diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp | 2530 |
1 files changed, 2530 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp new file mode 100644 index 000000000000..3368ee4fb3b9 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp @@ -0,0 +1,2530 @@ +//===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +// +//===----------------------------------------------------------------------===// + +#include "HexagonFrameLowering.h" +#include "HexagonBlockRanges.h" +#include "HexagonInstrInfo.h" +#include "HexagonMachineFunctionInfo.h" +#include "HexagonRegisterInfo.h" +#include "HexagonSubtarget.h" +#include "HexagonTargetMachine.h" +#include "MCTargetDesc/HexagonBaseInfo.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/LivePhysRegs.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachinePostDominators.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterScavenging.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCDwarf.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <limits> +#include <map> +#include <utility> +#include <vector> + +#define DEBUG_TYPE "hexagon-pei" + +// Hexagon stack frame layout as defined by the ABI: +// +// Incoming arguments +// passed via stack +// | +// | +// SP during function's FP during function's | +// +-- runtime (top of stack) runtime (bottom) --+ | +// | | | +// --++---------------------+------------------+-----------------++-+------- +// | parameter area for | variable-size | fixed-size |LR| arg +// | called functions | local objects | local objects |FP| +// --+----------------------+------------------+-----------------+--+------- +// <- size known -> <- size unknown -> <- size known -> +// +// Low address High address +// +// <--- stack growth +// +// +// - In any circumstances, the outgoing function arguments are always accessi- +// ble using the SP, and the incoming arguments are accessible using the FP. +// - If the local objects are not aligned, they can always be accessed using +// the FP. +// - If there are no variable-sized objects, the local objects can always be +// accessed using the SP, regardless whether they are aligned or not. (The +// alignment padding will be at the bottom of the stack (highest address), +// and so the offset with respect to the SP will be known at the compile- +// -time.) +// +// The only complication occurs if there are both, local aligned objects, and +// dynamically allocated (variable-sized) objects. The alignment pad will be +// placed between the FP and the local objects, thus preventing the use of the +// FP to access the local objects. At the same time, the variable-sized objects +// will be between the SP and the local objects, thus introducing an unknown +// distance from the SP to the locals. +// +// To avoid this problem, a new register is created that holds the aligned +// address of the bottom of the stack, referred in the sources as AP (aligned +// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad +// that aligns AP to the required boundary (a maximum of the alignments of +// all stack objects, fixed- and variable-sized). All local objects[1] will +// then use AP as the base pointer. +// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get +// their name from being allocated at fixed locations on the stack, relative +// to the FP. In the presence of dynamic allocation and local alignment, such +// objects can only be accessed through the FP. +// +// Illustration of the AP: +// FP --+ +// | +// ---------------+---------------------+-----+-----------------------++-+-- +// Rest of the | Local stack objects | Pad | Fixed stack objects |LR| +// stack frame | (aligned) | | (CSR, spills, etc.) |FP| +// ---------------+---------------------+-----+-----------------+-----+--+-- +// |<-- Multiple of the -->| +// stack alignment +-- AP +// +// The AP is set up at the beginning of the function. Since it is not a dedi- +// cated (reserved) register, it needs to be kept live throughout the function +// to be available as the base register for local object accesses. +// Normally, an address of a stack objects is obtained by a pseudo-instruction +// PS_fi. To access local objects with the AP register present, a different +// pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra +// argument compared to PS_fi: the first input register is the AP register. +// This keeps the register live between its definition and its uses. + +// The AP register is originally set up using pseudo-instruction PS_aligna: +// AP = PS_aligna A +// where +// A - required stack alignment +// The alignment value must be the maximum of all alignments required by +// any stack object. + +// The dynamic allocation uses a pseudo-instruction PS_alloca: +// Rd = PS_alloca Rs, A +// where +// Rd - address of the allocated space +// Rs - minimum size (the actual allocated can be larger to accommodate +// alignment) +// A - required alignment + +using namespace llvm; + +static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", + cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); + +static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots", + cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2), + cl::ZeroOrMore); + +static cl::opt<int> SpillFuncThreshold("spill-func-threshold", + cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"), + cl::init(6), cl::ZeroOrMore); + +static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os", + cl::Hidden, cl::desc("Specify Os spill func threshold"), + cl::init(1), cl::ZeroOrMore); + +static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer", + cl::Hidden, cl::desc("Enable runtime checks for stack overflow."), + cl::init(false), cl::ZeroOrMore); + +static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame", + cl::init(true), cl::Hidden, cl::ZeroOrMore, + cl::desc("Enable stack frame shrink wrapping")); + +static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", + cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore, + cl::desc("Max count of stack frame shrink-wraps")); + +static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long", + cl::Hidden, cl::desc("Enable long calls for save-restore stubs."), + cl::init(false), cl::ZeroOrMore); + +static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), + cl::Hidden, cl::desc("Refrain from using FP whenever possible")); + +static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, + cl::init(true), cl::desc("Optimize spill slots")); + +#ifndef NDEBUG +static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, + cl::init(std::numeric_limits<unsigned>::max())); +static unsigned SpillOptCount = 0; +#endif + +namespace llvm { + + void initializeHexagonCallFrameInformationPass(PassRegistry&); + FunctionPass *createHexagonCallFrameInformation(); + +} // end namespace llvm + +namespace { + + class HexagonCallFrameInformation : public MachineFunctionPass { + public: + static char ID; + + HexagonCallFrameInformation() : MachineFunctionPass(ID) { + PassRegistry &PR = *PassRegistry::getPassRegistry(); + initializeHexagonCallFrameInformationPass(PR); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + + MachineFunctionProperties getRequiredProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoVRegs); + } + }; + + char HexagonCallFrameInformation::ID = 0; + +} // end anonymous namespace + +bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { + auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); + bool NeedCFI = MF.getMMI().hasDebugInfo() || + MF.getFunction().needsUnwindTableEntry(); + + if (!NeedCFI) + return false; + HFI.insertCFIInstructions(MF); + return true; +} + +INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", + "Hexagon call frame information", false, false) + +FunctionPass *llvm::createHexagonCallFrameInformation() { + return new HexagonCallFrameInformation(); +} + +/// Map a register pair Reg to the subregister that has the greater "number", +/// i.e. D3 (aka R7:6) will be mapped to R7, etc. +static unsigned getMax32BitSubRegister(unsigned Reg, + const TargetRegisterInfo &TRI, + bool hireg = true) { + if (Reg < Hexagon::D0 || Reg > Hexagon::D15) + return Reg; + + unsigned RegNo = 0; + for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) { + if (hireg) { + if (*SubRegs > RegNo) + RegNo = *SubRegs; + } else { + if (!RegNo || *SubRegs < RegNo) + RegNo = *SubRegs; + } + } + return RegNo; +} + +/// Returns the callee saved register with the largest id in the vector. +static unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI, + const TargetRegisterInfo &TRI) { + static_assert(Hexagon::R1 > 0, + "Assume physical registers are encoded as positive integers"); + if (CSI.empty()) + return 0; + + unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); + for (unsigned I = 1, E = CSI.size(); I < E; ++I) { + unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); + if (Reg > Max) + Max = Reg; + } + return Max; +} + +/// Checks if the basic block contains any instruction that needs a stack +/// frame to be already in place. +static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, + const HexagonRegisterInfo &HRI) { + for (auto &I : MBB) { + const MachineInstr *MI = &I; + if (MI->isCall()) + return true; + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case Hexagon::PS_alloca: + case Hexagon::PS_aligna: + return true; + default: + break; + } + // Check individual operands. + for (const MachineOperand &MO : MI->operands()) { + // While the presence of a frame index does not prove that a stack + // frame will be required, all frame indexes should be within alloc- + // frame/deallocframe. Otherwise, the code that translates a frame + // index into an offset would have to be aware of the placement of + // the frame creation/destruction instructions. + if (MO.isFI()) + return true; + if (MO.isReg()) { + unsigned R = MO.getReg(); + // Virtual registers will need scavenging, which then may require + // a stack slot. + if (TargetRegisterInfo::isVirtualRegister(R)) + return true; + for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S) + if (CSR[*S]) + return true; + continue; + } + if (MO.isRegMask()) { + // A regmask would normally have all callee-saved registers marked + // as preserved, so this check would not be needed, but in case of + // ever having other regmasks (for other calling conventions), + // make sure they would be processed correctly. + const uint32_t *BM = MO.getRegMask(); + for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { + unsigned R = x; + // If this regmask does not preserve a CSR, a frame will be needed. + if (!