summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp4052
1 files changed, 4052 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
new file mode 100644
index 000000000000..b593a98e81a6
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
@@ -0,0 +1,4052 @@
+//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCInstrInfo.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "PPC.h"
+#include "PPCHazardRecognizers.h"
+#include "PPCInstrBuilder.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCTargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ppc-instr-info"
+
+#define GET_INSTRMAP_INFO
+#define GET_INSTRINFO_CTOR_DTOR
+#include "PPCGenInstrInfo.inc"
+
+STATISTIC(NumStoreSPILLVSRRCAsVec,
+ "Number of spillvsrrc spilled to stack as vec");
+STATISTIC(NumStoreSPILLVSRRCAsGpr,
+ "Number of spillvsrrc spilled to stack as gpr");
+STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
+STATISTIC(CmpIselsConverted,
+ "Number of ISELs that depend on comparison of constants converted");
+STATISTIC(MissedConvertibleImmediateInstrs,
+ "Number of compare-immediate instructions fed by constants");
+STATISTIC(NumRcRotatesConvertedToRcAnd,
+ "Number of record-form rotates converted to record-form andi");
+
+static cl::
+opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
+ cl::desc("Disable analysis for CTR loops"));
+
+static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
+cl::desc("Disable compare instruction optimization"), cl::Hidden);
+
+static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
+cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
+cl::Hidden);
+
+static cl::opt<bool>
+UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
+ cl::desc("Use the old (incorrect) instruction latency calculation"));
+
+// Index into the OpcodesForSpill array.
+enum SpillOpcodeKey {
+ SOK_Int4Spill,
+ SOK_Int8Spill,
+ SOK_Float8Spill,
+ SOK_Float4Spill,
+ SOK_CRSpill,
+ SOK_CRBitSpill,
+ SOK_VRVectorSpill,
+ SOK_VSXVectorSpill,
+ SOK_VectorFloat8Spill,
+ SOK_VectorFloat4Spill,
+ SOK_VRSaveSpill,
+ SOK_QuadFloat8Spill,
+ SOK_QuadFloat4Spill,
+ SOK_QuadBitSpill,
+ SOK_SpillToVSR,
+ SOK_SPESpill,
+ SOK_SPE4Spill,
+ SOK_LastOpcodeSpill // This must be last on the enum.
+};
+
+// Pin the vtable to this file.
+void PPCInstrInfo::anchor() {}
+
+PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
+ : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
+ /* CatchRetOpcode */ -1,
+ STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
+ Subtarget(STI), RI(STI.getTargetMachine()) {}
+
+/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
+/// this target when scheduling the DAG.
+ScheduleHazardRecognizer *
+PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
+ const ScheduleDAG *DAG) const {
+ unsigned Directive =
+ static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
+ if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
+ Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
+ const InstrItineraryData *II =
+ static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
+ return new ScoreboardHazardRecognizer(II, DAG);
+ }
+
+ return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
+}
+
+/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
+/// to use for this target when scheduling the DAG.
+ScheduleHazardRecognizer *
+PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ unsigned Directive =
+ DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
+
+ // FIXME: Leaving this as-is until we have POWER9 scheduling info
+ if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
+ return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
+
+ // Most subtargets use a PPC970 recognizer.
+ if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
+ Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
+ assert(DAG->TII && "No InstrInfo?");
+
+ return new PPCHazardRecognizer970(*DAG);
+ }
+
+ return new ScoreboardHazardRecognizer(II, DAG);
+}
+
+unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr &MI,
+ unsigned *PredCost) const {
+ if (!ItinData || UseOldLatencyCalc)
+ return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
+
+ // The default implementation of getInstrLatency calls getStageLatency, but
+ // getStageLatency does not do the right thing for us. While we have
+ // itinerary, most cores are fully pipelined, and so the itineraries only
+ // express the first part of the pipeline, not every stage. Instead, we need
+ // to use the listed output operand cycle number (using operand 0 here, which
+ // is an output).
+
+ unsigned Latency = 1;
+ unsigned DefClass = MI.getDesc().getSchedClass();
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
+ continue;
+
+ int Cycle = ItinData->getOperandCycle(DefClass, i);
+ if (Cycle < 0)
+ continue;
+
+ Latency = std::max(Latency, (unsigned) Cycle);
+ }
+
+ return Latency;
+}
+
+int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr &DefMI, unsigned DefIdx,
+ const MachineInstr &UseMI,
+ unsigned UseIdx) const {
+ int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
+ UseMI, UseIdx);
+
+ if (!DefMI.getParent())
+ return Latency;
+
+ const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
+ unsigned Reg = DefMO.getReg();
+
+ bool IsRegCR;
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ const MachineRegisterInfo *MRI =
+ &DefMI.getParent()->getParent()->getRegInfo();
+ IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
+ MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
+ } else {
+ IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
+ PPC::CRBITRCRegClass.contains(Reg);
+ }
+
+ if (UseMI.isBranch() && IsRegCR) {
+ if (Latency < 0)
+ Latency = getInstrLatency(ItinData, DefMI);
+
+ // On some cores, there is an additional delay between writing to a condition
+ // register, and using it from a branch.
+ unsigned Directive = Subtarget.getDarwinDirective();
+ switch (Directive) {
+ default: break;
+ case PPC::DIR_7400:
+ case PPC::DIR_750:
+ case PPC::DIR_970:
+ case PPC::DIR_E5500:
+ case PPC::DIR_PWR4:
+ case PPC::DIR_PWR5:
+ case PPC::DIR_PWR5X:
+ case PPC::DIR_PWR6:
+ case PPC::DIR_PWR6X:
+ case PPC::DIR_PWR7:
+ case PPC::DIR_PWR8:
+ // FIXME: Is this needed for POWER9?
+ Latency += 2;
+ break;
+ }
+ }
+
+ return Latency;
+}
+
+// This function does not list all associative and commutative operations, but
+// only those worth feeding through the machine combiner in an attempt to
+// reduce the critical path. Mostly, this means floating-point operations,
+// because they have high latencies (compared to other operations, such and
+// and/or, which are also associative and commutative, but have low latencies).
+bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
+ switch (Inst.getOpcode()) {
+ // FP Add:
+ case PPC::FADD:
+ case PPC::FADDS:
+ // FP Multiply:
+ case PPC::FMUL:
+ case PPC::FMULS:
+ // Altivec Add:
+ case PPC::VADDFP:
+ // VSX Add:
+ case PPC::XSADDDP:
+ case PPC::XVADDDP:
+ case PPC::XVADDSP:
+ case PPC::XSADDSP:
+ // VSX Multiply:
+ case PPC::XSMULDP:
+ case PPC::XVMULDP:
+ case PPC::XVMULSP:
+ case PPC::XSMULSP:
+ // QPX Add:
+ case PPC::QVFADD:
+ case PPC::QVFADDS:
+ case PPC::QVFADDSs:
+ // QPX Multiply:
+ case PPC::QVFMUL:
+ case PPC::QVFMULS:
+ case PPC::QVFMULSs:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool PPCInstrInfo::getMachineCombinerPatterns(
+ MachineInstr &Root,
+ SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
+ // Using the machine combiner in this way is potentially expensive, so
+ // restrict to when aggressive optimizations are desired.
+ if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
+ return false;
+
+ // FP reassociation is only legal when we don't need strict IEEE semantics.
+ if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
+ return false;
+
+ return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
+}
+
+// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
+bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+ switch (MI.getOpcode()) {
+ default: return false;
+ case PPC::EXTSW:
+ case PPC::EXTSW_32:
+ case PPC::EXTSW_32_64:
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ SubIdx = PPC::sub_32;
+ return true;
+ }
+}
+
+unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
+ int &FrameIndex) const {
+ unsigned Opcode = MI.getOpcode();
+ const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
+ const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
+
+ if (End != std::find(OpcodesForSpill, End, Opcode)) {
+ // Check for the operands added by addFrameReference (the immediate is the
+ // offset which defaults to 0).
+ if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
+ MI.getOperand(2).isFI()) {
+ FrameIndex = MI.getOperand(2).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ }
+ return 0;
+}
+
+// For opcodes with the ReMaterializable flag set, this function is called to
+// verify the instruction is really rematable.
+bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
+ AliasAnalysis *AA) const {
+ switch (MI.getOpcode()) {
+ default:
+ // This function should only be called for opcodes with the ReMaterializable
+ // flag set.
+ llvm_unreachable("Unknown rematerializable operation!");
+ break;
+ case PPC::LI:
+ case PPC::LI8:
+ case PPC::LIS:
+ case PPC::LIS8:
+ case PPC::QVGPCI:
+ case PPC::ADDIStocHA:
+ case PPC::ADDItocL:
+ case PPC::LOAD_STACK_GUARD:
+ case PPC::XXLXORz:
+ case PPC::XXLXORspz:
+ case PPC::XXLXORdpz:
+ case PPC::V_SET0B:
+ case PPC::V_SET0H:
+ case PPC::V_SET0:
+ case PPC::V_SETALLONESB:
+ case PPC::V_SETALLONESH:
+ case PPC::V_SETALLONES:
+ case PPC::CRSET:
+ case PPC::CRUNSET:
+ return true;
+ }
+ return false;
+}
+
+unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
+ int &FrameIndex) const {
+ unsigned Opcode = MI.getOpcode();
+ const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
+ const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
+
+ if (End != std::find(OpcodesForSpill, End, Opcode)) {
+ if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
+ MI.getOperand(2).isFI()) {
+ FrameIndex = MI.getOperand(2).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ }
+ return 0;
+}
+
+MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
+ unsigned OpIdx1,
+ unsigned OpIdx2) const {
+ MachineFunction &MF = *MI.getParent()->getParent();
+
+ // Normal instructions can be commuted the obvious way.
+ if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
+ return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
+ // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
+ // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
+ // changing the relative order of the mask operands might change what happens
+ // to the high-bits of the mask (and, thus, the result).
+
+ // Cannot commute if it has a non-zero rotate count.
+ if (MI.getOperand(3).getImm() != 0)
+ return nullptr;
+
+ // If we have a zero rotate count, we have:
+ // M = mask(MB,ME)
+ // Op0 = (Op1 & ~M) | (Op2 & M)
+ // Change this to:
+ // M = mask((ME+1)&31, (MB-1)&31)
+ // Op0 = (Op2 & ~M) | (Op1 & M)
+
+ // Swap op1/op2
+ assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
+ "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
+ Register Reg0 = MI.getOperand(0).getReg();
+ Register Reg1 = MI.getOperand(1).getReg();
+ Register Reg2 = MI.getOperand(2).getReg();
+ unsigned SubReg1 = MI.getOperand(1).getSubReg();
+ unsigned SubReg2 = MI.getOperand(2).getSubReg();
+ bool Reg1IsKill = MI.getOperand(1).isKill();
+ bool Reg2IsKill = MI.getOperand(2).isKill();
+ bool ChangeReg0 = false;
+ // If machine instrs are no longer in two-address forms, update
+ // destination register as well.
+ if (Reg0 == Reg1) {
+ // Must be two address instruction!
+ assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
+ "Expecting a two-address instruction!");
+ assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
+ Reg2IsKill = false;
+ ChangeReg0 = true;
+ }
+
+ // Masks.
+ unsigned MB = MI.getOperand(4).getImm();
+ unsigned ME = MI.getOperand(5).getImm();
+
+ // We can't commute a trivial mask (there is no way to represent an all-zero
+ // mask).
+ if (MB == 0 && ME == 31)
+ return nullptr;
+
+ if (NewMI) {
+ // Create a new instruction.
+ Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
+ bool Reg0IsDead = MI.getOperand(0).isDead();
+ return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
+ .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
+ .addReg(Reg2, getKillRegState(Reg2IsKill))
+ .addReg(Reg1, getKillRegState(Reg1IsKill))
+ .addImm((ME + 1) & 31)
+ .addImm((MB - 1) & 31);
+ }
+
+ if (ChangeReg0) {
+ MI.getOperand(0).setReg(Reg2);
+ MI.getOperand(0).setSubReg(SubReg2);
+ }
+ MI.getOperand(2).setReg(Reg1);
+ MI.getOperand(1).setReg(Reg2);
+ MI.getOperand(2).setSubReg(SubReg1);
+ MI.getOperand(1).setSubReg(SubReg2);
+ MI.getOperand(2).setIsKill(Reg1IsKill);
+ MI.getOperand(1).setIsKill(Reg2IsKill);
+
+ // Swap the mask around.
