summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp582
1 files changed, 582 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp
new file mode 100644
index 000000000000..7ec63a642b0c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp
@@ -0,0 +1,582 @@
+//===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Hexagon specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonInstrInfo.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "MCTargetDesc/HexagonMCTargetDesc.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <map>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-subtarget"
+
+#define GET_SUBTARGETINFO_CTOR
+#define GET_SUBTARGETINFO_TARGET_DESC
+#include "HexagonGenSubtargetInfo.inc"
+
+
+static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
+ cl::Hidden, cl::ZeroOrMore, cl::init(true));
+
+static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false));
+
+static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
+ cl::Hidden, cl::ZeroOrMore, cl::init(true),
+ cl::desc("Enable the scheduler to generate .cur"));
+
+static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable Hexagon MI Scheduling"));
+
+static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
+ cl::Hidden, cl::ZeroOrMore, cl::init(true),
+ cl::desc("Enable subregister liveness tracking for Hexagon"));
+
+static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("If present, forces/disables the use of long calls"));
+
+static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Consider calls to be predicable"));
+
+static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
+ cl::Hidden, cl::ZeroOrMore, cl::init(true));
+
+static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
+ cl::Hidden, cl::ZeroOrMore, cl::init(true));
+
+static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
+ cl::Hidden, cl::ZeroOrMore, cl::init(true),
+ cl::desc("Enable checking for cache bank conflicts"));
+
+
+HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
+ StringRef FS, const TargetMachine &TM)
+ : HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()),
+ CPUString(Hexagon_MC::selectHexagonCPU(CPU)),
+ InstrInfo(initializeSubtargetDependencies(CPU, FS)),
+ RegInfo(getHwMode()), TLInfo(TM, *this),
+ InstrItins(getInstrItineraryForCPU(CPUString)) {
+ // Beware of the default constructor of InstrItineraryData: it will
+ // reset all members to 0.
+ assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
+}
+
+HexagonSubtarget &
+HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
+ static std::map<StringRef, Hexagon::ArchEnum> CpuTable{
+ {"generic", Hexagon::ArchEnum::V60},
+ {"hexagonv5", Hexagon::ArchEnum::V5},
+ {"hexagonv55", Hexagon::ArchEnum::V55},
+ {"hexagonv60", Hexagon::ArchEnum::V60},
+ {"hexagonv62", Hexagon::ArchEnum::V62},
+ {"hexagonv65", Hexagon::ArchEnum::V65},
+ {"hexagonv66", Hexagon::ArchEnum::V66},
+ };
+
+ auto FoundIt = CpuTable.find(CPUString);
+ if (FoundIt != CpuTable.end())
+ HexagonArchVersion = FoundIt->second;
+ else
+ llvm_unreachable("Unrecognized Hexagon processor version");
+
+ UseHVX128BOps = false;
+ UseHVX64BOps = false;
+ UseLongCalls = false;
+
+ UseBSBScheduling = hasV60Ops() && EnableBSBSched;
+
+ ParseSubtargetFeatures(CPUString, FS);
+
+ if (OverrideLongCalls.getPosition())
+ UseLongCalls = OverrideLongCalls;
+
+ FeatureBitset Features = getFeatureBits();
+ if (HexagonDisableDuplex)
+ setFeatureBits(Features.set(Hexagon::FeatureDuplex, false));
+ setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
+
+ return *this;
+}
+
+void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
+ for (SUnit &SU : DAG->SUnits) {
+ if (!SU.isInstr())
+ continue;
+ SmallVector<SDep, 4> Erase;
+ for (auto &D : SU.Preds)
+ if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
+ Erase.push_back(D);
+ for (auto &E : Erase)
+ SU.removePred(E);
+ }
+}
+
+void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
+ for (SUnit &SU : DAG->SUnits) {
+ // Update the latency of chain edges between v60 vector load or store
+ // instructions to be 1. These instruction cannot be scheduled in the
+ // same packet.
+ MachineInstr &MI1 = *SU.getInstr();
+ auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
+ bool IsStoreMI1 = MI1.mayStore();
+ bool IsLoadMI1 = MI1.mayLoad();
+ if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
+ continue;
+ for (SDep &SI : SU.Succs) {
+ if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
+ continue;
+ MachineInstr &MI2 = *SI.getSUnit()->getInstr();
+ if (!QII->isHVXVec(MI2))
+ continue;
+ if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
+ SI.setLatency(1);
+ SU.setHeightDirty();
+ // Change the dependence in the opposite direction too.
