diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp | 1874 |
1 files changed, 1874 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp new file mode 100644 index 000000000000..3619e4c239d7 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp @@ -0,0 +1,1874 @@ +//===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This implements a simple VLIW packetizer using DFA. The packetizer works on +// machine basic blocks. For each instruction I in BB, the packetizer consults +// the DFA to see if machine resources are available to execute I. If so, the +// packetizer checks if I depends on any instruction J in the current packet. +// If no dependency is found, I is added to current packet and machine resource +// is marked as taken. If any dependency is found, a target API call is made to +// prune the dependence. +// +//===----------------------------------------------------------------------===// + +#include "HexagonVLIWPacketizer.h" +#include "Hexagon.h" +#include "HexagonInstrInfo.h" +#include "HexagonRegisterInfo.h" +#include "HexagonSubtarget.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBundle.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <iterator> + +using namespace llvm; + +#define DEBUG_TYPE "packets" + +static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden, + cl::ZeroOrMore, cl::init(false), + cl::desc("Disable Hexagon packetizer pass")); + +cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden, + cl::ZeroOrMore, cl::init(true), + cl::desc("Allow slot1 store and slot0 load")); + +static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles", + cl::ZeroOrMore, cl::Hidden, cl::init(true), + cl::desc("Allow non-solo packetization of volatile memory references")); + +static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false), + cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC")); + +static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores", + cl::init(false), cl::Hidden, cl::ZeroOrMore, + cl::desc("Disable vector double new-value-stores")); + +extern cl::opt<bool> ScheduleInlineAsm; + +namespace llvm { + +FunctionPass *createHexagonPacketizer(bool Minimal); +void initializeHexagonPacketizerPass(PassRegistry&); + +} // end namespace llvm + +namespace { + + class HexagonPacketizer : public MachineFunctionPass { + public: + static char ID; + + HexagonPacketizer(bool Min = false) + : MachineFunctionPass(ID), Minimal(Min) {} + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<MachineBranchProbabilityInfo>(); + AU.addRequired<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addPreserved<MachineLoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + StringRef getPassName() const override { return "Hexagon Packetizer"; } + bool runOnMachineFunction(MachineFunction &Fn) override; + + MachineFunctionProperties getRequiredProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoVRegs); + } + + private: + const HexagonInstrInfo *HII; + const HexagonRegisterInfo *HRI; + const bool Minimal; + }; + +} // end anonymous namespace + +char HexagonPacketizer::ID = 0; + +INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer", + "Hexagon Packetizer", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer", + "Hexagon Packetizer", false, false) + +HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF, + MachineLoopInfo &MLI, AliasAnalysis *AA, + const MachineBranchProbabilityInfo *MBPI, bool Minimal) + : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI), + Minimal(Minimal) { + HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); + HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + + addMutation(llvm::make_unique<HexagonSubtarget::UsrOverflowMutation>()); + addMutation(llvm::make_unique<HexagonSubtarget::HVXMemLatencyMutation>()); + addMutation(llvm::make_unique<HexagonSubtarget::BankConflictMutation>()); +} + +// Check if FirstI modifies a register that SecondI reads. +static bool hasWriteToReadDep(const MachineInstr &FirstI, + const MachineInstr &SecondI, + const TargetRegisterInfo *TRI) { + for (auto &MO : FirstI.operands()) { + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned R = MO.getReg(); + if (SecondI.readsRegister(R, TRI)) + return true; + } + return false; +} + + +static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI, + MachineBasicBlock::iterator BundleIt, bool Before) { + MachineBasicBlock::instr_iterator InsertPt; + if (Before) + InsertPt = BundleIt.getInstrIterator(); + else + InsertPt = std::next(BundleIt).getInstrIterator(); + + MachineBasicBlock &B = *MI.getParent(); + // The instruction should at least be bundled with the preceding instruction + // (there will always be one, i.e. BUNDLE, if nothing else). + assert(MI.isBundledWithPred()); + if (MI.isBundledWithSucc()) { + MI.clearFlag(MachineInstr::BundledSucc); + MI.clearFlag(MachineInstr::BundledPred); + } else { + // If it's not bundled with the successor (i.e. it is the last one + // in the bundle), then we can simply unbundle it from the predecessor, + // which will take care of updating the predecessor's flag. + MI.unbundleFromPred(); + } + B.splice(InsertPt, &B, MI.getIterator()); + + // Get the size of the bundle without asserting. + MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator(); + MachineBasicBlock::const_instr_iterator E = B.instr_end(); + unsigned Size = 0; + for (++I; I != E && I->isBundledWithPred(); ++I) + ++Size; + + // If there are still two or more instructions, then there is nothing + // else to be done. + if (Size > 1) + return BundleIt; + + // Otherwise, extract the single instruction out and delete the bundle. + MachineBasicBlock::iterator NextIt = std::next(BundleIt); + MachineInstr &SingleI = *BundleIt->getNextNode(); + SingleI.unbundleFromPred(); + assert(!SingleI.isBundledWithSucc()); + BundleIt->eraseFromParent(); + return NextIt; +} + +bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) { + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + HII = HST.getInstrInfo(); + HRI = HST.getRegisterInfo(); + auto &MLI = getAnalysis<MachineLoopInfo>(); + auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); + + if (EnableGenAllInsnClass) + HII->genAllInsnTimingClasses(MF); + + // Instantiate the packetizer. + bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() || + skipFunction(MF.getFunction()); + HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly); + + // DFA state table should not be empty. + assert(Packetizer.getResourceTracker() && "Empty DFA table!"); + + // Loop over all basic blocks and remove KILL pseudo-instructions + // These instructions confuse the dependence analysis. Consider: + // D0 = ... (Insn 0) + // R0 = KILL R0, D0 (Insn 1) + // R0 = ... (Insn 2) + // Here, Insn 1 will result in the dependence graph not emitting an output + // dependence between Insn 0 and Insn 2. This can lead to incorrect + // packetization + for (MachineBasicBlock &MB : MF) { + auto End = MB.end(); + auto MI = MB.begin(); + while (MI != End) { + auto NextI = std::next(MI); + if (MI->isKill()) { + MB.erase(MI); + End = MB.end(); + } + MI = NextI; + } + } + + // Loop over all of the basic blocks. + for (auto &MB : MF) { + auto Begin = MB.begin(), End = MB.end(); + while (Begin != End) { + // Find the first non-boundary starting from the end of the last + // scheduling region. + MachineBasicBlock::iterator RB = Begin; + while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF)) + ++RB; + // Find the first boundary starting from the beginning of the new + // region. + MachineBasicBlock::iterator