoryFunctions;
+ break;
+ case SK_FromMem:
+ SpillFunc = V4SpillFromMemoryFunctions;
+ break;
+ case SK_FromMemTailcall:
+ SpillFunc = V4SpillFromMemoryTailcallFunctions;
+ break;
+ }
+ assert(SpillFunc && "Unknown spill kind");
+
+ // Spill all callee-saved registers up to the highest register used.
+ switch (MaxReg) {
+ case Hexagon::R17:
+ return SpillFunc[0];
+ case Hexagon::R19:
+ return SpillFunc[1];
+ case Hexagon::R21:
+ return SpillFunc[2];
+ case Hexagon::R23:
+ return SpillFunc[3];
+ case Hexagon::R25:
+ return SpillFunc[4];
+ case Hexagon::R27:
+ return SpillFunc[5];
+ default:
+ llvm_unreachable("Unhandled maximum callee save register");
+ }
+ return nullptr;
+}
+
+int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
+ int FI, unsigned &FrameReg) const {
+ auto &MFI = MF.getFrameInfo();
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+
+ int Offset = MFI.getObjectOffset(FI);
+ bool HasAlloca = MFI.hasVarSizedObjects();
+ bool HasExtraAlign = HRI.needsStackRealignment(MF);
+ bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
+
+ auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
+ unsigned FrameSize = MFI.getStackSize();
+ unsigned SP = HRI.getStackRegister();
+ unsigned FP = HRI.getFrameRegister();
+ unsigned AP = HMFI.getStackAlignBasePhysReg();
+ // It may happen that AP will be absent even HasAlloca && HasExtraAlign
+ // is true. HasExtraAlign may be set because of vector spills, without
+ // aligned locals or aligned outgoing function arguments. Since vector
+ // spills will ultimately be "unaligned", it is safe to use FP as the
+ // base register.
+ // In fact, in such a scenario the stack is actually not required to be
+ // aligned, although it may end up being aligned anyway, since this
+ // particular case is not easily detectable. The alignment will be
+ // unnecessary, but not incorrect.
+ // Unfortunately there is no quick way to verify that the above is
+ // indeed the case (and that it's not a result of an error), so just
+ // assume that missing AP will be replaced by FP.
+ // (A better fix would be to rematerialize AP from FP and always align
+ // vector spills.)
+ if (AP == 0)
+ AP = FP;
+
+ bool UseFP = false, UseAP = false; // Default: use SP (except at -O0).
+ // Use FP at -O0, except when there are objects with extra alignment.
+ // That additional alignment requirement may cause a pad to be inserted,
+ // which will make it impossible to use FP to access objects located
+ // past the pad.
+ if (NoOpt && !HasExtraAlign)
+ UseFP = true;
+ if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
+ // Fixed and preallocated objects will be located before any padding
+ // so FP must be used to access them.
+ UseFP |= (HasAlloca || HasExtraAlign);
+ } else {
+ if (HasAlloca) {
+ if (HasExtraAlign)
+ UseAP = true;
+ else
+ UseFP = true;
+ }
+ }
+
+ // If FP was picked, then there had better be FP.
+ bool HasFP = hasFP(MF);
+ assert((HasFP || !UseFP) && "This function must have frame pointer");
+
+ // Having FP implies allocframe. Allocframe will store extra 8 bytes:
+ // FP/LR. If the base register is used to access an object across these
+ // 8 bytes, then the offset will need to be adjusted by 8.
+ //
+ // After allocframe:
+ // HexagonISelLowering adds 8 to ---+
+ // the offsets of all stack-based |
+ // arguments (*) |
+ // |
+ // getObjectOffset < 0 0 8 getObjectOffset >= 8
+ // ------------------------+-----+------------------------> increasing
+ // <local objects> |FP/LR| <input arguments> addresses
+ // -----------------+------+-----+------------------------>
+ // | |
+ // SP/AP point --+ +-- FP points here (**)
+ // somewhere on
+ // this side of FP/LR
+ //
+ // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
+ // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
+
+ // The lowering assumes that FP/LR is present, and so the offsets of
+ // the formal arguments start at 8. If FP/LR is not there we need to
+ // reduce the offset by 8.
+ if (Offset > 0 && !HasFP)
+ Offset -= 8;
+
+ if (UseFP)
+ FrameReg = FP;
+ else if (UseAP)
+ FrameReg = AP;
+ else
+ FrameReg = SP;
+
+ // Calculate the actual offset in the instruction. If there is no FP
+ // (in other words, no allocframe), then SP will not be adjusted (i.e.
+ // there will be no SP -= FrameSize), so the frame size should not be
+ // added to the calculated offset.
+ int RealOffset = Offset;
+ if (!UseFP && !UseAP)
+ RealOffset = FrameSize+Offset;
+ return RealOffset;
+}
+
+bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
+ const CSIVect &CSI, const HexagonRegisterInfo &HRI,
+ bool &PrologueStubs) const {
+ if (CSI.empty())
+ return true;
+
+ MachineBasicBlock::iterator MI = MBB.begin();
+ PrologueStubs = false;
+ MachineFunction &MF = *MBB.getParent();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+
+ if (useSpillFunction(MF, CSI)) {
+ PrologueStubs = true;
+ unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
+ bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
+ const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
+ StkOvrFlowEnabled);
+ auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
+ bool IsPIC = HTM.isPositionIndependent();
+ bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
+
+ // Call spill function.
+ DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
+ unsigned SpillOpc;
+ if (StkOvrFlowEnabled) {
+ if (LongCalls)
+ SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
+ : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
+ else
+ SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
+ : Hexagon::SAVE_REGISTERS_CALL_V4STK;
+ } else {
+ if (LongCalls)
+ SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
+ : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
+ else
+ SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
+ : Hexagon::SAVE_REGISTERS_CALL_V4;
+ }
+
+ MachineInstr *SaveRegsCall =
+ BuildMI(MBB, MI, DL, HII.get(SpillOpc))
+ .addExternalSymbol(SpillFun);
+
+ // Add callee-saved registers as use.
+ addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
+ // Add live in registers.
+ for (unsigned I = 0; I < CSI.size(); ++I)
+ MBB.addLiveIn(CSI[I].getReg());
+ return true;
+ }
+
+ for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ // Add live in registers. We treat eh_return callee saved register r0 - r3
+ // specially. They are not really callee saved registers as they are not
+ // supposed to be killed.
+ bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
+ int FI = CSI[i].getFrameIdx();
+ const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
+ HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
+ if (IsKill)
+ MBB.addLiveIn(Reg);
+ }
+ return true;
+}
+
+bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
+ const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
+ MachineFunction &MF = *MBB.getParent();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+
+ if (useRestoreFunction(MF, CSI)) {
+ bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
+ unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
+ SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
+ const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
+ auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
+ bool IsPIC = HTM.isPositionIndependent();
+ bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
+
+ // Call spill function.
+ DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
+ : MBB.findDebugLoc(MBB.end());
+ MachineInstr *DeallocCall = nullptr;
+
+ if (HasTC) {
+ unsigned RetOpc;
+ if (LongCalls)
+ RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
+ : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
+ else
+ RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
+ : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
+ DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
+ .addExternalSymbol(RestoreFn);
+ } else {
+ // The block has a return.
+ MachineBasicBlock::iterator It = MBB.getFirstTerminator();
+ assert(It->isReturn() && std::next(It) == MBB.end());
+ unsigned RetOpc;
+ if (LongCalls)
+ RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
+ : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
+ else
+ RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
+ : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
+ DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
+ .addExternalSymbol(RestoreFn);
+ // Transfer the function live-out registers.
+ DeallocCall->copyImplicitOps(MF, *It);
+ }
+ addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
+ return true;
+ }
+
+ for (unsigned i = 0; i < CSI.size(); ++i) {
+ unsigned Reg = CSI[i].getReg();
+ const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
+ int FI = CSI[i].getFrameIdx();
+ HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
+ }
+
+ return true;
+}
+
+MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
+ MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ MachineInstr &MI = *I;
+ unsigned Opc = MI.getOpcode();
+ (void)Opc; // Silence compiler warning.
+ assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
+ "Cannot handle this call frame pseudo instruction");
+ return MBB.erase(I);
+}
+
+void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
+ MachineFunction &MF, RegScavenger *RS) const {
+ // If this function has uses aligned stack and also has variable sized stack
+ // objects, then we need to map all spill slots to fixed positions, so that
+ // they can be accessed through FP. Otherwise they would have to be accessed
+ // via AP, which may not be available at the particular place in the program.
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool HasAlloca = MFI.hasVarSizedObjects();
+ bool NeedsAlign = (MFI.getMaxAlignment() > getStackAlignment());
+
+ if (!HasAlloca || !NeedsAlign)
+ return;
+
+ unsigned LFS = MFI.getLocalFrameSize();
+ for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
+ if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
+ continue;
+ unsigned S = MFI.getObjectSize(i);
+ // Reduce the alignment to at most 8. This will require unaligned vector
+ // stores if they happen here.
+ unsigned A = std::max(MFI.getObjectAlignment(i), 8U);
+ MFI.setObjectAlignment(i, 8);
+ LFS = alignTo(LFS+S, A);
+ MFI.mapLocalFrameObject(i, -LFS);
+ }
+
+ MFI.setLocalFrameSize(LFS);
+ unsigned A = MFI.getLocalFrameMaxAlign();
+ assert(A <= 8 && "Unexpected local frame alignment");
+ if (A == 0)
+ MFI.setLocalFrameMaxAlign(8);
+ MFI.setUseLocalStackAllocationBlock(true);
+
+ // Set the physical aligned-stack base address register.
+ unsigned AP = 0;
+ if (const MachineInstr *AI = getAlignaInstr(MF))
+ AP = AI->getOperand(0).getReg();
+ auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
+ HMFI.setStackAlignBasePhysReg(AP);
+}
+
+/// Returns true if there are no caller-saved registers available in class RC.
+static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
+ const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
+ for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
+ if (MRI.isPhysRegUsed(*AI))
+ return true;
+ return false;
+ };
+
+ // Check for an unused caller-saved register. Callee-saved registers
+ // have become pristine by now.
+ for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
+ if (!IsUsed(*P))
+ return false;
+
+ // All caller-saved registers are used.
+ return true;
+}
+
+#ifndef NDEBUG
+static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
+ dbgs() << '{';
+ for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
+ unsigned R = x;
+ dbgs() << ' ' << printReg(R, &TRI);
+ }
+ dbgs() << " }";
+}
+#endif
+
+bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
+ const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
+ LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ BitVector SRegs(Hexagon::NUM_TARGET_REGS);
+
+ // Generate a set of unique, callee-saved registers (SRegs), where each
+ // register in the set is maximal in terms of sub-/super-register relation,
+ // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
+
+ // (1) For each callee-saved register, add that register and all of its
+ // sub-registers to SRegs.
