diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp | 4052 |
1 files changed, 4052 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp new file mode 100644 index 000000000000..b593a98e81a6 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp @@ -0,0 +1,4052 @@ +//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the PowerPC implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "PPCInstrInfo.h" +#include "MCTargetDesc/PPCPredicates.h" +#include "PPC.h" +#include "PPCHazardRecognizers.h" +#include "PPCInstrBuilder.h" +#include "PPCMachineFunctionInfo.h" +#include "PPCTargetMachine.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCInst.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "ppc-instr-info" + +#define GET_INSTRMAP_INFO +#define GET_INSTRINFO_CTOR_DTOR +#include "PPCGenInstrInfo.inc" + +STATISTIC(NumStoreSPILLVSRRCAsVec, + "Number of spillvsrrc spilled to stack as vec"); +STATISTIC(NumStoreSPILLVSRRCAsGpr, + "Number of spillvsrrc spilled to stack as gpr"); +STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); +STATISTIC(CmpIselsConverted, + "Number of ISELs that depend on comparison of constants converted"); +STATISTIC(MissedConvertibleImmediateInstrs, + "Number of compare-immediate instructions fed by constants"); +STATISTIC(NumRcRotatesConvertedToRcAnd, + "Number of record-form rotates converted to record-form andi"); + +static cl:: +opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, + cl::desc("Disable analysis for CTR loops")); + +static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", +cl::desc("Disable compare instruction optimization"), cl::Hidden); + +static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", +cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), +cl::Hidden); + +static cl::opt<bool> +UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, + cl::desc("Use the old (incorrect) instruction latency calculation")); + +// Index into the OpcodesForSpill array. +enum SpillOpcodeKey { + SOK_Int4Spill, + SOK_Int8Spill, + SOK_Float8Spill, + SOK_Float4Spill, + SOK_CRSpill, + SOK_CRBitSpill, + SOK_VRVectorSpill, + SOK_VSXVectorSpill, + SOK_VectorFloat8Spill, + SOK_VectorFloat4Spill, + SOK_VRSaveSpill, + SOK_QuadFloat8Spill, + SOK_QuadFloat4Spill, + SOK_QuadBitSpill, + SOK_SpillToVSR, + SOK_SPESpill, + SOK_SPE4Spill, + SOK_LastOpcodeSpill // This must be last on the enum. +}; + +// Pin the vtable to this file. +void PPCInstrInfo::anchor() {} + +PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) + : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, + /* CatchRetOpcode */ -1, + STI.isPPC64() ? PPC::BLR8 : PPC::BLR), + Subtarget(STI), RI(STI.getTargetMachine()) {} + +/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for +/// this target when scheduling the DAG. +ScheduleHazardRecognizer * +PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, + const ScheduleDAG *DAG) const { + unsigned Directive = + static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); + if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || + Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { + const InstrItineraryData *II = + static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); + return new ScoreboardHazardRecognizer(II, DAG); + } + + return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); +} + +/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer +/// to use for this target when scheduling the DAG. +ScheduleHazardRecognizer * +PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, + const ScheduleDAG *DAG) const { + unsigned Directive = + DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); + + // FIXME: Leaving this as-is until we have POWER9 scheduling info + if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) + return new PPCDispatchGroupSBHazardRecognizer(II, DAG); + + // Most subtargets use a PPC970 recognizer. + if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && + Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { + assert(DAG->TII && "No InstrInfo?"); + + return new PPCHazardRecognizer970(*DAG); + } + + return new ScoreboardHazardRecognizer(II, DAG); +} + +unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, + const MachineInstr &MI, + unsigned *PredCost) const { + if (!ItinData || UseOldLatencyCalc) + return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); + + // The default implementation of getInstrLatency calls getStageLatency, but + // getStageLatency does not do the right thing for us. While we have + // itinerary, most cores are fully pipelined, and so the itineraries only + // express the first part of the pipeline, not every stage. Instead, we need + // to use the listed output operand cycle number (using operand 0 here, which + // is an output). + + unsigned Latency = 1; + unsigned DefClass = MI.getDesc().getSchedClass(); + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) + continue; + + int Cycle = ItinData->getOperandCycle(DefClass, i); + if (Cycle < 0) + continue; + + Latency = std::max(Latency, (unsigned) Cycle); + } + + return Latency; +} + +int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, + const MachineInstr &DefMI, unsigned DefIdx, + const MachineInstr &UseMI, + unsigned UseIdx) const { + int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, + UseMI, UseIdx); + + if (!DefMI.getParent()) + return Latency; + + const MachineOperand &DefMO = DefMI.getOperand(DefIdx); + unsigned Reg = DefMO.getReg(); + + bool IsRegCR; + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + const MachineRegisterInfo *MRI = + &DefMI.getParent()->getParent()->getRegInfo(); + IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || + MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); + } else { + IsRegCR = PPC::CRRCRegClass.contains(Reg) || + PPC::CRBITRCRegClass.contains(Reg); + } + + if (UseMI.isBranch() && IsRegCR) { + if (Latency < 0) + Latency = getInstrLatency(ItinData, DefMI); + + // On some cores, there is an additional delay between writing to a condition + // register, and using it from a branch. + unsigned Directive = Subtarget.getDarwinDirective(); + switch (Directive) { + default: break; + case PPC::DIR_7400: + case PPC::DIR_750: + case PPC::DIR_970: + case PPC::DIR_E5500: + case PPC::DIR_PWR4: + case PPC::DIR_PWR5: + case PPC::DIR_PWR5X: + case PPC::DIR_PWR6: + case PPC::DIR_PWR6X: + case PPC::DIR_PWR7: + case PPC::DIR_PWR8: + // FIXME: Is this needed for POWER9? + Latency += 2; + break; + } + } + + return Latency; +} + +// This function does not list all associative and commutative operations, but +// only those worth feeding through the machine combiner in an attempt to +// reduce the critical path. Mostly, this means floating-point operations, +// because they have high latencies (compared to other operations, such and +// and/or, which are also associative and commutative, but have low latencies). +bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { + switch (Inst.getOpcode()) { + // FP Add: + case PPC::FADD: + case PPC::FADDS: + // FP Multiply: + case PPC::FMUL: + case PPC::FMULS: + // Altivec Add: + case PPC::VADDFP: + // VSX Add: + case PPC::XSADDDP: + case PPC::XVADDDP: + case PPC::XVADDSP: + case PPC::XSADDSP: + // VSX Multiply: + case PPC::XSMULDP: + case PPC::XVMULDP: + case PPC::XVMULSP: + case PPC::XSMULSP: + // QPX Add: + case PPC::QVFADD: + case PPC::QVFADDS: + case PPC::QVFADDSs: + // QPX Multiply: + case PPC::QVFMUL: + case PPC::QVFMULS: + case PPC::QVFMULSs: + return true; + default: + return false; + } +} + +bool PPCInstrInfo::getMachineCombinerPatterns( + MachineInstr &Root, + SmallVectorImpl<MachineCombinerPattern> &Patterns) const { + // Using the machine combiner in this way is potentially expensive, so + // restrict to when aggressive optimizations are desired. + if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) + return false; + + // FP reassociation is only legal when we don't need strict IEEE semantics. + if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) + return false; + + return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); +} + +// Detect 32 -> 64-bit extensions where we may reuse the low sub-register. +bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, + unsigned &SrcReg, unsigned &DstReg, + unsigned &SubIdx) const { + switch (MI.getOpcode()) { + default: return false; + case PPC::EXTSW: + case PPC::EXTSW_32: + case PPC::EXTSW_32_64: + SrcReg = MI.getOperand(1).getReg(); + DstReg = MI.getOperand(0).getReg(); + SubIdx = PPC::sub_32; + return true; + } +} + +unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, + int &FrameIndex) const { + unsigned Opcode = MI.getOpcode(); + const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); + const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; + + if (End != std::find(OpcodesForSpill, End, Opcode)) { + // Check for the operands added by addFrameReference (the immediate is the + // offset which defaults to 0). + if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && + MI.getOperand(2).isFI()) { + FrameIndex = MI.getOperand(2).getIndex(); + return MI.getOperand(0).getReg(); + } + } + return 0; +} + +// For opcodes with the ReMaterializable flag set, this function is called to +// verify the instruction is really rematable. +bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, + AliasAnalysis *AA) const { + switch (MI.getOpcode()) { + default: + // This function should only be called for opcodes with the ReMaterializable + // flag set. + llvm_unreachable("Unknown rematerializable operation!"); + break; + case PPC::LI: + case PPC::LI8: + case PPC::LIS: + case PPC::LIS8: + case PPC::QVGPCI: + case PPC::ADDIStocHA: + case PPC::ADDItocL: + case PPC::LOAD_STACK_GUARD: + case PPC::XXLXORz: + case PPC::XXLXORspz: + case PPC::XXLXORdpz: + case PPC::V_SET0B: + case PPC::V_SET0H: + case PPC::V_SET0: + case PPC::V_SETALLONESB: + case PPC::V_SETALLONESH: + case PPC::V_SETALLONES: + case PPC::CRSET: + case PPC::CRUNSET: + return true; + } + return false; +} + +unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, + int &FrameIndex) const { + unsigned Opcode = MI.getOpcode(); + const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); + const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; + + if (End != std::find(OpcodesForSpill, End, Opcode)) { + if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && + MI.getOperand(2).isFI()) { + FrameIndex = MI.getOperand(2).getIndex(); + return MI.getOperand(0).getReg(); + } + } + return 0; +} + +MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, + unsigned OpIdx1, + unsigned OpIdx2) const { + MachineFunction &MF = *MI.getParent()->getParent(); + + // Normal instructions can be commuted the obvious way. + if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) + return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); + // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a + // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because + // changing the relative order of the mask operands might change what happens + // to the high-bits of the mask (and, thus, the result). + + // Cannot commute if it has a non-zero rotate count. + if (MI.getOperand(3).getImm() != 0) + return nullptr; + + // If we have a zero rotate count, we have: + // M = mask(MB,ME) + // Op0 = (Op1 & ~M) | (Op2 & M) + // Change this to: + // M = mask((ME+1)&31, (MB-1)&31) + // Op0 = (Op2 & ~M) | (Op1 & M) + + // Swap op1/op2 + assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && + "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); + Register Reg0 = MI.getOperand(0).getReg(); + Register Reg1 = MI.getOperand(1).getReg(); + Register Reg2 = MI.getOperand(2).getReg(); + unsigned SubReg1 = MI.getOperand(1).getSubReg(); + unsigned SubReg2 = MI.getOperand(2).getSubReg(); + bool Reg1IsKill = MI.getOperand(1).isKill(); + bool Reg2IsKill = MI.getOperand(2).isKill(); + bool ChangeReg0 = false; + // If machine instrs are no longer in two-address forms, update + // destination register as well. + if (Reg0 == Reg1) { + // Must be two address instruction! + assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && + "Expecting a two-address instruction!"); + assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); + Reg2IsKill = false; + ChangeReg0 = true; + } + + // Masks. + unsigned MB = MI.getOperand(4).getImm(); + unsigned ME = MI.getOperand(5).getImm(); + + // We can't commute a trivial mask (there is no way to represent an all-zero + // mask). + if (MB == 0 && ME == 31) + return nullptr; + + if (NewMI) { + // Create a new instruction. + Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); + bool Reg0IsDead = MI.getOperand(0).isDead(); + return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) + .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) + .addReg(Reg2, getKillRegState(Reg2IsKill)) + .addReg(Reg1, getKillRegState(Reg1IsKill)) + .addImm((ME + 1) & 31) + .addImm((MB - 1) & 31); + } + + if (ChangeReg0) { + MI.getOperand(0).setReg(Reg2); + MI.getOperand(0).setSubReg(SubReg2); + } + MI.getOperand(2).setReg(Reg1); + MI.getOperand(1).setReg(Reg2); + MI.getOperand(2).setSubReg(SubReg1); + MI.getOperand(1).setSubReg(SubReg2); + MI.getOperand(2).setIsKill(Reg1IsKill); + MI.getOperand(1).setIsKill(Reg2IsKill); + + // Swap the mask around. + MI.getOperand(4).setImm((ME + 1) & 31); + MI.getOperand(5).setImm((MB - 1) & 31); + return &MI; +} + +bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, + unsigned &SrcOpIdx2) const { + // For VSX A-Type FMA instructions, it is the first two operands that can be + // commuted, however, because the non-encoded tied input operand is listed + // first, the operands to swap are actually the second and third. + + int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); + if (AltOpc == -1) + return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); + + // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 + // and SrcOpIdx2. + return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); +} + +void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI) const { + // This function is used for scheduling, and the nop wanted here is the type + // that terminates dispatch groups on the POWER cores. + unsigned Directive = Subtarget.getDarwinDirective(); + unsigned Opcode; + switch (Directive) { + default: Opcode = PPC::NOP; break; + case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; + case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; + case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ + // FIXME: Update when POWER9 scheduling model is ready. + case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; + } + + DebugLoc DL; + BuildMI(MBB, MI, DL, get(Opcode)); +} + +/// Return the noop instruction to use for a noop. +void PPCInstrInfo::getNoop(MCInst &NopInst) const { + NopInst.setOpcode(PPC::NOP); +} + +// Branch analysis. +// Note: If the condition register is set to CTR or CTR8 then this is a +// BDNZ (imm == 1) or BDZ (imm == 0) branch. +bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, + MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const { + bool isPPC64 = Subtarget.isPPC64(); + + // If the block has no terminators, it just falls into the block after it. + MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); + if (I == MBB.end()) + return false; + + if (!isUnpredicatedTerminator(*I)) + return false; + + if (AllowModify) { + // If the BB ends with an unconditional branch to the fallthrough BB, + // we eliminate the branch instruction. + if (I->getOpcode() == PPC::B && + MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { + I->eraseFromParent(); + + // We update iterator after deleting the last branch. + I = MBB.getLastNonDebugInstr(); + if (I == MBB.end() || !isUnpredicatedTerminator(*I)) + return false; + } + } + + // Get the last instruction in the block. + MachineInstr &LastInst = *I; + + // If there is only one terminator instruction, process it. + if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { + if (LastInst.getOpcode() == PPC::B) { + if (!LastInst.getOperand(0).isMBB()) + return true; + TBB = LastInst.getOperand(0).getMBB(); + return false; + } else if (LastInst.getOpcode() == PPC::BCC) { + if (!LastInst.getOperand(2).isMBB()) + return true; + // Block ends with fall-through condbranch. + TBB = LastInst.getOperand(2).getMBB(); + Cond.push_back(LastInst.getOperand(0)); + Cond.push_back(LastInst.getOperand(1)); + return false; + } else if (LastInst.getOpcode() == PPC::BC) { + if (!LastInst.getOperand(1).isMBB()) + return true; + // Block ends with fall-through condbranch. + TBB = LastInst.getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); + Cond.push_back(LastInst.getOperand(0)); + return false; + } else if (LastInst.getOpcode() == PPC::BCn) { + if (!LastInst.getOperand(1).isMBB()) + return true; + // Block ends with fall-through condbranch. + TBB = LastInst.getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); + Cond.push_back(LastInst.getOperand(0)); + return false; + } else if (LastInst.getOpcode() == PPC::BDNZ8 || + LastInst.getOpcode() == PPC::BDNZ) { + if (!LastInst.getOperand(0).isMBB()) + return true; + if (DisableCTRLoopAnal) + return true; + TBB = LastInst.getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(1)); + Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, + true)); + return false; + } else if (LastInst.getOpcode() == PPC::BDZ8 || + LastInst.getOpcode() == PPC::BDZ) { + if (!LastInst.getOperand(0).isMBB()) + return true; + if (DisableCTRLoopAnal) + return true; + TBB = LastInst.getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(0)); + Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, + true)); + return false; + } + + // Otherwise, don't know what this is. + return true; + } + + // Get the instruction before it if it's a terminator. + MachineInstr &SecondLastInst = *I; + + // If there are three terminators, we don't know what sort of block this is. + if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) + return true; + + // If the block ends with PPC::B and PPC:BCC, handle it. + if (SecondLastInst.getOpcode() == PPC::BCC && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(2).