RE = RB; + while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF)) + ++RE; + // Add the scheduling boundary if it's not block end. + if (RE != End) + ++RE; + // If RB == End, then RE == End. + if (RB != End) + Packetizer.PacketizeMIs(&MB, RB, RE); + + Begin = RE; + } + } + + Packetizer.unpacketizeSoloInstrs(MF); + return true; +} + +// Reserve resources for a constant extender. Trigger an assertion if the +// reservation fails. +void HexagonPacketizerList::reserveResourcesForConstExt() { + if (!tryAllocateResourcesForConstExt(true)) + llvm_unreachable("Resources not available"); +} + +bool HexagonPacketizerList::canReserveResourcesForConstExt() { + return tryAllocateResourcesForConstExt(false); +} + +// Allocate resources (i.e. 4 bytes) for constant extender. If succeeded, +// return true, otherwise, return false. +bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) { + auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc()); + bool Avail = ResourceTracker->canReserveResources(*ExtMI); + if (Reserve && Avail) + ResourceTracker->reserveResources(*ExtMI); + MF.DeleteMachineInstr(ExtMI); + return Avail; +} + +bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI, + SDep::Kind DepType, unsigned DepReg) { + // Check for LR dependence. + if (DepReg == HRI->getRARegister()) + return true; + + if (HII->isDeallocRet(MI)) + if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister()) + return true; + + // Call-like instructions can be packetized with preceding instructions + // that define registers implicitly used or modified by the call. Explicit + // uses are still prohibited, as in the case of indirect calls: + // r0 = ... + // J2_jumpr r0 + if (DepType == SDep::Data) { + for (const MachineOperand MO : MI.operands()) + if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit()) + return true; + } + + return false; +} + +static bool isRegDependence(const SDep::Kind DepType) { + return DepType == SDep::Data || DepType == SDep::Anti || + DepType == SDep::Output; +} + +static bool isDirectJump(const MachineInstr &MI) { + return MI.getOpcode() == Hexagon::J2_jump; +} + +static bool isSchedBarrier(const MachineInstr &MI) { + switch (MI.getOpcode()) { + case Hexagon::Y2_barrier: + return true; + } + return false; +} + +static bool isControlFlow(const MachineInstr &MI) { + return MI.getDesc().isTerminator() || MI.getDesc().isCall(); +} + +/// Returns true if the instruction modifies a callee-saved register. +static bool doesModifyCalleeSavedReg(const MachineInstr &MI, + const TargetRegisterInfo *TRI) { + const MachineFunction &MF = *MI.getParent()->getParent(); + for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) + if (MI.modifiesRegister(*CSR, TRI)) + return true; + return false; +} + +// Returns true if an instruction can be promoted to .new predicate or +// new-value store. +bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI, + const TargetRegisterClass *NewRC) { + // Vector stores can be predicated, and can be new-value stores, but + // they cannot be predicated on a .new predicate value. + if (NewRC == &Hexagon::PredRegsRegClass) { + if (HII->isHVXVec(MI) && MI.mayStore()) + return false; + return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0; + } + // If the class is not PredRegs, it could only apply to new-value stores. + return HII->mayBeNewStore(MI); +} + +// Promote an instructiont to its .cur form. +// At this time, we have already made a call to canPromoteToDotCur and made +// sure that it can *indeed* be promoted. +bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI, + SDep::Kind DepType, MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC) { + assert(DepType == SDep::Data); + int CurOpcode = HII->getDotCurOp(MI); + MI.setDesc(HII->get(CurOpcode)); + return true; +} + +void HexagonPacketizerList::cleanUpDotCur() { + MachineInstr *MI = nullptr; + for (auto BI : CurrentPacketMIs) { + LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump();); + if (HII->isDotCurInst(*BI)) { + MI = BI; + continue; + } + if (MI) { + for (auto &MO : BI->operands()) + if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg()) + return; + } + } + if (!MI) + return; + // We did not find a use of the CUR, so de-cur it. + MI->setDesc(HII->get(HII->getNonDotCurOp(*MI))); + LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump();); +} + +// Check to see if an instruction can be dot cur. +bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI, + const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, + const TargetRegisterClass *RC) { + if (!HII->isHVXVec(MI)) + return false; + if (!HII->isHVXVec(*MII)) + return false; + + // Already a dot new instruction. + if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI)) + return false; + + if (!HII->mayBeCurLoad(MI)) + return false; + + // The "cur value" cannot come from inline asm. + if (PacketSU->getInstr()->isInlineAsm()) + return false; + + // Make sure candidate instruction uses cur. + LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump(); + dbgs() << "in packet\n";); + MachineInstr &MJ = *MII; + LLVM_DEBUG({ + dbgs() << "Checking CUR against "; + MJ.dump(); + }); + unsigned DestReg = MI.getOperand(0).getReg(); + bool FoundMatch = false; + for (auto &MO : MJ.operands()) + if (MO.isReg() && MO.getReg() == DestReg) + FoundMatch = true; + if (!FoundMatch) + return false; + + // Check for existing uses of a vector register within the packet which + // would be affected by converting a vector load into .cur formt. + for (auto BI : CurrentPacketMIs) { + LLVM_DEBUG(dbgs() << "packet has "; BI->dump();); + if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo())) + return false; + } + + LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump();); + // We can convert the opcode into a .cur. + return true; +} + +// Promote an instruction to its .new form. At this time, we have already +// made a call to canPromoteToDotNew and made sure that it can *indeed* be +// promoted. +bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI, + SDep::Kind DepType, MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC) { + assert(DepType == SDep::Data); + int NewOpcode; + if (RC == &Hexagon::PredRegsRegClass) + NewOpcode = HII->getDotNewPredOp(MI, MBPI); + else + NewOpcode = HII->getDotNewOp(MI); + MI.setDesc(HII->get(NewOpcode)); + return true; +} + +bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) { + int NewOpcode = HII->getDotOldOp(MI); + MI.setDesc(HII->get(NewOpcode)); + return true; +} + +bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) { + unsigned Opc = MI.getOpcode(); + switch (Opc) { + case Hexagon::S2_storerd_io: + case Hexagon::S2_storeri_io: + case Hexagon::S2_storerh_io: + case Hexagon::S2_storerb_io: + break; + default: + llvm_unreachable("Unexpected instruction"); + } + unsigned FrameSize = MF.getFrameInfo().getStackSize(); + MachineOperand &Off = MI.getOperand(1); + int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE); + if (HII->isValidOffset(Opc, NewOff, HRI)) { + Off.setImm(NewOff); + return true; + } + return false; +} + +void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) { + unsigned Opc = MI.getOpcode(); + switch (Opc) { + case Hexagon::S2_storerd_io: + case Hexagon::S2_storeri_io: + case Hexagon::S2_storerh_io: + case Hexagon::S2_storerb_io: + break; + default: + llvm_unreachable("Unexpected instruction"); + } + unsigned FrameSize = MF.getFrameInfo().getStackSize(); + MachineOperand &Off = MI.getOperand(1); + Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE); +} + +/// Return