+ for (SDep &PI : SI.getSUnit()->Preds) {
+ if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
+ continue;
+ PI.setLatency(1);
+ SI.getSUnit()->setDepthDirty();
+ }
+ }
+ }
+ }
+}
+
+// Check if a call and subsequent A2_tfrpi instructions should maintain
+// scheduling affinity. We are looking for the TFRI to be consumed in
+// the next instruction. This should help reduce the instances of
+// double register pairs being allocated and scheduled before a call
+// when not used until after the call. This situation is exacerbated
+// by the fact that we allocate the pair from the callee saves list,
+// leading to excess spills and restores.
+bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
+ const HexagonInstrInfo &HII, const SUnit &Inst1,
+ const SUnit &Inst2) const {
+ if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
+ return false;
+
+ // TypeXTYPE are 64 bit operations.
+ unsigned Type = HII.getType(*Inst2.getInstr());
+ return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
+ Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
+}
+
+void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
+ ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
+ SUnit* LastSequentialCall = nullptr;
+ // Map from virtual register to physical register from the copy.
+ DenseMap<unsigned, unsigned> VRegHoldingReg;
+ // Map from the physical register to the instruction that uses virtual
+ // register. This is used to create the barrier edge.
+ DenseMap<unsigned, SUnit *> LastVRegUse;
+ auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
+ auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
+
+ // Currently we only catch the situation when compare gets scheduled
+ // before preceding call.
+ for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
+ // Remember the call.
+ if (DAG->SUnits[su].getInstr()->isCall())
+ LastSequentialCall = &DAG->SUnits[su];
+ // Look for a compare that defines a predicate.
+ else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
+ DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
+ // Look for call and tfri* instructions.
+ else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
+ shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
+ DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
+ // Prevent redundant register copies due to reads and writes of physical
+ // registers. The original motivation for this was the code generated
+ // between two calls, which are caused both the return value and the
+ // argument for the next call being in %r0.
+ // Example:
+ // 1: <call1>
+ // 2: %vreg = COPY %r0
+ // 3: <use of %vreg>
+ // 4: %r0 = ...
+ // 5: <call2>
+ // The scheduler would often swap 3 and 4, so an additional register is
+ // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
+ // this.
+ // The code below checks for all the physical registers, not just R0/D0/V0.
+ else if (SchedRetvalOptimization) {
+ const MachineInstr *MI = DAG->SUnits[su].getInstr();
+ if (MI->isCopy() &&
+ TargetRegisterInfo::isPhysicalRegister(MI->getOperand(1).getReg())) {
+ // %vregX = COPY %r0
+ VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
+ LastVRegUse.erase(MI->getOperand(1).getReg());
+ } else {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.isUse() && !MI->isCopy() &&
+ VRegHoldingReg.count(MO.getReg())) {
+ // <use of %vregX>
+ LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
+ } else if (MO.isDef() &&
+ TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
+ ++AI) {
+ if (LastVRegUse.count(*AI) &&
+ LastVRegUse[*AI] != &DAG->SUnits[su])
+ // %r0 = ...
+ DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
+ LastVRegUse.erase(*AI);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
+ if (!EnableCheckBankConflict)
+ return;
+
+ const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
+
+ // Create artificial edges between loads that could likely cause a bank
+ // conflict. Since such loads would normally not have any dependency
+ // between them, we cannot rely on existing edges.
+ for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
+ SUnit &S0 = DAG->SUnits[i];
+ MachineInstr &L0 = *S0.getInstr();
+ if (!L0.mayLoad() || L0.mayStore() ||
+ HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
+ continue;
+ int64_t Offset0;
+ unsigned Size0;
+ MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
+ // Is the access size is longer than the L1 cache line, skip the check.
+ if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
+ continue;
+ // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
+ for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
+ SUnit &S1 = DAG->SUnits[j];
+ MachineInstr &L1 = *S1.getInstr();
+ if (!L1.mayLoad() || L1.mayStore() ||
+ HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
+ continue;
+ int64_t Offset1;
+ unsigned Size1;
+ MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
+ if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
+ BaseOp0->getReg() != BaseOp1->getReg())
+ continue;
+ // Check bits 3 and 4 of the offset: if they differ, a bank conflict
+ // is unlikely.
+ if (((Offset0 ^ Offset1) & 0x18) != 0)
+ continue;
+ // Bits 3 and 4 are the same, add an artificial edge and set extra
+ // latency.