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + TBB = SecondLastInst.getOperand(2).getMBB(); + Cond.push_back(SecondLastInst.getOperand(0)); + Cond.push_back(SecondLastInst.getOperand(1)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } else if (SecondLastInst.getOpcode() == PPC::BC && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(1).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + TBB = SecondLastInst.getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); + Cond.push_back(SecondLastInst.getOperand(0)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } else if (SecondLastInst.getOpcode() == PPC::BCn && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(1).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + TBB = SecondLastInst.getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); + Cond.push_back(SecondLastInst.getOperand(0)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || + SecondLastInst.getOpcode() == PPC::BDNZ) && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(0).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + if (DisableCTRLoopAnal) + return true; + TBB = SecondLastInst.getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(1)); + Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, + true)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || + SecondLastInst.getOpcode() == PPC::BDZ) && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(0).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + if (DisableCTRLoopAnal) + return true; + TBB = SecondLastInst.getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(0)); + Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, + true)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } + + // If the block ends with two PPC:Bs, handle it. The second one is not + // executed, so remove it. + if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(0).isMBB()) + return true; + TBB = SecondLastInst.getOperand(0).getMBB(); + I = LastInst; + if (AllowModify) + I->eraseFromParent(); + return false; + } + + // Otherwise, can't handle this. + return true; +} + +unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, + int *BytesRemoved) const { + assert(!BytesRemoved && "code size not handled"); + + MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); + if (I == MBB.end()) + return 0; + + if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && + I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && + I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && + I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) + return 0; + + // Remove the branch. + I->eraseFromParent(); + + I = MBB.end(); + + if (I == MBB.begin()) return 1; + --I; + if (I->getOpcode() != PPC::BCC && + I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && + I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && + I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) + return 1; + + // Remove the branch. + I->eraseFromParent(); + return 2; +} + +unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + ArrayRef<MachineOperand> Cond, + const DebugLoc &DL, + int *BytesAdded) const { + // Shouldn't be a fall through. + assert(TBB && "insertBranch must not be told to insert a fallthrough"); + assert((Cond.size() == 2 || Cond.size() == 0) && + "PPC branch conditions have two components!"); + assert(!BytesAdded && "code size not handled"); + + bool isPPC64 = Subtarget.isPPC64(); + + // One-way branch. + if (!FBB) { + if (Cond.empty()) // Unconditional branch + BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); + else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) + BuildMI(&MBB, DL, get(Cond[0].getImm() ? + (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : + (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); + else if (Cond[0].getImm() == PPC::PRED_BIT_SET) + BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); + else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) + BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); + else // Conditional branch + BuildMI(&MBB, DL, get(PPC::BCC)) + .addImm(Cond[0].getImm()) + .add(Cond[1]) + .addMBB(TBB); + return 1; + } + + // Two-way Conditional Branch. + if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) + BuildMI(&MBB, DL, get(Cond[0].getImm() ? + (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : + (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); + else if (Cond[0].getImm() == PPC::PRED_BIT_SET) + BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); + else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) + BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); + else + BuildMI(&MBB, DL, get(PPC::BCC)) + .addImm(Cond[0].getImm()) + .add(Cond[1]) + .addMBB(TBB); + BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); + return 2; +} + +// Select analysis. +bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, + ArrayRef<MachineOperand> Cond, + unsigned TrueReg, unsigned FalseReg, + int &CondCycles, int &TrueCycles, int &FalseCycles) const { + if (Cond.size() != 2) + return false; + + // If this is really a bdnz-like condition, then it cannot be turned into a + // select. + if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) + return false; + + // Check register classes. + const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); + const TargetRegisterClass *RC = + RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); + if (!RC) + return false; + + // isel is for regular integer GPRs only. + if (!PPC::GPRCRegClass.hasSubClassEq(RC) && + !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && + !PPC::G8RCRegClass.hasSubClassEq(RC) && + !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) + return false; + + // FIXME: These numbers are for the A2, how well they work for other cores is + // an open question. On the A2, the isel instruction has a 2-cycle latency + // but single-cycle throughput. These numbers are used in combination with + // the MispredictPenalty setting from the active SchedMachineModel. + CondCycles = 1; + TrueCycles = 1; + FalseCycles = 1; + + return true; +} + +void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const DebugLoc &dl, unsigned DestReg, + ArrayRef<MachineOperand> Cond, unsigned TrueReg, + unsigned FalseReg) const { + assert(Cond.size() == 2 && + "PPC branch conditions have two components!"); + + // Get the register classes. + MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); + const TargetRegisterClass *RC = + RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); + assert(RC && "TrueReg and FalseReg must have overlapping register classes"); + + bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || + PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); + assert((Is64Bit || + PPC::GPRCRegClass.hasSubClassEq(RC) || + PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && + "isel is for regular integer GPRs only"); + + unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; + auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); + + unsigned SubIdx = 0; + bool SwapOps = false; + switch (SelectPred) { + case PPC::PRED_EQ: + case PPC::PRED_EQ_MINUS: + case PPC::PRED_EQ_PLUS: + SubIdx = PPC::sub_eq; SwapOps = false; break; + case PPC::PRED_NE: + case PPC::PRED_NE_MINUS: + case PPC::PRED_NE_PLUS: + SubIdx = PPC::sub_eq; SwapOps = true; break; + case PPC::PRED_LT: + case PPC::PRED_LT_MINUS: + case PPC::PRED_LT_PLUS: + SubIdx = PPC::sub_lt; SwapOps = false; break; + case PPC::PRED_GE: + case PPC::PRED_GE_MINUS: + case PPC::PRED_GE_PLUS: + SubIdx = PPC::sub_lt; SwapOps = true; break; + case PPC::PRED_GT: + case PPC::PRED_GT_MINUS: + case PPC::PRED_GT_PLUS: + SubIdx = PPC::sub_gt; SwapOps = false; break; + case PPC::PRED_LE: + case PPC::PRED_LE_MINUS: + case PPC::PRED_LE_PLUS: + SubIdx = PPC::sub_gt; SwapOps = true; break; + case PPC::PRED_UN: + case PPC::PRED_UN_MINUS: + case PPC::PRED_UN_PLUS: + SubIdx = PPC::sub_un; SwapOps = false; break; + case PPC::PRED_NU: + case PPC::PRED_NU_MINUS: + case PPC::PRED_NU_PLUS: + SubIdx = PPC::sub_un; SwapOps = true; break; + case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; + case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; + } + + unsigned FirstReg = SwapOps ? FalseReg : TrueReg, + SecondReg = SwapOps ? TrueReg : FalseReg; + + // The first input register of isel cannot be r0. If it is a member + // of a register class that can be r0, then copy it first (the + // register allocator should eliminate the copy). + if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || + MRI.getRegClass(FirstReg)->contains(PPC::X0)) { + const TargetRegisterClass *FirstRC = + MRI.getRegClass(FirstReg)->contains(PPC::X0) ? + &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; + unsigned OldFirstReg = FirstReg; + FirstReg = MRI.createVirtualRegister(FirstRC); + BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) + .addReg(OldFirstReg); + } + + BuildMI(MBB, MI, dl, get(OpCode), DestReg) + .addReg(FirstReg).addReg(SecondReg) + .addReg(Cond[1].getReg(), 0, SubIdx); +} + +static unsigned getCRBitValue(unsigned CRBit) { + unsigned Ret = 4; + if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || + CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || + CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || + CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) + Ret = 3; + if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || + CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || + CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || + CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) + Ret = 2; + if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || + CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || + CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || + CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) + Ret = 1; + if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || + CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || + CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || + CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) + Ret = 0; + + assert(Ret != 4 && "Invalid CR bit register"); + return Ret; +} + +void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + const DebugLoc &DL, unsigned DestReg, + unsigned SrcReg, bool KillSrc) const { + // We can end up with self copies and similar things as a result of VSX copy + // legalization. Promote them here. + const TargetRegisterInfo *TRI = &getRegisterInfo(); + if (PPC::F8RCRegClass.contains(DestReg) && + PPC::VSRCRegClass.contains(SrcReg)) { + unsigned SuperReg = + TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); + + if (VSXSelfCopyCrash && SrcReg == SuperReg) + llvm_unreachable("nop VSX copy"); + + DestReg = SuperReg; + } else if (PPC::F8RCRegClass.contains(SrcReg) && + PPC::VSRCRegClass.contains(DestReg)) { + unsigned SuperReg = + TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); + + if (VSXSelfCopyCrash && DestReg == SuperReg) + llvm_unreachable("nop VSX copy"); + + SrcReg = SuperReg; + } + + // Different class register copy + if (PPC::CRBITRCRegClass.contains(SrcReg) && + PPC::GPRCRegClass.contains(DestReg)) { + unsigned CRReg = getCRFromCRBit(SrcReg); + BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); + getKillRegState(KillSrc); + // Rotate the CR bit in the CR fields to be the least significant bit and + // then mask with 0x1 (MB = ME = 31). + BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) + .addReg(DestReg, RegState::Kill) + .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) + .addImm(31) + .addImm(31); + return; + } else if (PPC::CRRCRegClass.contains(SrcReg) && + PPC::G8RCRegClass.contains(DestReg)) { + BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + return; + } else if (PPC::CRRCRegClass.contains(SrcReg) && + PPC::GPRCRegClass.contains(DestReg)) { + BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + return; + } else if (PPC::G8RCRegClass.contains(SrcReg) && + PPC::VSFRCRegClass.contains(DestReg)) { + assert(Subtarget.hasDirectMove() && + "Subtarget doesn't support directmove, don't know how to copy."); + BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); + NumGPRtoVSRSpill++; + getKillRegState(KillSrc); + return; + } else if (PPC::VSFRCRegClass.contains(SrcReg) && + PPC::G8RCRegClass.contains(DestReg)) { + assert(Subtarget.hasDirectMove() && + "Subtarget doesn't support directmove, don't know how to copy."); + BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + return; + } else if (PPC::SPERCRegClass.contains(SrcReg) && + PPC::SPE4RCRegClass.contains(DestReg)) { + BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + return; + } else if (PPC::SPE4RCRegClass.contains(SrcReg) && + PPC::SPERCRegClass.contains(DestReg)) { + BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + return; + } + + unsigned Opc; + if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::OR; + else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::OR8; + else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::FMR; + else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::MCRF; + else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::VOR; + else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) + // There are two different ways this can be done: + // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only + // issue in VSU pipeline 0. + // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but + // can go to either pipeline. + // We'll always use xxlor here, because in practically all cases where + // copies are generated, they are close enough to some use that the + // lower-latency form is preferable. + Opc = PPC::XXLOR; + else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || + PPC::VSSRCRegClass.contains(DestReg, SrcReg)) + Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; + else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::QVFMR; + else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::QVFMRs; + else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::QVFMRb; + else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::CROR; + else if (PPC::SPE4RCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::OR; + else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::EVOR; + else + llvm_unreachable("Impossible reg-to-reg copy"); + + const MCInstrDesc &MCID = get(Opc); + if (MCID.getNumOperands() == 3) + BuildMI(MBB, I, DL, MCID, DestReg) + .