(BM[R/32] & (1u << (R%32)))) + return true; + } + } + } + } + return false; +} + + /// Returns true if MBB has a machine instructions that indicates a tail call + /// in the block. +static bool hasTailCall(const MachineBasicBlock &MBB) { + MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); + if (I == MBB.end()) + return false; + unsigned RetOpc = I->getOpcode(); + return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; +} + +/// Returns true if MBB contains an instruction that returns. +static bool hasReturn(const MachineBasicBlock &MBB) { + for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I) + if (I->isReturn()) + return true; + return false; +} + +/// Returns the "return" instruction from this block, or nullptr if there +/// isn't any. +static MachineInstr *getReturn(MachineBasicBlock &MBB) { + for (auto &I : MBB) + if (I.isReturn()) + return &I; + return nullptr; +} + +static bool isRestoreCall(unsigned Opc) { + switch (Opc) { + case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: + case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: + case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: + case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: + case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: + case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: + case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: + case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: + return true; + } + return false; +} + +static inline bool isOptNone(const MachineFunction &MF) { + return MF.getFunction().hasOptNone() || + MF.getTarget().getOptLevel() == CodeGenOpt::None; +} + +static inline bool isOptSize(const MachineFunction &MF) { + const Function &F = MF.getFunction(); + return F.hasOptSize() && !F.hasMinSize(); +} + +static inline bool isMinSize(const MachineFunction &MF) { + return MF.getFunction().hasMinSize(); +} + +/// Implements shrink-wrapping of the stack frame. By default, stack frame +/// is created in the function entry block, and is cleaned up in every block +/// that returns. This function finds alternate blocks: one for the frame +/// setup (prolog) and one for the cleanup (epilog). +void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, + MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { + static unsigned ShrinkCounter = 0; + + if (ShrinkLimit.getPosition()) { + if (ShrinkCounter >= ShrinkLimit) + return; + ShrinkCounter++; + } + + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + + MachineDominatorTree MDT; + MDT.runOnMachineFunction(MF); + MachinePostDominatorTree MPT; + MPT.runOnMachineFunction(MF); + + using UnsignedMap = DenseMap<unsigned, unsigned>; + using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; + + UnsignedMap RPO; + RPOTType RPOT(&MF); + unsigned RPON = 0; + for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) + RPO[(*I)->getNumber()] = RPON++; + + // Don't process functions that have loops, at least for now. Placement + // of prolog and epilog must take loop structure into account. For simpli- + // city don't do it right now. + for (auto &I : MF) { + unsigned BN = RPO[I.getNumber()]; + for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) { + // If found a back-edge, return. + if (RPO[(*SI)->getNumber()] <= BN) + return; + } + } + + // Collect the set of blocks that need a stack frame to execute. Scan + // each block for uses/defs of callee-saved registers, calls, etc. + SmallVector<MachineBasicBlock*,16> SFBlocks; + BitVector CSR(Hexagon::NUM_TARGET_REGS); + for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) + for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S) + CSR[*S] = true; + + for (auto &I : MF) + if (needsStackFrame(I, CSR, HRI)) + SFBlocks.push_back(&I); + + LLVM_DEBUG({ + dbgs() << "Blocks needing SF: {"; + for (auto &B : SFBlocks) + dbgs() << " " << printMBBReference(*B); + dbgs() << " }\n"; + }); + // No frame needed? + if (SFBlocks.empty()) + return; + + // Pick a common dominator and a common post-dominator. + MachineBasicBlock *DomB = SFBlocks[0]; + for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { + DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); + if (!DomB) + break; + } + MachineBasicBlock *PDomB = SFBlocks[0]; + for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { + PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); + if (!PDomB) + break; + } + LLVM_DEBUG({ + dbgs() << "Computed dom block: "; + if (DomB) + dbgs() << printMBBReference(*DomB); + else + dbgs() << "<null>"; + dbgs() << ", computed pdom block: "; + if (PDomB) + dbgs() << printMBBReference(*PDomB); + else + dbgs() << "<null>"; + dbgs() << "\n"; + }); + if (!DomB || !PDomB) + return; + + // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. + if (!MDT.dominates(DomB, PDomB)) { + LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); + return; + } + if (!MPT.dominates(PDomB, DomB)) { + LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); + return; + } + + // Finally, everything seems right. + PrologB = DomB; + EpilogB = PDomB; +} + +/// Perform most of the PEI work here: +/// - saving/restoring of the callee-saved registers, +/// - stack frame creation and destruction. +/// Normally, this work is distributed among various functions, but doing it +/// in one place allows shrink-wrapping of the stack frame. +void HexagonFrameLowering::emitPrologue(MachineFunction &MF, + MachineBasicBlock &MBB) const { + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + + MachineFrameInfo &MFI = MF.getFrameInfo(); + const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); + + MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; + if (EnableShrinkWrapping) + findShrunkPrologEpilog(MF, PrologB, EpilogB); + + bool PrologueStubs = false; + insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); + insertPrologueInBlock(*PrologB, PrologueStubs); + updateEntryPaths(MF, *PrologB); + + if (EpilogB) { + insertCSRRestoresInBlock(*EpilogB, CSI, HRI); + insertEpilogueInBlock(*EpilogB); + } else { + for (auto &B : MF) + if (B.isReturnBlock()) + insertCSRRestoresInBlock(B, CSI, HRI); + + for (auto &B : MF) + if (B.isReturnBlock()) + insertEpilogueInBlock(B); + + for (auto &B : MF) { + if (B.empty()) + continue; + MachineInstr *RetI = getReturn(B); + if (!RetI || isRestoreCall(RetI->getOpcode())) + continue; + for (auto &R : CSI) + RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); + } + } + + if (EpilogB) { + // If there is an epilog block, it may not have a return instruction. + // In such case, we need to add the callee-saved registers as live-ins + // in all blocks on all paths from the epilog to any return block. + unsigned MaxBN = MF.getNumBlockIDs(); + BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); + updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); + } +} + +/// Returns true if the target can safely skip saving callee-saved registers +/// for noreturn nounwind functions. +bool HexagonFrameLowering::enableCalleeSaveSkip( + const MachineFunction &MF) const { + const auto &F = MF.getFunction(); + assert(F.hasFnAttribute(Attribute::NoReturn) && + F.getFunction().hasFnAttribute(Attribute::NoUnwind) && + !F.getFunction().hasFnAttribute(Attribute::UWTable)); + (void)F; + + // No need to save callee saved registers if the function does not return. + return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); +} + +// Helper function used to determine when to eliminate the stack frame for +// functions marked as noreturn and when the noreturn-stack-elim options are +// specified. When both these conditions are true, then a FP may not be needed +// if the function makes a call. It is very similar to enableCalleeSaveSkip, +// but it used to check if the allocframe can be eliminated as well. +static bool enableAllocFrameElim(const MachineFunction &MF) { + const auto &F = MF.getFunction(); + const auto &MFI = MF.getFrameInfo(); + const auto &HST = MF.getSubtarget<HexagonSubtarget>(); + assert(!MFI.hasVarSizedObjects() && + !HST.getRegisterInfo()->needsStackRealignment(MF)); + return F.hasFnAttribute(Attribute::NoReturn) && + F.hasFnAttribute(Attribute::NoUnwind) && + !