+ SDep A(&S0, SDep::Artificial);
+ A.setLatency(1);
+ S1.addPred(A, true);
+ }
+ }
+}
+
+/// Enable use of alias analysis during code generation (during MI
+/// scheduling, DAGCombine, etc.).
+bool HexagonSubtarget::useAA() const {
+ if (OptLevel != CodeGenOpt::None)
+ return true;
+ return false;
+}
+
+/// Perform target specific adjustments to the latency of a schedule
+/// dependency.
+void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst,
+ SDep &Dep) const {
+ MachineInstr *SrcInst = Src->getInstr();
+ MachineInstr *DstInst = Dst->getInstr();
+ if (!Src->isInstr() || !Dst->isInstr())
+ return;
+
+ const HexagonInstrInfo *QII = getInstrInfo();
+
+ // Instructions with .new operands have zero latency.
+ SmallSet<SUnit *, 4> ExclSrc;
+ SmallSet<SUnit *, 4> ExclDst;
+ if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
+ isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
+ Dep.setLatency(0);
+ return;
+ }
+
+ if (!hasV60Ops())
+ return;
+
+ // Set the latency for a copy to zero since we hope that is will get removed.
+ if (DstInst->isCopy())
+ Dep.setLatency(0);
+
+ // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
+ // the correct latency.
+ if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
+ unsigned DReg = DstInst->getOperand(0).getReg();
+ MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
+ unsigned UseIdx = -1;
+ for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
+ const MachineOperand &MO = DDst->getOperand(OpNum);
+ if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
+ UseIdx = OpNum;
+ break;
+ }
+ }
+ int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
+ 0, *DDst, UseIdx));
+ DLatency = std::max(DLatency, 0);
+ Dep.setLatency((unsigned)DLatency);
+ }
+
+ // Try to schedule uses near definitions to generate .cur.
+ ExclSrc.clear();
+ ExclDst.clear();
+ if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
+ isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
+ Dep.setLatency(0);
+ return;
+ }
+
+ updateLatency(*SrcInst, *DstInst, Dep);
+}
+
+void HexagonSubtarget::getPostRAMutations(
+ std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
+ Mutations.push_back(llvm::make_unique<UsrOverflowMutation>());
+ Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>());
+ Mutations.push_back(llvm::make_unique<BankConflictMutation>());
+}
+
+void HexagonSubtarget::getSMSMutations(
+ std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
+ Mutations.push_back(llvm::make_unique<UsrOverflowMutation>());
+ Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>());
+}
+
+// Pin the vtable to this file.
+void HexagonSubtarget::anchor() {}
+
+bool HexagonSubtarget::enableMachineScheduler() const {
+ if (DisableHexagonMISched.getNumOccurrences())
+ return !DisableHexagonMISched;
+ return true;
+}
+
+bool HexagonSubtarget::usePredicatedCalls() const {
+ return EnablePredicatedCalls;
+}
+
+void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
+ MachineInstr &DstInst, SDep &Dep) const {
+ if (Dep.isArtificial()) {
+ Dep.setLatency(1);
+ return;
+ }
+
+ if (!hasV60Ops())
+ return;
+
+ auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
+
+ // BSB scheduling.
+ if (QII.isHVXVec(SrcInst) || useBSBScheduling())
+ Dep.setLatency((Dep.getLatency() + 1) >> 1);
+}
+
+void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
+ MachineInstr *SrcI = Src->getInstr();
+ for (auto &I : Src->Succs) {
+ if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
+ continue;
+ unsigned DepR = I.getReg();
+ int DefIdx = -1;
+ for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
+ const MachineOperand &MO = SrcI->getOperand(OpNum);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == DepR)
+ DefIdx = OpNum;
+ }
+ assert(DefIdx >= 0 && "Def Reg not found in Src MI");
+ MachineInstr *DstI = Dst->getInstr();
+ SDep T = I;
+ for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
+ const MachineOperand &MO = DstI->getOperand(OpNum);
+ if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
+ int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
+ DefIdx, *DstI, OpNum));
+
+ // For some instructions (ex: COPY), we might end up with < 0 latency
+ // as they don't have any Itinerary class associated with them.
+ Latency = std::max(Latency, 0);
+
+ I.setLatency(Latency);
+ updateLatency(*SrcI, *DstI, I);
+ }
+ }
+
+ // Update the latency of opposite edge too.