+ MI.getOperand(4).setImm((ME + 1) & 31);
+ MI.getOperand(5).setImm((MB - 1) & 31);
+ return &MI;
+}
+
+bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const {
+ // For VSX A-Type FMA instructions, it is the first two operands that can be
+ // commuted, however, because the non-encoded tied input operand is listed
+ // first, the operands to swap are actually the second and third.
+
+ int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
+ if (AltOpc == -1)
+ return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
+
+ // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
+ // and SrcOpIdx2.
+ return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
+}
+
+void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ // This function is used for scheduling, and the nop wanted here is the type
+ // that terminates dispatch groups on the POWER cores.
+ unsigned Directive = Subtarget.getDarwinDirective();
+ unsigned Opcode;
+ switch (Directive) {
+ default: Opcode = PPC::NOP; break;
+ case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
+ case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
+ case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
+ // FIXME: Update when POWER9 scheduling model is ready.
+ case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
+ }
+
+ DebugLoc DL;
+ BuildMI(MBB, MI, DL, get(Opcode));
+}
+
+/// Return the noop instruction to use for a noop.
+void PPCInstrInfo::getNoop(MCInst &NopInst) const {
+ NopInst.setOpcode(PPC::NOP);
+}
+
+// Branch analysis.
+// Note: If the condition register is set to CTR or CTR8 then this is a
+// BDNZ (imm == 1) or BDZ (imm == 0) branch.
+bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ bool isPPC64 = Subtarget.isPPC64();
+
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return false;
+
+ if (!isUnpredicatedTerminator(*I))
+ return false;
+
+ if (AllowModify) {
+ // If the BB ends with an unconditional branch to the fallthrough BB,
+ // we eliminate the branch instruction.
+ if (I->getOpcode() == PPC::B &&
+ MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ I->eraseFromParent();
+
+ // We update iterator after deleting the last branch.
+ I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end() || !isUnpredicatedTerminator(*I))
+ return false;
+ }
+ }
+
+ // Get the last instruction in the block.
+ MachineInstr &LastInst = *I;
+
+ // If there is only one terminator instruction, process it.
+ if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
+ if (LastInst.getOpcode() == PPC::B) {
+ if (!LastInst.getOperand(0).isMBB())
+ return true;
+ TBB = LastInst.getOperand(0).getMBB();
+ return false;
+ } else if (LastInst.getOpcode() == PPC::BCC) {
+ if (!LastInst.getOperand(2).isMBB())
+ return true;
+ // Block ends with fall-through condbranch.
+ TBB = LastInst.getOperand(2).getMBB();
+ Cond.push_back(LastInst.getOperand(0));
+ Cond.push_back(LastInst.getOperand(1));
+ return false;
+ } else if (LastInst.getOpcode() == PPC::BC) {
+ if (!LastInst.getOperand(1).isMBB())
+ return true;
+ // Block ends with fall-through condbranch.
+ TBB = LastInst.getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
+ Cond.push_back(LastInst.getOperand(0));
+ return false;
+ } else if (LastInst.getOpcode() == PPC::BCn) {
+ if (!LastInst.getOperand(1).isMBB())
+ return true;
+ // Block ends with fall-through condbranch.
+ TBB = LastInst.getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
+ Cond.push_back(LastInst.getOperand(0));
+ return false;
+ } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
+ LastInst.getOpcode() == PPC::BDNZ) {
+ if (!LastInst.getOperand(0).isMBB())
+ return true;
+ if (DisableCTRLoopAnal)
+ return true;
+ TBB = LastInst.getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(1));
+ Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
+ true));
+ return false;
+ } else if (LastInst.getOpcode() == PPC::BDZ8 ||
+ LastInst.getOpcode() == PPC::BDZ) {
+ if (!LastInst.getOperand(0).isMBB())
+ return true;
+ if (DisableCTRLoopAnal)
+ return true;
+ TBB = LastInst.getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(0));
+ Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
+ true));
+ return false;
+ }
+
+ // Otherwise, don't know what this is.
+ return true;
+ }
+
+ // Get the instruction before it if it's a terminator.
+ MachineInstr &SecondLastInst = *I;
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
+ return true;
+
+ // If the block ends with PPC::B and PPC:BCC, handle it.
+ if (SecondLastInst.getOpcode() == PPC::BCC &&
+ LastInst.getOpcode() == PPC::B) {
+ if (!SecondLastInst.getOperand(2).isMBB() ||
+ !LastInst.getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst.getOperand(2).getMBB();
+ Cond.push_back(SecondLastInst.getOperand(0));
+ Cond.push_back(SecondLastInst.getOperand(1));
+ FBB = LastInst.getOperand(0).getMBB();
+ return false;
+ } else if (SecondLastInst.getOpcode() == PPC::BC &&
+ LastInst.getOpcode() == PPC::B) {
+ if (!SecondLastInst.getOperand(1).isMBB() ||
+ !LastInst.getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst.getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
+ Cond.push_back(SecondLastInst.getOperand(0));
+ FBB = LastInst.getOperand(0).getMBB();
+ return false;
+ } else if (SecondLastInst.getOpcode() == PPC::BCn &&
+ LastInst.getOpcode() == PPC::B) {
+ if (!SecondLastInst.getOperand(1).isMBB() ||
+ !LastInst.getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst.getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
+ Cond.push_back(SecondLastInst.getOperand(0));
+ FBB = LastInst.getOperand(0).getMBB();
+ return false;
+ } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
+ SecondLastInst.getOpcode() == PPC::BDNZ) &&
+ LastInst.getOpcode() == PPC::B) {
+ if (!SecondLastInst.getOperand(0).isMBB() ||
+ !LastInst.getOperand(0).isMBB())
+ return true;
+ if (DisableCTRLoopAnal)
+ return true;
+ TBB = SecondLastInst.getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(1));
+ Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
+ true));
+ FBB = LastInst.getOperand(0).getMBB();
+ return false;
+ } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
+ SecondLastInst.getOpcode() == PPC::BDZ) &&
+ LastInst.getOpcode() == PPC::B) {
+ if (!SecondLastInst.getOperand(0).isMBB() ||
+ !LastInst.getOperand(0).isMBB())
+ return true;
+ if (DisableCTRLoopAnal)
+ return true;
+ TBB = SecondLastInst.getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(0));
+ Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
+ true));
+ FBB = LastInst.getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two PPC:Bs, handle it. The second one is not
+ // executed, so remove it.
