diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp | 582 |
1 files changed, 582 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp new file mode 100644 index 000000000000..7ec63a642b0c --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp @@ -0,0 +1,582 @@ +//===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Hexagon specific subclass of TargetSubtarget. +// +//===----------------------------------------------------------------------===// + +#include "Hexagon.h" +#include "HexagonInstrInfo.h" +#include "HexagonRegisterInfo.h" +#include "HexagonSubtarget.h" +#include "MCTargetDesc/HexagonMCTargetDesc.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/ScheduleDAGInstrs.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include <algorithm> +#include <cassert> +#include <map> + +using namespace llvm; + +#define DEBUG_TYPE "hexagon-subtarget" + +#define GET_SUBTARGETINFO_CTOR +#define GET_SUBTARGETINFO_TARGET_DESC +#include "HexagonGenSubtargetInfo.inc" + + +static cl::opt<bool> EnableBSBSched("enable-bsb-sched", + cl::Hidden, cl::ZeroOrMore, cl::init(true)); + +static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", + cl::Hidden, cl::ZeroOrMore, cl::init(false)); + +static cl::opt<bool> EnableDotCurSched("enable-cur-sched", + cl::Hidden, cl::ZeroOrMore, cl::init(true), + cl::desc("Enable the scheduler to generate .cur")); + +static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched", + cl::Hidden, cl::ZeroOrMore, cl::init(false), + cl::desc("Disable Hexagon MI Scheduling")); + +static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness", + cl::Hidden, cl::ZeroOrMore, cl::init(true), + cl::desc("Enable subregister liveness tracking for Hexagon")); + +static cl::opt<bool> OverrideLongCalls("hexagon-long-calls", + cl::Hidden, cl::ZeroOrMore, cl::init(false), + cl::desc("If present, forces/disables the use of long calls")); + +static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls", + cl::Hidden, cl::ZeroOrMore, cl::init(false), + cl::desc("Consider calls to be predicable")); + +static cl::opt<bool> SchedPredsCloser("sched-preds-closer", + cl::Hidden, cl::ZeroOrMore, cl::init(true)); + +static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization", + cl::Hidden, cl::ZeroOrMore, cl::init(true)); + +static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict", + cl::Hidden, cl::ZeroOrMore, cl::init(true), + cl::desc("Enable checking for cache bank conflicts")); + + +HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU, + StringRef FS, const TargetMachine &TM) + : HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()), + CPUString(Hexagon_MC::selectHexagonCPU(CPU)), + InstrInfo(initializeSubtargetDependencies(CPU, FS)), + RegInfo(getHwMode()), TLInfo(TM, *this), + InstrItins(getInstrItineraryForCPU(CPUString)) { + // Beware of the default constructor of InstrItineraryData: it will + // reset all members to 0. + assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized"); +} + +HexagonSubtarget & +HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { + static std::map<StringRef, Hexagon::ArchEnum> CpuTable{ + {"generic", Hexagon::ArchEnum::V60}, + {"hexagonv5", Hexagon::ArchEnum::V5}, + {"hexagonv55", Hexagon::ArchEnum::V55}, + {"hexagonv60", Hexagon::ArchEnum::V60}, + {"hexagonv62", Hexagon::ArchEnum::V62}, + {"hexagonv65", Hexagon::ArchEnum::V65}, + {"hexagonv66", Hexagon::ArchEnum::V66}, + }; + + auto FoundIt = CpuTable.find(CPUString); + if (FoundIt != CpuTable.end()) + HexagonArchVersion = FoundIt->second; + else + llvm_unreachable("Unrecognized Hexagon processor version"); + + UseHVX128BOps = false; + UseHVX64BOps = false; + UseLongCalls = false; + + UseBSBScheduling = hasV60Ops() && EnableBSBSched; + + ParseSubtargetFeatures(CPUString, FS); + + if (OverrideLongCalls.getPosition()) + UseLongCalls = OverrideLongCalls; + + FeatureBitset Features = getFeatureBits(); + if (HexagonDisableDuplex) + setFeatureBits(Features.set(Hexagon::FeatureDuplex, false)); + setFeatureBits(Hexagon_MC::completeHVXFeatures(Features)); + + return *this; +} + +void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) { + for (SUnit &SU : DAG->SUnits) { + if (!SU.isInstr()) + continue; + SmallVector<SDep, 4> Erase; + for (auto &D : SU.Preds) + if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF) + Erase.push_back(D); + for (auto &E : Erase) + SU.removePred(E); + } +} + +void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) { + for (SUnit &SU : DAG->SUnits) { + // Update the latency of chain edges between v60 vector load or store + // instructions to be 1. These instruction cannot be scheduled in the + // same packet. + MachineInstr &MI1 = *SU.getInstr(); + auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII); + bool IsStoreMI1 = MI1.mayStore(); + bool IsLoadMI1 = MI1.mayLoad(); + if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1)) + continue; + for (SDep &SI : SU.Succs) { + if (SI.getKind() != SDep::Order || SI.getLatency() != 0) + continue; + MachineInstr &MI2 = *SI.getSUnit()->getInstr(); + if (!QII->isHVXVec(MI2)) + continue; + if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) { + SI.setLatency(1); + SU.setHeightDirty(); + // Change the dependence in the opposite direction too. + for (SDep &PI : SI.getSUnit()->Preds) { + if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order) + continue; + PI.setLatency(1); + SI.getSUnit()->setDepthDirty(); + } + } + } + } +} + +// Check if a call and subsequent A2_tfrpi instructions should maintain +// scheduling affinity. We are looking for the TFRI to be consumed in +// the next instruction. This should help reduce the instances of +// double register pairs being allocated and scheduled before a call +// when not used until after the call. This situation is exacerbated +// by the fact that we allocate the pair from the callee saves list, +// leading to excess spills and restores. +bool HexagonSubtarget::CallMutation::shouldTFRICallBind( + const HexagonInstrInfo &HII, const SUnit &Inst1, + const SUnit &Inst2) const { + if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) + return false; + + // TypeXTYPE are 64 bit operations. + unsigned Type = HII.getType(*Inst2.getInstr()); + return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op || + Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM; +} + +void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) { + ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); + SUnit* LastSequentialCall = nullptr; + // Map from virtual register to physical register from the copy. + DenseMap<unsigned, unsigned> VRegHoldingReg; + // Map from the physical register to the instruction that uses virtual + // register. This is used to create the barrier edge. + DenseMap<unsigned, SUnit *> LastVRegUse; + auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo(); + auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); + + // Currently we only catch the situation when compare gets scheduled + // before preceding call. + for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) { + // Remember the call. + if (DAG->SUnits[su].getInstr()->isCall()) + LastSequentialCall = &DAG->SUnits[su]; + // Look for a compare that defines a predicate. + else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall) + DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier)); + // Look for call and tfri* instructions. + else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 && + shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1])) + DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier)); + // Prevent redundant register copies due to reads and writes of physical + // registers. The original motivation for this was the code generated + // between two calls, which are caused both the return value and the + // argument for the next call being in %r0. + // Example: + // 1: <call1> + // 2: %vreg = COPY %r0 + // 3: <use of %vreg> + // 4: %r0 = ... + // 5: <call2> + // The scheduler would often swap 3 and 4, so an additional register is + // needed. This code inserts a Barrier dependence between 3 & 4 to prevent + // this. + // The code below checks for all the physical registers, not just R0/D0/V0. + else if (SchedRetvalOptimization) { + const MachineInstr *MI = DAG->SUnits[su].getInstr(); + if (MI->isCopy() && + TargetRegisterInfo::isPhysicalRegister(MI->getOperand(1).getReg())) { + // %vregX = COPY %r0 + VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg(); + LastVRegUse.erase(MI->getOperand(1).getReg()); + } else { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) + continue; + if (MO.isUse() && !MI->isCopy() && + VRegHoldingReg.count(MO.getReg())) { + // <use of %vregX> + LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su]; + } else if (MO.isDef() && + TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { + for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid(); + ++AI) { + if (LastVRegUse.count(*AI) && + LastVRegUse[*AI] != &DAG->SUnits[su]) + // %r0 = ... + DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier)); + LastVRegUse.erase(*AI); + } + } + } + } + } + } +} + +void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) { + if (!EnableCheckBankConflict) + return; + + const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII); + + // Create artificial edges between loads that could likely cause a bank + // conflict. Since such loads would normally not have any dependency + // between them, we cannot rely on existing edges. + for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) { + SUnit &S0 = DAG->SUnits[i]; + MachineInstr &L0 = *S0.getInstr(); + if (!L0.mayLoad() || L0.mayStore() || + HII.getAddrMode(L0) != HexagonII::BaseImmOffset) + continue; + int64_t Offset0; + unsigned Size0; + MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0); + // Is the access size is longer than the L1 cache line, skip the check. + if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32) + continue; + // Scan only up to 32 instructions ahead (to avoid n^2 complexity). + for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) { + SUnit &S1 = DAG->SUnits[j]; + MachineInstr &L1 = *S1.getInstr(); + if (!L1.mayLoad() || L1.mayStore() || + HII.getAddrMode(L1) != HexagonII::BaseImmOffset) + continue; + int64_t Offset1; + unsigned Size1; + MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1); + if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 || + BaseOp0->getReg() != BaseOp1->getReg()) + continue; + // Check bits 3 and 4 of the offset: if they differ, a bank conflict + // is unlikely. + if (((Offset0 ^ Offset1) & 0x18) != 0) + continue; + // Bits 3 and 4 are the same, add an artificial edge and set extra + // latency. + SDep A(&S0, SDep::Artificial); + A.setLatency(1); + S1.addPred(A, true); + } + } +} + +/// Enable use of alias analysis during code generation (during MI +/// scheduling, DAGCombine, etc.). +bool HexagonSubtarget::useAA() const { + if (OptLevel != CodeGenOpt::None) + return true; + return false; +} + +/// Perform target specific adjustments to the latency of a schedule +/// dependency. +void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst, + SDep &Dep) const { + MachineInstr *SrcInst = Src->getInstr(); + MachineInstr *DstInst = Dst->getInstr(); + if (!Src->isInstr() || !Dst->isInstr()) + return; + + const HexagonInstrInfo *QII = getInstrInfo(); + + // Instructions with .new operands have zero latency. + SmallSet<SUnit *, 4> ExclSrc; + SmallSet<SUnit *, 4> ExclDst; + if (QII->canExecuteInBundle(*SrcInst, *DstInst) && + isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { + Dep.setLatency(0); + return; + } + + if (!hasV60Ops()) + return; + + // Set the latency for a copy to zero since we hope that is will get removed. + if (DstInst->isCopy()) + Dep.setLatency(0); + + // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine + // the correct latency. + if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) { + unsigned DReg = DstInst->getOperand(0).getReg(); + MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr(); + unsigned UseIdx = -1; + for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) { + const MachineOperand &MO = DDst->getOperand(OpNum); + if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) { + UseIdx = OpNum; + break; + } + } + int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst, + 0, *DDst, UseIdx)); + DLatency = std::max(DLatency, 0); + Dep.setLatency((unsigned)DLatency); + } + + // Try to schedule uses near definitions to generate .cur. + ExclSrc.clear(); + ExclDst.clear(); + if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) && + isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { + Dep.setLatency(0); + return; + } + + updateLatency(*SrcInst, *DstInst, Dep); +} + +void HexagonSubtarget::getPostRAMutations( + std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { + Mutations.push_back(llvm::make_unique<UsrOverflowMutation>()); + Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>()); + Mutations.push_back(llvm::make_unique<BankConflictMutation>()); +} + +void HexagonSubtarget::getSMSMutations( + std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { + Mutations.push_back(llvm::make_unique<UsrOverflowMutation>()); + Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>()); +} + +// Pin the vtable to this file. +void HexagonSubtarget::anchor() {} + +bool HexagonSubtarget::enableMachineScheduler() const { + if (DisableHexagonMISched.getNumOccurrences()) + return !DisableHexagonMISched; + return true; +} + +bool HexagonSubtarget::usePredicatedCalls() const { + return EnablePredicatedCalls; +} + +void HexagonSubtarget::updateLatency(MachineInstr &SrcInst, + MachineInstr &DstInst, SDep &Dep) const { + if (Dep.isArtificial()) { + Dep.setLatency(1); + return; + } + + if (!hasV60Ops()) + return; + + auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo()); + + // BSB scheduling. + if (QII.isHVXVec(SrcInst) || useBSBScheduling()) + Dep.setLatency((Dep.getLatency() + 1) >> 1); +} + +void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const { + MachineInstr *SrcI = Src->getInstr(); + for (auto &I : Src->Succs) { + if (!I.isAssignedRegDep() || I.getSUnit() != Dst) + continue; + unsigned DepR = I.getReg(); + int DefIdx = -1; + for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) { + const MachineOperand &MO = SrcI->getOperand(OpNum); + if (MO.isReg() && MO.isDef() && MO.getReg() == DepR) + DefIdx = OpNum; + } + assert(DefIdx >= 0 && "Def