summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp311
1 files changed, 311 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp
new file mode 100644
index 000000000000..38062e8e922c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp
@@ -0,0 +1,311 @@
+//===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// Hexagon target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+
+#include "HexagonTargetTransformInfo.h"
+#include "HexagonSubtarget.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/User.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagontti"
+
+static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
+ cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
+
+static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
+ cl::init(true), cl::Hidden,
+ cl::desc("Control lookup table emission on Hexagon target"));
+
+// Constant "cost factor" to make floating point operations more expensive
+// in terms of vectorization cost. This isn't the best way, but it should
+// do. Ultimately, the cost should use cycles.
+static const unsigned FloatFactor = 4;
+
+bool HexagonTTIImpl::useHVX() const {
+ return ST.useHVXOps() && HexagonAutoHVX;
+}
+
+bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
+ assert(VecTy->isVectorTy());
+ // Avoid types like <2 x i32*>.
+ if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
+ return false;
+ EVT VecVT = EVT::getEVT(VecTy);
+ if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
+ return false;
+ if (ST.isHVXVectorType(VecVT.getSimpleVT()))
+ return true;
+ auto Action = TLI.getPreferredVectorAction(VecVT.getSimpleVT());
+ return Action == TargetLoweringBase::TypeWidenVector;
+}
+
+unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
+ if (Ty->isVectorTy())
+ return Ty->getVectorNumElements();
+ assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
+ "Expecting scalar type");
+ return 1;
+}
+
+TargetTransformInfo::PopcntSupportKind
+HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
+ // Return fast hardware support as every input < 64 bits will be promoted
+ // to 64 bits.
+ return TargetTransformInfo::PSK_FastHardware;
+}
+
+// The Hexagon target can unroll loops with run-time trip counts.
+void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+ TTI::UnrollingPreferences &UP) {
+ UP.Runtime = UP.Partial = true;
+ // Only try to peel innermost loops with small runtime trip counts.
+ if (L && L->empty() && canPeel(L) &&
+ SE.getSmallConstantTripCount(L) == 0 &&
+ SE.getSmallConstantMaxTripCount(L) > 0 &&
+ SE.getSmallConstantMaxTripCount(L) <= 5) {
+ UP.PeelCount = 2;
+ }
+}
+
+bool HexagonTTIImpl::shouldFavorPostInc() const {
+ return true;
+}
+
+/// --- Vector TTI begin ---
+
+unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
+ if (Vector)
+ return useHVX() ? 32 : 0;
+ return 32;
+}
+
+unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
+ return useHVX() ? 2 : 0;
+}
+
+unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
+ return Vector ? getMinVectorRegisterBitWidth() : 32;
+}
+
+unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
+ return useHVX() ? ST.getVectorLength()*8 : 0;
+}
+
+unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
+ return (8 * ST.getVectorLength()) / ElemWidth;
+}
+
+unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
+ bool Extract) {
+ return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
+}
+
+unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
+ ArrayRef<const Value*> Args, unsigned VF) {
+ return BaseT::getOperandsScalarizationOverhead(Args, VF);
+}
+
+unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
+ ArrayRef<Type*> Tys) {
+ return BaseT::getCallInstrCost(F, RetTy, Tys);
+}
+
+unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
+ return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
+}
+
+unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Type*> Tys, FastMathFlags FMF,
+ unsigned ScalarizationCostPassed) {
+ if (ID == Intrinsic::bswap) {
+ std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
+ return LT.first + 2;
+ }
+ return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
+ ScalarizationCostPassed);
+}
+
+unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
+ ScalarEvolution *SE, const SCEV *S) {
+ return 0;
+}
+
+unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment, unsigned AddressSpace, const Instruction *I) {
+ assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
+ if (Opcode == Instruction::Store)
+ return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
+
+ if (Src->isVectorTy()) {
+ VectorType *VecTy = cast<VectorType>(Src);
+ unsigned VecWidth = VecTy->getBitWidth();
+ if (useHVX() && isTypeForHVX(VecTy)) {
+ unsigned RegWidth = getRegisterBitWidth(true);
+ assert(RegWidth && "Non-zero vector register width expected");
+ // Cost of HVX loads.