+ if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
+ if (!SecondLastInst.getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst.getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
+ int *BytesRemoved) const {
+ assert(!BytesRemoved && "code size not handled");
+
+ MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return 0;
+
+ if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
+ I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
+ I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
+ I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (I->getOpcode() != PPC::BCC &&
+ I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
+ I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
+ I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ ArrayRef<MachineOperand> Cond,
+ const DebugLoc &DL,
+ int *BytesAdded) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "insertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "PPC branch conditions have two components!");
+ assert(!BytesAdded && "code size not handled");
+
+ bool isPPC64 = Subtarget.isPPC64();
+
+ // One-way branch.
+ if (!FBB) {
+ if (Cond.empty()) // Unconditional branch
+ BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
+ else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
+ BuildMI(&MBB, DL, get(Cond[0].getImm() ?
+ (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
+ (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
+ else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
+ BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
+ else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
+ BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
+ else // Conditional branch
+ BuildMI(&MBB, DL, get(PPC::BCC))
+ .addImm(Cond[0].getImm())
+ .add(Cond[1])
+ .addMBB(TBB);
+ return 1;
+ }
+
+ // Two-way Conditional Branch.
+ if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
+ BuildMI(&MBB, DL, get(Cond[0].getImm() ?
+ (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
+ (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
+ else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
+ BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
+ else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
+ BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
+ else
+ BuildMI(&MBB, DL, get(PPC::BCC))
+ .addImm(Cond[0].getImm())
+ .add(Cond[1])
+ .addMBB(TBB);
+ BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
+ return 2;
+}
+
+// Select analysis.
+bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
+ ArrayRef<MachineOperand> Cond,
+ unsigned TrueReg, unsigned FalseReg,
+ int &CondCycles, int &TrueCycles, int &FalseCycles) const {
+ if (Cond.size() != 2)
+ return false;
+
+ // If this is really a bdnz-like condition, then it cannot be turned into a
+ // select.
+ if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
+ return false;
+
+ // Check register classes.
+ const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *RC =
+ RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
+ if (!RC)
+ return false;
+
+ // isel is for regular integer GPRs only.
+ if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
+ !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
+ !PPC::G8RCRegClass.hasSubClassEq(RC) &&
+ !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
+ return false;
+
+ // FIXME: These numbers are for the A2, how well they work for other cores is
+ // an open question. On the A2, the isel instruction has a 2-cycle latency
+ // but single-cycle throughput. These numbers are used in combination with
+ // the MispredictPenalty setting from the active SchedMachineModel.
+ CondCycles = 1;
+ TrueCycles = 1;
+ FalseCycles = 1;
+
+ return true;
+}
+
+void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const DebugLoc &dl, unsigned DestReg,
+ ArrayRef<MachineOperand> Cond, unsigned TrueReg,
+ unsigned FalseReg) const {
+ assert(Cond.size() == 2 &&
+ "PPC branch conditions have two components!");
+
+ // Get the register classes.
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *RC =
+ RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
+ assert(RC && "TrueReg and FalseReg must have overlapping register classes");
+
+ bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
+ PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
+ assert((Is64Bit ||
+ PPC::GPRCRegClass.hasSubClassEq(RC) ||
+ PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
+ "isel is for regular integer GPRs only");
+
+ unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
+ auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
+
+ unsigned SubIdx = 0;
+ bool SwapOps = false;
+ switch (SelectPred) {
+ case PPC::PRED_EQ:
+ case PPC::PRED_EQ_MINUS:
+ case PPC::PRED_EQ_PLUS:
+ SubIdx = PPC::sub_eq; SwapOps = false; break;
+ case PPC::PRED_NE:
+ case PPC::PRED_NE_MINUS:
+ case PPC::PRED_NE_PLUS:
+ SubIdx = PPC::sub_eq; SwapOps = true; break;
+ case PPC::PRED_LT:
+ case PPC::PRED_LT_MINUS:
+ case PPC::PRED_LT_PLUS:
+ SubIdx = PPC::sub_lt; SwapOps = false; break;
+ case PPC::PRED_GE:
+ case PPC::PRED_GE_MINUS:
+ case PPC::PRED_GE_PLUS:
+ SubIdx = PPC::sub_lt; SwapOps = true; break;
+ case PPC::PRED_GT:
+ case PPC::PRED_GT_MINUS:
+ case PPC::PRED_GT_PLUS:
+ SubIdx = PPC::sub_gt; SwapOps = false; break;
+ case PPC::PRED_LE:
+ case PPC::PRED_LE_MINUS:
+ case PPC::PRED_LE_PLUS:
+ SubIdx = PPC::sub_gt; SwapOps = true; break;
+ case PPC::PRED_UN:
+ case PPC::PRED_UN_MINUS:
+ case PPC::PRED_UN_PLUS:
+ SubIdx = PPC::sub_un; SwapOps = false; break;
+ case PPC::PRED_NU:
+ case PPC::PRED_NU_MINUS:
+ case PPC::PRED_NU_PLUS:
+ SubIdx = PPC::sub_un; SwapOps = true; break;
+ case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
+ case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
+ }
+
+ unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
+ SecondReg = SwapOps ? TrueReg : FalseReg;
+
+ // The first input register of isel cannot be r0. If it is a member
+ // of a register class that can be r0, then copy it first (the
+ // register allocator should eliminate the copy).