true if we can update the offset in MI so that MI and MJ +/// can be packetized together. +bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) { + assert(SUI->getInstr() && SUJ->getInstr()); + MachineInstr &MI = *SUI->getInstr(); + MachineInstr &MJ = *SUJ->getInstr(); + + unsigned BPI, OPI; + if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI)) + return false; + unsigned BPJ, OPJ; + if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ)) + return false; + unsigned Reg = MI.getOperand(BPI).getReg(); + if (Reg != MJ.getOperand(BPJ).getReg()) + return false; + // Make sure that the dependences do not restrict adding MI to the packet. + // That is, ignore anti dependences, and make sure the only data dependence + // involves the specific register. + for (const auto &PI : SUI->Preds) + if (PI.getKind() != SDep::Anti && + (PI.getKind() != SDep::Data || PI.getReg() != Reg)) + return false; + int Incr; + if (!HII->getIncrementValue(MJ, Incr)) + return false; + + int64_t Offset = MI.getOperand(OPI).getImm(); + if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI)) + return false; + + MI.getOperand(OPI).setImm(Offset + Incr); + ChangedOffset = Offset; + return true; +} + +/// Undo the changed offset. This is needed if the instruction cannot be +/// added to the current packet due to a different instruction. +void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) { + unsigned BP, OP; + if (!HII->getBaseAndOffsetPosition(MI, BP, OP)) + llvm_unreachable("Unable to find base and offset operands."); + MI.getOperand(OP).setImm(ChangedOffset); +} + +enum PredicateKind { + PK_False, + PK_True, + PK_Unknown +}; + +/// Returns true if an instruction is predicated on p0 and false if it's +/// predicated on !p0. +static PredicateKind getPredicateSense(const MachineInstr &MI, + const HexagonInstrInfo *HII) { + if (!HII->isPredicated(MI)) + return PK_Unknown; + if (HII->isPredicatedTrue(MI)) + return PK_True; + return PK_False; +} + +static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI, + const HexagonInstrInfo *HII) { + assert(HII->isPostIncrement(MI) && "Not a post increment operation."); +#ifndef NDEBUG + // Post Increment means duplicates. Use dense map to find duplicates in the + // list. Caution: Densemap initializes with the minimum of 64 buckets, + // whereas there are at most 5 operands in the post increment. + DenseSet<unsigned> DefRegsSet; + for (auto &MO : MI.operands()) + if (MO.isReg() && MO.isDef()) + DefRegsSet.insert(MO.getReg()); + + for (auto &MO : MI.operands()) + if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg())) + return MO; +#else + if (MI.mayLoad()) { + const MachineOperand &Op1 = MI.getOperand(1); + // The 2nd operand is always the post increment operand in load. + assert(Op1.isReg() && "Post increment operand has be to a register."); + return Op1; + } + if (MI.getDesc().mayStore()) { + const MachineOperand &Op0 = MI.getOperand(0); + // The 1st operand is always the post increment operand in store. + assert(Op0.isReg() && "Post increment operand has be to a register."); + return Op0; + } +#endif + // we should never come here. + llvm_unreachable("mayLoad or mayStore not set for Post Increment operation"); +} + +// Get the value being stored. +static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) { + // value being stored is always the last operand. + return MI.getOperand(MI.getNumOperands()-1); +} + +static bool isLoadAbsSet(const MachineInstr &MI) { + unsigned Opc = MI.getOpcode(); + switch (Opc) { + case Hexagon::L4_loadrd_ap: + case Hexagon::L4_loadrb_ap: + case Hexagon::L4_loadrh_ap: + case Hexagon::L4_loadrub_ap: + case Hexagon::L4_loadruh_ap: + case Hexagon::L4_loadri_ap: + return true; + } + return false; +} + +static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) { + assert(isLoadAbsSet(MI)); + return MI.getOperand(1); +} + +// Can be new value store? +// Following restrictions are to be respected in convert a store into +// a new value store. +// 1. If an instruction uses auto-increment, its address register cannot +// be a new-value register. Arch Spec 5.4.2.1 +// 2. If an instruction uses absolute-set addressing mode, its address +// register cannot be a new-value register. Arch Spec 5.4.2.1. +// 3. If an instruction produces a 64-bit result, its registers cannot be used +// as new-value registers. Arch Spec 5.4.2.2. +// 4. If the instruction that sets the new-value register is conditional, then +// the instruction that uses the new-value register must also be conditional, +// and both must always have their predicates evaluate identically. +// Arch Spec 5.4.2.3. +// 5. There is an implied restriction that a packet cannot have another store, +// if there is a new value store in the packet. Corollary: if there is +// already a store in a packet, there can not be a new value store. +// Arch Spec: 3.4.4.2 +bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI, + const MachineInstr &PacketMI, unsigned DepReg) { + // Make sure we are looking at the store, that can be promoted. + if (!HII->mayBeNewStore(MI)) + return false; + + // Make sure there is dependency and can be new value'd. + const MachineOperand &Val = getStoreValueOperand(MI); + if (Val.isReg() && Val.getReg() != DepReg) + return false; + + const MCInstrDesc& MCID = PacketMI.getDesc(); + + // First operand is always the result. + const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF); + // Double regs can not feed into new value store: PRM section: 5.4.2.2. + if (PacketRC == &Hexagon::DoubleRegsRegClass) + return false; + + // New-value stores are of class NV (slot 0), dual stores require class ST + // in slot 0 (PRM 5.5). + for (auto I : CurrentPacketMIs) { + SUnit *PacketSU = MIToSUnit.find(I)->second; + if (PacketSU->getInstr()->mayStore()) + return false; + } + + // Make sure it's NOT the post increment register that we are going to + // new value. + if (HII->isPostIncrement(MI) && + getPostIncrementOperand(MI, HII).getReg() == DepReg) { + return false; + } + + if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() && + getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) { + // If source is post_inc, or absolute-set addressing, it can not feed + // into new value store + // r3 = memw(r2++#4) + // memw(r30 + #-1404) = r2.new -> can not be new value store + // arch spec section: 5.4.2.1. + return false; + } + + if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg) + return false; + + // If the source that feeds the store is predicated, new value store must + // also be predicated. + if (HII->isPredicated(PacketMI)) { + if (!HII->isPredicated(MI)) + return false; + + // Check to make sure that they both will have their predicates + // evaluate identically. + unsigned predRegNumSrc = 0; + unsigned predRegNumDst = 0; + const TargetRegisterClass* predRegClass = nullptr; + + // Get predicate register used in the source instruction. + for (auto &MO : PacketMI.operands()) { + if (!MO.isReg()) + continue; + predRegNumSrc = MO.getReg(); + predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc); + if (predRegClass == &Hexagon::PredRegsRegClass) + break; + } + assert((predRegClass == &Hexagon::PredRegsRegClass) && + "predicate register not found in a predicated PacketMI instruction"); + + // Get predicate register used in new-value store instruction. + for (auto &MO : MI.operands()) { + if (!MO.isReg()) + continue; + predRegNumDst = MO.getReg(); + predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst); + if (predRegClass == &Hexagon::PredRegsRegClass) + break; + } + assert((predRegClass == &Hexagon::PredRegsRegClass) && + "predicate register not found in a predicated MI instruction"); + + // New-value register producer and user (store) need to satisfy these + // constraints: + // 1) Both instructions should be predicated on the same register. + // 2) If producer of the new-value register is .new predicated then store + // should also be .new predicated and if producer is not .new predicated + // then store should not be .new predicated. + // 3) Both new-value register producer and user should have same predicate + // sense, i.e, either both should be negated or both should be non-negated. + if (predRegNumDst != predRegNumSrc || + HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) || + getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII)) + return false; + } + + // Make sure that other than the new-value register no other store instruction + // register has been modified in the same packet. Predicate registers can be + // modified by they should not be modified between the producer and the store + // instruction as it will make them both conditional on different values. + // We already know this to be true for all the instructions before and + // including PacketMI. Howerver, we need to perform the check for the + // remaining instructions in the packet. + + unsigned StartCheck = 0; + + for (auto I : CurrentPacketMIs) { + SUnit *TempSU = MIToSUnit.find(I)->second; + MachineInstr &TempMI = *TempSU->getInstr(); + + // Following condition is true for all the instructions until PacketMI is + // reached (StartCheck is set to 0 before the for loop). + // StartCheck flag is 1 for all the instructions after PacketMI. + if (&TempMI != &PacketMI && !StartCheck) // Start processing only after + continue; // encountering PacketMI. + + StartCheck = 1; + if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence. + continue; + + for (auto &MO : MI.operands()) + if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI)) + return false; + } + + // Make sure that for non-POST_INC stores: + // 1. The only use of reg is DepReg and no other registers. + // This handles base+index registers. + // The following store can not be dot new. + // Eg. r0 = add(r0, #3) + // memw(r1+r0<<#2) = r0 + if (!HII->isPostIncrement(MI)) { + for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) { + const MachineOperand &MO = MI.getOperand(opNum); + if (MO.isReg() && MO.getReg() == DepReg) + return false; + } + } + + // If data definition is because of implicit definition of the register, + // do not newify the store. Eg. + // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12 + // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343] + for (auto &MO : PacketMI.operands()) { + if (MO.isRegMask() && MO.clobbersPhysReg(DepReg)) + return false; + if (!MO.isReg() || !MO.isDef() || !MO.isImplicit()) + continue; + unsigned R = MO.getReg(); + if (R == DepReg || HRI->isSuperRegister(DepReg, R)) + return false; + } + + // Handle imp-use of super reg case. There is a target independent side + // change that should prevent this situation but I am handling it for + // just-in-case. For example, we cannot newify R2 in the following case: + // %r3 = A2_tfrsi 0; + // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1; + for (auto &MO : MI.operands()) { + if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg) + return false; + } + + // Can be dot new store. + return true; +} + +// Can this MI to promoted to either new value store or new value jump. +bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI, + const SUnit *PacketSU, unsigned DepReg, + MachineBasicBlock::iterator &MII) { + if (!HII->mayBeNewStore(MI)) + return false; + + // Check to see the store can be new value'ed. + MachineInstr &PacketMI = *PacketSU->getInstr(); + if (canPromoteToNewValueStore(MI, PacketMI, DepReg)) + return true; + + // Check to see the compare/jump can be new value'ed. + // This is done as a pass on its own. Don't need to check it here. + return false; +} + +static bool isImplicitDependency(const MachineInstr &I, bool CheckDef, + unsigned DepReg) { + for (auto &MO : I.operands()) { + if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg)) + return true; + if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit()) + continue; + if (CheckDef == MO.isDef()) + return true; + } + return false; +} + +// Check to see if an instruction can be dot new. +bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI, + const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC) { + // Already a dot new instruction. + if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI)) + return false; + + if (!isNewifiable(MI, RC)) + return false; + + const MachineInstr &PI = *PacketSU->getInstr(); + + // The "new value" cannot come from inline asm. + if (PI.isInlineAsm()) + return false; + + // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no + // sense. + if (PI.isImplicitDef()) + return false; + + // If dependency is trough an implicitly defined register, we should not + // newify the use. + if (isImplicitDependency(PI, true, DepReg) || + isImplicitDependency(MI, false, DepReg)) + return false; + + const MCInstrDesc& MCID = PI.getDesc(); + const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF); + if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass) + return false; + + // predicate .new + if (RC == &Hexagon::PredRegsRegClass) + return HII->predCanBeUsedAsDotNew(PI, DepReg); + + if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI)) + return false; + + // Create a dot new machine instruction to see if resources can be + // allocated. If not, bail out now. + int NewOpcode = HII->getDotNewOp(MI); + const MCInstrDesc &D = HII->get(NewOpcode); + MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc()); + bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI); + MF.DeleteMachineInstr(NewMI); + if (!ResourcesAvailable) + return false; + + // New Value Store only. New Value Jump generated as a separate pass. + if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII)) + return false; + + return true; +} + +// Go through the packet instructions and search for an anti dependency between +// them and DepReg from MI. Consider this case: +// Trying to add +// a) %r1 = TFRI_cdNotPt %p3, 2 +// to this packet: +// { +// b) %p0 = C2_or killed %p3, killed %p0 +// c) %p3 = C2_tfrrp %r23 +// d) %r1 = C2_cmovenewit %p3, 4 +// } +// The P3 from a) and d) will be complements after +// a)'s P3 is converted to .new form +// Anti-dep between c) and b) is irrelevant for this case +bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI, + unsigned DepReg) { + SUnit *PacketSUDep = MIToSUnit.find(&MI)->second; + + for (auto I : CurrentPacketMIs) { + // We only care for dependencies to predicated instructions + if (!HII->isPredicated(*I)) + continue; + + // Scheduling Unit for current insn in the packet + SUnit *PacketSU = MIToSUnit.find(I)->second; + + // Look at dependencies between current members of the packet and + // predicate defining instruction MI. Make sure that dependency is + // on the exact register we care about. + if (PacketSU->isSucc(PacketSUDep)) { + for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { + auto &Dep = PacketSU->Succs[i]; + if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti && + Dep.getReg() == DepReg) + return true; + } + } + } + + return false; +} + +/// Gets the predicate register of a predicated instruction. +static unsigned