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); + else + BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); +} + +unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, + const TargetRegisterClass *RC) + const { + const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); + int OpcodeIndex = 0; + + if (RC != nullptr) { + if (PPC::GPRCRegClass.hasSubClassEq(RC) || + PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Int4Spill; + } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || + PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Int8Spill; + } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Float8Spill; + } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Float4Spill; + } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_SPESpill; + } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_SPE4Spill; + } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_CRSpill; + } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_CRBitSpill; + } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VRVectorSpill; + } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VSXVectorSpill; + } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VectorFloat8Spill; + } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VectorFloat4Spill; + } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VRSaveSpill; + } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_QuadFloat8Spill; + } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_QuadFloat4Spill; + } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_QuadBitSpill; + } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_SpillToVSR; + } else { + llvm_unreachable("Unknown regclass!"); + } + } else { + if (PPC::GPRCRegClass.contains(Reg) || + PPC::GPRC_NOR0RegClass.contains(Reg)) { + OpcodeIndex = SOK_Int4Spill; + } else if (PPC::G8RCRegClass.contains(Reg) || + PPC::G8RC_NOX0RegClass.contains(Reg)) { + OpcodeIndex = SOK_Int8Spill; + } else if (PPC::F8RCRegClass.contains(Reg)) { + OpcodeIndex = SOK_Float8Spill; + } else if (PPC::F4RCRegClass.contains(Reg)) { + OpcodeIndex = SOK_Float4Spill; + } else if (PPC::SPERCRegClass.contains(Reg)) { + OpcodeIndex = SOK_SPESpill; + } else if (PPC::SPE4RCRegClass.contains(Reg)) { + OpcodeIndex = SOK_SPE4Spill; + } else if (PPC::CRRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_CRSpill; + } else if (PPC::CRBITRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_CRBitSpill; + } else if (PPC::VRRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VRVectorSpill; + } else if (PPC::VSRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VSXVectorSpill; + } else if (PPC::VSFRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VectorFloat8Spill; + } else if (PPC::VSSRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VectorFloat4Spill; + } else if (PPC::VRSAVERCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VRSaveSpill; + } else if (PPC::QFRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_QuadFloat8Spill; + } else if (PPC::QSRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_QuadFloat4Spill; + } else if (PPC::QBRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_QuadBitSpill; + } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_SpillToVSR; + } else { + llvm_unreachable("Unknown regclass!"); + } + } + return OpcodesForSpill[OpcodeIndex]; +} + +unsigned +PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, + const TargetRegisterClass *RC) const { + const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); + int OpcodeIndex = 0; + + if (RC != nullptr) { + if (PPC::GPRCRegClass.hasSubClassEq(RC) || + PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Int4Spill; + } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || + PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Int8Spill; + } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Float8Spill; + } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Float4Spill; + } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_SPESpill; + } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_SPE4Spill; + } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_CRSpill; + } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_CRBitSpill; + } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VRVectorSpill; + } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VSXVectorSpill; + } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VectorFloat8Spill; + } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VectorFloat4Spill; + } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VRSaveSpill; + } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_QuadFloat8Spill; + } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_QuadFloat4Spill; + } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_QuadBitSpill; + } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_SpillToVSR; + } else { + llvm_unreachable("Unknown regclass!"); + } + } else { + if (PPC::GPRCRegClass.contains(Reg) || + PPC::GPRC_NOR0RegClass.contains(Reg)) { + OpcodeIndex = SOK_Int4Spill; + } else if (PPC::G8RCRegClass.contains(Reg) || + PPC::G8RC_NOX0RegClass.contains(Reg)) { + OpcodeIndex = SOK_Int8Spill; + } else if (PPC::F8RCRegClass.contains(Reg)) { + OpcodeIndex = SOK_Float8Spill; + } else if (PPC::F4RCRegClass.contains(Reg)) { + OpcodeIndex = SOK_Float4Spill; + } else if (PPC::SPERCRegClass.contains(Reg)) { + OpcodeIndex = SOK_SPESpill; + } else if (PPC::SPE4RCRegClass.contains(Reg)) { + OpcodeIndex = SOK_SPE4Spill; + } else if (PPC::CRRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_CRSpill; + } else if (PPC::CRBITRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_CRBitSpill; + } else if (PPC::VRRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VRVectorSpill; + } else if (PPC::VSRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VSXVectorSpill; + } else if (PPC::VSFRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VectorFloat8Spill; + } else if (PPC::VSSRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VectorFloat4Spill; + } else if (PPC::VRSAVERCRegClass.contains(Reg)) { + OpcodeIndex = SOK_VRSaveSpill; + } else if (PPC::QFRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_QuadFloat8Spill; + } else if (PPC::QSRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_QuadFloat4Spill; + } else if (PPC::QBRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_QuadBitSpill; + } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { + OpcodeIndex = SOK_SpillToVSR; + } else { + llvm_unreachable("Unknown regclass!"); + } + } + return OpcodesForSpill[OpcodeIndex]; +} + +void PPCInstrInfo::StoreRegToStackSlot( + MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr *> &NewMIs) const { + unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); + DebugLoc DL; + + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + FuncInfo->setHasSpills(); + + NewMIs.push_back(addFrameReference( + BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), + FrameIdx)); + + if (PPC::CRRCRegClass.hasSubClassEq(RC) || + PPC::CRBITRCRegClass.hasSubClassEq(RC)) + FuncInfo->setSpillsCR(); + + if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) + FuncInfo->setSpillsVRSAVE(); + + if (isXFormMemOp(Opcode)) + FuncInfo->setHasNonRISpills(); +} + +void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned SrcReg, bool isKill, + int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + MachineFunction &MF = *MBB.getParent(); + SmallVector<MachineInstr *, 4> NewMIs; + + // We need to avoid a situation in which the value from a VRRC register is + // spilled using an Altivec instruction and reloaded into a VSRC register + // using a VSX instruction. The issue with this is that the VSX + // load/store instructions swap the doublewords in the vector and the Altivec + // ones don't. The register classes on the spill/reload may be different if + // the register is defined using an Altivec instruction and is then used by a + // VSX instruction. + RC = updatedRC(RC); + + StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); + + for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) + MBB.insert(MI, NewMIs[i]); + + const MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FrameIdx), + MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), + MFI.getObjectAlignment(FrameIdx)); + NewMIs.back()->addMemOperand(MF, MMO); +} + +void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, + unsigned DestReg, int FrameIdx, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr *> &NewMIs) + const { + unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), + FrameIdx)); + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + + if (PPC::CRRCRegClass.hasSubClassEq(RC) || + PPC::CRBITRCRegClass.hasSubClassEq(RC)) + FuncInfo->setSpillsCR(); + + if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) + FuncInfo->setSpillsVRSAVE(); + + if (isXFormMemOp(Opcode)) + FuncInfo->setHasNonRISpills(); +} + +void +PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + MachineFunction &MF = *MBB.getParent(); + SmallVector<MachineInstr*, 4> NewMIs; + DebugLoc DL; + if (MI != MBB.end()) DL = MI->getDebugLoc(); + + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + FuncInfo->setHasSpills(); + + // We need to avoid a situation in which the value from a VRRC register is + // spilled using an Altivec instruction and reloaded into a VSRC register + // using a VSX instruction. The issue with this is that the VSX + // load/store instructions swap the doublewords in the vector and the Altivec + // ones don't. The register classes on the spill/reload may be different if + // the register is defined using an Altivec instruction and is then used by a + // VSX instruction. + if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) + RC = &PPC::VSRCRegClass; + + LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); + + for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) + MBB.insert(MI, NewMIs[i]); + + const MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FrameIdx), + MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), + MFI.getObjectAlignment(FrameIdx)); + NewMIs.back()->addMemOperand(MF, MMO); +} + +bool PPCInstrInfo:: +reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); + if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) + Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); + else + // Leave the CR# the same, but invert the condition. + Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); + return false; +} + +bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, + unsigned Reg, MachineRegisterInfo *MRI) const { + // For some instructions, it is legal to fold ZERO into the RA register field. + // A zero immediate should always be loaded with a single li. + unsigned DefOpc = DefMI.getOpcode(); + if (DefOpc != PPC::LI && DefOpc != PPC::LI8) + return false; + if (!DefMI.getOperand(1).isImm()) + return false; + if (DefMI.getOperand(1).getImm() != 0) + return false; + + // Note that we cannot here invert the arguments of an isel in order to fold + // a ZERO into what is presented as the second argument. All we have here + // is the condition bit, and that might come from a CR-logical bit operation. + + const MCInstrDesc &UseMCID = UseMI.getDesc(); + + // Only fold into real machine instructions. + if (UseMCID.isPseudo()) + return false; + + unsigned UseIdx; + for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) + if (UseMI.getOperand(UseIdx).isReg() && + UseMI.getOperand(UseIdx).getReg() == Reg) + break; + + assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); + assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); + + const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; + + // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 + // register (which might also be specified as a pointer class kind). + if (UseInfo->isLookupPtrRegClass()) { + if (UseInfo->RegClass /* Kind */ != 1) + return false; + } else { + if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && + UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) + return false; + } + + // Make sure this is not tied to an output register (or otherwise + // constrained). This is true for ST?UX registers, for example, which + // are tied to their output registers. + if (UseInfo->Constraints != 0) + return false; + + unsigned ZeroReg; + if (UseInfo->isLookupPtrRegClass()) { + bool isPPC64 = Subtarget.isPPC64(); + ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; + } else { + ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? + PPC::ZERO8 : PPC::ZERO; + } + + bool DeleteDef = MRI->hasOneNonDBGUse(Reg); + UseMI.getOperand(UseIdx).setReg(ZeroReg); + + if (DeleteDef) + DefMI.eraseFromParent(); + + return true; +} + +static bool MBBDefinesCTR(MachineBasicBlock &MBB) { + for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); + I != IE; ++I) + if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) + return true; + return false; +} + +// We should make sure that, if we're going to predicate both sides of a +// condition (a diamond), that both sides don't define the counter register. We +// can predicate counter-decrement-based branches, but while that predicates +// the branching, it does not predicate the counter decrement. If we tried to +// merge the triangle into one predicated block, we'd decrement the counter +// twice. +bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, + unsigned NumT, unsigned ExtraT, + MachineBasicBlock &FMBB, + unsigned NumF, unsigned ExtraF, + BranchProbability Probability) const { + return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); +} + + +bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { + // The predicated branches are identified by their type, not really by the + // explicit presence of a predicate. Furthermore, some of them can be + // predicated more than once. Because if conversion won't try to predicate + // any instruction which already claims to be predicated (by returning true + // here), always return false. In doing so, we let isPredicable() be the + // final word on whether not the instruction can be (further) predicated. + + return false; +} + +bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { + if (!MI.isTerminator()) + return false; + + // Conditional branch is a special case. + if (MI.isBranch() && !MI.isBarrier()) + return true; + + return !isPredicated(MI); +} + +bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, + ArrayRef<MachineOperand> Pred) const { + unsigned OpC = MI.getOpcode(); + if (OpC == PPC::BLR || OpC == PPC::BLR8) { + if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { + bool isPPC64 = Subtarget.isPPC64(); + MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) + : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); + } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { + MI.setDesc(get(PPC::BCLR)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); + } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { + MI.setDesc(get(PPC::BCLRn)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); + } else { + MI.setDesc(get(PPC::BCCLR)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Pred[0].getImm()) + .add(Pred[1]); + } + + return true; + } else if (OpC == PPC::B) { + if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { + bool isPPC64 = Subtarget.isPPC64(); + MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) + : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); + } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { + MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); + MI.RemoveOperand(0); + + MI.setDesc(get(PPC::BC)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .add(Pred[1]) + .addMBB(MBB); + } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { + MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); + MI.RemoveOperand(0); + + MI.setDesc(get(PPC::BCn)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .add(Pred[1]) + .addMBB(MBB); + } else { + MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); + MI.RemoveOperand(0); + + MI.setDesc(get(PPC::BCC)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Pred[0].getImm()) + .add(Pred[1]) + .addMBB(MBB); + } + + return true; + } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || + OpC == PPC::BCTRL8) { + if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) + llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); + + bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; + bool isPPC64 = Subtarget.isPPC64(); + + if (Pred[0].getImm() == PPC::PRED_BIT_SET) { + MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) + : (setLR ? PPC::BCCTRL : PPC::BCCTR))); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); + return true; + } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { + MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) + : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); + return true; + } + + MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) + : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Pred[0].getImm()) + .add(Pred[1]); + return true; + } + + return false; +} + +bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, + ArrayRef<MachineOperand> Pred2) const { + assert(Pred1.size() == 2 && "Invalid PPC first predicate"); + assert(Pred2.size() == 2 && "Invalid PPC second predicate"); + + if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) + return