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() && + MFI.getStackSize() == 0; +} + +void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, + bool PrologueStubs) const { + MachineFunction &MF = *MBB.getParent(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + auto &HRI = *HST.getRegisterInfo(); + + unsigned MaxAlign = std::max(MFI.getMaxAlignment(), getStackAlignment()); + + // Calculate the total stack frame size. + // Get the number of bytes to allocate from the FrameInfo. + unsigned FrameSize = MFI.getStackSize(); + // Round up the max call frame size to the max alignment on the stack. + unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); + MFI.setMaxCallFrameSize(MaxCFA); + + FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); + MFI.setStackSize(FrameSize); + + bool AlignStack = (MaxAlign > getStackAlignment()); + + // Get the number of bytes to allocate from the FrameInfo. + unsigned NumBytes = MFI.getStackSize(); + unsigned SP = HRI.getStackRegister(); + unsigned MaxCF = MFI.getMaxCallFrameSize(); + MachineBasicBlock::iterator InsertPt = MBB.begin(); + + SmallVector<MachineInstr *, 4> AdjustRegs; + for (auto &MBB : MF) + for (auto &MI : MBB) + if (MI.getOpcode() == Hexagon::PS_alloca) + AdjustRegs.push_back(&MI); + + for (auto MI : AdjustRegs) { + assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); + expandAlloca(MI, HII, SP, MaxCF); + MI->eraseFromParent(); + } + + DebugLoc dl = MBB.findDebugLoc(InsertPt); + + if (hasFP(MF)) { + insertAllocframe(MBB, InsertPt, NumBytes); + if (AlignStack) { + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) + .addReg(SP) + .addImm(-int64_t(MaxAlign)); + } + // If the stack-checking is enabled, and we spilled the callee-saved + // registers inline (i.e. did not use a spill function), then call + // the stack checker directly. + if (EnableStackOVFSanitizer && !PrologueStubs) + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) + .addExternalSymbol("__runtime_stack_check"); + } else if (NumBytes > 0) { + assert(alignTo(NumBytes, 8) == NumBytes); + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) + .addReg(SP) + .addImm(-int(NumBytes)); + } +} + +void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { + MachineFunction &MF = *MBB.getParent(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + auto &HRI = *HST.getRegisterInfo(); + unsigned SP = HRI.getStackRegister(); + + MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); + DebugLoc dl = MBB.findDebugLoc(InsertPt); + + if (!hasFP(MF)) { + MachineFrameInfo &MFI = MF.getFrameInfo(); + if (unsigned NumBytes = MFI.getStackSize()) { + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) + .addReg(SP) + .addImm(NumBytes); + } + return; + } + + MachineInstr *RetI = getReturn(MBB); + unsigned RetOpc = RetI ? RetI->getOpcode() : 0; + + // Handle EH_RETURN. + if (RetOpc == Hexagon::EH_RETURN_JMPR) { + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) + .addDef(Hexagon::D15) + .addReg(Hexagon::R30); + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) + .addReg(SP) + .addReg(Hexagon::R28); + return; + } + + // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- + // frame instruction if we encounter it. + if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || + RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || + RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || + RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { + MachineBasicBlock::iterator It = RetI; + ++It; + // Delete all instructions after the RESTORE (except labels). + while (It != MBB.end()) { + if (!It->isLabel()) + It = MBB.erase(It); + else + ++It; + } + return; + } + + // It is possible that the restoring code is a call to a library function. + // All of the restore* functions include "deallocframe", so we need to make + // sure that we don't add an extra one. + bool NeedsDeallocframe = true; + if (!MBB.empty() && InsertPt != MBB.begin()) { + MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); + unsigned COpc = PrevIt->getOpcode(); + if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || + COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || + COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || + COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || + COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) + NeedsDeallocframe = false; + } + + if (!NeedsDeallocframe) + return; + // If the returning instruction is PS_jmpret, replace it with dealloc_return, + // otherwise just add deallocframe. The function could be returning via a + // tail call. + if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) + .addDef(Hexagon::D15) + .addReg(Hexagon::R30); + return; + } + unsigned NewOpc = Hexagon::L4_return; + MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) + .addDef(Hexagon::D15) + .addReg(Hexagon::R30); + // Transfer the function live-out registers. + NewI->copyImplicitOps(MF, *RetI); + MBB.erase(RetI); +} + +void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, + MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { + MachineFunction &MF = *MBB.getParent(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + auto &HRI = *HST.getRegisterInfo(); + + // Check for overflow. + // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? + const unsigned int ALLOCFRAME_MAX = 16384; + + // Create a dummy memory operand to avoid allocframe from being treated as + // a volatile memory reference. + auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), + MachineMemOperand::MOStore, 4, 4); + + DebugLoc dl = MBB.findDebugLoc(InsertPt); + unsigned SP = HRI.getStackRegister(); + + if (NumBytes >= ALLOCFRAME_MAX) { + // Emit allocframe(#0). + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) + .addDef(SP) + .addReg(SP) + .addImm(0) + .addMemOperand(MMO); + + // Subtract the size from the stack pointer. + unsigned SP = HRI.getStackRegister(); + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) + .addReg(SP) + .addImm(-int(NumBytes)); + } else { + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) + .addDef(SP) + .addReg(SP) + .addImm(NumBytes) + .addMemOperand(MMO); + } +} + +void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, + MachineBasicBlock &SaveB) const { + SetVector<unsigned> Worklist; + + MachineBasicBlock &EntryB = MF.front(); + Worklist.insert(EntryB.getNumber()); + + unsigned SaveN = SaveB.getNumber(); + auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); + + for (unsigned i = 0; i < Worklist.size(); ++i) { + unsigned BN = Worklist[i]; + MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); + for (auto &R : CSI) + if (!MBB.isLiveIn(R.getReg())) + MBB.addLiveIn(R.getReg()); + if (BN != SaveN) + for (auto &SB : MBB.successors()) + Worklist.insert(SB->getNumber()); + } +} + +bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, + MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, + BitVector &Path) const { + assert(MBB.getNumber() >= 0); + unsigned BN = MBB.getNumber(); + if (Path[BN] || DoneF[BN]) + return false; + if (DoneT[BN]) + return true; + + auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); + + Path[BN] = true; + bool ReachedExit = false; + for (auto &SB : MBB.successors()) + ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); + + if (!MBB.empty() && MBB.back().isReturn()) { + // Add implicit uses of all callee-saved registers to the reached + // return instructions. This is to prevent the anti-dependency breaker + // from renaming these registers. + MachineInstr &RetI = MBB.back(); + if (!isRestoreCall(RetI.getOpcode())) + for (auto &R : CSI) + RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); + ReachedExit = true; + } + + // We don't want to add unnecessary live-ins to the restore block: since + // the callee-saved registers are being defined in it, the entry of the + // restore block cannot be on the path from the definitions to any exit. + if (ReachedExit && &MBB != &RestoreB) { + for (auto &R : CSI) + if (!MBB.isLiveIn(R.getReg())) + MBB.addLiveIn(R.getReg()); + DoneT[BN] = true; + } + if (!ReachedExit) + DoneF[BN] = true; + + Path[BN] = false; + return ReachedExit; +} + +static Optional<MachineBasicBlock::iterator> +findCFILocation(MachineBasicBlock &B) { + // The CFI instructions need to be inserted right after allocframe. + // An exception to this is a situation where allocframe is bundled + // with a call: then the CFI instructions need to be inserted before + // the packet with the allocframe+call (in case the call throws an + // exception). + auto End = B.instr_end(); + + for (MachineInstr &I : B) { + MachineBasicBlock::iterator It = I.getIterator(); + if (!I.isBundle()) { + if (I.getOpcode() == Hexagon::S2_allocframe) + return std::next(It); + continue; + } + // I is a bundle. + bool HasCall = false, HasAllocFrame = false; + auto T = It.getInstrIterator(); + while (++T != End && T->isBundled()) { + if (T->getOpcode() == Hexagon::S2_allocframe) + HasAllocFrame = true; + else if (T->isCall()) + HasCall = true; + } + if (HasAllocFrame) + return HasCall ? It : std::next(It); + } + return None; +} + +void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { + for (auto &B : MF) { + auto At = findCFILocation(B); + if (At.hasValue()) + insertCFIInstructionsAt(B, At.getValue()); + } +} + +void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, + MachineBasicBlock::iterator At) const { + MachineFunction &MF = *MBB.getParent(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineModuleInfo &MMI = MF.getMMI(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + auto &HRI = *HST.getRegisterInfo(); + + // If CFI instructions have debug information attached, something goes + // wrong with the final assembly generation: the prolog_end is placed + // in a wrong location. + DebugLoc DL; + const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); + + MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); + bool HasFP = hasFP(MF); + + if (HasFP) { + unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); + unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); + + // Define CFA via an offset from the value of FP. + // + // -8 -4 0 (SP) + // --+----+----+--------------------- + // | FP | LR | increasing addresses --> + // --+----+----+--------------------- + // | +-- Old SP (before allocframe) + // +-- New FP (after allocframe) + // + // MCCFIInstruction::createDefCfa subtracts the offset from the register. + // MCCFIInstruction::createOffset takes the offset without sign change. + auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MF.addFrameInst(DefCfa)); + // R31 (return addr) = CFA - 4 + auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MF.addFrameInst(OffR31)); + // R30 (frame ptr) = CFA - 8 + auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MF.addFrameInst(OffR30)); + } + + static unsigned int RegsToMove[] = { + Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, + Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, + Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, + Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, + Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, + Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, + Hexagon::NoRegister + }; + + const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); + + for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { + unsigned Reg = RegsToMove[i]; + auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { + return C.getReg() == Reg; + }; + auto F = find_if(CSI, IfR); + if (F == CSI.end()) + continue; + + int64_t Offset; + if (HasFP) { + // If the function has a frame pointer (i.e. has an allocframe), + // then the CFA has been defined in terms of FP. Any offsets in + // the following CFI instructions have to be defined relative + // to FP, which points to the bottom of the stack frame. + // The function getFrameIndexReference can still choose to use SP + // for the offset calculation, so we cannot simply call it here. + // Instead, get the offset (relative to the FP) directly. + Offset = MFI.getObjectOffset(F->getFrameIdx()); + } else { + unsigned FrameReg; + Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg); + } + // Subtract 8 to make room for R30 and R31, which are added above. + Offset -= 8; + + if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { + unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); + auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, + Offset); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MF.addFrameInst(OffReg)); + } else { + // Split the double regs into subregs, and generate appropriate + // cfi_offsets. + // The only reason, we are split double regs is, llvm-mc does not + // understand paired registers for cfi_offset. + // Eg .cfi_offset r1:0, -64 + + unsigned HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); + unsigned LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); + unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); + unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); + auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, + Offset+4); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MF.addFrameInst(OffHi)); + auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, + Offset); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MF.addFrameInst(OffLo)); + } + } +} + +bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { + if (MF.getFunction().hasFnAttribute(Attribute::Naked)) + return false; + + auto &MFI = MF.getFrameInfo(); + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + bool HasExtraAlign = HRI.needsStackRealignment(MF); + bool HasAlloca = MFI.hasVarSizedObjects(); + + // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think + // that this shouldn't be required, but doing so now because gcc does and + // gdb can't break at the start of the function without it. Will remove if + // this turns out to be a gdb bug. + // + if (MF.getTarget().getOptLevel() == CodeGenOpt::None) + return true; + + // By default we want to use SP (since it's always there). FP requires + // some setup (i.e. ALLOCFRAME). + // Both, alloca and stack alignment modify the stack pointer by an + // undetermined value, so we need to save it at the entry to the function + // (i.e. use allocframe). + if (HasAlloca || HasExtraAlign) + return true; + + if (MFI.getStackSize() > 0) { + // If FP-elimination is disabled, we have to use FP at this point. + const TargetMachine &TM = MF.getTarget(); + if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) + return true; + if (EnableStackOVFSanitizer) + return true; + } + + const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); + if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) + return true; + + return false; +} + +enum SpillKind { + SK_ToMem, + SK_FromMem, + SK_FromMemTailcall +}; + +static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType, + bool Stkchk = false) { + const char * V4SpillToMemoryFunctions[] = { + "__save_r16_through_r17", + "__save_r16_through_r19", + "__save_r16_through_r21", + "__save_r16_through_r23", + "__save_r16_through_r25", + "__save_r16_through_r27" }; + + const char * V4SpillToMemoryStkchkFunctions[] = { + "__save_r16_through_r17_stkchk", + "__save_r16_through_r19_stkchk", + "__save_r16_through_r21_stkchk", + "__save_r16_through_r23_stkchk", + "__save_r16_through_r25_stkchk", + "__save_r16_through_r27_stkchk" }; + + const char * V4SpillFromMemoryFunctions[] = { + "__restore_r16_through_r17_and_deallocframe", + "__restore_r16_through_r19_and_deallocframe", + "__restore_r16_through_r21_and_deallocframe", + "__restore_r16_through_r23_and_deallocframe", + "__restore_r16_through_r25_and_deallocframe", + "__restore_r16_through_r27_and_deallocframe" }; + + const char * V4SpillFromMemoryTailcallFunctions[] = { + "__restore_r16_through_r17_and_deallocframe_before_tailcall", + "__restore_r16_through_r19_and_deallocframe_before_tailcall", + "__restore_r16_through_r21_and_deallocframe_before_tailcall", + "__restore_r16_through_r23_and_deallocframe_before_tailcall", + "__restore_r16_through_r25_and_deallocframe_before_tailcall", + "__restore_r16_through_r27_and_deallocframe_before_tailcall" + }; + + const char **SpillFunc = nullptr; + + switch(SpillType) { + case SK_ToMem: + SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions + : V4SpillToMemoryFunctions; + break; + case SK_FromMem: + SpillFunc = V4SpillFromMemoryFunctions; + break; + case SK_FromMemTailcall: + SpillFunc = V4SpillFromMemoryTailcallFunctions; + break; + } + assert(SpillFunc && "Unknown spill kind"); + + // Spill all callee-saved registers up to the highest register used. + switch (MaxReg) { + case Hexagon::R17: + return SpillFunc[0]; + case Hexagon::R19: + return SpillFunc[1]; + case Hexagon::R21: + return SpillFunc[2]; + case Hexagon::R23: + return SpillFunc[3]; + case Hexagon::R25: + return SpillFunc[4]; + case Hexagon::R27: + return SpillFunc[5]; + default: + llvm_unreachable("Unhandled maximum callee save register"); + } + return nullptr; +} + +int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, + int FI, unsigned &FrameReg) const { + auto &MFI = MF.getFrameInfo(); + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + + int Offset = MFI.getObjectOffset(FI); + bool HasAlloca = MFI.hasVarSizedObjects(); + bool HasExtraAlign = HRI.needsStackRealignment(MF); + bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; + + auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); + unsigned FrameSize = MFI.getStackSize(); + unsigned SP = HRI.getStackRegister(); + unsigned FP = HRI.getFrameRegister(); + unsigned AP = HMFI.getStackAlignBasePhysReg(); + // It may happen that AP will be absent even HasAlloca && HasExtraAlign + // is true. HasExtraAlign may be set because of vector spills, without + // aligned locals or aligned outgoing function arguments. Since vector + // spills will ultimately be "unaligned", it is safe to use FP as the + // base register. + // In fact, in such a scenario the stack is actually not required to be + // aligned, although it may end up being aligned anyway, since this + // particular case is not easily detectable. The alignment will be + // unnecessary, but not incorrect. + // Unfortunately there is no quick way to verify that the above is + // indeed the case (and that it's not a result of an error), so just + // assume that missing AP will be replaced by FP. + // (A better fix would be to rematerialize AP from FP and always align + // vector spills.) + if (AP == 0) + AP = FP; + + bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). + // Use FP at -O0, except when there are objects with extra alignment. + // That additional alignment requirement may cause a pad to be inserted, + // which will make it impossible to use FP to access objects located + // past the pad. + if (NoOpt && !HasExtraAlign) + UseFP = true; + if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { + // Fixed and preallocated objects will be located before any padding + // so FP must be used to access them. + UseFP |= (HasAlloca || HasExtraAlign); + } else { + if (HasAlloca) { + if (HasExtraAlign) + UseAP = true; + else + UseFP = true; + } + } + + // If FP was picked, then there had better be FP. + bool HasFP = hasFP(MF); + assert((HasFP || !UseFP) && "This function must have frame pointer"); + + // Having FP implies allocframe. Allocframe will store extra 8 bytes: + // FP/LR. If the base register is used to access an object across these + // 8 bytes, then the offset will need to be adjusted by 8. + // + // After allocframe: + // HexagonISelLowering adds 8 to ---+ + // the offsets of all stack-based | + // arguments (*) | + // | + // getObjectOffset < 0 0 8 getObjectOffset >= 8 + // ------------------------+-----+------------------------> increasing + // <local objects> |FP/LR| <input arguments> addresses + // -----------------+------+-----+------------------------> + // | | + // SP/AP point --+ +-- FP points here (**) + // somewhere on + // this side of FP/LR + // + // (*) See LowerFormalArguments. The FP/LR is assumed to be present. + // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. + + // The lowering assumes that FP/LR is present, and so the offsets of + // the formal arguments start at 8. If FP/LR is not there we need to + // reduce the offset by 8. + if (Offset > 0 && !HasFP) + Offset -= 8; + + if (UseFP) + FrameReg = FP; + else if (UseAP) + FrameReg = AP; + else + FrameReg = SP; + + // Calculate the actual offset in the instruction. If there is no FP + // (in other words, no allocframe), then SP will not be adjusted (i.e. + // there will be no SP -= FrameSize), so the frame size should not be + // added to the calculated offset. + int RealOffset = Offset; + if (!UseFP && !UseAP) + RealOffset = FrameSize+Offset; + return RealOffset; +} + +bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, + const CSIVect &CSI, const HexagonRegisterInfo &HRI, + bool &PrologueStubs) const { + if (CSI.empty()) + return true; + + MachineBasicBlock::iterator MI = MBB.begin(); + PrologueStubs = false; + MachineFunction &MF = *MBB.getParent(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + + if (useSpillFunction(MF, CSI)) { + PrologueStubs = true; + unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI); + bool StkOvrFlowEnabled = EnableStackOVFSanitizer; + const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, + StkOvrFlowEnabled); + auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); + bool IsPIC = HTM.isPositionIndependent(); + bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; + + // Call spill function. + DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); + unsigned SpillOpc; + if (StkOvrFlowEnabled) { + if (LongCalls) + SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC + : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; + else + SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC + : Hexagon::SAVE_REGISTERS_CALL_V4STK; + } else { + if (LongCalls) + SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC + : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; + else + SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC + : Hexagon::SAVE_REGISTERS_CALL_V4; + } + + MachineInstr *SaveRegsCall = + BuildMI(MBB, MI, DL, HII.get(SpillOpc)) + .addExternalSymbol(SpillFun); + + // Add callee-saved registers as use. + addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); + // Add live in registers. + for (unsigned I = 0; I < CSI.size(); ++I) + MBB.addLiveIn(CSI[I].getReg()); + return true; + } + + for (unsigned i = 0, n = CSI.size(); i < n; ++i) { + unsigned Reg = CSI[i].getReg(); + // Add live in registers. We treat eh_return callee saved register r0 - r3 + // specially. They are not really callee saved registers as they are not + // supposed to be killed. + bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); + int FI = CSI[i].getFrameIdx(); + const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); + HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI); + if (IsKill) + MBB.addLiveIn(Reg); + } + return true; +} + +bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, + const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { + if (CSI.empty()) + return false; + + MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); + MachineFunction &MF = *MBB.getParent(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + + if (useRestoreFunction(MF, CSI)) { + bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); + unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI); + SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; + const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); + auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); + bool IsPIC = HTM.isPositionIndependent(); + bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; + + // Call spill function. + DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() + : MBB.findDebugLoc(MBB.end()); + MachineInstr *DeallocCall = nullptr; + + if (HasTC) { + unsigned RetOpc; + if (LongCalls) + RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC + : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; + else + RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC + : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; + DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) + .addExternalSymbol(RestoreFn); + } else { + // The block has a return. + MachineBasicBlock::iterator It = MBB.getFirstTerminator(); + assert(It->isReturn() && std::next(It) == MBB.end()); + unsigned RetOpc; + if (LongCalls) + RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC + : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; + else + RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC + : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; + DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) + .addExternalSymbol(RestoreFn); + // Transfer the function live-out registers. + DeallocCall->copyImplicitOps(MF, *It); + } + addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); + return true; + } + + for (unsigned i = 0; i < CSI.size(); ++i) { + unsigned Reg = CSI[i].getReg(); + const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); + int FI = CSI[i].getFrameIdx(); + HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI); + } + + return true; +} + +MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( + MachineFunction &MF, MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) const { + MachineInstr &MI = *I; + unsigned Opc = MI.getOpcode(); + (void)Opc; // Silence compiler warning. + assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && + "Cannot handle this call frame pseudo instruction"); + return MBB.erase(I); +} + +void HexagonFrameLowering::processFunctionBeforeFrameFinalized( + MachineFunction &MF, RegScavenger *RS) const { + // If this function has uses aligned stack and also has variable sized stack + // objects, then we need to map all spill slots to fixed positions, so that + // they can be accessed through FP. Otherwise they would have to be accessed + // via AP, which may not be available at the particular place in the program. + MachineFrameInfo &MFI = MF.getFrameInfo(); + bool HasAlloca = MFI.hasVarSizedObjects(); + bool NeedsAlign = (MFI.getMaxAlignment() > getStackAlignment()); + + if (!HasAlloca || !NeedsAlign) + return; + + unsigned LFS = MFI.getLocalFrameSize(); + for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { + if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i)) + continue; + unsigned S = MFI.getObjectSize(i); + // Reduce the alignment to at most 8. This will require unaligned vector + // stores if they happen here. + unsigned A = std::max(MFI.getObjectAlignment(i), 8U); + MFI.setObjectAlignment(i, 8); + LFS = alignTo(LFS+S, A); + MFI.mapLocalFrameObject(i, -LFS); + } + + MFI.setLocalFrameSize(LFS); + unsigned A = MFI.getLocalFrameMaxAlign(); + assert(A <= 8 && "Unexpected local frame alignment"); + if (A == 0) + MFI.setLocalFrameMaxAlign(8); + MFI.setUseLocalStackAllocationBlock(true); + + // Set the physical aligned-stack base address register. + unsigned AP = 0; + if (const MachineInstr *AI = getAlignaInstr(MF)) + AP = AI->getOperand(0).getReg(); + auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); + HMFI.setStackAlignBasePhysReg(AP); +} + +/// Returns true if there are no caller-saved registers available in class RC. +static bool needToReserveScavengingSpillSlots(MachineFunction &MF, + const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { + MachineRegisterInfo &MRI = MF.getRegInfo(); + + auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool { + for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) + if (MRI.isPhysRegUsed(*AI)) + return true; + return false; + }; + + // Check for an unused caller-saved register. Callee-saved registers + // have become pristine by now. + for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) + if (!IsUsed(*P)) + return false; + + // All caller-saved registers are used. + return true; +} + +#ifndef NDEBUG +static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { + dbgs() << '{'; + for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { + unsigned R = x; + dbgs() << ' ' << printReg(R, &TRI); + } + dbgs() << " }"; +} +#endif + +bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, + const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { + LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); + MachineFrameInfo &MFI = MF.getFrameInfo(); + BitVector SRegs(Hexagon::NUM_TARGET_REGS); + + // Generate a set of unique, callee-saved registers (SRegs), where each + // register in the set is maximal in terms of sub-/super-register relation, + // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. + + // (1) For each callee-saved register, add that register and all of its + // sub-registers to SRegs. + LLVM_DEBUG(dbgs() << "Initial CS registers: {"); + for (unsigned i = 0, n = CSI.size(); i < n; ++i) { + unsigned R = CSI[i].getReg(); + LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); + for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) + SRegs[*SR] = true; + } + LLVM_DEBUG(dbgs() << " }\n"); + LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); + dbgs() << "\n"); + + // (2) For each reserved register, remove that register and all of its + // sub- and super-registers from SRegs. + BitVector Reserved = TRI->getReservedRegs(MF); + for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { + unsigned R = x; + for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR) + SRegs[*SR] = false; + } + LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); + dbgs() << "\n"); + LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); + dbgs() << "\n"); + + // (3) Collect all registers that have at least one sub-register in SRegs, + // and also have no sub-registers that are reserved. These will be the can- + // didates for saving as a whole instead of their individual sub-registers. + // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) + BitVector TmpSup(Hexagon::NUM_TARGET_REGS); + for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { + unsigned R = x; + for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) + TmpSup[*SR] = true; + } + for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { + unsigned R = x; + for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) { + if (!Reserved[*SR]) + continue; + TmpSup[R] = false; + break; + } + } + LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); + dbgs() << "\n"); + + // (4) Include all super-registers found in (3) into SRegs. + SRegs |= TmpSup; + LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); + dbgs() << "\n"); + + // (5) For each register R in SRegs, if any super-register of R is in SRegs, + // remove R from SRegs. + for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { + unsigned R = x; + for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { + if (!SRegs[*SR]) + continue; + SRegs[R] = false; + break; + } + } + LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); + dbgs() << "\n"); + + // Now, for each register that has a fixed stack slot, create the stack + // object for