+ LLVM_DEBUG(dbgs() << "Initial CS registers: {");
+ for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
+ unsigned R = CSI[i].getReg();
+ LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
+ for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
+ SRegs[*SR] = true;
+ }
+ LLVM_DEBUG(dbgs() << " }\n");
+ LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
+ dbgs() << "\n");
+
+ // (2) For each reserved register, remove that register and all of its
+ // sub- and super-registers from SRegs.
+ BitVector Reserved = TRI->getReservedRegs(MF);
+ for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
+ unsigned R = x;
+ for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
+ SRegs[*SR] = false;
+ }
+ LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI);
+ dbgs() << "\n");
+ LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
+ dbgs() << "\n");
+
+ // (3) Collect all registers that have at least one sub-register in SRegs,
+ // and also have no sub-registers that are reserved. These will be the can-
+ // didates for saving as a whole instead of their individual sub-registers.
+ // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
+ BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
+ for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
+ unsigned R = x;
+ for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
+ TmpSup[*SR] = true;
+ }
+ for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
+ unsigned R = x;
+ for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
+ if (!Reserved[*SR])
+ continue;
+ TmpSup[R] = false;
+ break;
+ }
+ }
+ LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI);
+ dbgs() << "\n");
+
+ // (4) Include all super-registers found in (3) into SRegs.
+ SRegs |= TmpSup;
+ LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
+ dbgs() << "\n");
+
+ // (5) For each register R in SRegs, if any super-register of R is in SRegs,
+ // remove R from SRegs.
+ for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
+ unsigned R = x;
+ for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
+ if (!SRegs[*SR])
+ continue;
+ SRegs[R] = false;
+ break;
+ }
+ }
+ LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
+ dbgs() << "\n");
+
+ // Now, for each register that has a fixed stack slot, create the stack
+ // object for it.
+ CSI.clear();
+
+ using SpillSlot = TargetFrameLowering::SpillSlot;
+
+ unsigned NumFixed;
+ int MinOffset = 0; // CS offsets are negative.
+ const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
+ for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
+ if (!SRegs[S->Reg])
+ continue;
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
+ int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
+ MinOffset = std::min(MinOffset, S->Offset);
+ CSI.push_back(CalleeSavedInfo(S->Reg, FI));
+ SRegs[S->Reg] = false;
+ }
+
+ // There can be some registers that don't have fixed slots. For example,
+ // we need to store R0-R3 in functions with exception handling. For each
+ // such register, create a non-fixed stack object.
+ for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
+ unsigned R = x;
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
+ unsigned Size = TRI->getSpillSize(*RC);
+ int Off = MinOffset - Size;
+ unsigned Align = std::min(TRI->getSpillAlignment(*RC), getStackAlignment());
+ assert(isPowerOf2_32(Align));
+ Off &= -Align;
+ int FI = MFI.CreateFixedSpillStackObject(Size, Off);
+ MinOffset = std::min(MinOffset, Off);
+ CSI.push_back(CalleeSavedInfo(R, FI));
+ SRegs[R] = false;
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "CS information: {";
+ for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
+ int FI = CSI[i].getFrameIdx();
+ int Off = MFI.getObjectOffset(FI);
+ dbgs() << ' ' << printReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
+ if (Off >= 0)
+ dbgs() << '+';
+ dbgs() << Off;
+ }
+ dbgs() << " }\n";
+ });
+
+#ifndef NDEBUG
+ // Verify that all registers were handled.
+ bool MissedReg = false;
+ for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
+ unsigned R = x;
+ dbgs() << printReg(R, TRI) << ' ';
+ MissedReg = true;
+ }
+ if (MissedReg)
+ llvm_unreachable("...there are unhandled callee-saved registers!");
+#endif
+
+ return true;
+}
+
+bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineInstr *MI = &*It;
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned DstR = MI->getOperand(0).getReg();
+ unsigned SrcR = MI->getOperand(1).getReg();
+ if (!Hexagon::ModRegsRegClass.contains(DstR) ||
+ !Hexagon::ModRegsRegClass.contains(SrcR))
+ return false;
+
+ unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
+ BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
+ .addReg(TmpR, RegState::Kill);
+
+ NewRegs.push_back(TmpR);
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineInstr *MI = &*It;
+ if (!MI->getOperand(0).isFI())
+ return false;
+
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Opc = MI->getOpcode();
+ unsigned SrcR = MI->getOperand(2).getReg();
+ bool IsKill = MI->getOperand(2).isKill();
+ int FI = MI->getOperand(0).getIndex();
+
+ // TmpR = C2_tfrpr SrcR if SrcR is a predicate register
+ // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register
+ unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
+ : Hexagon::A2_tfrcrr;
+ BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
+ .addReg(SrcR, getKillRegState(IsKill));
+
+ // S2_storeri_io FI, 0, TmpR
+ BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addReg(TmpR, RegState::Kill)
+ .cloneMemRefs(*MI);
+
+ NewRegs.push_back(TmpR);
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineInstr *MI = &*It;
+ if (!MI->getOperand(1).isFI())
+ return false;
+
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Opc = MI->getOpcode();
+ unsigned DstR = MI->getOperand(0).getReg();
+ int FI = MI->getOperand(1).getIndex();
+
+ // TmpR = L2_loadri_io FI, 0
+ unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .cloneMemRefs(*MI);
+
+ // DstR = C2_tfrrp TmpR if DstR is a predicate register
+ // DstR = A2_tfrrcr TmpR if DstR is a modifier register
+ unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
+ : Hexagon::A2_tfrrcr;
+ BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
+ .addReg(TmpR, RegState::Kill);
+
+ NewRegs.push_back(TmpR);
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineInstr *MI = &*It;
+ if (!MI->getOperand(0).isFI())
+ return false;
+
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned SrcR = MI->getOperand(2).getReg();
+ bool IsKill = MI->getOperand(2).isKill();
+ int FI = MI->getOperand(0).getIndex();
+ auto *RC = &Hexagon::HvxVRRegClass;
+
+ // Insert transfer to general vector register.