false; + if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) + return false; + + // P1 can only subsume P2 if they test the same condition register. + if (Pred1[1].getReg() != Pred2[1].getReg()) + return false; + + PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); + PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); + + if (P1 == P2) + return true; + + // Does P1 subsume P2, e.g. GE subsumes GT. + if (P1 == PPC::PRED_LE && + (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) + return true; + if (P1 == PPC::PRED_GE && + (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) + return true; + + return false; +} + +bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, + std::vector<MachineOperand> &Pred) const { + // Note: At the present time, the contents of Pred from this function is + // unused by IfConversion. This implementation follows ARM by pushing the + // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of + // predicate, instructions defining CTR or CTR8 are also included as + // predicate-defining instructions. + + const TargetRegisterClass *RCs[] = + { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, + &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; + + bool Found = false; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { + const TargetRegisterClass *RC = RCs[c]; + if (MO.isReg()) { + if (MO.isDef() && RC->contains(MO.getReg())) { + Pred.push_back(MO); + Found = true; + } + } else if (MO.isRegMask()) { + for (TargetRegisterClass::iterator I = RC->begin(), + IE = RC->end(); I != IE; ++I) + if (MO.clobbersPhysReg(*I)) { + Pred.push_back(MO); + Found = true; + } + } + } + } + + return Found; +} + +bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { + unsigned OpC = MI.getOpcode(); + switch (OpC) { + default: + return false; + case PPC::B: + case PPC::BLR: + case PPC::BLR8: + case PPC::BCTR: + case PPC::BCTR8: + case PPC::BCTRL: + case PPC::BCTRL8: + return true; + } +} + +bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, + unsigned &SrcReg2, int &Mask, + int &Value) const { + unsigned Opc = MI.getOpcode(); + + switch (Opc) { + default: return false; + case PPC::CMPWI: + case PPC::CMPLWI: + case PPC::CMPDI: + case PPC::CMPLDI: + SrcReg = MI.getOperand(1).getReg(); + SrcReg2 = 0; + Value = MI.getOperand(2).getImm(); + Mask = 0xFFFF; + return true; + case PPC::CMPW: + case PPC::CMPLW: + case PPC::CMPD: + case PPC::CMPLD: + case PPC::FCMPUS: + case PPC::FCMPUD: + SrcReg = MI.getOperand(1).getReg(); + SrcReg2 = MI.getOperand(2).getReg(); + Value = 0; + Mask = 0; + return true; + } +} + +bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, + unsigned SrcReg2, int Mask, int Value, + const MachineRegisterInfo *MRI) const { + if (DisableCmpOpt) + return false; + + int OpC = CmpInstr.getOpcode(); + unsigned CRReg = CmpInstr.getOperand(0).getReg(); + + // FP record forms set CR1 based on the exception status bits, not a + // comparison with zero. + if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) + return false; + + const TargetRegisterInfo *TRI = &getRegisterInfo(); + // The record forms set the condition register based on a signed comparison + // with zero (so says the ISA manual). This is not as straightforward as it + // seems, however, because this is always a 64-bit comparison on PPC64, even + // for instructions that are 32-bit in nature (like slw for example). + // So, on PPC32, for unsigned comparisons, we can use the record forms only + // for equality checks (as those don't depend on the sign). On PPC64, + // we are restricted to equality for unsigned 64-bit comparisons and for + // signed 32-bit comparisons the applicability is more restricted. + bool isPPC64 = Subtarget.isPPC64(); + bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; + bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; + bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; + + // Look through copies unless that gets us to a physical register. + unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); + if (TargetRegisterInfo::isVirtualRegister(ActualSrc)) + SrcReg = ActualSrc; + + // Get the unique definition of SrcReg. + MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); + if (!MI) return false; + + bool equalityOnly = false; + bool noSub = false; + if (isPPC64) { + if (is32BitSignedCompare) { + // We can perform this optimization only if MI is sign-extending. + if (isSignExtended(*MI)) + noSub = true; + else + return false; + } else if (is32BitUnsignedCompare) { + // We can perform this optimization, equality only, if MI is + // zero-extending. + if (isZeroExtended(*MI)) { + noSub = true; + equalityOnly = true; + } else + return false; + } else + equalityOnly = is64BitUnsignedCompare; + } else + equalityOnly = is32BitUnsignedCompare; + + if (equalityOnly) { + // We need to check the uses of the condition register in order to reject + // non-equality comparisons. + for (MachineRegisterInfo::use_instr_iterator + I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); + I != IE; ++I) { + MachineInstr *UseMI = &*I; + if (UseMI->getOpcode() == PPC::BCC) { + PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + // We ignore hint bits when checking for non-equality comparisons. + if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) + return false; + } else if (UseMI->getOpcode() == PPC::ISEL || + UseMI->getOpcode() == PPC::ISEL8) { + unsigned SubIdx = UseMI->getOperand(3).getSubReg(); + if (SubIdx != PPC::sub_eq) + return false; + } else + return false; + } + } + + MachineBasicBlock::iterator I = CmpInstr; + + // Scan forward to find the first use of the compare. + for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; + ++I) { + bool FoundUse = false; + for (MachineRegisterInfo::use_instr_iterator + J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); + J != JE; ++J) + if (&*J == &*I) { + FoundUse = true; + break; + } + + if (FoundUse) + break; + } + + SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; + SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; + + // There are two possible candidates which can be changed to set CR[01]. + // One is MI, the other is a SUB instruction. + // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). + MachineInstr *Sub = nullptr; + if (SrcReg2 != 0) + // MI is not a candidate for CMPrr. + MI = nullptr; + // FIXME: Conservatively refuse to convert an instruction which isn't in the + // same BB as the comparison. This is to allow the check below to avoid calls + // (and other explicit clobbers); instead we should really check for these + // more explicitly (in at least a few predecessors). + else if (MI->getParent() != CmpInstr.getParent()) + return false; + else if (Value != 0) { + // The record-form instructions set CR bit based on signed comparison + // against 0. We try to convert a compare against 1 or -1 into a compare + // against 0 to exploit record-form instructions. For example, we change + // the condition "greater than -1" into "greater than or equal to 0" + // and "less than 1" into "less than or equal to 0". + + // Since we optimize comparison based on a specific branch condition, + // we don't optimize if condition code is used by more than once. + if (equalityOnly || !MRI->hasOneUse(CRReg)) + return false; + + MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); + if (UseMI->getOpcode() != PPC::BCC) + return false; + + PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + unsigned PredHint = PPC::getPredicateHint(Pred); + int16_t Immed = (int16_t)Value; + + // When modifying the condition in the predicate, we propagate hint bits + // from the original predicate to the new one. + if (Immed == -1 && PredCond == PPC::PRED_GT) + // We convert "greater than -1" into "greater than or equal to 0", + // since we are assuming signed comparison by !equalityOnly + Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); + else if (Immed == -1 && PredCond == PPC::PRED_LE) + // We convert "less than or equal to -1" into "less than 0". + Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); + else if (Immed == 1 && PredCond == PPC::PRED_LT) + // We convert "less than 1" into "less than or equal to 0". + Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); + else if (Immed == 1 && PredCond == PPC::PRED_GE) + // We convert "greater than or equal to 1" into "greater than 0". + Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); + else + return false; + + PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); + } + + // Search for Sub. + --I; + + // Get ready to iterate backward from CmpInstr. + MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); + + for (; I != E && !noSub; --I) { + const MachineInstr &Instr = *I; + unsigned IOpC = Instr.getOpcode(); + + if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || + Instr.readsRegister(PPC::CR0, TRI))) + // This instruction modifies or uses the record condition register after + // the one we want to change. While we could do this transformation, it + // would likely not be profitable. This transformation removes one + // instruction, and so even forcing RA to generate one move probably + // makes it unprofitable. + return false; + + // Check whether CmpInstr can be made redundant by the current instruction. + if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || + OpC == PPC::CMPD || OpC == PPC::CMPLD) && + (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && + ((Instr.getOperand(1).getReg() == SrcReg && + Instr.getOperand(2).getReg() == SrcReg2) || + (Instr.getOperand(1).getReg() == SrcReg2 && + Instr.getOperand(2).getReg() == SrcReg))) { + Sub = &*I; + break; + } + + if (I == B) + // The 'and' is below the comparison instruction. + return false; + } + + // Return false if no candidates exist. + if (!MI && !Sub) + return false; + + // The single candidate is called MI. + if (!MI) MI = Sub; + + int NewOpC = -1; + int MIOpC = MI->getOpcode(); + if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || + MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) + NewOpC = MIOpC; + else { + NewOpC = PPC::getRecordFormOpcode(MIOpC); + if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) + NewOpC = MIOpC; + } + + // FIXME: On the non-embedded POWER architectures, only some of the record + // forms are fast, and we should use only the fast ones. + + // The defining instruction has a record form (or is already a record + // form). It is possible, however, that we'll need to reverse the condition + // code of the users. + if (NewOpC == -1) + return false; + + // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP + // needs to be updated to be based on SUB. Push the condition code + // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the + // condition code of these operands will be modified. + // Here, Value == 0 means we haven't converted comparison against 1 or -1 to + // comparison against 0, which may modify predicate. + bool ShouldSwap = false; + if (Sub && Value == 0) { + ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && + Sub->getOperand(2).getReg() == SrcReg; + + // The operands to subf are the opposite of sub, so only in the fixed-point + // case, invert the order. + ShouldSwap = !ShouldSwap; + } + + if (ShouldSwap) + for (MachineRegisterInfo::use_instr_iterator + I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); + I != IE; ++I) { + MachineInstr *UseMI = &*I; + if (UseMI->getOpcode() == PPC::BCC) { + PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + assert((!equalityOnly || + PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && + "Invalid predicate for equality-only optimization"); + (void)PredCond; // To suppress warning in release build. + PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), + PPC::getSwappedPredicate(Pred))); + } else if (UseMI->getOpcode() == PPC::ISEL || + UseMI->getOpcode() == PPC::ISEL8) { + unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); + assert((!equalityOnly || NewSubReg == PPC::sub_eq) && + "Invalid CR bit for equality-only optimization"); + + if (NewSubReg == PPC::sub_lt) + NewSubReg = PPC::sub_gt; + else if (NewSubReg == PPC::sub_gt) + NewSubReg = PPC::sub_lt; + + SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), + NewSubReg)); + } else // We need to abort on a user we don't understand. + return false; + } + assert(!(Value != 0 && ShouldSwap) && + "Non-zero immediate support and ShouldSwap" + "may conflict in updating predicate"); + + // Create a new virtual register to hold the value of the CR set by the + // record-form instruction. If the instruction was not previously in + // record form, then set the kill flag on the CR. + CmpInstr.eraseFromParent(); + + MachineBasicBlock::iterator MII = MI; + BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), + get(TargetOpcode::COPY), CRReg) + .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); + + // Even if CR0 register were dead before, it is alive now since the + // instruction we just built uses it. + MI->clearRegisterDeads(PPC::CR0); + + if (MIOpC != NewOpC) { + // We need to be careful here: we're replacing one instruction with + // another, and we need to make sure that we get all of the right + // implicit uses and defs. On the other hand, the caller may be holding + // an iterator to this instruction, and so we can't delete it (this is + // specifically the case if this is the instruction directly after the + // compare). + + // Rotates are expensive instructions. If we're emitting a record-form + // rotate that can just be an andi/andis, we should just emit that. + if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { + unsigned GPRRes = MI->getOperand(0).getReg(); + int64_t SH = MI->getOperand(2).getImm(); + int64_t MB = MI->getOperand(3).getImm(); + int64_t ME = MI->getOperand(4).getImm(); + // We can only do this if both the start and end of the mask are in the + // same halfword. + bool MBInLoHWord = MB >= 16; + bool MEInLoHWord = ME >= 16; + uint64_t Mask = ~0LLU; + + if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { + Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); + // The mask value needs to shift right 16 if we're emitting andis. + Mask >>= MBInLoHWord ? 