+ if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
+ MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
+ const TargetRegisterClass *FirstRC =
+ MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
+ &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
+ unsigned OldFirstReg = FirstReg;
+ FirstReg = MRI.createVirtualRegister(FirstRC);
+ BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
+ .addReg(OldFirstReg);
+ }
+
+ BuildMI(MBB, MI, dl, get(OpCode), DestReg)
+ .addReg(FirstReg).addReg(SecondReg)
+ .addReg(Cond[1].getReg(), 0, SubIdx);
+}
+
+static unsigned getCRBitValue(unsigned CRBit) {
+ unsigned Ret = 4;
+ if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
+ CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
+ CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
+ CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
+ Ret = 3;
+ if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
+ CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
+ CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
+ CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
+ Ret = 2;
+ if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
+ CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
+ CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
+ CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
+ Ret = 1;
+ if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
+ CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
+ CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
+ CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
+ Ret = 0;
+
+ assert(Ret != 4 && "Invalid CR bit register");
+ return Ret;
+}
+
+void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ const DebugLoc &DL, unsigned DestReg,
+ unsigned SrcReg, bool KillSrc) const {
+ // We can end up with self copies and similar things as a result of VSX copy
+ // legalization. Promote them here.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ if (PPC::F8RCRegClass.contains(DestReg) &&
+ PPC::VSRCRegClass.contains(SrcReg)) {
+ unsigned SuperReg =
+ TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
+
+ if (VSXSelfCopyCrash && SrcReg == SuperReg)
+ llvm_unreachable("nop VSX copy");
+
+ DestReg = SuperReg;
+ } else if (PPC::F8RCRegClass.contains(SrcReg) &&
+ PPC::VSRCRegClass.contains(DestReg)) {
+ unsigned SuperReg =
+ TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
+
+ if (VSXSelfCopyCrash && DestReg == SuperReg)
+ llvm_unreachable("nop VSX copy");
+
+ SrcReg = SuperReg;
+ }
+
+ // Different class register copy
+ if (PPC::CRBITRCRegClass.contains(SrcReg) &&
+ PPC::GPRCRegClass.contains(DestReg)) {
+ unsigned CRReg = getCRFromCRBit(SrcReg);
+ BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
+ getKillRegState(KillSrc);
+ // Rotate the CR bit in the CR fields to be the least significant bit and
+ // then mask with 0x1 (MB = ME = 31).
+ BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
+ .addReg(DestReg, RegState::Kill)
+ .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
+ .addImm(31)
+ .addImm(31);
+ return;
+ } else if (PPC::CRRCRegClass.contains(SrcReg) &&
+ PPC::G8RCRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
+ getKillRegState(KillSrc);
+ return;
+ } else if (PPC::CRRCRegClass.contains(SrcReg) &&
+ PPC::GPRCRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
+ getKillRegState(KillSrc);
+ return;
+ } else if (PPC::G8RCRegClass.contains(SrcReg) &&
+ PPC::VSFRCRegClass.contains(DestReg)) {
+ assert(Subtarget.hasDirectMove() &&
+ "Subtarget doesn't support directmove, don't know how to copy.");
+ BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
+ NumGPRtoVSRSpill++;
+ getKillRegState(KillSrc);
+ return;
+ } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
+ PPC::G8RCRegClass.contains(DestReg)) {
+ assert(Subtarget.hasDirectMove() &&
+ "Subtarget doesn't support directmove, don't know how to copy.");
+ BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
+ getKillRegState(KillSrc);
+ return;
+ } else if (PPC::SPERCRegClass.contains(SrcReg) &&
+ PPC::SPE4RCRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
+ getKillRegState(KillSrc);
+ return;
+ } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
+ PPC::SPERCRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
+ getKillRegState(KillSrc);
+ return;
+ }
+
+ unsigned Opc;
+ if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::OR;
+ else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::OR8;
+ else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::FMR;
+ else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::MCRF;
+ else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::VOR;
+ else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
+ // There are two different ways this can be done:
+ // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
+ // issue in VSU pipeline 0.
+ // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
+ // can go to either pipeline.
+ // We'll always use xxlor here, because in practically all cases where
+ // copies are generated, they are close enough to some use that the
+ // lower-latency form is preferable.
+ Opc = PPC::XXLOR;
+ else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
+ PPC::VSSRCRegClass.contains(DestReg, SrcReg))
+ Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
+ else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::QVFMR;
+ else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::QVFMRs;
+ else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::QVFMRb;
+ else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::CROR;
+ else if (PPC::SPE4RCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::OR;
+ else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::EVOR;
+ else
+ llvm_unreachable("Impossible reg-to-reg copy");
+
+ const MCInstrDesc &MCID = get(Opc);
+ if (MCID.getNumOperands() == 3)
+ BuildMI(MBB, I, DL, MCID, DestReg)
+ .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
+ else
+ BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
+}
+
+unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
+ const TargetRegisterClass *RC)
+ const {
+ const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
+ int OpcodeIndex = 0;
+
+ if (RC != nullptr) {
+ if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
+ PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_Int4Spill;
+ } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
+ PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_Int8Spill;
+ } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_Float8Spill;
+ } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_Float4Spill;
+ } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_SPESpill;
+ } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_SPE4Spill;
+ } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_CRSpill;
+ } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_CRBitSpill;
+ } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VRVectorSpill;
+ } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VSXVectorSpill;
+ } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VectorFloat8Spill;
+ } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VectorFloat4Spill;
+ } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VRSaveSpill;
+ } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_QuadFloat8Spill;
+ } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_QuadFloat4Spill;
+ } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_QuadBitSpill;
+ } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_SpillToVSR;
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+ } else {
+ if (PPC::GPRCRegClass.contains(Reg) ||
+ PPC::GPRC_NOR0RegClass.contains(Reg)) {
+ OpcodeIndex = SOK_Int4Spill;
+ } else if (PPC::G8RCRegClass.contains(Reg) ||
+ PPC::G8RC_NOX0RegClass.contains(Reg)) {
+ OpcodeIndex = SOK_Int8Spill;
+ } else if (PPC::F8RCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_Float8Spill;
+ } else if (PPC::F4RCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_Float4Spill;
+ } else if (PPC::SPERCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_SPESpill;
+ } else if (PPC::SPE4RCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_SPE4Spill;
+ } else if (PPC::CRRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_CRSpill;
+ } else if (PPC::CRBITRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_CRBitSpill;
+ } else if (PPC::VRRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VRVectorSpill;
+ } else if (PPC::VSRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VSXVectorSpill;
+ } else if (PPC::VSFRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VectorFloat8Spill;
+ } else if (PPC::VSSRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VectorFloat4Spill;
+ } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VRSaveSpill;
+ } else if (PPC::QFRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_QuadFloat8Spill;