+ // TmpR0 = A2_tfrsi 0x01010101
+ // TmpR1 = V6_vandqrt Qx, TmpR0
+ // store FI, 0, TmpR1
+ unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ unsigned TmpR1 = MRI.createVirtualRegister(RC);
+
+ BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
+ .addImm(0x01010101);
+
+ BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
+ .addReg(SrcR, getKillRegState(IsKill))
+ .addReg(TmpR0, RegState::Kill);
+
+ auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
+ HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
+ expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
+
+ NewRegs.push_back(TmpR0);
+ NewRegs.push_back(TmpR1);
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineInstr *MI = &*It;
+ if (!MI->getOperand(1).isFI())
+ return false;
+
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned DstR = MI->getOperand(0).getReg();
+ int FI = MI->getOperand(1).getIndex();
+ auto *RC = &Hexagon::HvxVRRegClass;
+
+ // TmpR0 = A2_tfrsi 0x01010101
+ // TmpR1 = load FI, 0
+ // DstR = V6_vandvrt TmpR1, TmpR0
+ unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ unsigned TmpR1 = MRI.createVirtualRegister(RC);
+
+ BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
+ .addImm(0x01010101);
+ MachineFunction &MF = *B.getParent();
+ auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+ HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
+ expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
+
+ BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
+ .addReg(TmpR1, RegState::Kill)
+ .addReg(TmpR0, RegState::Kill);
+
+ NewRegs.push_back(TmpR0);
+ NewRegs.push_back(TmpR1);
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineFunction &MF = *B.getParent();
+ auto &MFI = MF.getFrameInfo();
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+ MachineInstr *MI = &*It;
+ if (!MI->getOperand(0).isFI())
+ return false;
+
+ // It is possible that the double vector being stored is only partially
+ // defined. From the point of view of the liveness tracking, it is ok to
+ // store it as a whole, but if we break it up we may end up storing a
+ // register that is entirely undefined.
+ LivePhysRegs LPR(HRI);
+ LPR.addLiveIns(B);
+ SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
+ for (auto R = B.begin(); R != It; ++R) {
+ Clobbers.clear();
+ LPR.stepForward(*R, Clobbers);
+ }
+
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned SrcR = MI->getOperand(2).getReg();
+ unsigned SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
+ unsigned SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
+ bool IsKill = MI->getOperand(2).isKill();
+ int FI = MI->getOperand(0).getIndex();
+
+ unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
+ unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
+ unsigned HasAlign = MFI.getObjectAlignment(FI);
+ unsigned StoreOpc;
+
+ // Store low part.
+ if (LPR.contains(SrcLo)) {
+ StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
+ : Hexagon::V6_vS32Ub_ai;
+ BuildMI(B, It, DL, HII.get(StoreOpc))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addReg(SrcLo, getKillRegState(IsKill))
+ .cloneMemRefs(*MI);
+ }
+
+ // Store high part.
+ if (LPR.contains(SrcHi)) {
+ StoreOpc = NeedAlign <= MinAlign(HasAlign, Size) ? Hexagon::V6_vS32b_ai
+ : Hexagon::V6_vS32Ub_ai;
+ BuildMI(B, It, DL, HII.get(StoreOpc))
+ .addFrameIndex(FI)
+ .addImm(Size)
+ .addReg(SrcHi, getKillRegState(IsKill))
+ .cloneMemRefs(*MI);
+ }
+
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineFunction &MF = *B.getParent();
+ auto &MFI = MF.getFrameInfo();
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+ MachineInstr *MI = &*It;
+ if (!MI->getOperand(1).isFI())
+ return false;
+
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned DstR = MI->getOperand(0).getReg();
+ unsigned DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
+ unsigned DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
+ int FI = MI->getOperand(1).getIndex();
+
+ unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
+ unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
+ unsigned HasAlign = MFI.getObjectAlignment(FI);
+ unsigned LoadOpc;
+
+ // Load low part.
+ LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
+ : Hexagon::V6_vL32Ub_ai;
+ BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .cloneMemRefs(*MI);
+
+ // Load high part.