it. + CSI.clear(); + + using SpillSlot = TargetFrameLowering::SpillSlot; + + unsigned NumFixed; + int MinOffset = 0; // CS offsets are negative. + const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); + for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { + if (!SRegs[S->Reg]) + continue; + const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); + int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); + MinOffset = std::min(MinOffset, S->Offset); + CSI.push_back(CalleeSavedInfo(S->Reg, FI)); + SRegs[S->Reg] = false; + } + + // There can be some registers that don't have fixed slots. For example, + // we need to store R0-R3 in functions with exception handling. For each + // such register, create a non-fixed stack object. + for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { + unsigned R = x; + const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); + unsigned Size = TRI->getSpillSize(*RC); + int Off = MinOffset - Size; + unsigned Align = std::min(TRI->getSpillAlignment(*RC), getStackAlignment()); + assert(isPowerOf2_32(Align)); + Off &= -Align; + int FI = MFI.CreateFixedSpillStackObject(Size, Off); + MinOffset = std::min(MinOffset, Off); + CSI.push_back(CalleeSavedInfo(R, FI)); + SRegs[R] = false; + } + + LLVM_DEBUG({ + dbgs() << "CS information: {"; + for (unsigned i = 0, n = CSI.size(); i < n; ++i) { + int FI = CSI[i].getFrameIdx(); + int Off = MFI.getObjectOffset(FI); + dbgs() << ' ' << printReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp"; + if (Off >= 0) + dbgs() << '+'; + dbgs() << Off; + } + dbgs() << " }\n"; + }); + +#ifndef NDEBUG + // Verify that all registers were handled. + bool MissedReg = false; + for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { + unsigned R = x; + dbgs() << printReg(R, TRI) << ' '; + MissedReg = true; + } + if (MissedReg) + llvm_unreachable("...there are unhandled callee-saved registers!"); +#endif + + return true; +} + +bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineInstr *MI = &*It; + DebugLoc DL = MI->getDebugLoc(); + unsigned DstR = MI->getOperand(0).getReg(); + unsigned SrcR = MI->getOperand(1).getReg(); + if (!Hexagon::ModRegsRegClass.contains(DstR) || + !Hexagon::ModRegsRegClass.contains(SrcR)) + return false; + + unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); + BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) + .addReg(TmpR, RegState::Kill); + + NewRegs.push_back(TmpR); + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineInstr *MI = &*It; + if (!MI->getOperand(0).isFI()) + return false; + + DebugLoc DL = MI->getDebugLoc(); + unsigned Opc = MI->getOpcode(); + unsigned SrcR = MI->getOperand(2).getReg(); + bool IsKill = MI->getOperand(2).isKill(); + int FI = MI->getOperand(0).getIndex(); + + // TmpR = C2_tfrpr SrcR if SrcR is a predicate register + // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register + unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr + : Hexagon::A2_tfrcrr; + BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) + .addReg(SrcR, getKillRegState(IsKill)); + + // S2_storeri_io FI, 0, TmpR + BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) + .addFrameIndex(FI) + .addImm(0) + .addReg(TmpR, RegState::Kill) + .cloneMemRefs(*MI); + + NewRegs.push_back(TmpR); + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineInstr *MI = &*It; + if (!MI->getOperand(1).isFI()) + return false; + + DebugLoc DL = MI->getDebugLoc(); + unsigned Opc = MI->getOpcode(); + unsigned DstR = MI->getOperand(0).getReg(); + int FI = MI->getOperand(1).getIndex(); + + // TmpR = L2_loadri_io FI, 0 + unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) + .addFrameIndex(FI) + .addImm(0) + .cloneMemRefs(*MI); + + // DstR = C2_tfrrp TmpR if DstR is a predicate register + // DstR = A2_tfrrcr TmpR if DstR is a modifier register + unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp + : Hexagon::A2_tfrrcr; + BuildMI(B, It, DL, HII.get(TfrOpc), DstR) + .addReg(TmpR, RegState::Kill); + + NewRegs.push_back(TmpR); + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineInstr *MI = &*It; + if (!MI->getOperand(0).isFI()) + return false; + + DebugLoc DL = MI->getDebugLoc(); + unsigned SrcR = MI->getOperand(2).getReg(); + bool IsKill = MI->getOperand(2).isKill(); + int FI = MI->getOperand(0).getIndex(); + auto *RC = &Hexagon::HvxVRRegClass; + + // Insert transfer to general vector register. + // TmpR0 = A2_tfrsi 0x01010101 + // TmpR1 = V6_vandqrt Qx, TmpR0 + // store FI, 0, TmpR1 + unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + unsigned TmpR1 = MRI.createVirtualRegister(RC); + + BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) + .addImm(0x01010101); + + BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) + .addReg(SrcR, getKillRegState(IsKill)) + .addReg(TmpR0, RegState::Kill); + + auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); + HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI); + expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); + + NewRegs.push_back(TmpR0); + NewRegs.push_back(TmpR1); + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineInstr *MI = &*It; + if (!MI->getOperand(1).isFI()) + return false; + + DebugLoc DL = MI->getDebugLoc(); + unsigned DstR = MI->getOperand(0).getReg(); + int FI = MI->getOperand(1).getIndex(); + auto *RC = &Hexagon::HvxVRRegClass; + + // TmpR0 = A2_tfrsi 0x01010101 + // TmpR1 = load FI, 0 + // DstR = V6_vandvrt TmpR1, TmpR0 + unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + unsigned TmpR1 = MRI.createVirtualRegister(RC); + + BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) + .addImm(0x01010101); + MachineFunction &MF = *B.getParent(); + auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI); + expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); + + BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) + .addReg(TmpR1, RegState::Kill) + .addReg(TmpR0, RegState::Kill); + + NewRegs.push_back(TmpR0); + NewRegs.push_back(TmpR1); + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineFunction &MF = *B.getParent(); + auto &MFI = MF.getFrameInfo(); + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + MachineInstr *MI = &*It; + if (!MI->getOperand(0).isFI()) + return false; + + // It is possible that the double vector being stored is only partially + // defined. From the point of view of the liveness tracking, it is ok to + // store it as a whole, but if we break it up we may end up storing a + // register that is entirely undefined. + LivePhysRegs LPR(HRI); + LPR.addLiveIns(B); + SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; + for (auto R = B.begin(); R != It; ++R) { + Clobbers.clear(); + LPR.stepForward(*R, Clobbers); + } + + DebugLoc DL = MI->getDebugLoc(); + unsigned SrcR = MI->getOperand(2).getReg(); + unsigned SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); + unsigned SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); + bool IsKill = MI->getOperand(2).isKill(); + int FI = MI->getOperand(0).getIndex(); + + unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); + unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); + unsigned HasAlign = MFI.getObjectAlignment(FI); + unsigned StoreOpc; + + // Store low part. + if (LPR.contains(SrcLo)) { + StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai + : Hexagon::V6_vS32Ub_ai; + BuildMI(B, It, DL, HII.get(StoreOpc)) + .addFrameIndex(FI) + .addImm(0) + .addReg(SrcLo, getKillRegState(IsKill)) + .cloneMemRefs(*MI); + } + + // Store high part. + if (LPR.contains(SrcHi)) { + StoreOpc = NeedAlign <= MinAlign(HasAlign, Size) ? Hexagon::V6_vS32b_ai + : Hexagon::V6_vS32Ub_ai; + BuildMI(B, It, DL, HII.get(StoreOpc)) + .addFrameIndex(FI) + .addImm(Size) + .addReg(SrcHi, getKillRegState(IsKill)) + .cloneMemRefs(*MI); + } + + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineFunction &MF = *B.getParent(); + auto &MFI = MF.getFrameInfo(); + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + MachineInstr *MI = &*It; + if (!MI->getOperand(1).isFI()) + return false; + + DebugLoc DL = MI->getDebugLoc(); + unsigned DstR = MI->getOperand(0).getReg(); + unsigned DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); + unsigned DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); + int FI = MI->getOperand(1).getIndex(); + + unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); + unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); + unsigned HasAlign = MFI.getObjectAlignment(FI); + unsigned LoadOpc; + + // Load low part. + LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai + : Hexagon::V6_vL32Ub_ai; + BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) + .addFrameIndex(FI) + .addImm(0) + .cloneMemRefs(*MI); + + // Load high part. + LoadOpc = NeedAlign <= MinAlign(HasAlign, Size) ? Hexagon::V6_vL32b_ai + : Hexagon::V6_vL32Ub_ai; + BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) + .addFrameIndex(FI) + .addImm(Size) + .cloneMemRefs(*MI); + + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineFunction &MF = *B.getParent(); + auto &MFI = MF.getFrameInfo(); + MachineInstr *MI = &*It; + if (!MI->getOperand(0).isFI()) + return false; + + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + DebugLoc DL = MI->getDebugLoc(); + unsigned SrcR = MI->getOperand(2).getReg(); + bool IsKill = MI->getOperand(2).isKill(); + int FI = MI->getOperand(0).getIndex(); + + unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); + unsigned HasAlign = MFI.getObjectAlignment(FI); + unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai + : Hexagon::V6_vS32Ub_ai; + BuildMI(B, It, DL, HII.get(StoreOpc)) + .addFrameIndex(FI) + .addImm(0) + .addReg(SrcR, getKillRegState(IsKill)) + .cloneMemRefs(*MI); + + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, + MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, + const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { + MachineFunction &MF = *B.getParent(); + auto &MFI = MF.getFrameInfo(); + MachineInstr *MI = &*It; + if (!MI->getOperand(1).isFI()) + return false; + + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + DebugLoc DL = MI->getDebugLoc(); + unsigned DstR = MI->getOperand(0).getReg(); + int FI = MI->getOperand(1).getIndex(); + + unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); + unsigned HasAlign = MFI.getObjectAlignment(FI); + unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai + : Hexagon::V6_vL32Ub_ai; + BuildMI(B, It, DL, HII.get(LoadOpc), DstR) + .addFrameIndex(FI) + .addImm(0) + .cloneMemRefs(*MI); + + B.erase(It); + return true; +} + +bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, + SmallVectorImpl<unsigned> &NewRegs) const { + auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + bool Changed = false; + + for (auto &B : MF) { + // Traverse the basic block. + MachineBasicBlock::iterator NextI; + for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { + MachineInstr *MI = &*I; + NextI = std::next(I); + unsigned Opc = MI->getOpcode(); + + switch (Opc) { + case TargetOpcode::COPY: + Changed |= expandCopy(B, I, MRI, HII, NewRegs); + break; + case Hexagon::STriw_pred: + case Hexagon::STriw_ctr: + Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); + break; + case Hexagon::LDriw_pred: + case Hexagon::LDriw_ctr: + Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); + break; + case Hexagon::PS_vstorerq_ai: + Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); + break; + case Hexagon::PS_vloadrq_ai: + Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); + break; + case Hexagon::PS_vloadrw_ai: + case Hexagon::PS_vloadrwu_ai: + Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); + break; + case Hexagon::PS_vstorerw_ai: + case Hexagon::PS_vstorerwu_ai: + Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); + break; + } + } + } + + return Changed; +} + +void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, + BitVector &SavedRegs, + RegScavenger *RS) const { + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + + SavedRegs.resize(HRI.getNumRegs()); + + // If we have a function containing __builtin_eh_return we want to spill and + // restore all callee saved registers. Pretend that they are used. + if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) + for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) + SavedRegs.set(*R); + + // Replace predicate register pseudo spill code. + SmallVector<unsigned,8> NewRegs; + expandSpillMacros(MF, NewRegs); + if (OptimizeSpillSlots && !isOptNone(MF)) + optimizeSpillSlots(MF, NewRegs); + + // We need to reserve a spill slot if scavenging could potentially require + // spilling a scavenged register. + if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { + MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + SetVector<const TargetRegisterClass*> SpillRCs; + // Reserve an int register in any case, because it could be used to hold + // the stack offset in case it does not fit into a spill instruction. + SpillRCs.insert(&Hexagon::IntRegsRegClass); + + for (unsigned VR : NewRegs) + SpillRCs.insert(MRI.getRegClass(VR)); + + for (auto *RC : SpillRCs) { + if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) + continue; + unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1; + unsigned S = HRI.getSpillSize(*RC), A = HRI.getSpillAlignment(*RC); + for (unsigned i = 0; i < Num; i++) { + int NewFI = MFI.CreateSpillStackObject(S, A); + RS->addScavengingFrameIndex(NewFI); + } + } + } + + TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); +} + +unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF, + HexagonBlockRanges::IndexRange &FIR, + HexagonBlockRanges::InstrIndexMap &IndexMap, + HexagonBlockRanges::RegToRangeMap &DeadMap, + const TargetRegisterClass *RC) const { + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + auto &MRI = MF.getRegInfo(); + + auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool { + auto F = DeadMap.find({Reg,0}); + if (F == DeadMap.end()) + return false; + for (auto &DR : F->second) + if (DR.contains(FIR)) + return true; + return false; + }; + + for (unsigned Reg : RC->getRawAllocationOrder(MF)) { + bool Dead = true; + for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { + if (isDead(R.Reg)) + continue; + Dead = false; + break; + } + if (Dead) + return Reg; + } + return 0; +} + +void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, + SmallVectorImpl<unsigned> &VRegs) const { + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + auto &HRI = *HST.getRegisterInfo(); + auto &MRI = MF.getRegInfo(); + HexagonBlockRanges HBR(MF); + + using BlockIndexMap = + std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; + using BlockRangeMap = + std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; + using IndexType = HexagonBlockRanges::IndexType; + + struct SlotInfo { + BlockRangeMap Map; + unsigned Size = 0; + const TargetRegisterClass *RC = nullptr; + + SlotInfo() = default; + }; + + BlockIndexMap BlockIndexes; + SmallSet<int,4> BadFIs; + std::map<int,SlotInfo> FIRangeMap; + + // Accumulate register classes: get a common class for a pre-existing + // class HaveRC and a new class NewRC. Return nullptr if a common class + // cannot be found, otherwise return the resulting class. If HaveRC is + // nullptr, assume that it is still unset. + auto getCommonRC = + [](const TargetRegisterClass *HaveRC, + const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { + if (HaveRC == nullptr || HaveRC == NewRC) + return NewRC; + // Different classes, both non-null. Pick the more general one. + if (HaveRC->hasSubClassEq(NewRC)) + return HaveRC; + if (NewRC->hasSubClassEq(HaveRC)) + return NewRC; + return nullptr; + }; + + // Scan all blocks in the function. Check all occurrences of frame indexes, + // and collect relevant information. + for (auto &B : MF) { + std::map<int,IndexType> LastStore, LastLoad; + // Emplace appears not to be supported in gcc 4.7.2-4. + //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); + auto P = BlockIndexes.insert( + std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); + auto &IndexMap = P.first->second; + LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" + << IndexMap << '\n'); + + for (auto &In : B) { + int LFI, SFI; + bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); + bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); + if (Load && Store) { + // If it's both a load and a store, then we won't handle it. + BadFIs.insert(LFI); + BadFIs.insert(SFI); + continue; + } + // Check for register classes of the register used as the source for + // the store, and the register used as the destination for the load. + // Also, only accept base+imm_offset addressing modes. Other addressing + // modes can have side-effects (post-increments, etc.). For stack + // slots they are very unlikely, so there is not much loss due to + // this restriction. + if (Load || Store) { + int TFI = Load ? LFI : SFI; + unsigned AM = HII.getAddrMode(In); + SlotInfo &SI = FIRangeMap[TFI]; + bool Bad = (AM != HexagonII::BaseImmOffset); + if (!Bad) { + // If the addressing mode is ok, check the register class. + unsigned OpNum = Load ? 0 : 2; + auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF); + RC = getCommonRC(SI.RC, RC); + if (RC == nullptr) + Bad = true; + else + SI.RC = RC; + } + if (!Bad) { + // Check sizes. + unsigned S = HII.getMemAccessSize(In); + if (SI.Size != 0 && SI.Size != S) + Bad = true; + else + SI.Size = S; + } + if (!Bad) { + for (auto *Mo : In.memoperands()) { + if (!Mo->isVolatile() && !Mo->isAtomic()) + continue; + Bad = true; + break; + } + } + if (Bad) + BadFIs.insert(TFI); + } + + // Locate uses of frame indices. + for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { + const MachineOperand &Op = In.getOperand(i); + if (!Op.isFI()) + continue; + int FI = Op.getIndex(); + // Make sure that the following operand is an immediate and that + // it is 0. This is the offset in the stack object. + if (i+1 >= n || !In.getOperand(i+1).isImm() || + In.getOperand(i+1).getImm() != 0) + BadFIs.insert(FI); + if (BadFIs.count(FI)) + continue; + + IndexType Index = IndexMap.getIndex(&In); + if (Load) { + if (LastStore[FI] == IndexType::None) + LastStore[FI] = IndexType::Entry; + LastLoad[FI] = Index; + } else if (Store) { + HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; + if (LastStore[FI] != IndexType::None) + RL.add(LastStore[FI], LastLoad[FI], false, false); + else if (LastLoad[FI] != IndexType::None) + RL.add(IndexType::Entry, LastLoad[FI], false, false); + LastLoad[FI] = IndexType::None; + LastStore[FI] = Index; + } else { + BadFIs.insert(FI); + } + } + } + + for (auto &I : LastLoad) { + IndexType LL = I.second; + if (LL == IndexType::None) + continue; + auto &RL = FIRangeMap[I.first].Map[&B]; + IndexType &LS = LastStore[I.first]; + if (LS != IndexType::None) + RL.add(LS, LL, false, false); + else + RL.add(IndexType::Entry, LL, false, false); + LS = IndexType::None; + } + for (auto &I : LastStore) { + IndexType LS = I.second; + if (LS == IndexType::None) + continue; + auto &RL = FIRangeMap[I.first].Map[&B]; + RL.add(LS, IndexType::None, false, false); + } + } + + LLVM_DEBUG({ + for (auto &P : FIRangeMap) { + dbgs() << "fi#" << P.first; + if (BadFIs.count(P.first)) + dbgs() << " (bad)"; + dbgs() << " RC: "; + if (P.second.RC != nullptr) + dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; + else + dbgs() << "<null>\n"; + for (auto &R : P.second.Map) + dbgs() << " " << printMBBReference(*R.first) << " { " << R.second + << "}\n"; + } + }); + + // When a slot is loaded from in a block without being stored to in the + // same block, it is live-on-entry to this block. To avoid CFG analysis, + // consider this slot to be live-on-exit from all blocks. + SmallSet<int,4> LoxFIs; + + std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; + + for (auto &P : FIRangeMap) { + // P = pair(FI, map: BB->RangeList) + if (BadFIs.count(P.first)) + continue; + for (auto &B : MF) { + auto F = P.second.Map.find(&B); + // F = pair(BB, RangeList) + if (F == P.second.Map.end() || F->second.empty()) + continue; + HexagonBlockRanges::IndexRange &IR = F->second.front(); + if (IR.start() == IndexType::Entry) + LoxFIs.insert(P.first); + BlockFIMap[&B].push_back(P.first); + } + } + + LLVM_DEBUG({ + dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; + for (auto &P : BlockFIMap) { + auto &FIs = P.second; + if (FIs.empty()) + continue; + dbgs() << " " << printMBBReference(*P.first) << ": {"; + for (auto I : FIs) { + dbgs() << " fi#" << I; + if (LoxFIs.count(I)) + dbgs() << '*'; + } + dbgs() << " }\n"; + } + }); + +#ifndef NDEBUG + bool HasOptLimit = SpillOptMax.getPosition(); +#endif + + // eliminate loads, when all loads eliminated, eliminate all stores. + for (auto &B : MF) { + auto F = BlockIndexes.find(&B); + assert(F != BlockIndexes.end()); + HexagonBlockRanges::InstrIndexMap &IM = F->second; + HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); + HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); + LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" + << HexagonBlockRanges::PrintRangeMap(DM, HRI)); + + for (auto FI : BlockFIMap[&B]) { + if (BadFIs.count(FI)) + continue; + LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); + HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; + for (auto &Range : RL) { + LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); + if (!IndexType::isInstr(Range.start()) || + !IndexType::isInstr(Range.end())) + continue; + MachineInstr &SI = *IM.getInstr(Range.start()); + MachineInstr &EI = *IM.getInstr(Range.end()); + assert(SI.mayStore() && "Unexpected start instruction"); + assert(EI.mayLoad() && "Unexpected end instruction"); + MachineOperand &SrcOp = SI.getOperand(2); + + HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), + SrcOp.getSubReg() }; + auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF); + // The this-> is needed to unconfuse MSVC. + unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC); + LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) + << '\n'); + if (FoundR == 0) + continue; +#ifndef NDEBUG + if (HasOptLimit) { + if (SpillOptCount >= SpillOptMax) + return; + SpillOptCount++; + } +#endif + + // Generate the copy-in: "FoundR = COPY SrcR" at the store location. + MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; + MachineInstr *CopyIn = nullptr; + if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { + const DebugLoc &DL = SI.getDebugLoc(); + CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) + .add(SrcOp); + } + + ++StartIt; + // Check if this is a last store and the FI is live-on-exit. + if (LoxFIs.count(FI) && (&Range == &RL.back())) { + // Update store's source register. + if (unsigned SR = SrcOp.getSubReg()) + SrcOp.setReg(HRI.getSubReg(FoundR, SR)); + else + SrcOp.setReg(FoundR); + SrcOp.setSubReg(0); + // We are keeping this register live. + SrcOp.setIsKill(false); + } else { + B.erase(&SI); + IM.replaceInstr(&SI, CopyIn); + } + + auto EndIt = std::next(EI.getIterator()); + for (auto It = StartIt; It != EndIt; It = NextIt) { + MachineInstr &MI = *It; + NextIt = std::next(It); + int TFI; + if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) + continue; + unsigned DstR = MI.getOperand(0).getReg(); + assert(MI.getOperand(0).getSubReg() == 0); + MachineInstr *CopyOut = nullptr; + if (DstR != FoundR) { + DebugLoc DL = MI.getDebugLoc(); + unsigned MemSize = HII.getMemAccessSize(MI); + assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); + unsigned CopyOpc = TargetOpcode::COPY; + if (HII.isSignExtendingLoad(MI)) + CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; + else if (HII.isZeroExtendingLoad(MI)) + CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; + CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) + .addReg(FoundR, getKillRegState(&MI == &EI)); + } + IM.replaceInstr(&MI, CopyOut); + B.erase(It); + } + + // Update the dead map. + HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; + for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) + DM[RR].subtract(Range); + } // for Range in range list + } + } +} + +void HexagonFrameLowering::expandAlloca(MachineInstr *AI, + const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const { + MachineBasicBlock &MB = *AI->getParent(); + DebugLoc DL = AI->getDebugLoc(); + unsigned A = AI->getOperand(2).getImm(); + + // Have + // Rd = alloca Rs, #A + // + // If Rs and Rd are different registers, use this sequence: + // Rd = sub(r29, Rs) + // r29 = sub(r29, Rs) + // Rd = and(Rd, #-A) ; if necessary + // r29 = and(r29, #-A) ; if necessary + // Rd = add(Rd, #CF) ; CF size aligned to at most A + // otherwise, do + // Rd = sub(r29, Rs) + // Rd = and(Rd, #-A) ; if necessary + // r29 = Rd + // Rd = add(Rd, #CF) ; CF size aligned to at most A + + MachineOperand &RdOp = AI->getOperand(0); + MachineOperand &RsOp = AI->getOperand(1); + unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg(); + + // Rd = sub(r29, Rs) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) + .addReg(SP) + .addReg(Rs); + if (Rs != Rd) { + // r29 = sub(r29, Rs) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) + .addReg(SP) + .addReg(Rs); + } + if (A > 8) { + // Rd = and(Rd, #-A) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) + .addReg(Rd) + .addImm(-int64_t(A)); + if (Rs != Rd) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) + .addReg(SP) + .addImm(-int64_t(A)); + } + if (Rs == Rd) { + // r29 = Rd + BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) + .addReg(Rd); + } + if (CF > 0) { + // Rd = add(Rd, #CF) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) + .addReg(Rd) + .addImm(CF); + } +} + +bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { + const MachineFrameInfo &MFI = MF.getFrameInfo(); + if (!MFI.hasVarSizedObjects()) + return false; + unsigned MaxA = MFI.getMaxAlignment(); + if (MaxA <= getStackAlignment()) + return false; + return true; +} + +const MachineInstr *HexagonFrameLowering::getAlignaInstr( + const MachineFunction &MF) const { + for (auto &B : MF) + for (auto &I : B) + if (I.getOpcode() == Hexagon::PS_aligna) + return &I; + return nullptr; +} + +/// Adds all callee-saved registers as implicit uses or defs to the +/// instruction. +void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, + const CSIVect &CSI, bool IsDef, bool IsKill) const { + // Add the callee-saved registers as implicit uses. + for (auto &R : CSI) + MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); +} + +/// Determine whether the callee-saved register saves and restores should +/// be generated via inline code. If this function returns "true", inline +/// code will be generated. If this function returns "false", additional +/// checks are performed, which may still lead to the inline code. +bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, + const CSIVect &CSI) const { + if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) + return true; + if (!hasFP(MF)) + return true; + if (!isOptSize(MF) && !isMinSize(MF)) + if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) + return true; + + // Check if CSI only has double registers, and if the registers form + // a contiguous block starting from D8. + BitVector Regs(Hexagon::NUM_TARGET_REGS); + for (unsigned i = 0, n = CSI.size(); i < n; ++i) { + unsigned R = CSI[i].getReg(); + if (!Hexagon::DoubleRegsRegClass.contains(R)) + return true; + Regs[R] = true; + } + int F = Regs.find_first(); + if (F != Hexagon::D8) + return true; + while (F >= 0) { + int N = Regs.find_next(F); + if (N >= 0 && N != F+1) + return true; + F = N; + } + + return false; +} + +bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, + const CSIVect &CSI) const { + if (shouldInlineCSR(MF, CSI)) + return false; + unsigned NumCSI = CSI.size(); + if (NumCSI <= 1) + return false; + + unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs + : SpillFuncThreshold; + return Threshold < NumCSI; +} + +bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, + const CSIVect &CSI) const { + if (shouldInlineCSR(MF, CSI)) + return false; + // The restore functions do a bit more than just restoring registers. + // The non-returning versions will go back directly to the caller's + // caller, others will clean up the stack frame in preparation for + // a tail call. Using them can still save code size even if only one + // register is getting restores. Make the decision based on -Oz: + // using -Os will use inline restore for a single register. + if (isMinSize(MF)) + return true; + unsigned NumCSI = CSI.size(); + if (NumCSI <= 1) + return false; + + unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 + : SpillFuncThreshold; + return Threshold < NumCSI; +} + +bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { + unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + // A fairly simplistic guess as to whether a potential load/store to a + // stack location could require an extra register. + if (HST.useHVXOps() && StackSize > 256) + return true; + + // Check if the function has store-immediate instructions that access + // the stack. Since the offset field is not extendable, if the stack + // size exceeds the offset limit (6 bits, shifted), the stores will + // require a new base register. + bool HasImmStack = false; + unsigned MinLS = ~0u; // Log_2 of the memory access size. + + for (const MachineBasicBlock &B : MF) { + for (const MachineInstr &MI : B) { + unsigned LS = 0; + switch (MI.getOpcode()) { + case Hexagon::S4_storeirit_io: + case Hexagon::S4_storeirif_io: + case Hexagon::S4_storeiri_io: + ++LS; + LLVM_FALLTHROUGH; + case Hexagon::S4_storeirht_io: + case Hexagon::S4_storeirhf_io: + case Hexagon::S4_storeirh_io: + ++LS; + LLVM_FALLTHROUGH; + case Hexagon::S4_storeirbt_io: + case Hexagon::S4_storeirbf_io: + case Hexagon::S4_storeirb_io: + if (MI.getOperand(0).isFI()) + HasImmStack = true; + MinLS = std::min(MinLS, LS); + break; + } + } + } + + if (HasImmStack) + return !isUInt<6>(StackSize >> MinLS); + + return false; +} |