+ } else if (PPC::QSRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_QuadFloat4Spill;
+ } else if (PPC::QBRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_QuadBitSpill;
+ } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_SpillToVSR;
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+ }
+ return OpcodesForSpill[OpcodeIndex];
+}
+
+unsigned
+PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
+ const TargetRegisterClass *RC) const {
+ const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
+ int OpcodeIndex = 0;
+
+ if (RC != nullptr) {
+ if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
+ PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_Int4Spill;
+ } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
+ PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_Int8Spill;
+ } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_Float8Spill;
+ } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_Float4Spill;
+ } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_SPESpill;
+ } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_SPE4Spill;
+ } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_CRSpill;
+ } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_CRBitSpill;
+ } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VRVectorSpill;
+ } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VSXVectorSpill;
+ } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VectorFloat8Spill;
+ } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VectorFloat4Spill;
+ } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_VRSaveSpill;
+ } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_QuadFloat8Spill;
+ } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_QuadFloat4Spill;
+ } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_QuadBitSpill;
+ } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
+ OpcodeIndex = SOK_SpillToVSR;
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+ } else {
+ if (PPC::GPRCRegClass.contains(Reg) ||
+ PPC::GPRC_NOR0RegClass.contains(Reg)) {
+ OpcodeIndex = SOK_Int4Spill;
+ } else if (PPC::G8RCRegClass.contains(Reg) ||
+ PPC::G8RC_NOX0RegClass.contains(Reg)) {
+ OpcodeIndex = SOK_Int8Spill;
+ } else if (PPC::F8RCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_Float8Spill;
+ } else if (PPC::F4RCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_Float4Spill;
+ } else if (PPC::SPERCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_SPESpill;
+ } else if (PPC::SPE4RCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_SPE4Spill;
+ } else if (PPC::CRRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_CRSpill;
+ } else if (PPC::CRBITRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_CRBitSpill;
+ } else if (PPC::VRRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VRVectorSpill;
+ } else if (PPC::VSRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VSXVectorSpill;
+ } else if (PPC::VSFRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VectorFloat8Spill;
+ } else if (PPC::VSSRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VectorFloat4Spill;
+ } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_VRSaveSpill;
+ } else if (PPC::QFRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_QuadFloat8Spill;
+ } else if (PPC::QSRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_QuadFloat4Spill;
+ } else if (PPC::QBRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_QuadBitSpill;
+ } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
+ OpcodeIndex = SOK_SpillToVSR;
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+ }
+ return OpcodesForSpill[OpcodeIndex];
+}
+
+void PPCInstrInfo::StoreRegToStackSlot(
+ MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr *> &NewMIs) const {
+ unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
+ DebugLoc DL;
+
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setHasSpills();
+
+ NewMIs.push_back(addFrameReference(
+ BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
+ FrameIdx));
+
+ if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
+ PPC::CRBITRCRegClass.hasSubClassEq(RC))
+ FuncInfo->setSpillsCR();
+
+ if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
+ FuncInfo->setSpillsVRSAVE();
+
+ if (isXFormMemOp(Opcode))
+ FuncInfo->setHasNonRISpills();
+}
+
+void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill,
+ int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ SmallVector<MachineInstr *, 4> NewMIs;
+
+ // We need to avoid a situation in which the value from a VRRC register is
+ // spilled using an Altivec instruction and reloaded into a VSRC register
+ // using a VSX instruction. The issue with this is that the VSX
+ // load/store instructions swap the doublewords in the vector and the Altivec
+ // ones don't. The register classes on the spill/reload may be different if
+ // the register is defined using an Altivec instruction and is then used by a
+ // VSX instruction.
+ RC = updatedRC(RC);
+
+ StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
+
+ for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
+ MBB.insert(MI, NewMIs[i]);
+
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(MF, FrameIdx),
+ MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
+ MFI.getObjectAlignment(FrameIdx));
+ NewMIs.back()->addMemOperand(MF, MMO);
+}
+
+void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr *> &NewMIs)
+ const {
+ unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
+ FrameIdx));
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
+ PPC::CRBITRCRegClass.hasSubClassEq(RC))
+ FuncInfo->setSpillsCR();
+
+ if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
+ FuncInfo->setSpillsVRSAVE();
+
+ if (isXFormMemOp(Opcode))
+ FuncInfo->setHasNonRISpills();
+}
+
+void
+PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ SmallVector<MachineInstr*, 4> NewMIs;
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setHasSpills();
+
+ // We need to avoid a situation in which the value from a VRRC register is
+ // spilled using an Altivec instruction and reloaded into a VSRC register
+ // using a VSX instruction. The issue with this is that the VSX
+ // load/store instructions swap the doublewords in the vector and the Altivec
+ // ones don't. The register classes on the spill/reload may be different if
+ // the register is defined using an Altivec instruction and is then used by a
+ // VSX instruction.
+ if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
+ RC = &PPC::VSRCRegClass;
+
+ LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
+
+ for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
+ MBB.insert(MI, NewMIs[i]);
+
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(MF, FrameIdx),
+ MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
+ MFI.getObjectAlignment(FrameIdx));
+ NewMIs.back()->addMemOperand(MF, MMO);
+}
+
+bool PPCInstrInfo::
+reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
+ if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
+ Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
+ else
+ // Leave the CR# the same, but invert the condition.
+ Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
+ return false;
+}
+
+bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
+ unsigned Reg, MachineRegisterInfo *MRI) const {
+ // For some instructions, it is legal to fold ZERO into the RA register field.
+ // A zero immediate should always be loaded with a single li.
+ unsigned DefOpc = DefMI.getOpcode();
+ if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
+ return false;
+ if (!DefMI.getOperand(1).isImm())
+ return false;
+ if (DefMI.getOperand(1).getImm() != 0)
+ return false;
+
+ // Note that we cannot here invert the arguments of an isel in order to fold
+ // a ZERO into what is presented as the second argument. All we have here
+ // is the condition bit, and that might come from a CR-logical bit operation.
+
+ const MCInstrDesc &UseMCID = UseMI.getDesc();
+
+ // Only fold into real machine instructions.
+ if (UseMCID.isPseudo())
+ return false;
+
+ unsigned UseIdx;
+ for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
+ if (UseMI.getOperand(UseIdx).isReg() &&
+ UseMI.getOperand(UseIdx).getReg() == Reg)
+ break;
+
+ assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
+ assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
+
+ const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
+
+ // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
+ // register (which might also be specified as a pointer class kind).
+ if (UseInfo->isLookupPtrRegClass()) {
+ if (UseInfo->RegClass /* Kind */ != 1)
+ return false;
+ } else {
+ if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
+ UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
+ return false;
+ }
+
+ // Make sure this is not tied to an output register (or otherwise
+ // constrained). This is true for ST?UX registers, for example, which
+ // are tied to their output registers.