+ LoadOpc = NeedAlign <= MinAlign(HasAlign, Size) ? Hexagon::V6_vL32b_ai
+ : Hexagon::V6_vL32Ub_ai;
+ BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
+ .addFrameIndex(FI)
+ .addImm(Size)
+ .cloneMemRefs(*MI);
+
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineFunction &MF = *B.getParent();
+ auto &MFI = MF.getFrameInfo();
+ MachineInstr *MI = &*It;
+ if (!MI->getOperand(0).isFI())
+ return false;
+
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned SrcR = MI->getOperand(2).getReg();
+ bool IsKill = MI->getOperand(2).isKill();
+ int FI = MI->getOperand(0).getIndex();
+
+ unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
+ unsigned HasAlign = MFI.getObjectAlignment(FI);
+ unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
+ : Hexagon::V6_vS32Ub_ai;
+ BuildMI(B, It, DL, HII.get(StoreOpc))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addReg(SrcR, getKillRegState(IsKill))
+ .cloneMemRefs(*MI);
+
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
+ MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
+ const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
+ MachineFunction &MF = *B.getParent();
+ auto &MFI = MF.getFrameInfo();
+ MachineInstr *MI = &*It;
+ if (!MI->getOperand(1).isFI())
+ return false;
+
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned DstR = MI->getOperand(0).getReg();
+ int FI = MI->getOperand(1).getIndex();
+
+ unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
+ unsigned HasAlign = MFI.getObjectAlignment(FI);
+ unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
+ : Hexagon::V6_vL32Ub_ai;
+ BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .cloneMemRefs(*MI);
+
+ B.erase(It);
+ return true;
+}
+
+bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
+ SmallVectorImpl<unsigned> &NewRegs) const {
+ auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool Changed = false;
+
+ for (auto &B : MF) {
+ // Traverse the basic block.
+ MachineBasicBlock::iterator NextI;
+ for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
+ MachineInstr *MI = &*I;
+ NextI = std::next(I);
+ unsigned Opc = MI->getOpcode();
+
+ switch (Opc) {
+ case TargetOpcode::COPY:
+ Changed |= expandCopy(B, I, MRI, HII, NewRegs);
+ break;
+ case Hexagon::STriw_pred:
+ case Hexagon::STriw_ctr:
+ Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
+ break;
+ case Hexagon::LDriw_pred:
+ case Hexagon::LDriw_ctr:
+ Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
+ break;
+ case Hexagon::PS_vstorerq_ai:
+ Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
+ break;
+ case Hexagon::PS_vloadrq_ai:
+ Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
+ break;
+ case Hexagon::PS_vloadrw_ai:
+ case Hexagon::PS_vloadrwu_ai:
+ Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
+ break;
+ case Hexagon::PS_vstorerw_ai:
+ case Hexagon::PS_vstorerwu_ai:
+ Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
+ break;
+ }
+ }
+ }
+
+ return Changed;
+}
+
+void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
+ BitVector &SavedRegs,
+ RegScavenger *RS) const {
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+
+ SavedRegs.resize(HRI.getNumRegs());
+
+ // If we have a function containing __builtin_eh_return we want to spill and
+ // restore all callee saved registers. Pretend that they are used.
+ if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
+ for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
+ SavedRegs.set(*R);
+
+ // Replace predicate register pseudo spill code.
+ SmallVector<unsigned,8> NewRegs;
+ expandSpillMacros(MF, NewRegs);
+ if (OptimizeSpillSlots && !isOptNone(MF))
+ optimizeSpillSlots(MF, NewRegs);
+
+ // We need to reserve a spill slot if scavenging could potentially require
+ // spilling a scavenged register.
+ if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SetVector<const TargetRegisterClass*> SpillRCs;
+ // Reserve an int register in any case, because it could be used to hold
+ // the stack offset in case it does not fit into a spill instruction.
+ SpillRCs.insert(&Hexagon::IntRegsRegClass);
+
+ for (unsigned VR : NewRegs)
+ SpillRCs.insert(MRI.getRegClass(VR));
+
+ for (auto *RC : SpillRCs) {
+ if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
+ continue;
+ unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1;
+ unsigned S = HRI.getSpillSize(*RC), A = HRI.getSpillAlignment(*RC);
+ for (unsigned i = 0; i < Num; i++) {
+ int NewFI = MFI.CreateSpillStackObject(S, A);
+ RS->addScavengingFrameIndex(NewFI);
+ }
+ }
+ }
+
+ TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
+}
+
+unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
+ HexagonBlockRanges::IndexRange &FIR,
+ HexagonBlockRanges::InstrIndexMap &IndexMap,
+ HexagonBlockRanges::RegToRangeMap &DeadMap,
+ const TargetRegisterClass *RC) const {
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+ auto &MRI = MF.getRegInfo();
+
+ auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
+ auto F = DeadMap.find({Reg,0});
+ if (F == DeadMap.end())
+ return false;
+ for (auto &DR : F->second)
+ if (DR.contains(FIR))
+ return true;
+ return false;
+ };
+
+ for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
+ bool Dead = true;
+ for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
+ if (isDead(R.Reg))
+ continue;
+ Dead = false;
+ break;
+ }
+ if (Dead)
+ return Reg;
+ }
+ return 0;
+}
+
+void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
+ SmallVectorImpl<unsigned> &VRegs) const {
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+ auto &HRI = *HST.getRegisterInfo();
+ auto &MRI = MF.getRegInfo();
+ HexagonBlockRanges HBR(MF);
+
+ using BlockIndexMap =
+ std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
+ using BlockRangeMap =
+ std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
+ using IndexType = HexagonBlockRanges::IndexType;
+
+ struct SlotInfo {
+ BlockRangeMap Map;
+ unsigned Size = 0;
+ const TargetRegisterClass *RC = nullptr;
+
+ SlotInfo() = default;
+ };
+
+ BlockIndexMap BlockIndexes;
+ SmallSet<int,4> BadFIs;
+ std::map<int,SlotInfo> FIRangeMap;
+
+ // Accumulate register classes: get a common class for a pre-existing
+ // class HaveRC and a new class NewRC. Return nullptr if a common class
+ // cannot be found, otherwise return the resulting class. If HaveRC is
+ // nullptr, assume that it is still unset.