+ T.setSUnit(Src);
+ auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
+ assert(F != Dst->Preds.end());
+ F->setLatency(I.getLatency());
+ }
+}
+
+/// Change the latency between the two SUnits.
+void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
+ const {
+ for (auto &I : Src->Succs) {
+ if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
+ continue;
+ SDep T = I;
+ I.setLatency(Lat);
+
+ // Update the latency of opposite edge too.
+ T.setSUnit(Src);
+ auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
+ assert(F != Dst->Preds.end());
+ F->setLatency(Lat);
+ }
+}
+
+/// If the SUnit has a zero latency edge, return the other SUnit.
+static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
+ for (auto &I : Deps)
+ if (I.isAssignedRegDep() && I.getLatency() == 0 &&
+ !I.getSUnit()->getInstr()->isPseudo())
+ return I.getSUnit();
+ return nullptr;
+}
+
+// Return true if these are the best two instructions to schedule
+// together with a zero latency. Only one dependence should have a zero
+// latency. If there are multiple choices, choose the best, and change
+// the others, if needed.
+bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
+ const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
+ SmallSet<SUnit*, 4> &ExclDst) const {
+ MachineInstr &SrcInst = *Src->getInstr();
+ MachineInstr &DstInst = *Dst->getInstr();
+
+ // Ignore Boundary SU nodes as these have null instructions.
+ if (Dst->isBoundaryNode())
+ return false;
+
+ if (SrcInst.isPHI() || DstInst.isPHI())
+ return false;
+
+ if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
+ !TII->canExecuteInBundle(SrcInst, DstInst))
+ return false;
+
+ // The architecture doesn't allow three dependent instructions in the same
+ // packet. So, if the destination has a zero latency successor, then it's
+ // not a candidate for a zero latency predecessor.
+ if (getZeroLatency(Dst, Dst->Succs) != nullptr)
+ return false;
+
+ // Check if the Dst instruction is the best candidate first.
+ SUnit *Best = nullptr;
+ SUnit *DstBest = nullptr;
+ SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
+ if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
+ // Check that Src doesn't have a better candidate.
+ DstBest = getZeroLatency(Src, Src->Succs);
+ if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
+ Best = Dst;
+ }
+ if (Best != Dst)
+ return false;
+
+ // The caller frequently adds the same dependence twice. If so, then
+ // return true for this case too.
+ if ((Src == SrcBest && Dst == DstBest ) ||
+ (SrcBest == nullptr && Dst == DstBest) ||
+ (Src == SrcBest && Dst == nullptr))
+ return true;
+
+ // Reassign the latency for the previous bests, which requires setting
+ // the dependence edge in both directions.
+ if (SrcBest != nullptr) {
+ if (!hasV60Ops())
+ changeLatency(SrcBest, Dst, 1);
+ else
+ restoreLatency(SrcBest, Dst);
+ }
+ if (DstBest != nullptr) {
+ if (!hasV60Ops())
+ changeLatency(Src, DstBest, 1);
+ else
+ restoreLatency(Src, DstBest);
+ }
+
+ // Attempt to find another opprotunity for zero latency in a different
+ // dependence.
+ if (SrcBest && DstBest)
+ // If there is an edge from SrcBest to DstBst, then try to change that
+ // to 0 now.
+ changeLatency(SrcBest, DstBest, 0);
+ else if (DstBest) {
+ // Check if the previous best destination instruction has a new zero
+ // latency dependence opportunity.
+ ExclSrc.insert(Src);
+ for (auto &I : DstBest->Preds)
+ if (ExclSrc.count(I.getSUnit()) == 0 &&
+ isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
+ changeLatency(I.getSUnit(), DstBest, 0);
+ } else if (SrcBest) {
+ // Check if previous best source instruction has a new zero latency
+ // dependence opportunity.
+ ExclDst.insert(Dst);
+ for (auto &I : SrcBest->Succs)
+ if (ExclDst.count(I.getSUnit()) == 0 &&
+ isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
+ changeLatency(SrcBest, I.getSUnit(), 0);
+ }
+
+ return true;
+}
+
+unsigned HexagonSubtarget::getL1CacheLineSize() const {
+ return 32;
+}
+
+unsigned HexagonSubtarget::getL1PrefetchDistance() const {
+ return 32;
+}
+
+bool HexagonSubtarget::enableSubRegLiveness() const {
+ return EnableSubregLiveness;
+}