getPredicatedRegister(MachineInstr &MI, + const HexagonInstrInfo *QII) { + /// We use the following rule: The first predicate register that is a use is + /// the predicate register of a predicated instruction. + assert(QII->isPredicated(MI) && "Must be predicated instruction"); + + for (auto &Op : MI.operands()) { + if (Op.isReg() && Op.getReg() && Op.isUse() && + Hexagon::PredRegsRegClass.contains(Op.getReg())) + return Op.getReg(); + } + + llvm_unreachable("Unknown instruction operand layout"); + return 0; +} + +// Given two predicated instructions, this function detects whether +// the predicates are complements. +bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1, + MachineInstr &MI2) { + // If we don't know the predicate sense of the instructions bail out early, we + // need it later. + if (getPredicateSense(MI1, HII) == PK_Unknown || + getPredicateSense(MI2, HII) == PK_Unknown) + return false; + + // Scheduling unit for candidate. + SUnit *SU = MIToSUnit[&MI1]; + + // One corner case deals with the following scenario: + // Trying to add + // a) %r24 = A2_tfrt %p0, %r25 + // to this packet: + // { + // b) %r25 = A2_tfrf %p0, %r24 + // c) %p0 = C2_cmpeqi %r26, 1 + // } + // + // On general check a) and b) are complements, but presence of c) will + // convert a) to .new form, and then it is not a complement. + // We attempt to detect it by analyzing existing dependencies in the packet. + + // Analyze relationships between all existing members of the packet. + // Look for Anti dependecy on the same predicate reg as used in the + // candidate. + for (auto I : CurrentPacketMIs) { + // Scheduling Unit for current insn in the packet. + SUnit *PacketSU = MIToSUnit.find(I)->second; + + // If this instruction in the packet is succeeded by the candidate... + if (PacketSU->isSucc(SU)) { + for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { + auto Dep = PacketSU->Succs[i]; + // The corner case exist when there is true data dependency between + // candidate and one of current packet members, this dep is on + // predicate reg, and there already exist anti dep on the same pred in + // the packet. + if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data && + Hexagon::PredRegsRegClass.contains(Dep.getReg())) { + // Here I know that I is predicate setting instruction with true + // data dep to candidate on the register we care about - c) in the + // above example. Now I need to see if there is an anti dependency + // from c) to any other instruction in the same packet on the pred + // reg of interest. + if (restrictingDepExistInPacket(*I, Dep.getReg())) + return false; + } + } + } + } + + // If the above case does not apply, check regular complement condition. + // Check that the predicate register is the same and that the predicate + // sense is different We also need to differentiate .old vs. .new: !p0 + // is not complementary to p0.new. + unsigned PReg1 = getPredicatedRegister(MI1, HII); + unsigned PReg2 = getPredicatedRegister(MI2, HII); + return PReg1 == PReg2 && + Hexagon::PredRegsRegClass.contains(PReg1) && + Hexagon::PredRegsRegClass.contains(PReg2) && + getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) && + HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2); +} + +// Initialize packetizer flags. +void HexagonPacketizerList::initPacketizerState() { + Dependence = false; + PromotedToDotNew = false; + GlueToNewValueJump = false; + GlueAllocframeStore = false; + FoundSequentialDependence = false; + ChangedOffset = INT64_MAX; +} + +// Ignore bundling of pseudo instructions. +bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI, + const MachineBasicBlock *) { + if (MI.isDebugInstr()) + return true; + + if (MI.isCFIInstruction()) + return false; + + // We must print out inline assembly. + if (MI.isInlineAsm()) + return false; + + if (MI.isImplicitDef()) + return false; + + // We check if MI has any functional units mapped to it. If it doesn't, + // we ignore the instruction. + const MCInstrDesc& TID = MI.getDesc(); + auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass()); + unsigned FuncUnits = IS->getUnits(); + return !FuncUnits; +} + +bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) { + // Ensure any bundles created by gather packetize remain seperate. + if (MI.isBundle()) + return true; + + if (MI.isEHLabel() || MI.isCFIInstruction()) + return true; + + // Consider inline asm to not be a solo instruction by default. + // Inline asm will be put in a packet temporarily, but then it will be + // removed, and placed outside of the packet (before or after, depending + // on dependencies). This is to reduce the impact of inline asm as a + // "packet splitting" instruction. + if (MI.isInlineAsm() && !ScheduleInlineAsm) + return true; + + if (isSchedBarrier(MI)) + return true; + + if (HII->isSolo(MI)) + return true; + + if (MI.getOpcode() == Hexagon::A2_nop) + return true; + + return false; +} + +// Quick check if instructions MI and MJ cannot coexist in the same packet. +// Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm", +// but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm". +// For full test call this function twice: +// cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI) +// Doing the test only one way saves the amount of code in this function, +// since every test would need to be repeated with the MI and MJ reversed. +static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ, + const HexagonInstrInfo &HII) { + const MachineFunction *MF = MI.getParent()->getParent(); + if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() && + HII.isHVXMemWithAIndirect(MI, MJ)) + return true; + + // An inline asm cannot be together with a branch, because we may not be + // able to remove the asm out after packetizing (i.e. if the asm must be + // moved past the bundle). Similarly, two asms cannot be together to avoid + // complications when determining their relative order outside of a bundle. + if (MI.isInlineAsm()) + return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() || + MJ.isCall() || MJ.isTerminator(); + + // New-value stores cannot coexist with any other stores. + if (HII.isNewValueStore(MI) && MJ.mayStore()) + return true; + + switch (MI.getOpcode()) { + case Hexagon::S2_storew_locked: + case Hexagon::S4_stored_locked: + case Hexagon::L2_loadw_locked: + case Hexagon::L4_loadd_locked: + case Hexagon::Y2_dccleana: + case Hexagon::Y2_dccleaninva: + case Hexagon::Y2_dcinva: + case Hexagon::Y2_dczeroa: + case Hexagon::Y4_l2fetch: + case Hexagon::Y5_l2fetch: { + // These instructions can only be grouped with ALU32 or non-floating-point + // XTYPE instructions. Since there is no convenient way of identifying fp + // XTYPE instructions, only allow grouping with ALU32 for now. + unsigned TJ = HII.getType(MJ); + if (TJ != HexagonII::TypeALU32_2op && + TJ != HexagonII::TypeALU32_3op && + TJ != HexagonII::TypeALU32_ADDI) + return true; + break; + } + default: + break; + } + + // "False" really means that the quick check failed to determine if + // I and J cannot coexist. + return false; +} + +// Full, symmetric check. +bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI, + const MachineInstr &MJ) { + return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII); +} + +void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) { + for (auto &B : MF) { + MachineBasicBlock::iterator BundleIt; + MachineBasicBlock::instr_iterator NextI; + for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) { + NextI = std::next(I); + MachineInstr &MI = *I; + if (MI.isBundle()) + BundleIt = I; + if (!MI.isInsideBundle()) + continue; + + // Decide on where to insert the instruction that we are pulling out. + // Debug instructions always go before the bundle, but the placement of + // INLINE_ASM depends on potential dependencies. By default, try to + // put it before the bundle, but if the asm writes to a register that + // other instructions in the bundle read, then we need to place it + // after the bundle (to preserve the bundle semantics). + bool InsertBeforeBundle; + if (MI.isInlineAsm()) + InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI); + else if (MI.isDebugValue()) + InsertBeforeBundle = true; + else + continue; + + BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle); + } + } +} + +// Check if a given instruction is of class "system". +static bool isSystemInstr(const MachineInstr &MI) { + unsigned Opc = MI.getOpcode(); + switch (Opc) { + case Hexagon::Y2_barrier: + case Hexagon::Y2_dcfetchbo: + case Hexagon::Y4_l2fetch: + case Hexagon::Y5_l2fetch: + return true; + } + return false; +} + +bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I, + const MachineInstr &J) { + // The dependence graph may not include edges between dead definitions, + // so without extra checks, we could end up packetizing two instruction + // defining the same (dead) register. + if (I.isCall() || J.isCall()) + return false; + if (HII->isPredicated(I) || HII->isPredicated(J)) + return false; + + BitVector DeadDefs(Hexagon::NUM_TARGET_REGS); + for (auto &MO : I.operands()) { + if (!MO.isReg() || !MO.isDef() || !MO.isDead()) + continue; + DeadDefs[MO.getReg()] = true; + } + + for (auto &MO : J.operands()) { + if (!MO.isReg() || !MO.isDef() || !MO.isDead()) + continue; + unsigned R = MO.getReg(); + if (R != Hexagon::USR_OVF && DeadDefs[R]) + return true; + } + return false; +} + +bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I, + const MachineInstr &J) { + // A save callee-save register function call can only be in a packet + // with instructions that don't write to the callee-save registers. + if ((HII->isSaveCalleeSavedRegsCall(I) && + doesModifyCalleeSavedReg(J, HRI)) || + (HII->isSaveCalleeSavedRegsCall(J) && + doesModifyCalleeSavedReg(I, HRI))) + return true; + + // Two control flow instructions cannot go in the same packet. + if (isControlFlow(I) && isControlFlow(J)) + return true; + + // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot + // contain a speculative indirect jump, + // a new-value compare jump or a dealloc_return. + auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool { + if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI)) + return true; + if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI)) + return true; + return false; + }; + + if (HII->isLoopN(I) && isBadForLoopN(J)) + return true; + if (HII->isLoopN(J) && isBadForLoopN(I)) + return true; + + // dealloc_return cannot appear in the same packet as a conditional or + // unconditional jump. + return HII->isDeallocRet(I) && + (J.isBranch() || J.isCall() || J.isBarrier()); +} + +bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I, + const MachineInstr &J) { + // Adding I to a packet that has J. + + // Regmasks are not reflected in the scheduling dependency graph, so + // we need to check them manually. This code assumes that regmasks only + // occur on calls, and the problematic case is when we add an instruction + // defining a register R to a packet that has a call that clobbers R via + // a regmask. Those cannot be packetized together, because the call will + // be executed last. That's also a reson why it is ok to add a call + // clobbering R to a packet that defines R. + + // Look for regmasks in J. + for (const MachineOperand &OpJ : J.operands()) { + if (!OpJ.isRegMask()) + continue; + assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call"); + for (const MachineOperand &OpI : I.operands()) { + if (OpI.isReg()) { + if (OpJ.clobbersPhysReg(OpI.getReg())) + return true; + } else if (OpI.isRegMask()) { + // Both are regmasks. Assume that they intersect. + return true; + } + } + } + return false; +} + +bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I, + const MachineInstr &J) { + bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J); + bool StoreI = I.mayStore(), StoreJ = J.mayStore(); + if ((SysI && StoreJ) || (SysJ && StoreI)) + return true; + + if (StoreI && StoreJ) { + if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I)) + return true; + } else { + // A memop cannot be in the same packet with another memop or a store. + // Two stores can be together, but here I and J cannot both be stores. + bool MopStI = HII->isMemOp(I) || StoreI; + bool MopStJ = HII->isMemOp(J) || StoreJ; + if (MopStI && MopStJ) + return true; + } + + return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J)); +} + +// SUI is the current instruction that is out side of the current packet. +// SUJ is the current instruction inside the current packet against which that +// SUI will be packetized. +bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { + assert(SUI->getInstr() && SUJ->getInstr()); + MachineInstr &I = *SUI->getInstr(); + MachineInstr &J = *SUJ->getInstr(); + + // Clear IgnoreDepMIs when Packet starts. + if (CurrentPacketMIs.size() == 1) + IgnoreDepMIs.clear(); + + MachineBasicBlock::iterator II = I.getIterator(); + + // Solo instructions cannot go in the packet. + assert(!isSoloInstruction(I) && "Unexpected solo instr!"); + + if (cannotCoexist(I, J)) + return false; + + Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J); + if (Dependence) + return false; + + // Regmasks are not accounted for in the scheduling graph, so we need + // to explicitly check for dependencies caused by them. They should only + // appear on calls, so it's not too pessimistic to reject all regmask + // dependencies. + Dependence = hasRegMaskDependence(I, J); + if (Dependence) + return false; + + // Dual-store does not allow second store, if the first store is not + // in SLOT0. New value store, new value jump, dealloc_return and memop + // always take SLOT0. Arch spec 3.4.4.2. + Dependence = hasDualStoreDependence(I, J); + if (Dependence) + return false; + + // If an instruction feeds new value jump, glue it. + MachineBasicBlock::iterator NextMII = I.getIterator(); + ++NextMII; + if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) { + MachineInstr &NextMI = *NextMII; + + bool secondRegMatch = false; + const MachineOperand &NOp0 = NextMI.getOperand(0); + const MachineOperand &NOp1 = NextMI.getOperand(1); + + if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg()) + secondRegMatch = true; + + for (MachineInstr *PI : CurrentPacketMIs) { + // NVJ can not be part of the dual jump - Arch Spec: section 7.8. + if (PI->isCall()) { + Dependence = true; + break; + } + // Validate: + // 1. Packet does not have a store in it. + // 2. If the first operand of the nvj is newified, and the second + // operand is also a reg, it (second reg) is not defined in + // the same packet. + // 3. If the second operand of the nvj is newified, (which means + // first operand is also a reg), first reg is not defined in + // the same packet. + if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() || + HII->isLoopN(*PI)) { + Dependence = true; + break; + } + // Check #2/#3. + const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1; + if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) { + Dependence = true; + break; + } + } + + GlueToNewValueJump = true; + if (Dependence) + return false; + } + + // There no dependency between a prolog instruction and its successor. + if (!SUJ->isSucc(SUI)) + return true; + + for (unsigned i = 0; i < SUJ->Succs.size(); ++i) { + if (FoundSequentialDependence) + break; + + if (SUJ->Succs[i].getSUnit() != SUI) + continue; + + SDep::Kind DepType = SUJ->Succs[i].getKind(); + // For direct calls: + // Ignore register dependences for call instructions for packetization + // purposes except for those due to r31 and predicate registers. + // + // For indirect calls: + // Same as direct calls + check for true dependences to the register + // used in the indirect call. + // + // We completely ignore Order dependences for call instructions. + // + // For returns: + // Ignore register dependences for return instructions like jumpr, + // dealloc return unless we have dependencies on the explicit uses + // of the registers used by jumpr (like r31) or dealloc return + // (like r29 or r30). + unsigned DepReg = 0; + const TargetRegisterClass *RC = nullptr; + if (DepType == SDep::Data) { + DepReg = SUJ->Succs[i].getReg(); + RC = HRI->getMinimalPhysRegClass(DepReg); + } + + if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) { + if (!isRegDependence(DepType)) + continue; + if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg())) + continue; + } + + if (DepType == SDep::Data) { + if (canPromoteToDotCur(J, SUJ, DepReg, II, RC)) + if (promoteToDotCur(J, DepType, II, RC)) + continue; + } + + // Data dpendence ok if we have load.cur. + if (DepType == SDep::Data && HII->isDotCurInst(J)) { + if (HII->isHVXVec(I)) + continue; + } + + // For instructions that can be promoted to dot-new, try to promote. + if (DepType == SDep::Data) { + if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) { + if (promoteToDotNew(I, DepType, II, RC)) { + PromotedToDotNew = true; + if (cannotCoexist(I, J)) + FoundSequentialDependence = true; + continue; + } + } + if (HII->isNewValueJump(I)) + continue; + } + + // For predicated instructions, if the predicates are complements then + // there can be no dependence. + if (HII->isPredicated(I) && HII->isPredicated(J) && + arePredicatesComplements(I, J)) { + // Not always safe to do this translation. + // DAG Builder attempts to reduce dependence edges using transitive + // nature of dependencies. Here is an example: + // + // r0 = tfr_pt ... (1) + // r0 = tfr_pf ... (2) + // r0 = tfr_pt ... (3) + // + // There will be an output dependence between (1)->(2) and (2)->(3). + // However, there is no dependence edge between (1)->(3). This results + // in all 3 instructions going in the same packet. We ignore dependce + // only once to avoid this situation. + auto Itr = find(IgnoreDepMIs, &J); + if (Itr != IgnoreDepMIs.end()) { + Dependence = true; + return false; + } + IgnoreDepMIs.push_back(&I); + continue; + } + + // Ignore Order dependences between unconditional direct branches + // and non-control-flow instructions. + if (isDirectJump(I) && !J.isBranch() && !J.isCall() && + DepType == SDep::Order) + continue; + + // Ignore all dependences for jumps except for true and output + // dependences. + if (I.isConditionalBranch() && DepType != SDep::Data && + DepType != SDep::Output) + continue; + + if (DepType == SDep::Output) { + FoundSequentialDependence = true; + break; + } + + // For Order dependences: + // 1. Volatile loads/stores can be packetized together, unless other + // rules prevent is. + // 2. Store followed by a load is not allowed. + // 3. Store followed by a store is valid. + // 4. Load followed by any memory operation is allowed. + if (DepType == SDep::Order) { + if (!PacketizeVolatiles) { + bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef(); + if (OrdRefs) { + FoundSequentialDependence = true; + break; + } + } + // J is first, I is second. + bool LoadJ = J.mayLoad(), StoreJ = J.mayStore(); + bool LoadI = I.mayLoad(), StoreI = I.mayStore(); + bool NVStoreJ = HII->isNewValueStore(J); + bool NVStoreI = HII->isNewValueStore(I); + bool IsVecJ = HII->isHVXVec(J); + bool IsVecI = HII->isHVXVec(I); + + if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() && + ((LoadJ && StoreI && !NVStoreI) || + (StoreJ && LoadI && !NVStoreJ)) && + (J.getOpcode() != Hexagon::S2_allocframe && + I.getOpcode() != Hexagon::S2_allocframe) && + (J.getOpcode() != Hexagon::L2_deallocframe && + I.getOpcode() != Hexagon::L2_deallocframe) && + (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI)) + setmemShufDisabled(true); + else + if (StoreJ && LoadI && alias(J, I)) { + FoundSequentialDependence = true; + break; + } + + if (!StoreJ) + if (!LoadJ || (!LoadI && !StoreI)) { + // If J is neither load nor store, assume a dependency. + // If J is a load, but I is neither, also assume a dependency. + FoundSequentialDependence = true; + break; + } + // Store followed by store: not OK on V2. + // Store followed by load: not OK on all. + // Load followed by store: OK on all. + // Load followed by load: OK on all. + continue; + } + + // Special case for ALLOCFRAME: even though there is dependency + // between ALLOCFRAME and subsequent store, allow it to be packetized + // in a same packet. This implies that the store is using the caller's + // SP. Hence, offset needs to be updated accordingly. + if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) { + unsigned Opc = I.getOpcode(); + switch (Opc) { + case Hexagon::S2_storerd_io: + case Hexagon::S2_storeri_io: + case Hexagon::S2_storerh_io: + case Hexagon::S2_storerb_io: + if (I.getOperand(0).getReg() == HRI->getStackRegister()) { + // Since this store is to be glued with allocframe in the same + // packet, it will use SP of the previous stack frame, i.e. + // caller's SP. Therefore, we need to recalculate offset + // according to this change. + GlueAllocframeStore = useCallersSP(I); + if (GlueAllocframeStore) + continue; + } + break; + default: + break; + } + } + + // There are certain anti-dependencies that cannot be ignored. + // Specifically: + // J2_call ... implicit-def %r0 ; SUJ + // R0 = ... ; SUI + // Those cannot be packetized together, since the call will observe + // the effect of the assignment to R0. + if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) { + // Check if I defines any volatile register. We should also check + // registers that the call may read, but these happen to be a + // subset of the volatile register set. + for (const MachineOperand &Op : I.operands()) { + if (Op.isReg() && Op.isDef()) { + unsigned R = Op.getReg(); + if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI)) + continue; + } else if (!Op.isRegMask()) { + // If I has a regmask assume dependency. + continue; + } + FoundSequentialDependence = true; + break; + } + } + + // Skip over remaining anti-dependences. Two instructions that are + // anti-dependent can share a packet, since in most such cases all + // operands are read before any modifications take place. + // The exceptions are branch and call instructions, since they are + // executed after all other instructions have completed (at least + // conceptually). + if (DepType != SDep::Anti) { + FoundSequentialDependence = true; + break; + } + } + + if (FoundSequentialDependence) { + Dependence = true; + return false; + } + + return true; +} + +bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { + assert(SUI->getInstr() && SUJ->getInstr()); + MachineInstr &I = *SUI->getInstr(); + MachineInstr &J = *SUJ->getInstr(); + + bool Coexist = !cannotCoexist(I, J); + + if (Coexist && !Dependence) + return