+ auto getCommonRC =
+ [](const TargetRegisterClass *HaveRC,
+ const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
+ if (HaveRC == nullptr || HaveRC == NewRC)
+ return NewRC;
+ // Different classes, both non-null. Pick the more general one.
+ if (HaveRC->hasSubClassEq(NewRC))
+ return HaveRC;
+ if (NewRC->hasSubClassEq(HaveRC))
+ return NewRC;
+ return nullptr;
+ };
+
+ // Scan all blocks in the function. Check all occurrences of frame indexes,
+ // and collect relevant information.
+ for (auto &B : MF) {
+ std::map<int,IndexType> LastStore, LastLoad;
+ // Emplace appears not to be supported in gcc 4.7.2-4.
+ //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
+ auto P = BlockIndexes.insert(
+ std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
+ auto &IndexMap = P.first->second;
+ LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
+ << IndexMap << '\n');
+
+ for (auto &In : B) {
+ int LFI, SFI;
+ bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
+ bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
+ if (Load && Store) {
+ // If it's both a load and a store, then we won't handle it.
+ BadFIs.insert(LFI);
+ BadFIs.insert(SFI);
+ continue;
+ }
+ // Check for register classes of the register used as the source for
+ // the store, and the register used as the destination for the load.
+ // Also, only accept base+imm_offset addressing modes. Other addressing
+ // modes can have side-effects (post-increments, etc.). For stack
+ // slots they are very unlikely, so there is not much loss due to
+ // this restriction.
+ if (Load || Store) {
+ int TFI = Load ? LFI : SFI;
+ unsigned AM = HII.getAddrMode(In);
+ SlotInfo &SI = FIRangeMap[TFI];
+ bool Bad = (AM != HexagonII::BaseImmOffset);
+ if (!Bad) {
+ // If the addressing mode is ok, check the register class.
+ unsigned OpNum = Load ? 0 : 2;
+ auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
+ RC = getCommonRC(SI.RC, RC);
+ if (RC == nullptr)
+ Bad = true;
+ else
+ SI.RC = RC;
+ }
+ if (!Bad) {
+ // Check sizes.
+ unsigned S = HII.getMemAccessSize(In);
+ if (SI.Size != 0 && SI.Size != S)
+ Bad = true;
+ else
+ SI.Size = S;
+ }
+ if (!Bad) {
+ for (auto *Mo : In.memoperands()) {
+ if (!Mo->isVolatile() && !Mo->isAtomic())
+ continue;
+ Bad = true;
+ break;
+ }
+ }
+ if (Bad)
+ BadFIs.insert(TFI);
+ }
+
+ // Locate uses of frame indices.
+ for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
+ const MachineOperand &Op = In.getOperand(i);
+ if (!Op.isFI())
+ continue;
+ int FI = Op.getIndex();
+ // Make sure that the following operand is an immediate and that
+ // it is 0. This is the offset in the stack object.
+ if (i+1 >= n || !In.getOperand(i+1).isImm() ||
+ In.getOperand(i+1).getImm() != 0)
+ BadFIs.insert(FI);
+ if (BadFIs.count(FI))
+ continue;
+
+ IndexType Index = IndexMap.getIndex(&In);
+ if (Load) {
+ if (LastStore[FI] == IndexType::None)
+ LastStore[FI] = IndexType::Entry;
+ LastLoad[FI] = Index;
+ } else if (Store) {
+ HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
+ if (LastStore[FI] != IndexType::None)
+ RL.add(LastStore[FI], LastLoad[FI], false, false);
+ else if (LastLoad[FI] != IndexType::None)
+ RL.add(IndexType::Entry, LastLoad[FI], false, false);
+ LastLoad[FI] = IndexType::None;
+ LastStore[FI] = Index;
+ } else {
+ BadFIs.insert(FI);
+ }
+ }
+ }
+
+ for (auto &I : LastLoad) {
+ IndexType LL = I.second;
+ if (LL == IndexType::None)
+ continue;
+ auto &RL = FIRangeMap[I.first].Map[&B];
+ IndexType &LS = LastStore[I.first];
+ if (LS != IndexType::None)
+ RL.add(LS, LL, false, false);
+ else
+ RL.add(IndexType::Entry, LL, false, false);
+ LS = IndexType::None;
+ }
+ for (auto &I : LastStore) {
+ IndexType LS = I.second;
+ if (LS == IndexType::None)
+ continue;
+ auto &RL = FIRangeMap[I.first].Map[&B];
+ RL.add(LS, IndexType::None, false, false);
+ }
+ }
+
+ LLVM_DEBUG({
+ for (auto &P : FIRangeMap) {
+ dbgs() << "fi#" << P.first;
+ if (BadFIs.count(P.first))
+ dbgs() << " (bad)";
+ dbgs() << " RC: ";
+ if (P.second.RC != nullptr)
+ dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
+ else
+ dbgs() << "<null>\n";
+ for (auto &R : P.second.Map)
+ dbgs() << " " << printMBBReference(*R.first) << " { " << R.second
+ << "}\n";
+ }
+ });
+
+ // When a slot is loaded from in a block without being stored to in the
+ // same block, it is live-on-entry to this block. To avoid CFG analysis,
+ // consider this slot to be live-on-exit from all blocks.