+ if (VecWidth % RegWidth == 0)
+ return VecWidth / RegWidth;
+ // Cost of constructing HVX vector from scalar loads.
+ Alignment = std::min(Alignment, RegWidth / 8);
+ unsigned AlignWidth = 8 * std::max(1u, Alignment);
+ unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
+ return 3 * NumLoads;
+ }
+
+ // Non-HVX vectors.
+ // Add extra cost for floating point types.
+ unsigned Cost = VecTy->getElementType()->isFloatingPointTy() ? FloatFactor
+ : 1;
+ Alignment = std::min(Alignment, 8u);
+ unsigned AlignWidth = 8 * std::max(1u, Alignment);
+ unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
+ if (Alignment == 4 || Alignment == 8)
+ return Cost * NumLoads;
+ // Loads of less than 32 bits will need extra inserts to compose a vector.
+ unsigned LogA = Log2_32(Alignment);
+ return (3 - LogA) * Cost * NumLoads;
+ }
+
+ return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
+}
+
+unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
+ Type *Src, unsigned Alignment, unsigned AddressSpace) {
+ return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
+}
+
+unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
+ int Index, Type *SubTp) {
+ return 1;
+}
+
+unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
+ Value *Ptr, bool VariableMask, unsigned Alignment) {
+ return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
+ Alignment);
+}
+
+unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
+ Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
+ unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
+ bool UseMaskForGaps) {
+ if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace,
+ UseMaskForCond, UseMaskForGaps);
+ return getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, nullptr);
+}
+
+unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy, const Instruction *I) {
+ if (ValTy->isVectorTy()) {
+ std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
+ if (Opcode == Instruction::FCmp)
+ return LT.first + FloatFactor * getTypeNumElements(ValTy);
+ }
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
+}
+
+unsigned HexagonTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
+ TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value*> Args) {
+ if (Ty->isVectorTy()) {
+ std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
+ if (LT.second.isFloatingPoint())
+ return LT.first + FloatFactor * getTypeNumElements(Ty);
+ }
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo, Args);
+}
+
+unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
+ Type *SrcTy, const Instruction *I) {
+ if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
+ unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
+ unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
+
+ std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
+ std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
+ return std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
+ }
+ return 1;
+}
+
+unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) {
+ Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
+ : Val;
+ if (Opcode == Instruction::InsertElement) {
+ // Need two rotations for non-zero index.
+ unsigned Cost = (Index != 0) ? 2 : 0;
+ if (ElemTy->isIntegerTy(32))
+ return Cost;
+ // If it's not a 32-bit value, there will need to be an extract.
+ return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
+ }
+
+ if (Opcode == Instruction::ExtractElement)
+ return 2;
+
+ return 1;
+}
+
+/// --- Vector TTI end ---
+
+unsigned HexagonTTIImpl::getPrefetchDistance() const {
+ return ST.getL1PrefetchDistance();
+}
+
+unsigned HexagonTTIImpl::getCacheLineSize() const {
+ return ST.getL1CacheLineSize();
+}
+
+int HexagonTTIImpl::getUserCost(const User *U,
+ ArrayRef<const Value *> Operands) {
+ auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
+ if (!CI->isIntegerCast())
+ return false;
+ // Only extensions from an integer type shorter than 32-bit to i32
+ // can be folded into the load.
+ const DataLayout &DL = getDataLayout();
+ unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
+ unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
+ if (DBW != 32 || SBW >= DBW)
+ return false;
+
+ const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
+ // Technically, this code could allow multiple uses of the load, and
+ // check if all the uses are the same extension operation, but this
+ // should be sufficient for most cases.
+ return LI && LI->hasOneUse();
+ };
+
+ if (const CastInst *CI = dyn_cast<const CastInst>(U))
+ if (isCastFoldedIntoLoad(CI))
+ return TargetTransformInfo::TCC_Free;
+ return BaseT::getUserCost(U, Operands);
+}
+
+bool HexagonTTIImpl::shouldBuildLookupTables() const {
+ return EmitLookupTables;
+}