0 : 16; + NewOpC = MIOpC == PPC::RLWINM ? + (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : + (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); + } else if (MRI->use_empty(GPRRes) && (ME == 31) && + (ME - MB + 1 == SH) && (MB >= 16)) { + // If we are rotating by the exact number of bits as are in the mask + // and the mask is in the least significant bits of the register, + // that's just an andis. (as long as the GPR result has no uses). + Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); + Mask >>= 16; + NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; + } + // If we've set the mask, we can transform. + if (Mask != ~0LLU) { + MI->RemoveOperand(4); + MI->RemoveOperand(3); + MI->getOperand(2).setImm(Mask); + NumRcRotatesConvertedToRcAnd++; + } + } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { + int64_t MB = MI->getOperand(3).getImm(); + if (MB >= 48) { + uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; + NewOpC = PPC::ANDIo8; + MI->RemoveOperand(3); + MI->getOperand(2).setImm(Mask); + NumRcRotatesConvertedToRcAnd++; + } + } + + const MCInstrDesc &NewDesc = get(NewOpC); + MI->setDesc(NewDesc); + + if (NewDesc.ImplicitDefs) + for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); + *ImpDefs; ++ImpDefs) + if (!MI->definesRegister(*ImpDefs)) + MI->addOperand(*MI->getParent()->getParent(), + MachineOperand::CreateReg(*ImpDefs, true, true)); + if (NewDesc.ImplicitUses) + for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); + *ImpUses; ++ImpUses) + if (!MI->readsRegister(*ImpUses)) + MI->addOperand(*MI->getParent()->getParent(), + MachineOperand::CreateReg(*ImpUses, false, true)); + } + assert(MI->definesRegister(PPC::CR0) && + "Record-form instruction does not define cr0?"); + + // Modify the condition code of operands in OperandsToUpdate. + // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to + // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. + for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) + PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); + + for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) + SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); + + return true; +} + +/// GetInstSize - Return the number of bytes of code the specified +/// instruction may be. This returns the maximum number of bytes. +/// +unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { + unsigned Opcode = MI.getOpcode(); + + if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { + const MachineFunction *MF = MI.getParent()->getParent(); + const char *AsmStr = MI.getOperand(0).getSymbolName(); + return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); + } else if (Opcode == TargetOpcode::STACKMAP) { + StackMapOpers Opers(&MI); + return Opers.getNumPatchBytes(); + } else if (Opcode == TargetOpcode::PATCHPOINT) { + PatchPointOpers Opers(&MI); + return Opers.getNumPatchBytes(); + } else { + return get(Opcode).getSize(); + } +} + +std::pair<unsigned, unsigned> +PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { + const unsigned Mask = PPCII::MO_ACCESS_MASK; + return std::make_pair(TF & Mask, TF & ~Mask); +} + +ArrayRef<std::pair<unsigned, const char *>> +PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { + using namespace PPCII; + static const std::pair<unsigned, const char *> TargetFlags[] = { + {MO_LO, "ppc-lo"}, + {MO_HA, "ppc-ha"}, + {MO_TPREL_LO, "ppc-tprel-lo"}, + {MO_TPREL_HA, "ppc-tprel-ha"}, + {MO_DTPREL_LO, "ppc-dtprel-lo"}, + {MO_TLSLD_LO, "ppc-tlsld-lo"}, + {MO_TOC_LO, "ppc-toc-lo"}, + {MO_TLS, "ppc-tls"}}; + return makeArrayRef(TargetFlags); +} + +ArrayRef<std::pair<unsigned, const char *>> +PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { + using namespace PPCII; + static const std::pair<unsigned, const char *> TargetFlags[] = { + {MO_PLT, "ppc-plt"}, + {MO_PIC_FLAG, "ppc-pic"}, + {MO_NLP_FLAG, "ppc-nlp"}, + {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; + return makeArrayRef(TargetFlags); +} + +// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. +// The VSX versions have the advantage of a full 64-register target whereas +// the FP ones have the advantage of lower latency and higher throughput. So +// what we are after is using the faster instructions in low register pressure +// situations and using the larger register file in high register pressure +// situations. +bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { + unsigned UpperOpcode, LowerOpcode; + switch (MI.getOpcode()) { + case PPC::DFLOADf32: + UpperOpcode = PPC::LXSSP; + LowerOpcode = PPC::LFS; + break; + case PPC::DFLOADf64: + UpperOpcode = PPC::LXSD; + LowerOpcode = PPC::LFD; + break; + case PPC::DFSTOREf32: + UpperOpcode = PPC::STXSSP; + LowerOpcode = PPC::STFS; + break; + case PPC::DFSTOREf64: + UpperOpcode = PPC::STXSD; + LowerOpcode = PPC::STFD; + break; + case PPC::XFLOADf32: + UpperOpcode = PPC::LXSSPX; + LowerOpcode = PPC::LFSX; + break; + case PPC::XFLOADf64: + UpperOpcode = PPC::LXSDX; + LowerOpcode = PPC::LFDX; + break; + case PPC::XFSTOREf32: + UpperOpcode = PPC::STXSSPX; + LowerOpcode = PPC::STFSX; + break; + case PPC::XFSTOREf64: + UpperOpcode = PPC::STXSDX; + LowerOpcode = PPC::STFDX; + break; + case PPC::LIWAX: + UpperOpcode = PPC::LXSIWAX; + LowerOpcode = PPC::LFIWAX; + break; + case PPC::LIWZX: + UpperOpcode = PPC::LXSIWZX; + LowerOpcode = PPC::LFIWZX; + break; + case PPC::STIWX: + UpperOpcode = PPC::STXSIWX; + LowerOpcode = PPC::STFIWX; + break; + default: + llvm_unreachable("Unknown Operation!"); + } + + unsigned TargetReg = MI.getOperand(0).getReg(); + unsigned Opcode; + if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || + (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) + Opcode = LowerOpcode; + else + Opcode = UpperOpcode; + MI.setDesc(get(Opcode)); + return true; +} + +static bool isAnImmediateOperand(const MachineOperand &MO) { + return MO.isCPI() || MO.isGlobal() || MO.isImm(); +} + +bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { + auto &MBB = *MI.getParent(); + auto DL = MI.getDebugLoc(); + + switch (MI.getOpcode()) { + case TargetOpcode::LOAD_STACK_GUARD: { + assert(Subtarget.isTargetLinux() && + "Only Linux target is expected to contain LOAD_STACK_GUARD"); + const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; + const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; + MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Offset) + .addReg(Reg); + return true; + } + case PPC::DFLOADf32: + case PPC::DFLOADf64: + case PPC::DFSTOREf32: + case PPC::DFSTOREf64: { + assert(Subtarget.hasP9Vector() && + "Invalid D-Form Pseudo-ops on Pre-P9 target."); + assert(MI.getOperand(2).isReg() && + isAnImmediateOperand(MI.getOperand(1)) && + "D-form op must have register and immediate operands"); + return expandVSXMemPseudo(MI); + } + case PPC::XFLOADf32: + case PPC::XFSTOREf32: + case PPC::LIWAX: + case PPC::LIWZX: + case PPC::STIWX: { + assert(Subtarget.hasP8Vector() && + "Invalid X-Form Pseudo-ops on Pre-P8 target."); + assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && + "X-form op must have register and register operands"); + return expandVSXMemPseudo(MI); + } + case PPC::XFLOADf64: + case PPC::XFSTOREf64: { + assert(Subtarget.hasVSX() && + "Invalid X-Form Pseudo-ops on target that has no VSX."); + assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && + "X-form op must have register and register operands"); + return expandVSXMemPseudo(MI); + } + case PPC::SPILLTOVSR_LD: { + unsigned TargetReg = MI.getOperand(0).getReg(); + if (PPC::VSFRCRegClass.contains(TargetReg)) { + MI.setDesc(get(PPC::DFLOADf64)); + return expandPostRAPseudo(MI); + } + else + MI.setDesc(get(PPC::LD)); + return true; + } + case PPC::SPILLTOVSR_ST: { + unsigned SrcReg = MI.getOperand(0).getReg(); + if (PPC::VSFRCRegClass.contains(SrcReg)) { + NumStoreSPILLVSRRCAsVec++; + MI.setDesc(get(PPC::DFSTOREf64)); + return expandPostRAPseudo(MI); + } else { + NumStoreSPILLVSRRCAsGpr++; + MI.setDesc(get(PPC::STD)); + } + return true; + } + case PPC::SPILLTOVSR_LDX: { + unsigned TargetReg = MI.getOperand(0).getReg(); + if (PPC::VSFRCRegClass.contains(TargetReg)) + MI.setDesc(get(PPC::LXSDX)); + else + MI.setDesc(get(PPC::LDX)); + return true; + } + case PPC::SPILLTOVSR_STX: { + unsigned SrcReg = MI.getOperand(0).getReg(); + if (PPC::VSFRCRegClass.contains(SrcReg)) { + NumStoreSPILLVSRRCAsVec++; + MI.setDesc(get(PPC::STXSDX)); + } else { + NumStoreSPILLVSRRCAsGpr++; + MI.setDesc(get(PPC::STDX)); + } + return true; + } + + case PPC::CFENCE8: { + auto Val = MI.getOperand(0).getReg(); + BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); + BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) + .addImm(PPC::PRED_NE_MINUS) + .addReg(PPC::CR7) + .addImm(1); + MI.setDesc(get(PPC::ISYNC)); + MI.RemoveOperand(0); + return true; + } + } + return false; +} + +// Essentially a compile-time implementation of a compare->isel sequence. +// It takes two constants to compare, along with the true/false registers +// and the comparison type (as a subreg to a CR field) and returns one +// of the true/false registers, depending on the comparison results. +static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, + unsigned TrueReg, unsigned FalseReg, + unsigned CRSubReg) { + // Signed comparisons. The immediates are assumed to be sign-extended. + if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { + switch (CRSubReg) { + default: llvm_unreachable("Unknown integer comparison type."); + case PPC::sub_lt: + return Imm1 < Imm2 ? TrueReg : FalseReg; + case PPC::sub_gt: + return Imm1 > Imm2 ? TrueReg : FalseReg; + case PPC::sub_eq: + return Imm1 == Imm2 ? TrueReg : FalseReg; + } + } + // Unsigned comparisons. + else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { + switch (CRSubReg) { + default: llvm_unreachable("Unknown integer comparison type."); + case PPC::sub_lt: + return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; + case PPC::sub_gt: + return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; + case PPC::sub_eq: + return Imm1 == Imm2 ? TrueReg : FalseReg; + } + } + return PPC::NoRegister; +} + +void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, + unsigned OpNo, + int64_t Imm) const { + assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); + // Replace the REG with the Immediate. + unsigned InUseReg = MI.getOperand(OpNo).getReg(); + MI.getOperand(OpNo).ChangeToImmediate(Imm); + + if (empty(MI.implicit_operands())) + return; + + // We need to make sure that the MI didn't have any implicit use + // of this REG any more. + const TargetRegisterInfo *TRI = &getRegisterInfo(); + int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); + if (UseOpIdx >= 0) { + MachineOperand &MO = MI.getOperand(UseOpIdx); + if (MO.isImplicit()) + // The operands must always be in the following order: + // - explicit reg defs, + // - other explicit operands (reg uses, immediates, etc.), + // - implicit reg defs + // - implicit reg uses + // Therefore, removing the implicit operand won't change the explicit + // operands layout. + MI.RemoveOperand(UseOpIdx); + } +} + +// Replace an instruction with one that materializes a constant (and sets +// CR0 if the original instruction was a record-form instruction). +void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, + const LoadImmediateInfo &LII) const { + // Remove existing operands. + int OperandToKeep = LII.SetCR ? 1 : 0; + for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) + MI.RemoveOperand(i); + + // Replace the instruction. + if (LII.SetCR) { + MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); + // Set the immediate. + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); + return; + } + else + MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); + + // Set the immediate. + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(LII.Imm); +} + +MachineInstr *PPCInstrInfo::getForwardingDefMI( + MachineInstr &MI, + unsigned &OpNoForForwarding, + bool &SeenIntermediateUse) const { + OpNoForForwarding = ~0U; + MachineInstr *DefMI = nullptr; + MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); + const TargetRegisterInfo *TRI = &getRegisterInfo(); + // If we're in SSA, get the defs through the MRI. Otherwise, only look + // within the basic block to see if the register is defined using an LI/LI8. + if (MRI->isSSA()) { + for (int i = 1, e = MI.getNumOperands(); i < e; i++) { + if (!MI.getOperand(i).isReg()) + continue; + unsigned Reg = MI.getOperand(i).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); + if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { + DefMI = MRI->getVRegDef(TrueReg); + if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { + OpNoForForwarding = i; + break; + } + } + } + } else { + // Looking back through the definition for each operand could be expensive, + // so exit early if this isn't an instruction that either has an immediate + // form or is already an immediate form that we can handle. + ImmInstrInfo III; + unsigned Opc = MI.getOpcode(); + bool ConvertibleImmForm = + Opc == PPC::CMPWI || Opc == PPC::CMPLWI || + Opc == PPC::CMPDI || Opc == PPC::CMPLDI || + Opc == PPC::ADDI || Opc == PPC::ADDI8 || + Opc == PPC::ORI || Opc == PPC::ORI8 || + Opc == PPC::XORI || Opc == PPC::XORI8 || + Opc == PPC::RLDICL || Opc == PPC::RLDICLo || + Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || + Opc == PPC::RLWINM || Opc == PPC::RLWINMo || + Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; + if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm) + return nullptr; + + // Don't convert or %X, %Y, %Y since that's just a register move. + if ((Opc == PPC::OR || Opc == PPC::OR8) && + MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) + return nullptr; + for (int i = 1, e = MI.getNumOperands(); i < e; i++) { + MachineOperand &MO = MI.getOperand(i); + SeenIntermediateUse = false; + if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { + MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; + It++; + unsigned Reg = MI.getOperand(i).getReg(); + + // Is this register defined by some form of add-immediate (including + // load-immediate) within this basic block? + for ( ; It != E; ++It) { + if (It->modifiesRegister(Reg, &getRegisterInfo())) { + switch (It->getOpcode()) { + default: break; + case PPC::LI: + case PPC::LI8: + case PPC::ADDItocL: + case PPC::ADDI: + case PPC::ADDI8: + OpNoForForwarding = i; + return &*It; + } + break; + } else if (It->readsRegister(Reg, &getRegisterInfo())) + // If we see another use of this reg between the def and the MI, + // we want to flat it so the def isn't deleted. + SeenIntermediateUse = true; + } + } + } + } + return OpNoForForwarding == ~0U ? nullptr : DefMI; +} + +const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { + static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { + // Power 8 + {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, + PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, + PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, + PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW}, + // Power 9 + {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, + PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, + PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, + PPC::SPILLTOVSR_ST}}; + + return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; +} + +const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { + static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { + // Power 8 + {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, + PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, + PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, + PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ}, + // Power 9 + {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, + PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, + PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, + PPC::SPILLTOVSR_LD}}; + + return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; +} + +void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, + unsigned RegNo) const { + const MachineRegisterInfo &MRI = + StartMI.getParent()->getParent()->getRegInfo(); + if (MRI.isSSA()) + return; + + // Instructions between [StartMI, EndMI] should be in same basic block. + assert((StartMI.getParent() == EndMI.getParent()) && + "Instructions are not in same basic block"); + + bool IsKillSet = false; + + auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { + MachineOperand &MO = MI.getOperand(Index); + if (MO.isReg() && MO.isUse() && MO.isKill() && + getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) + MO.setIsKill(false); + }; + + // Set killed flag for EndMI. + // No need to do anything if EndMI defines RegNo. + int UseIndex = + EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); + if (UseIndex != -1) { + EndMI.getOperand(UseIndex).setIsKill(true); + IsKillSet = true; + // Clear killed flag for other EndMI operands related to RegNo. In some + // upexpected cases, killed may be set multiple times for same register + // operand in same MI. + for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) + if (i != UseIndex) + clearOperandKillInfo(EndMI, i); + } + + // Walking the inst in reverse order (EndMI -> StartMI]. + MachineBasicBlock::reverse_iterator It = EndMI; + MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); + // EndMI has been handled above, skip it here. + It++; + MachineOperand *MO = nullptr; + for (; It != E; ++It) { + // Skip insturctions which could not be a def/use of RegNo. + if (It->isDebugInstr() || It->isPosition()) + continue; + + // Clear killed flag for all It operands related to RegNo. In some + // upexpected cases, killed may be set multiple times for same register + // operand in same MI. + for (int i = 0, e = It->getNumOperands(); i != e; ++i) + clearOperandKillInfo(*It, i); + + // If killed is not set, set killed for its last use or set dead for its def + // if no use found. + if (!IsKillSet) { + if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { + // Use found, set it killed. + IsKillSet = true; + MO->setIsKill(true); + continue; + } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, + &getRegisterInfo()))) { + // No use found, set dead for its def. + assert(&*It == &StartMI && "No new def between StartMI and EndMI."); + MO->setIsDead(true); + break; + } + } + + if ((&*It) == &StartMI) + break; + } + // Ensure RegMo liveness is killed after EndMI. + assert((IsKillSet || (MO && MO->isDead())) && + "RegNo should be killed or dead"); +} + +// If this instruction has an immediate form and one of its operands is a +// result of a load-immediate or an add-immediate, convert it to +// the immediate form if the constant is in range. +bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, + MachineInstr **KilledDef) const { + MachineFunction *MF = MI.getParent()->getParent(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + bool PostRA = !MRI->isSSA(); + bool SeenIntermediateUse = true; + unsigned ForwardingOperand = ~0U; + MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, + SeenIntermediateUse); + if (!DefMI) + return