+ if (UseInfo->Constraints != 0)
+ return false;
+
+ unsigned ZeroReg;
+ if (UseInfo->isLookupPtrRegClass()) {
+ bool isPPC64 = Subtarget.isPPC64();
+ ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
+ } else {
+ ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
+ PPC::ZERO8 : PPC::ZERO;
+ }
+
+ bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
+ UseMI.getOperand(UseIdx).setReg(ZeroReg);
+
+ if (DeleteDef)
+ DefMI.eraseFromParent();
+
+ return true;
+}
+
+static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
+ for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
+ I != IE; ++I)
+ if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
+ return true;
+ return false;
+}
+
+// We should make sure that, if we're going to predicate both sides of a
+// condition (a diamond), that both sides don't define the counter register. We
+// can predicate counter-decrement-based branches, but while that predicates
+// the branching, it does not predicate the counter decrement. If we tried to
+// merge the triangle into one predicated block, we'd decrement the counter
+// twice.
+bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumT, unsigned ExtraT,
+ MachineBasicBlock &FMBB,
+ unsigned NumF, unsigned ExtraF,
+ BranchProbability Probability) const {
+ return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
+}
+
+
+bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
+ // The predicated branches are identified by their type, not really by the
+ // explicit presence of a predicate. Furthermore, some of them can be
+ // predicated more than once. Because if conversion won't try to predicate
+ // any instruction which already claims to be predicated (by returning true
+ // here), always return false. In doing so, we let isPredicable() be the
+ // final word on whether not the instruction can be (further) predicated.
+
+ return false;
+}
+
+bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
+ if (!MI.isTerminator())
+ return false;
+
+ // Conditional branch is a special case.
+ if (MI.isBranch() && !MI.isBarrier())
+ return true;
+
+ return !isPredicated(MI);
+}
+
+bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
+ ArrayRef<MachineOperand> Pred) const {
+ unsigned OpC = MI.getOpcode();
+ if (OpC == PPC::BLR || OpC == PPC::BLR8) {
+ if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
+ bool isPPC64 = Subtarget.isPPC64();
+ MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
+ : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
+ MI.setDesc(get(PPC::BCLR));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
+ MI.setDesc(get(PPC::BCLRn));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
+ } else {
+ MI.setDesc(get(PPC::BCCLR));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .add(Pred[1]);
+ }
+
+ return true;
+ } else if (OpC == PPC::B) {
+ if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
+ bool isPPC64 = Subtarget.isPPC64();
+ MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
+ : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
+ MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
+ MI.RemoveOperand(0);
+
+ MI.setDesc(get(PPC::BC));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .add(Pred[1])
+ .addMBB(MBB);
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
+ MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
+ MI.RemoveOperand(0);
+
+ MI.setDesc(get(PPC::BCn));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .add(Pred[1])
+ .addMBB(MBB);
+ } else {
+ MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
+ MI.RemoveOperand(0);
+
+ MI.setDesc(get(PPC::BCC));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .add(Pred[1])
+ .addMBB(MBB);
+ }
+
+ return true;
+ } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
+ OpC == PPC::BCTRL8) {
+ if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
+ llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
+
+ bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
+ bool isPPC64 = Subtarget.isPPC64();
+
+ if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
+ MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
+ : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
+ return true;
+ } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
+ MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
+ : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
+ return true;
+ }
+
+ MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
+ : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .add(Pred[1]);
+ return true;
+ }
+
+ return false;
+}
+
+bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
+ ArrayRef<MachineOperand> Pred2) const {
+ assert(Pred1.size() == 2 && "Invalid PPC first predicate");
+ assert(Pred2.size() == 2 && "Invalid PPC second predicate");
+
+ if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
+ return false;
+ if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
+ return false;
+
+ // P1 can only subsume P2 if they test the same condition register.
+ if (Pred1[1].getReg() != Pred2[1].getReg())
+ return false;
+
+ PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
+ PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
+
+ if (P1 == P2)
+ return true;
+
+ // Does P1 subsume P2, e.g. GE subsumes GT.
+ if (P1 == PPC::PRED_LE &&
+ (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
+ return true;
+ if (P1 == PPC::PRED_GE &&
+ (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
+ return true;
+
+ return false;
+}
+
+bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
+ std::vector<MachineOperand> &Pred) const {
+ // Note: At the present time, the contents of Pred from this function is
+ // unused by IfConversion. This implementation follows ARM by pushing the
+ // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
+ // predicate, instructions defining CTR or CTR8 are also included as
+ // predicate-defining instructions.
+
+ const TargetRegisterClass *RCs[] =
+ { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
+ &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
+
+ bool Found = false;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
+ const TargetRegisterClass *RC = RCs[c];
+ if (MO.isReg()) {
+ if (MO.isDef() && RC->contains(MO.getReg())) {
+ Pred.push_back(MO);
+ Found = true;
+ }
+ } else if (MO.isRegMask()) {
+ for (TargetRegisterClass::iterator I = RC->begin(),
+ IE = RC->end(); I != IE; ++I)
+ if (MO.clobbersPhysReg(*I)) {
+ Pred.push_back(MO);
+ Found = true;
+ }
+ }
+ }
+ }
+
+ return Found;
+}
+
+bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
+ unsigned OpC = MI.getOpcode();
+ switch (OpC) {
+ default:
+ return false;
+ case PPC::B:
+ case PPC::BLR:
+ case PPC::BLR8:
+ case PPC::BCTR:
+ case PPC::BCTR8:
+ case PPC::BCTRL:
+ case PPC::BCTRL8:
+ return true;
+ }
+}
+
+bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
+ unsigned &SrcReg2, int &Mask,
+ int &Value) const {
+ unsigned Opc = MI.getOpcode();
+
+ switch (Opc) {
+ default: return false;
+ case PPC::CMPWI:
+ case PPC::CMPLWI:
+ case PPC::CMPDI:
+ case PPC::CMPLDI:
+ SrcReg = MI.getOperand(1).getReg();
+ SrcReg2 = 0;
+ Value = MI.getOperand(2).getImm();
+ Mask = 0xFFFF;
+ return true;
+ case PPC::CMPW:
+ case PPC::CMPLW:
+ case PPC::CMPD:
+ case PPC::CMPLD:
+ case PPC::FCMPUS:
+ case PPC::FCMPUD:
+ SrcReg = MI.getOperand(1).getReg();
+ SrcReg2 = MI.getOperand(2).getReg();
+ Value = 0;
+ Mask = 0;
+ return true;
+ }
+}
+
+bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
+ unsigned SrcReg2, int Mask, int Value,
+ const MachineRegisterInfo *MRI) const {
+ if (DisableCmpOpt)
+ return false;
+
+ int OpC = CmpInstr.getOpcode();
+ unsigned CRReg = CmpInstr.getOperand(0).getReg();
+
+ // FP record forms set CR1 based on the exception status bits, not a
+ // comparison with zero.