true; + + // Check if the instruction was promoted to a dot-new. If so, demote it + // back into a dot-old. + if (PromotedToDotNew) + demoteToDotOld(I); + + cleanUpDotCur(); + // Check if the instruction (must be a store) was glued with an allocframe + // instruction. If so, restore its offset to its original value, i.e. use + // current SP instead of caller's SP. + if (GlueAllocframeStore) { + useCalleesSP(I); + GlueAllocframeStore = false; + } + + if (ChangedOffset != INT64_MAX) + undoChangedOffset(I); + + if (GlueToNewValueJump) { + // Putting I and J together would prevent the new-value jump from being + // packetized with the producer. In that case I and J must be separated. + GlueToNewValueJump = false; + return false; + } + + if (!Coexist) + return false; + + if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) { + FoundSequentialDependence = false; + Dependence = false; + return true; + } + + return false; +} + + +bool HexagonPacketizerList::foundLSInPacket() { + bool FoundLoad = false; + bool FoundStore = false; + + for (auto MJ : CurrentPacketMIs) { + unsigned Opc = MJ->getOpcode(); + if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe) + continue; + if (HII->isMemOp(*MJ)) + continue; + if (MJ->mayLoad()) + FoundLoad = true; + if (MJ->mayStore() && !HII->isNewValueStore(*MJ)) + FoundStore = true; + } + return FoundLoad && FoundStore; +} + + +MachineBasicBlock::iterator +HexagonPacketizerList::addToPacket(MachineInstr &MI) { + MachineBasicBlock::iterator MII = MI.getIterator(); + MachineBasicBlock *MBB = MI.getParent(); + + if (CurrentPacketMIs.empty()) + PacketStalls = false; + PacketStalls |= producesStall(MI); + + if (MI.isImplicitDef()) { + // Add to the packet to allow subsequent instructions to be checked + // properly. + CurrentPacketMIs.push_back(&MI); + return MII; + } + assert(ResourceTracker->canReserveResources(MI)); + + bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI); + bool Good = true; + + if (GlueToNewValueJump) { + MachineInstr &NvjMI = *++MII; + // We need to put both instructions in the same packet: MI and NvjMI. + // Either of them can require a constant extender. Try to add both to + // the current packet, and if that fails, end the packet and start a + // new one. + ResourceTracker->reserveResources(MI); + if (ExtMI) + Good = tryAllocateResourcesForConstExt(true); + + bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI); + if (Good) { + if (ResourceTracker->canReserveResources(NvjMI)) + ResourceTracker->reserveResources(NvjMI); + else + Good = false; + } + if (Good && ExtNvjMI) + Good = tryAllocateResourcesForConstExt(true); + + if (!Good) { + endPacket(MBB, MI); + assert(ResourceTracker->canReserveResources(MI)); + ResourceTracker->reserveResources(MI); + if (ExtMI) { + assert(canReserveResourcesForConstExt()); + tryAllocateResourcesForConstExt(true); + } + assert(ResourceTracker->canReserveResources(NvjMI)); + ResourceTracker->reserveResources(NvjMI); + if (ExtNvjMI) { + assert(canReserveResourcesForConstExt()); + reserveResourcesForConstExt(); + } + } + CurrentPacketMIs.push_back(&MI); + CurrentPacketMIs.push_back(&NvjMI); + return MII; + } + + ResourceTracker->reserveResources(MI); + if (ExtMI && !tryAllocateResourcesForConstExt(true)) { + endPacket(MBB, MI); + if (PromotedToDotNew) + demoteToDotOld(MI); + if (GlueAllocframeStore) { + useCalleesSP(MI); + GlueAllocframeStore = false; + } + ResourceTracker->reserveResources(MI); + reserveResourcesForConstExt(); + } + + CurrentPacketMIs.push_back(&MI); + return MII; +} + +void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB, + MachineBasicBlock::iterator EndMI) { + // Replace VLIWPacketizerList::endPacket(MBB, EndMI). + + bool memShufDisabled = getmemShufDisabled(); + if (memShufDisabled && !foundLSInPacket()) { + setmemShufDisabled(false); + LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n"); + } + memShufDisabled = getmemShufDisabled(); + + OldPacketMIs.clear(); + for (MachineInstr *MI : CurrentPacketMIs) { + MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator()); + for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI)) + OldPacketMIs.push_back(&I); + } + CurrentPacketMIs.clear(); + + if (OldPacketMIs.size() > 1) { + MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front()); + MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator()); + finalizeBundle(*MBB, FirstMI, LastMI); + auto BundleMII = std::prev(FirstMI); + if (memShufDisabled) + HII->setBundleNoShuf(BundleMII); + + setmemShufDisabled(false); + } + + ResourceTracker->clearResources(); + LLVM_DEBUG(dbgs() << "End packet\n"); +} + +bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) { + if (Minimal) + return false; + return !producesStall(MI); +} + +// V60 forward scheduling. +bool HexagonPacketizerList::producesStall(const MachineInstr &I) { + // If the packet already stalls, then ignore the stall from a subsequent + // instruction in the same packet. + if (PacketStalls) + return false; + + // Check whether the previous packet is in a different loop. If this is the + // case, there is little point in trying to avoid a stall because that would + // favor the rare case (loop entry) over the common case (loop iteration). + // + // TODO: We should really be able to check all the incoming edges if this is + // the first packet in a basic block, so we can avoid stalls from the loop + // backedge. + if (!OldPacketMIs.empty()) { + auto *OldBB = OldPacketMIs.front()->getParent(); + auto *ThisBB = I.getParent(); + if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB)) + return false; + } + + SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)]; + + // If the latency is 0 and there is a data dependence between this + // instruction and any instruction in the current packet, we disregard any + // potential stalls due to the instructions in the previous packet. Most of + // the instruction pairs that can go together in the same packet have 0 + // latency between them. The exceptions are + // 1. NewValueJumps as they're generated much later and the latencies can't + // be changed at that point. + // 2. .cur instructions, if its consumer has a 0 latency successor (such as + // .new). In this case, the latency between .cur and the consumer stays + // non-zero even though we can have both .cur and .new in the same packet. + // Changing the latency to 0 is not an option as it causes software pipeliner + // to not pipeline in some cases. + + // For Example: + // { + // I1: v6.cur = vmem(r0++#1) + // I2: v7 = valign(v6,v4,r2) + // I3: vmem(r5++#1) = v7.new + // } + // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2. + + for (auto J : CurrentPacketMIs) { + SUnit *SUJ = MIToSUnit[J]; + for (auto &Pred : SUI->Preds) + if (Pred.getSUnit() == SUJ) + if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) || + HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I)) + return false; + } + + // Check if the latency is greater than one between this instruction and any + // instruction in the previous packet. + for (auto J : OldPacketMIs) { + SUnit *SUJ = MIToSUnit[J]; + for (auto &Pred : SUI->Preds) + if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1) + return true; + } + + return false; +} + +//===----------------------------------------------------------------------===// +// Public Constructor Functions +//===----------------------------------------------------------------------===// + +FunctionPass *llvm::createHexagonPacketizer(bool Minimal) { + return new HexagonPacketizer(Minimal); +} |