false; + assert(ForwardingOperand < MI.getNumOperands() && + "The forwarding operand needs to be valid at this point"); + bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); + bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; + unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); + if (KilledDef && KillFwdDefMI) + *KilledDef = DefMI; + + ImmInstrInfo III; + bool HasImmForm = instrHasImmForm(MI, III, PostRA); + // If this is a reg+reg instruction that has a reg+imm form, + // and one of the operands is produced by an add-immediate, + // try to convert it. + if (HasImmForm && + transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, + KillFwdDefMI)) + return true; + + if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || + !DefMI->getOperand(1).isImm()) + return false; + + int64_t Immediate = DefMI->getOperand(1).getImm(); + // Sign-extend to 64-bits. + int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? + (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; + + // If this is a reg+reg instruction that has a reg+imm form, + // and one of the operands is produced by LI, convert it now. + if (HasImmForm) + return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); + + bool ReplaceWithLI = false; + bool Is64BitLI = false; + int64_t NewImm = 0; + bool SetCR = false; + unsigned Opc = MI.getOpcode(); + switch (Opc) { + default: return false; + + // FIXME: Any branches conditional on such a comparison can be made + // unconditional. At this time, this happens too infrequently to be worth + // the implementation effort, but if that ever changes, we could convert + // such a pattern here. + case PPC::CMPWI: + case PPC::CMPLWI: + case PPC::CMPDI: + case PPC::CMPLDI: { + // Doing this post-RA would require dataflow analysis to reliably find uses + // of the CR register set by the compare. + // No need to fixup killed/dead flag since this transformation is only valid + // before RA. + if (PostRA) + return false; + // If a compare-immediate is fed by an immediate and is itself an input of + // an ISEL (the most common case) into a COPY of the correct register. + bool Changed = false; + unsigned DefReg = MI.getOperand(0).getReg(); + int64_t Comparand = MI.getOperand(2).getImm(); + int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? + (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; + + for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { + unsigned UseOpc = CompareUseMI.getOpcode(); + if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) + continue; + unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); + unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); + unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); + unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, + FalseReg, CRSubReg); + if (RegToCopy == PPC::NoRegister) + continue; + // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. + if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { + CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); + replaceInstrOperandWithImm(CompareUseMI, 1, 0); + CompareUseMI.RemoveOperand(3); + CompareUseMI.RemoveOperand(2); + continue; + } + LLVM_DEBUG( + dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); + LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); + LLVM_DEBUG(dbgs() << "Is converted to:\n"); + // Convert to copy and remove unneeded operands. + CompareUseMI.setDesc(get(PPC::COPY)); + CompareUseMI.RemoveOperand(3); + CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); + CmpIselsConverted++; + Changed = true; + LLVM_DEBUG(CompareUseMI.dump()); + } + if (Changed) + return true; + // This may end up incremented multiple times since this function is called + // during a fixed-point transformation, but it is only meant to indicate the + // presence of this opportunity. + MissedConvertibleImmediateInstrs++; + return false; + } + + // Immediate forms - may simply be convertable to an LI. + case PPC::ADDI: + case PPC::ADDI8: { + // Does the sum fit in a 16-bit signed field? + int64_t Addend = MI.getOperand(2).getImm(); + if (isInt<16>(Addend + SExtImm)) { + ReplaceWithLI = true; + Is64BitLI = Opc == PPC::ADDI8; + NewImm = Addend + SExtImm; + break; + } + return false; + } + case PPC::RLDICL: + case PPC::RLDICLo: + case PPC::RLDICL_32: + case PPC::RLDICL_32_64: { + // Use APInt's rotate function. + int64_t SH = MI.getOperand(2).getImm(); + int64_t MB = MI.getOperand(3).getImm(); + APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? + 64 : 32, SExtImm, true); + InVal = InVal.rotl(SH); + uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; + InVal &= Mask; + // Can't replace negative values with an LI as that will sign-extend + // and not clear the left bits. If we're setting the CR bit, we will use + // ANDIo which won't sign extend, so that's safe. + if (isUInt<15>(InVal.getSExtValue()) || + (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { + ReplaceWithLI = true; + Is64BitLI = Opc != PPC::RLDICL_32; + NewImm = InVal.getSExtValue(); + SetCR = Opc == PPC::RLDICLo; + break; + } + return false; + } + case PPC::RLWINM: + case PPC::RLWINM8: + case PPC::RLWINMo: + case PPC::RLWINM8o: { + int64_t SH = MI.getOperand(2).getImm(); + int64_t MB = MI.getOperand(3).getImm(); + int64_t ME = MI.getOperand(4).getImm(); + APInt InVal(32, SExtImm, true); + InVal = InVal.rotl(SH); + // Set the bits ( MB + 32 ) to ( ME + 32 ). + uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); + InVal &= Mask; + // Can't replace negative values with an LI as that will sign-extend + // and not clear the left bits. If we're setting the CR bit, we will use + // ANDIo which won't sign extend, so that's safe. + bool ValueFits = isUInt<15>(InVal.getSExtValue()); + ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && + isUInt<16>(InVal.getSExtValue())); + if (ValueFits) { + ReplaceWithLI = true; + Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; + NewImm = InVal.getSExtValue(); + SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; + break; + } + return false; + } + case PPC::ORI: + case PPC::ORI8: + case PPC::XORI: + case PPC::XORI8: { + int64_t LogicalImm = MI.getOperand(2).getImm(); + int64_t Result = 0; + if (Opc == PPC::ORI || Opc == PPC::ORI8) + Result = LogicalImm | SExtImm; + else + Result = LogicalImm ^ SExtImm; + if (isInt<16>(Result)) { + ReplaceWithLI = true; + Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; + NewImm = Result; + break; + } + return false; + } + } + + if (ReplaceWithLI) { + // We need to be careful with CR-setting instructions we're replacing. + if (SetCR) { + // We don't know anything about uses when we're out of SSA, so only + // replace if the new immediate will be reproduced. + bool ImmChanged = (SExtImm & NewImm) != NewImm; + if (PostRA && ImmChanged) + return false; + + if (!PostRA) { + // If the defining load-immediate has no other uses, we can just replace + // the immediate with the new immediate. + if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) + DefMI->getOperand(1).setImm(NewImm); + + // If we're not using the GPR result of the CR-setting instruction, we + // just need to and with zero/non-zero depending on the new immediate. + else if (MRI->use_empty(MI.getOperand(0).getReg())) { + if (NewImm) { + assert(Immediate && "Transformation converted zero to non-zero?"); + NewImm = Immediate; + } + } + else if (ImmChanged) + return false; + } + } + + LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); + LLVM_DEBUG(MI.dump()); + LLVM_DEBUG(dbgs() << "Fed by:\n"); + LLVM_DEBUG(DefMI->dump()); + LoadImmediateInfo LII; + LII.Imm = NewImm; + LII.Is64Bit = Is64BitLI; + LII.SetCR = SetCR; + // If we're setting the CR, the original load-immediate must be kept (as an + // operand to ANDIo/ANDI8o). + if (KilledDef && SetCR) + *KilledDef = nullptr; + replaceInstrWithLI(MI, LII); + + // Fixup killed/dead flag after transformation. + // Pattern: + // ForwardingOperandReg = LI imm1 + // y = op2 imm2, ForwardingOperandReg(killed) + if (IsForwardingOperandKilled) + fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); + + LLVM_DEBUG(dbgs() << "With:\n"); + LLVM_DEBUG(MI.dump()); + return true; + } + return false; +} + +bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, + ImmInstrInfo &III, bool PostRA) const { + unsigned Opc = MI.getOpcode(); + // The vast majority of the instructions would need their operand 2 replaced + // with an immediate when switching to the reg+imm form. A marked exception + // are the update form loads/stores for which a constant operand 2 would need + // to turn into a displacement and move operand 1 to the operand 2 position. + III.ImmOpNo = 2; + III.OpNoForForwarding = 2; + III.ImmWidth = 16; + III.ImmMustBeMultipleOf = 1; + III.TruncateImmTo = 0; + III.IsSummingOperands = false; + switch (Opc) { + default: return false; + case PPC::ADD4: + case PPC::ADD8: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 1; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; + break; + case PPC::ADDC: + case PPC::ADDC8: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; + break; + case PPC::ADDCo: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpcode = PPC::ADDICo; + break; + case PPC::SUBFC: + case PPC::SUBFC8: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; + break; + case PPC::CMPW: + case PPC::CMPD: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; + break; + case PPC::CMPLW: + case PPC::CMPLD: + III.SignedImm = false; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; + break; + case PPC::ANDo: + case PPC::AND8o: + case PPC::OR: + case PPC::OR8: + case PPC::XOR: + case PPC::XOR8: + III.SignedImm = false; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = true; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; + case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; + case PPC::OR: III.ImmOpcode = PPC::ORI; break; + case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; + case PPC::XOR: III.ImmOpcode = PPC::XORI; break; + case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; + } + break; + case PPC::RLWNM: + case PPC::RLWNM8: + case PPC::RLWNMo: + case PPC::RLWNM8o: + case PPC::SLW: + case PPC::SLW8: + case PPC::SLWo: + case PPC::SLW8o: + case PPC::SRW: + case PPC::SRW8: + case PPC::SRWo: + case PPC::SRW8o: + case PPC::SRAW: + case PPC::SRAWo: + III.SignedImm = false; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + // This isn't actually true, but the instructions ignore any of the + // upper bits, so any immediate loaded with an LI is acceptable. + // This does not apply to shift right algebraic because a value + // out of range will produce a -1/0. + III.ImmWidth = 16; + if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || + Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) + III.TruncateImmTo = 5; + else + III.TruncateImmTo = 6; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; + case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; + case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; + case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; + case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; + case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; + case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; + case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; + case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; + case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; + case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; + case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; + case PPC::SRAW: + III.ImmWidth = 5; + III.TruncateImmTo = 0; + III.ImmOpcode = PPC::SRAWI; + break; + case PPC::SRAWo: + III.ImmWidth = 5; + III.TruncateImmTo = 0; + III.ImmOpcode = PPC::SRAWIo; + break; + } + break; + case PPC::RLDCL: + case PPC::RLDCLo: + case PPC::RLDCR: + case PPC::RLDCRo: + case PPC::SLD: + case PPC::SLDo: + case PPC::SRD: + case PPC::SRDo: + case PPC::SRAD: + case PPC::SRADo: + III.SignedImm = false; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + // This isn't actually true, but the instructions ignore any of the + // upper bits, so any immediate loaded with an LI is acceptable. + // This does not apply to shift right algebraic because a value + // out of range will produce a -1/0. + III.ImmWidth = 16; + if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || + Opc == PPC::RLDCR || Opc == PPC::RLDCRo) + III.TruncateImmTo = 6; + else + III.TruncateImmTo = 7; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; + case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; + case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; + case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; + case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; + case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; + case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; + case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; + case PPC::SRAD: + III.ImmWidth = 6; + III.TruncateImmTo = 0; + III.ImmOpcode = PPC::SRADI; + break; + case PPC::SRADo: + III.ImmWidth = 6; + III.TruncateImmTo = 0; + III.ImmOpcode = PPC::SRADIo; + break; + } + break; + // Loads and stores: + case PPC::LBZX: + case PPC::LBZX8: + case PPC::LHZX: + case PPC::LHZX8: + case PPC::LHAX: + case PPC::LHAX8: + case PPC::LWZX: + case PPC::LWZX8: + case PPC::LWAX: + case PPC::LDX: + case PPC::LFSX: + case PPC::LFDX: + case PPC::STBX: + case PPC::STBX8: + case PPC::STHX: + case PPC::STHX8: + case PPC::STWX: + case PPC::STWX8: + case PPC::STDX: + case PPC::STFSX: + case PPC::STFDX: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 1; + III.ZeroIsSpecialNew = 2; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpNo = 1; + III.OpNoForForwarding = 2; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; + case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; + case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; + case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; + case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; + case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; + case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; + case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; + case PPC::LWAX: + III.ImmOpcode = PPC::LWA; + III.ImmMustBeMultipleOf = 4; + break; + case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; + case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; + case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; + case PPC::STBX: III.ImmOpcode = PPC::STB; break; + case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; + case PPC::STHX: III.ImmOpcode = PPC::STH; break; + case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; + case PPC::STWX: III.ImmOpcode = PPC::STW; break; + case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; + case PPC::STDX: + III.ImmOpcode = PPC::STD; + III.ImmMustBeMultipleOf = 4; + break; + case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; + case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; + } + break; + case PPC::LBZUX: + case PPC::LBZUX8: + case PPC::LHZUX: + case PPC::LHZUX8: + case PPC::LHAUX: + case PPC::LHAUX8: + case PPC::LWZUX: + case PPC::LWZUX8: + case PPC::LDUX: + case PPC::LFSUX: + case PPC::LFDUX: + case PPC::STBUX: + case PPC::STBUX8: + case PPC::STHUX: + case PPC::STHUX8: + case PPC::STWUX: + case PPC::STWUX8: + case PPC::STDUX: + case PPC::STFSUX: + case PPC::STFDUX: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 2; + III.ZeroIsSpecialNew = 3; + III.IsCommutative = false; + III.IsSummingOperands = true; + III.ImmOpNo = 2; + III.OpNoForForwarding = 3; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; + case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; + case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; + case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; + case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; + case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; + case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; + case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; + case PPC::LDUX: + III.ImmOpcode = PPC::LDU; + III.ImmMustBeMultipleOf = 4; + break; + case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; + case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; + case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; + case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; + case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; + case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; + case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; + case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; + case