Reg not found in Src MI"); + MachineInstr *DstI = Dst->getInstr(); + SDep T = I; + for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) { + const MachineOperand &MO = DstI->getOperand(OpNum); + if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) { + int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI, + DefIdx, *DstI, OpNum)); + + // For some instructions (ex: COPY), we might end up with < 0 latency + // as they don't have any Itinerary class associated with them. + Latency = std::max(Latency, 0); + + I.setLatency(Latency); + updateLatency(*SrcI, *DstI, I); + } + } + + // Update the latency of opposite edge too. + T.setSUnit(Src); + auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T); + assert(F != Dst->Preds.end()); + F->setLatency(I.getLatency()); + } +} + +/// Change the latency between the two SUnits. +void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat) + const { + for (auto &I : Src->Succs) { + if (!I.isAssignedRegDep() || I.getSUnit() != Dst) + continue; + SDep T = I; + I.setLatency(Lat); + + // Update the latency of opposite edge too. + T.setSUnit(Src); + auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T); + assert(F != Dst->Preds.end()); + F->setLatency(Lat); + } +} + +/// If the SUnit has a zero latency edge, return the other SUnit. +static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) { + for (auto &I : Deps) + if (I.isAssignedRegDep() && I.getLatency() == 0 && + !I.getSUnit()->getInstr()->isPseudo()) + return I.getSUnit(); + return nullptr; +} + +// Return true if these are the best two instructions to schedule +// together with a zero latency. Only one dependence should have a zero +// latency. If there are multiple choices, choose the best, and change +// the others, if needed. +bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst, + const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc, + SmallSet<SUnit*, 4> &ExclDst) const { + MachineInstr &SrcInst = *Src->getInstr(); + MachineInstr &DstInst = *Dst->getInstr(); + + // Ignore Boundary SU nodes as these have null instructions. + if (Dst->isBoundaryNode()) + return false; + + if (SrcInst.isPHI() || DstInst.isPHI()) + return false; + + if (!TII->isToBeScheduledASAP(SrcInst, DstInst) && + !TII->canExecuteInBundle(SrcInst, DstInst)) + return false; + + // The architecture doesn't allow three dependent instructions in the same + // packet. So, if the destination has a zero latency successor, then it's + // not a candidate for a zero latency predecessor. + if (getZeroLatency(Dst, Dst->Succs) != nullptr) + return false; + + // Check if the Dst instruction is the best candidate first. + SUnit *Best = nullptr; + SUnit *DstBest = nullptr; + SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds); + if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) { + // Check that Src doesn't have a better candidate. + DstBest = getZeroLatency(Src, Src->Succs); + if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum) + Best = Dst; + } + if (Best != Dst) + return false; + + // The caller frequently adds the same dependence twice. If so, then + // return true for this case too. + if ((Src == SrcBest && Dst == DstBest ) || + (SrcBest == nullptr && Dst == DstBest) || + (Src == SrcBest && Dst == nullptr)) + return true; + + // Reassign the latency for the previous bests, which requires setting + // the dependence edge in both directions. + if (SrcBest != nullptr) { + if (!hasV60Ops()) + changeLatency(SrcBest, Dst, 1); + else + restoreLatency(SrcBest, Dst); + } + if (DstBest != nullptr) { + if (!hasV60Ops()) + changeLatency(Src, DstBest, 1); + else + restoreLatency(Src, DstBest); + } + + // Attempt to find another opprotunity for zero latency in a different + // dependence. + if (SrcBest && DstBest) + // If there is an edge from SrcBest to DstBst, then try to change that + // to 0 now. + changeLatency(SrcBest, DstBest, 0); + else if (DstBest) { + // Check if the previous best destination instruction has a new zero + // latency dependence opportunity. + ExclSrc.insert(Src); + for (auto &I : DstBest->Preds) + if (ExclSrc.count(I.getSUnit()) == 0 && + isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst)) + changeLatency(I.getSUnit(), DstBest, 0); + } else if (SrcBest) { + // Check if previous best source instruction has a new zero latency + // dependence opportunity. + ExclDst.insert(Dst); + for (auto &I : SrcBest->Succs) + if (ExclDst.count(I.getSUnit()) == 0 && + isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst)) + changeLatency(SrcBest, I.getSUnit(), 0); + } + + return true; +} + +unsigned HexagonSubtarget::getL1CacheLineSize() const { + return 32; +} + +unsigned HexagonSubtarget::getL1PrefetchDistance() const { + return 32; +} + +bool HexagonSubtarget::enableSubRegLiveness() const { + return EnableSubregLiveness; +} |