+ SmallSet<int,4> LoxFIs;
+
+ std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
+
+ for (auto &P : FIRangeMap) {
+ // P = pair(FI, map: BB->RangeList)
+ if (BadFIs.count(P.first))
+ continue;
+ for (auto &B : MF) {
+ auto F = P.second.Map.find(&B);
+ // F = pair(BB, RangeList)
+ if (F == P.second.Map.end() || F->second.empty())
+ continue;
+ HexagonBlockRanges::IndexRange &IR = F->second.front();
+ if (IR.start() == IndexType::Entry)
+ LoxFIs.insert(P.first);
+ BlockFIMap[&B].push_back(P.first);
+ }
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
+ for (auto &P : BlockFIMap) {
+ auto &FIs = P.second;
+ if (FIs.empty())
+ continue;
+ dbgs() << " " << printMBBReference(*P.first) << ": {";
+ for (auto I : FIs) {
+ dbgs() << " fi#" << I;
+ if (LoxFIs.count(I))
+ dbgs() << '*';
+ }
+ dbgs() << " }\n";
+ }
+ });
+
+#ifndef NDEBUG
+ bool HasOptLimit = SpillOptMax.getPosition();
+#endif
+
+ // eliminate loads, when all loads eliminated, eliminate all stores.
+ for (auto &B : MF) {
+ auto F = BlockIndexes.find(&B);
+ assert(F != BlockIndexes.end());
+ HexagonBlockRanges::InstrIndexMap &IM = F->second;
+ HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
+ HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
+ LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
+ << HexagonBlockRanges::PrintRangeMap(DM, HRI));
+
+ for (auto FI : BlockFIMap[&B]) {
+ if (BadFIs.count(FI))
+ continue;
+ LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
+ HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
+ for (auto &Range : RL) {
+ LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
+ if (!IndexType::isInstr(Range.start()) ||
+ !IndexType::isInstr(Range.end()))
+ continue;
+ MachineInstr &SI = *IM.getInstr(Range.start());
+ MachineInstr &EI = *IM.getInstr(Range.end());
+ assert(SI.mayStore() && "Unexpected start instruction");
+ assert(EI.mayLoad() && "Unexpected end instruction");
+ MachineOperand &SrcOp = SI.getOperand(2);
+
+ HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
+ SrcOp.getSubReg() };
+ auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
+ // The this-> is needed to unconfuse MSVC.
+ unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
+ LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
+ << '\n');
+ if (FoundR == 0)
+ continue;
+#ifndef NDEBUG
+ if (HasOptLimit) {
+ if (SpillOptCount >= SpillOptMax)
+ return;
+ SpillOptCount++;
+ }
+#endif
+
+ // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
+ MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
+ MachineInstr *CopyIn = nullptr;
+ if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
+ const DebugLoc &DL = SI.getDebugLoc();
+ CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
+ .add(SrcOp);
+ }
+
+ ++StartIt;
+ // Check if this is a last store and the FI is live-on-exit.
+ if (LoxFIs.count(FI) && (&Range == &RL.back())) {
+ // Update store's source register.
+ if (unsigned SR = SrcOp.getSubReg())
+ SrcOp.setReg(HRI.getSubReg(FoundR, SR));
+ else
+ SrcOp.setReg(FoundR);
+ SrcOp.setSubReg(0);
+ // We are keeping this register live.
+ SrcOp.setIsKill(false);
+ } else {
+ B.erase(&SI);
+ IM.replaceInstr(&SI, CopyIn);
+ }
+
+ auto EndIt = std::next(EI.getIterator());
+ for (auto It = StartIt; It != EndIt; It = NextIt) {
+ MachineInstr &MI = *It;
+ NextIt = std::next(It);
+ int TFI;
+ if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
+ continue;
+ unsigned DstR = MI.getOperand(0).getReg();
+ assert(MI.getOperand(0).getSubReg() == 0);
+ MachineInstr *CopyOut = nullptr;
+ if (DstR != FoundR) {
+ DebugLoc DL = MI.getDebugLoc();
+ unsigned MemSize = HII.getMemAccessSize(MI);
+ assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
+ unsigned CopyOpc = TargetOpcode::COPY;
+ if (HII.isSignExtendingLoad(MI))
+ CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
+ else if (HII.isZeroExtendingLoad(MI))
+ CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
+ CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
+ .addReg(FoundR, getKillRegState(&MI == &EI));
+ }
+ IM.replaceInstr(&MI, CopyOut);
+ B.erase(It);
+ }
+
+ // Update the dead map.
+ HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
+ for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
+ DM[RR].subtract(Range);
+ } // for Range in range list
+ }
+ }
+}
+
+void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
+ const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
+ MachineBasicBlock &MB = *AI->getParent();
+ DebugLoc DL = AI->getDebugLoc();
+ unsigned A = AI->getOperand(2).getImm();
+
+ // Have
+ // Rd = alloca Rs, #A
+ //
+ // If Rs and Rd are different registers, use this sequence:
+ // Rd = sub(r29, Rs)
+ // r29 = sub(r29, Rs)
+ // Rd = and(Rd, #-A) ; if necessary
+ // r29 = and(r29, #-A) ; if necessary
+ // Rd = add(Rd, #CF) ; CF size aligned to at most A
+ // otherwise, do
+ // Rd = sub(r29, Rs)
+ // Rd = and(Rd, #-A) ; if necessary
+ // r29 = Rd
+ // Rd = add(Rd, #CF) ; CF size aligned to at most A
+
+ MachineOperand &RdOp = AI->getOperand(0);
+ MachineOperand &RsOp = AI->getOperand(1);
+ unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
+
+ // Rd = sub(r29, Rs)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
+ .addReg(SP)
+ .addReg(Rs);
+ if (Rs != Rd) {
+ // r29 = sub(r29, Rs)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
+ .addReg(SP)
+ .addReg(Rs);
+ }
+ if (A > 8) {
+ // Rd = and(Rd, #-A)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
+ .addReg(Rd)
+ .addImm(-int64_t(A));
+ if (Rs != Rd)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
+ .addReg(SP)
+ .addImm(-int64_t(A));
+ }
+ if (Rs == Rd) {
+ // r29 = Rd
+ BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
+ .addReg(Rd);
+ }
+ if (CF > 0) {
+ // Rd = add(Rd, #CF)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
+ .addReg(Rd)
+ .addImm(CF);
+ }
+}
+
+bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ if (!MFI.hasVarSizedObjects())
+ return false;
+ unsigned MaxA = MFI.getMaxAlignment();
+ if (MaxA <= getStackAlignment())
+ return false;
+ return true;
+}
+
+const MachineInstr *HexagonFrameLowering::getAlignaInstr(
+ const MachineFunction &MF) const {
+ for (auto &B : MF)
+ for (auto &I : B)
+ if (I.getOpcode() == Hexagon::PS_aligna)
+ return &I;
+ return nullptr;
+}
+
+/// Adds all callee-saved registers as implicit uses or defs to the
+/// instruction.
+void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
+ const CSIVect &CSI, bool IsDef, bool IsKill) const {
+ // Add the callee-saved registers as implicit uses.
+ for (auto &R : CSI)
+ MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
+}
+
+/// Determine whether the callee-saved register saves and restores should
+/// be generated via inline code. If this function returns "true", inline
+/// code will be generated. If this function returns "false", additional
+/// checks are performed, which may still lead to the inline code.
+bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
+ const CSIVect &CSI) const {
+ if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
+ return true;
+ if (!hasFP(MF))
+ return true;
+ if (!isOptSize(MF) && !isMinSize(MF))
+ if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
+ return true;
+
+ // Check if CSI only has double registers, and if the registers form
+ // a contiguous block starting from D8.
+ BitVector Regs(Hexagon::NUM_TARGET_REGS);
+ for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
+ unsigned R = CSI[i].getReg();
+ if (!Hexagon::DoubleRegsRegClass.contains(R))
+ return true;
+ Regs[R] = true;
+ }
+ int F = Regs.find_first();
+ if (F != Hexagon::D8)
+ return true;
+ while (F >= 0) {
+ int N = Regs.find_next(F);
+ if (N >= 0 && N != F+1)
+ return true;
+ F = N;
+ }
+
+ return false;
+}
+
+bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
+ const CSIVect &CSI) const {
+ if (shouldInlineCSR(MF, CSI))
+ return false;
+ unsigned NumCSI = CSI.size();
+ if (NumCSI <= 1)
+ return false;
+
+ unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
+ : SpillFuncThreshold;
+ return Threshold < NumCSI;
+}
+
+bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
+ const CSIVect &CSI) const {
+ if (shouldInlineCSR(MF, CSI))
+ return false;
+ // The restore functions do a bit more than just restoring registers.
+ // The non-returning versions will go back directly to the caller's
+ // caller, others will clean up the stack frame in preparation for
+ // a tail call. Using them can still save code size even if only one
+ // register is getting restores. Make the decision based on -Oz:
+ // using -Os will use inline restore for a single register.
+ if (isMinSize(MF))
+ return true;
+ unsigned NumCSI = CSI.size();
+ if (NumCSI <= 1)
+ return false;
+
+ unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
+ : SpillFuncThreshold;
+ return Threshold < NumCSI;
+}
+
+bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
+ unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ // A fairly simplistic guess as to whether a potential load/store to a
+ // stack location could require an extra register.
+ if (HST.useHVXOps() && StackSize > 256)
+ return true;
+
+ // Check if the function has store-immediate instructions that access
+ // the stack. Since the offset field is not extendable, if the stack
+ // size exceeds the offset limit (6 bits, shifted), the stores will
+ // require a new base register.
+ bool HasImmStack = false;
+ unsigned MinLS = ~0u; // Log_2 of the memory access size.
+
+ for (const MachineBasicBlock &B : MF) {
+ for (const MachineInstr &MI : B) {
+ unsigned LS = 0;
+ switch (MI.getOpcode()) {
+ case Hexagon::S4_storeirit_io:
+ case Hexagon::S4_storeirif_io:
+ case Hexagon::S4_storeiri_io:
+ ++LS;
+ LLVM_FALLTHROUGH;
+ case Hexagon::S4_storeirht_io:
+ case Hexagon::S4_storeirhf_io:
+ case Hexagon::S4_storeirh_io:
+ ++LS;
+ LLVM_FALLTHROUGH;
+ case Hexagon::S4_storeirbt_io:
+ case Hexagon::S4_storeirbf_io:
+ case Hexagon::S4_storeirb_io:
+ if (MI.getOperand(0).isFI())
+ HasImmStack = true;
+ MinLS = std::min(MinLS, LS);
+ break;
+ }
+ }
+ }
+
+ if (HasImmStack)
+ return !isUInt<6>(StackSize >> MinLS);
+
+ return false;
+}