PPC::STDUX: + III.ImmOpcode = PPC::STDU; + III.ImmMustBeMultipleOf = 4; + break; + case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; + case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; + } + break; + // Power9 and up only. For some of these, the X-Form version has access to all + // 64 VSR's whereas the D-Form only has access to the VR's. We replace those + // with pseudo-ops pre-ra and for post-ra, we check that the register loaded + // into or stored from is one of the VR registers. + case PPC::LXVX: + case PPC::LXSSPX: + case PPC::LXSDX: + case PPC::STXVX: + case PPC::STXSSPX: + case PPC::STXSDX: + case PPC::XFLOADf32: + case PPC::XFLOADf64: + case PPC::XFSTOREf32: + case PPC::XFSTOREf64: + if (!Subtarget.hasP9Vector()) + return false; + III.SignedImm = true; + III.ZeroIsSpecialOrig = 1; + III.ZeroIsSpecialNew = 2; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpNo = 1; + III.OpNoForForwarding = 2; + III.ImmMustBeMultipleOf = 4; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::LXVX: + III.ImmOpcode = PPC::LXV; + III.ImmMustBeMultipleOf = 16; + break; + case PPC::LXSSPX: + if (PostRA) { + if (isVFRegister(MI.getOperand(0).getReg())) + III.ImmOpcode = PPC::LXSSP; + else { + III.ImmOpcode = PPC::LFS; + III.ImmMustBeMultipleOf = 1; + } + break; + } + LLVM_FALLTHROUGH; + case PPC::XFLOADf32: + III.ImmOpcode = PPC::DFLOADf32; + break; + case PPC::LXSDX: + if (PostRA) { + if (isVFRegister(MI.getOperand(0).getReg())) + III.ImmOpcode = PPC::LXSD; + else { + III.ImmOpcode = PPC::LFD; + III.ImmMustBeMultipleOf = 1; + } + break; + } + LLVM_FALLTHROUGH; + case PPC::XFLOADf64: + III.ImmOpcode = PPC::DFLOADf64; + break; + case PPC::STXVX: + III.ImmOpcode = PPC::STXV; + III.ImmMustBeMultipleOf = 16; + break; + case PPC::STXSSPX: + if (PostRA) { + if (isVFRegister(MI.getOperand(0).getReg())) + III.ImmOpcode = PPC::STXSSP; + else { + III.ImmOpcode = PPC::STFS; + III.ImmMustBeMultipleOf = 1; + } + break; + } + LLVM_FALLTHROUGH; + case PPC::XFSTOREf32: + III.ImmOpcode = PPC::DFSTOREf32; + break; + case PPC::STXSDX: + if (PostRA) { + if (isVFRegister(MI.getOperand(0).getReg())) + III.ImmOpcode = PPC::STXSD; + else { + III.ImmOpcode = PPC::STFD; + III.ImmMustBeMultipleOf = 1; + } + break; + } + LLVM_FALLTHROUGH; + case PPC::XFSTOREf64: + III.ImmOpcode = PPC::DFSTOREf64; + break; + } + break; + } + return true; +} + +// Utility function for swaping two arbitrary operands of an instruction. +static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { + assert(Op1 != Op2 && "Cannot swap operand with itself."); + + unsigned MaxOp = std::max(Op1, Op2); + unsigned MinOp = std::min(Op1, Op2); + MachineOperand MOp1 = MI.getOperand(MinOp); + MachineOperand MOp2 = MI.getOperand(MaxOp); + MI.RemoveOperand(std::max(Op1, Op2)); + MI.RemoveOperand(std::min(Op1, Op2)); + + // If the operands we are swapping are the two at the end (the common case) + // we can just remove both and add them in the opposite order. + if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { + MI.addOperand(MOp2); + MI.addOperand(MOp1); + } else { + // Store all operands in a temporary vector, remove them and re-add in the + // right order. + SmallVector<MachineOperand, 2> MOps; + unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. + for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { + MOps.push_back(MI.getOperand(i)); + MI.RemoveOperand(i); + } + // MOp2 needs to be added next. + MI.addOperand(MOp2); + // Now add the rest. + for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { + if (i == MaxOp) + MI.addOperand(MOp1); + else { + MI.addOperand(MOps.back()); + MOps.pop_back(); + } + } + } +} + +// Check if the 'MI' that has the index OpNoForForwarding +// meets the requirement described in the ImmInstrInfo. +bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, + const ImmInstrInfo &III, + unsigned OpNoForForwarding + ) const { + // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 + // would not work pre-RA, we can only do the check post RA. + MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + if (MRI.isSSA()) + return false; + + // Cannot do the transform if MI isn't summing the operands. + if (!III.IsSummingOperands) + return false; + + // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. + if (!III.ZeroIsSpecialOrig) + return false; + + // We cannot do the transform if the operand we are trying to replace + // isn't the same as the operand the instruction allows. + if (OpNoForForwarding != III.OpNoForForwarding) + return false; + + // Check if the instruction we are trying to transform really has + // the special zero register as its operand. + if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && + MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) + return false; + + // This machine instruction is convertible if it is, + // 1. summing the operands. + // 2. one of the operands is special zero register. + // 3. the operand we are trying to replace is allowed by the MI. + return true; +} + +// Check if the DefMI is the add inst and set the ImmMO and RegMO +// accordingly. +bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, + const ImmInstrInfo &III, + MachineOperand *&ImmMO, + MachineOperand *&RegMO) const { + unsigned Opc = DefMI.getOpcode(); + if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) + return false; + + assert(DefMI.getNumOperands() >= 3 && + "Add inst must have at least three operands"); + RegMO = &DefMI.getOperand(1); + ImmMO = &DefMI.getOperand(2); + + // This DefMI is elgible for forwarding if it is: + // 1. add inst + // 2. one of the operands is Imm/CPI/Global. + return isAnImmediateOperand(*ImmMO); +} + +bool PPCInstrInfo::isRegElgibleForForwarding( + const MachineOperand &RegMO, const MachineInstr &DefMI, + const MachineInstr &MI, bool KillDefMI, + bool &IsFwdFeederRegKilled) const { + // x = addi y, imm + // ... + // z = lfdx 0, x -> z = lfd imm(y) + // The Reg "y" can be forwarded to the MI(z) only when there is no DEF + // of "y" between the DEF of "x" and "z". + // The query is only valid post RA. + const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + if (MRI.isSSA()) + return false; + + unsigned Reg = RegMO.getReg(); + + // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. + MachineBasicBlock::const_reverse_iterator It = MI; + MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); + It++; + for (; It != E; ++It) { + if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) + return false; + else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) + IsFwdFeederRegKilled = true; + // Made it to DefMI without encountering a clobber. + if ((&*It) == &DefMI) + break; + } + assert((&*It) == &DefMI && "DefMI is missing"); + + // If DefMI also defines the register to be forwarded, we can only forward it + // if DefMI is being erased. + if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) + return KillDefMI; + + return true; +} + +bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, + const MachineInstr &DefMI, + const ImmInstrInfo &III, + int64_t &Imm) const { + assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); + if (DefMI.getOpcode() == PPC::ADDItocL) { + // The operand for ADDItocL is CPI, which isn't imm at compiling time, + // However, we know that, it is 16-bit width, and has the alignment of 4. + // Check if the instruction met the requirement. + if (III.ImmMustBeMultipleOf > 4 || + III.TruncateImmTo || III.ImmWidth != 16) + return false; + + // Going from XForm to DForm loads means that the displacement needs to be + // not just an immediate but also a multiple of 4, or 16 depending on the + // load. A DForm load cannot be represented if it is a multiple of say 2. + // XForm loads do not have this restriction. + if (ImmMO.isGlobal() && + ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) + return false; + + return true; + } + + if (ImmMO.isImm()) { + // It is Imm, we need to check if the Imm fit the range. + int64_t Immediate = ImmMO.getImm(); + // Sign-extend to 64-bits. + Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? + (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; + + if (Imm % III.ImmMustBeMultipleOf) + return false; + if (III.TruncateImmTo) + Imm &= ((1 << III.TruncateImmTo) - 1); + if (III.SignedImm) { + APInt ActualValue(64, Imm, true); + if (!ActualValue.isSignedIntN(III.ImmWidth)) + return false; + } else { + uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; + if ((uint64_t)Imm > UnsignedMax) + return false; + } + } + else + return false; + + // This ImmMO is forwarded if it meets the requriement describle + // in ImmInstrInfo + return true; +} + +// If an X-Form instruction is fed by an add-immediate and one of its operands +// is the literal zero, attempt to forward the source of the add-immediate to +// the corresponding D-Form instruction with the displacement coming from +// the immediate being added. +bool PPCInstrInfo::transformToImmFormFedByAdd( + MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, + MachineInstr &DefMI, bool KillDefMI) const { + // RegMO ImmMO + // | | + // x = addi reg, imm <----- DefMI + // y = op 0 , x <----- MI + // | + // OpNoForForwarding + // Check if the MI meet the requirement described in the III. + if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) + return false; + + // Check if the DefMI meet the requirement + // described in the III. If yes, set the ImmMO and RegMO accordingly. + MachineOperand *ImmMO = nullptr; + MachineOperand *RegMO = nullptr; + if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) + return false; + assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); + + // As we get the Imm operand now, we need to check if the ImmMO meet + // the requirement described in the III. If yes set the Imm. + int64_t Imm = 0; + if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) + return false; + + bool IsFwdFeederRegKilled = false; + // Check if the RegMO can be forwarded to MI. + if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, + IsFwdFeederRegKilled)) + return false; + + // Get killed info in case fixup needed after transformation. + unsigned ForwardKilledOperandReg = ~0U; + MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + bool PostRA = !MRI.isSSA(); + if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) + ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); + + // We know that, the MI and DefMI both meet the pattern, and + // the Imm also meet the requirement with the new Imm-form. + // It is safe to do the transformation now. + LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); + LLVM_DEBUG(MI.dump()); + LLVM_DEBUG(dbgs() << "Fed by:\n"); + LLVM_DEBUG(DefMI.dump()); + + // Update the base reg first. + MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), + false, false, + RegMO->isKill()); + + // Then, update the imm. + if (ImmMO->isImm()) { + // If the ImmMO is Imm, change the operand that has ZERO to that Imm + // directly. + replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); + } + else { + // Otherwise, it is Constant Pool Index(CPI) or Global, + // which is relocation in fact. We need to replace the special zero + // register with ImmMO. + // Before that, we need to fixup the target flags for imm. + // For some reason, we miss to set the flag for the ImmMO if it is CPI. + if (DefMI.getOpcode() == PPC::ADDItocL) + ImmMO->setTargetFlags(PPCII::MO_TOC_LO); + + // MI didn't have the interface such as MI.setOperand(i) though + // it has MI.getOperand(i). To repalce the ZERO MachineOperand with + // ImmMO, we need to remove ZERO operand and all the operands behind it, + // and, add the ImmMO, then, move back all the operands behind ZERO. + SmallVector<MachineOperand, 2> MOps; + for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { + MOps.push_back(MI.getOperand(i)); + MI.RemoveOperand(i); + } + + // Remove the last MO in the list, which is ZERO operand in fact. + MOps.pop_back(); + // Add the imm operand. + MI.addOperand(*ImmMO); + // Now add the rest back. + for (auto &MO : MOps) + MI.addOperand(MO); + } + + // Update the opcode. + MI.setDesc(get(III.ImmOpcode)); + + // Fix up killed/dead flag after transformation. + // Pattern 1: + // x = ADD KilledFwdFeederReg, imm + // n = opn KilledFwdFeederReg(killed), regn + // y = XOP 0, x + // Pattern 2: + // x = ADD reg(killed), imm + // y = XOP 0, x + if (IsFwdFeederRegKilled || RegMO->isKill()) + fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); + // Pattern 3: + // ForwardKilledOperandReg = ADD reg, imm + // y = XOP 0, ForwardKilledOperandReg(killed) + if (ForwardKilledOperandReg != ~0U) + fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); + + LLVM_DEBUG(dbgs() << "With:\n"); + LLVM_DEBUG(MI.dump()); + + return true; +} + +bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, + const ImmInstrInfo &III, + unsigned ConstantOpNo, + MachineInstr &DefMI, + int64_t Imm) const { + MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + bool PostRA = !MRI.isSSA(); + // Exit early if we can't convert this. + if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) + return false; + if (Imm % III.ImmMustBeMultipleOf) + return false; + if (III.TruncateImmTo) + Imm &= ((1 << III.TruncateImmTo) - 1); + if (III.SignedImm) { + APInt ActualValue(64, Imm, true); + if (!ActualValue.isSignedIntN(III.ImmWidth)) + return false; + } else { + uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; + if ((uint64_t)Imm > UnsignedMax) + return false; + } + + // If we're post-RA, the instructions don't agree on whether register zero is + // special, we can transform this as long as the register operand that will + // end up in the location where zero is special isn't R0. + if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { + unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : + III.ZeroIsSpecialNew + 1; + unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); + unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); + // If R0 is in the operand where zero is special for the new instruction, + // it is unsafe to transform if the constant operand isn't that operand. + if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && + ConstantOpNo != III.ZeroIsSpecialNew) + return false; + if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && + ConstantOpNo != PosForOrigZero) + return false; + } + + // Get killed info in case fixup needed after transformation. + unsigned ForwardKilledOperandReg = ~0U; + if (PostRA && MI.getOperand(ConstantOpNo).isKill()) + ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); + + unsigned Opc = MI.getOpcode(); + bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLWo || + Opc == PPC::SRW || Opc == PPC::SRWo || + Opc == PPC::SLW8 || Opc == PPC::SLW8o || + Opc == PPC::SRW8 || Opc == PPC::SRW8o; + bool SpecialShift64 = + Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; + bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || + Opc == PPC::SLDo || Opc == PPC::SRDo; + bool RightShift = + Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; + + MI.setDesc(get(III.ImmOpcode)); + if (ConstantOpNo == III.OpNoForForwarding) { + // Converting shifts to immediate form is a bit tricky since they may do + // one of three things: + // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero + // 2. If the shift amount is zero, the result is unchanged (save for maybe + // setting CR0) + // 3. If the shift amount is in [1, OpSize), it's just a shift + if (SpecialShift32 || SpecialShift64) { + LoadImmediateInfo LII; + LII.Imm = 0; + LII.SetCR = SetCR; + LII.Is64Bit = SpecialShift64; + uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); + if (Imm & (SpecialShift32 ? 0x20 : 0x40)) + replaceInstrWithLI(MI, LII); + // Shifts by zero don't change the value. If we don't need to set CR0, + // just convert this to a COPY. Can't do this post-RA since we've already + // cleaned up the copies. + else if (!SetCR && ShAmt == 0 && !PostRA) { + MI.RemoveOperand(2); + MI.setDesc(get(PPC::COPY)); + } else { + // The 32 bit and 64 bit instructions are quite different. + if (SpecialShift32) { + // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). + uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; + uint64_t MB = RightShift ? ShAmt : 0; + uint64_t ME = RightShift ? 31 : 31 - ShAmt; + replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) + .addImm(ME); + } else { + // Left shifts use (N, 63-N), right shifts use (64-N, N). + uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; + uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; + replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); + } + } + } else + replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); + } + // Convert commutative instructions (switch the operands and convert the + // desired one to an immediate. + else if (III.IsCommutative) { + replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); + swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); + } else + llvm_unreachable("Should have exited early!"); + + // For instructions for which the constant register replaces a different + // operand than where the immediate goes, we need to swap them. + if (III.OpNoForForwarding != III.ImmOpNo) + swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); + + // If the special R0/X0 register index are different for original instruction + // and new instruction, we need to fix up the register class in new + // instruction. + if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { + if (III.ZeroIsSpecialNew) { + // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no + // need to fix up register class. + unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); + if (TargetRegisterInfo::isVirtualRegister(RegToModify)) { + const TargetRegisterClass *NewRC = + MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? + &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; + MRI.setRegClass(RegToModify, NewRC); + } + } + } + + // Fix up killed/dead flag after transformation. + // Pattern: + // ForwardKilledOperandReg = LI imm + // y = XOP reg, ForwardKilledOperandReg(killed) + if (ForwardKilledOperandReg != ~0U) + fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); + return true; +} + +const TargetRegisterClass * +PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { + if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) + return &PPC::VSRCRegClass; + return RC; +} + +int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { + return PPC::getRecordFormOpcode(Opcode); +} + +// This function returns true if the machine instruction +// always outputs a value by sign-extending a 32 bit value, +// i.e. 0 to 31-th bits are same as 32-th bit. +static bool isSignExtendingOp(const MachineInstr &MI) { + int Opcode = MI.getOpcode(); + if (Opcode == PPC::LI || Opcode == PPC::LI8 || + Opcode == PPC::LIS || Opcode == PPC::LIS8 || + Opcode == PPC::SRAW || Opcode == PPC::SRAWo || + Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || + Opcode == PPC::LWA || Opcode == PPC::LWAX || + Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || + Opcode == PPC::LHA || Opcode == PPC::LHAX || + Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || + Opcode == PPC::LBZ || Opcode == PPC::LBZX || + Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || + Opcode == PPC::LBZU || Opcode == PPC::LBZUX || + Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || + Opcode == PPC::LHZ || Opcode == PPC::LHZX || + Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || + Opcode == PPC::LHZU || Opcode == PPC::LHZUX || + Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || + Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || + Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || + Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || + Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || + Opcode == PPC::SETB || Opcode == PPC::SETB8 || + Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || + Opcode == PPC::EXTSB8_32_64) + return true; + + if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) + return true; + + if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || + Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && + MI.getOperand(3).getImm() > 0 && + MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) + return true; + + return false; +} + +// This function returns true if the machine instruction +// always outputs zeros in higher 32 bits. +static bool isZeroExtendingOp(const MachineInstr &MI) { + int Opcode = MI.getOpcode(); + // The 16-bit immediate is sign-extended in li/lis. + // If the most significant bit is zero, all higher bits are zero. + if (Opcode == PPC::LI || Opcode == PPC::LI8 || + Opcode == PPC::LIS || Opcode == PPC::LIS8) { + int64_t Imm = MI.getOperand(1).getImm(); + if (((uint64_t)Imm & ~0x7FFFuLL) == 0) + return true; + } + + // We have some variations of rotate-and-mask instructions + // that clear higher 32-bits. + if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || + Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || + Opcode == PPC::RLDICL_32_64) && + MI.getOperand(3).getImm() >= 32) + return true; + + if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && + MI.getOperand(3).getImm() >= 32 && + MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) + return true; + + if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || + Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || + Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && + MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) + return true; + + // There are other instructions that clear higher 32-bits. + if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || + Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || + Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || + Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || + Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || + Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || + Opcode == PPC::SLW || Opcode == PPC::SLWo || + Opcode == PPC::SRW || Opcode == PPC::SRWo || + Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || + Opcode == PPC::SLWI || Opcode == PPC::SLWIo || + Opcode == PPC::SRWI || Opcode == PPC::SRWIo || + Opcode == PPC::LWZ || Opcode == PPC::LWZX || + Opcode == PPC::LWZU || Opcode == PPC::LWZUX || + Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || + Opcode == PPC::LHZ || Opcode == PPC::LHZX || + Opcode == PPC::LHZU || Opcode == PPC::LHZUX || + Opcode == PPC::LBZ || Opcode == PPC::LBZX || + Opcode == PPC::LBZU || Opcode == PPC::LBZUX || + Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || + Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || + Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || + Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || + Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || + Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || + Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || + Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || + Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || + Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || + Opcode == PPC::MFVSRWZ) + return true; + + return false; +} + +// This function returns true if the input MachineInstr is a TOC save +// instruction. +bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { + if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) + return false; + unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); + unsigned StackOffset = MI.getOperand(1).getImm(); + unsigned StackReg = MI.getOperand(2).getReg(); + if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) + return true; + + return false; +} + +// We limit the max depth to track incoming values of PHIs or binary ops +// (e.g. AND) to avoid excessive cost. +const unsigned MAX_DEPTH = 1; + +bool +PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, + const unsigned Depth) const { + const MachineFunction *MF = MI.getParent()->getParent(); + const MachineRegisterInfo *MRI = &MF->getRegInfo(); + + // If we know this instruction returns sign- or zero-extended result, + // return true. + if (SignExt ? isSignExtendingOp(MI): + isZeroExtendingOp(MI)) + return true; + + switch (MI.getOpcode()) { + case PPC::COPY: { + unsigned SrcReg = MI.getOperand(1).getReg(); + + // In both ELFv1 and v2 ABI, method parameters and the return value + // are sign- or zero-extended. + if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { + const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); + // We check the ZExt/SExt flags for a method parameter. + if (MI.getParent()->getBasicBlock() == + &MF->getFunction().getEntryBlock()) { + unsigned VReg = MI.getOperand(0).getReg(); + if (MF->getRegInfo().isLiveIn(VReg)) + return SignExt ? FuncInfo->isLiveInSExt(VReg) : + FuncInfo->isLiveInZExt(VReg); + } + + // For a method return value, we check the ZExt/SExt flags in attribute. + // We assume the following code sequence for method call. + // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 + // BL8_NOP @func,... + // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 + // %5 = COPY %x3; G8RC:%5 + if (SrcReg == PPC::X3) { + const MachineBasicBlock *MBB = MI.getParent(); + MachineBasicBlock::const_instr_iterator II = + MachineBasicBlock::const_instr_iterator(&MI); + if (II != MBB->instr_begin() && + (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { + const MachineInstr &CallMI = *(--II); + if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { + const Function *CalleeFn = + dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); + if (!CalleeFn) + return false; + const IntegerType *IntTy = + dyn_cast<IntegerType>(CalleeFn->getReturnType()); + const AttributeSet &Attrs = + CalleeFn->getAttributes().getRetAttributes(); + if (IntTy && IntTy->getBitWidth() <= 32) + return Attrs.hasAttribute(SignExt ? Attribute::SExt : + Attribute::ZExt); + } + } + } + } + + // If this is a copy from another register, we recursively check source. + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) + return false; + const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); + if (SrcMI != NULL) + return isSignOrZeroExtended(*SrcMI, SignExt, Depth); + + return false; + } + + case PPC::ANDIo: + case PPC::ANDISo: + case PPC::ORI: + case PPC::ORIS: + case PPC::XORI: + case PPC::XORIS: + case PPC::ANDIo8: + case PPC::ANDISo8: + case PPC::ORI8: + case PPC::ORIS8: + case PPC::XORI8: + case PPC::XORIS8: { + // logical operation with 16-bit immediate does not change the upper bits. + // So, we track the operand register as we do for register copy. + unsigned SrcReg = MI.getOperand(1).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) + return false; + const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); + if (SrcMI != NULL) + return isSignOrZeroExtended(*SrcMI, SignExt, Depth); + + return false; + } + + // If all incoming values are sign-/zero-extended, + // the output of OR, ISEL or PHI is also sign-/zero-extended. + case PPC::OR: + case PPC::OR8: + case PPC::ISEL: + case PPC::PHI: { + if (Depth >= MAX_DEPTH) + return false; + + // The input registers for PHI are operand 1, 3, ... + // The input registers for others are operand 1 and 2. + unsigned E = 3, D = 1; + if (MI.getOpcode() == PPC::PHI) { + E = MI.getNumOperands(); + D = 2; + } + + for (unsigned I = 1; I != E; I += D) { + if (MI.getOperand(I).isReg()) { + unsigned SrcReg = MI.getOperand(I).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) + return false; + const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); + if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) + return false; + } + else + return false; + } + return true; + } + + // If at least one of the incoming values of an AND is zero extended + // then the output is also zero-extended. If both of the incoming values + // are sign-extended then the output is also sign extended. + case PPC::AND: + case PPC::AND8: { + if (Depth >= MAX_DEPTH) + return false; + + assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); + + unsigned SrcReg1 = MI.getOperand(1).getReg(); + unsigned SrcReg2 = MI.getOperand(2).getReg(); + + if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || + !TargetRegisterInfo::isVirtualRegister(SrcReg2)) + return false; + + const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); + const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); + if (!MISrc1 || !MISrc2) + return false; + + if(SignExt) + return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && + isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); + else + return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || + isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); + } + + default: + break; + } + return false; +} + +bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { + return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); +} + +bool PPCInstrInfo::analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, + MachineInstr *&CmpInst) const { + MachineBasicBlock *LoopEnd = L.getBottomBlock(); + MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator(); + // We really "analyze" only CTR loops right now. + if (I != LoopEnd->end() && isBDNZ(I->getOpcode())) { + IndVarInst = nullptr; + CmpInst = &*I; + return false; + } + return true; +} + +MachineInstr * +PPCInstrInfo::findLoopInstr(MachineBasicBlock &PreHeader) const { + + unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); + + // The loop set-up instruction should be in preheader + for (auto &I : PreHeader.instrs()) + if (I.getOpcode() == LOOPi) + return &I; + return nullptr; +} + +unsigned PPCInstrInfo::reduceLoopCount( + MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar, + MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond, + SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter, + unsigned MaxIter) const { + // We expect a hardware loop currently. This means that IndVar is set + // to null, and the compare is the ENDLOOP instruction. + assert((!IndVar) && isBDNZ(Cmp.getOpcode()) && "Expecting a CTR loop"); + MachineFunction *MF = MBB.getParent(); + DebugLoc DL = Cmp.getDebugLoc(); + MachineInstr *Loop = findLoopInstr(PreHeader); + if (!Loop) + return 0; + unsigned LoopCountReg = Loop->getOperand(0).getReg(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); + + if (!LoopCount) + return 0; + // If the loop trip count is a compile-time value, then just change the + // value. + if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) { + int64_t Offset = LoopCount->getOperand(1).getImm(); + if (Offset <= 1) { + LoopCount->eraseFromParent(); + Loop->eraseFromParent(); + return 0; + } + LoopCount->getOperand(1).setImm(Offset - 1); + return Offset - 1; + } + + // The loop trip count is a run-time value. + // We need to subtract one from the trip count, + // and insert branch later to check if we're done with the loop. + + // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, + // so we don't need to generate any thing here. + Cond.push_back(MachineOperand::CreateImm(0)); + Cond.push_back(MachineOperand::CreateReg( + Subtarget.isPPC64() ? PPC::CTR8 : PPC::CTR, true)); + return LoopCountReg; +} + +// Return true if get the base operand, byte offset of an instruction and the +// memory width. Width is the size of memory that is being loaded/stored. +bool PPCInstrInfo::getMemOperandWithOffsetWidth( + const MachineInstr &LdSt, + const MachineOperand *&BaseReg, + int64_t &Offset, + unsigned &Width, + const TargetRegisterInfo *TRI) const { + assert(LdSt.mayLoadOrStore() && "Expected a memory operation."); + + // Handle only loads/stores with base register followed by immediate offset. + if (LdSt.getNumExplicitOperands() != 3) + return false; + if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) + return false; + + if (!LdSt.hasOneMemOperand()) + return false; + + Width = (*LdSt.memoperands_begin())->getSize(); + Offset = LdSt.getOperand(1).getImm(); + BaseReg = &LdSt.getOperand(2); + return true; +} + +bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( + const MachineInstr &MIa, const MachineInstr &MIb, + AliasAnalysis * /*AA*/) const { + assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); + assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); + + if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || + MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) + return false; + + // Retrieve the base register, offset from the base register and width. Width + // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If + // base registers are identical, and the offset of a lower memory access + + // the width doesn't overlap the offset of a higher memory access, + // then the memory accesses are different. + const TargetRegisterInfo *TRI = &getRegisterInfo(); + const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; + int64_t OffsetA = 0, OffsetB = 0; + unsigned int WidthA = 0, WidthB = 0; + if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && + getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { + if (BaseOpA->isIdenticalTo(*BaseOpB)) { + int LowOffset = std::min(OffsetA, OffsetB); + int HighOffset = std::max(OffsetA, OffsetB); + int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; + if (LowOffset + LowWidth <= HighOffset) + return true; + } + } + return false; +} |