+ if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
+ return false;
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ // The record forms set the condition register based on a signed comparison
+ // with zero (so says the ISA manual). This is not as straightforward as it
+ // seems, however, because this is always a 64-bit comparison on PPC64, even
+ // for instructions that are 32-bit in nature (like slw for example).
+ // So, on PPC32, for unsigned comparisons, we can use the record forms only
+ // for equality checks (as those don't depend on the sign). On PPC64,
+ // we are restricted to equality for unsigned 64-bit comparisons and for
+ // signed 32-bit comparisons the applicability is more restricted.
+ bool isPPC64 = Subtarget.isPPC64();
+ bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
+ bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
+ bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
+
+ // Look through copies unless that gets us to a physical register.
+ unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
+ if (TargetRegisterInfo::isVirtualRegister(ActualSrc))
+ SrcReg = ActualSrc;
+
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI) return false;
+
+ bool equalityOnly = false;
+ bool noSub = false;
+ if (isPPC64) {
+ if (is32BitSignedCompare) {
+ // We can perform this optimization only if MI is sign-extending.
+ if (isSignExtended(*MI))
+ noSub = true;
+ else
+ return false;
+ } else if (is32BitUnsignedCompare) {
+ // We can perform this optimization, equality only, if MI is
+ // zero-extending.
+ if (isZeroExtended(*MI)) {
+ noSub = true;
+ equalityOnly = true;
+ } else
+ return false;
+ } else
+ equalityOnly = is64BitUnsignedCompare;
+ } else
+ equalityOnly = is32BitUnsignedCompare;
+
+ if (equalityOnly) {
+ // We need to check the uses of the condition register in order to reject
+ // non-equality comparisons.
+ for (MachineRegisterInfo::use_instr_iterator
+ I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
+ I != IE; ++I) {
+ MachineInstr *UseMI = &*I;
+ if (UseMI->getOpcode() == PPC::BCC) {
+ PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
+ unsigned PredCond = PPC::getPredicateCondition(Pred);
+ // We ignore hint bits when checking for non-equality comparisons.
+ if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
+ return false;
+ } else if (UseMI->getOpcode() == PPC::ISEL ||
+ UseMI->getOpcode() == PPC::ISEL8) {
+ unsigned SubIdx = UseMI->getOperand(3).getSubReg();
+ if (SubIdx != PPC::sub_eq)
+ return false;
+ } else
+ return false;
+ }
+ }
+
+ MachineBasicBlock::iterator I = CmpInstr;
+
+ // Scan forward to find the first use of the compare.
+ for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
+ ++I) {
+ bool FoundUse = false;
+ for (MachineRegisterInfo::use_instr_iterator
+ J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
+ J != JE; ++J)
+ if (&*J == &*I) {
+ FoundUse = true;
+ break;
+ }
+
+ if (FoundUse)
+ break;
+ }
+
+ SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
+ SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
+
+ // There are two possible candidates which can be changed to set CR[01].
+ // One is MI, the other is a SUB instruction.
+ // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
+ MachineInstr *Sub = nullptr;
+ if (SrcReg2 != 0)
+ // MI is not a candidate for CMPrr.
+ MI = nullptr;
+ // FIXME: Conservatively refuse to convert an instruction which isn't in the
+ // same BB as the comparison. This is to allow the check below to avoid calls
+ // (and other explicit clobbers); instead we should really check for these
+ // more explicitly (in at least a few predecessors).
+ else if (MI->getParent() != CmpInstr.getParent())
+ return false;
+ else if (Value != 0) {
+ // The record-form instructions set CR bit based on signed comparison
+ // against 0. We try to convert a compare against 1 or -1 into a compare
+ // against 0 to exploit record-form instructions. For example, we change
+ // the condition "greater than -1" into "greater than or equal to 0"
+ // and "less than 1" into "less than or equal to 0".
+
+ // Since we optimize comparison based on a specific branch condition,
+ // we don't optimize if condition code is used by more than once.
+ if (equalityOnly || !MRI->hasOneUse(CRReg))
+ return false;
+
+ MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
+ if (UseMI->getOpcode() != PPC::BCC)
+ return false;
+
+ PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
+ unsigned PredCond = PPC::getPredicateCondition(Pred);
+ unsigned PredHint = PPC::getPredicateHint(Pred);
+ int16_t Immed = (int16_t)Value;
+
+ // When modifying the condition in the predicate, we propagate hint bits
+ // from the original predicate to the new one.
+ if (Immed == -1 && PredCond == PPC::PRED_GT)
+ // We convert "greater than -1" into "greater than or equal to 0",
+ // since we are assuming signed comparison by !equalityOnly
+ Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
+ else if (Immed == -1 && PredCond == PPC::PRED_LE)
+ // We convert "less than or equal to -1" into "less than 0".
+ Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
+ else if (Immed == 1 && PredCond == PPC::PRED_LT)
+ // We convert "less than 1" into "less than or equal to 0".
+ Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
+ else if (Immed == 1 && PredCond == PPC::PRED_GE)
+ // We convert "greater than or equal to 1" into "greater than 0".
+ Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
+ else
+ return false;
+
+ PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
+ }
+
+ // Search for Sub.
+ --I;
+
+ // Get ready to iterate backward from CmpInstr.
+ MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
+
+ for (; I != E && !noSub; --I) {
+ const MachineInstr &Instr = *I;
+ unsigned IOpC = Instr.getOpcode();
+
+ if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
+ Instr.readsRegister(PPC::CR0, TRI)))
+ // This instruction modifies or uses the record condition register after
+ // the one we want to change. While we could do this transformation, it
+ // would likely not be profitable. This transformation removes one
+ // instruction, and so even forcing RA to generate one move probably
+ // makes it unprofitable.
+ return false;
+
+ // Check whether CmpInstr can be made redundant by the current instruction.
+ if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
+ OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
+ (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
+ ((Instr.getOperand(1).getReg() == SrcReg &&
+ Instr.getOperand(2).getReg() == SrcReg2) ||
+ (Instr.getOperand(1).getReg() == SrcReg2 &&
+ Instr.getOperand(2).getReg() == SrcReg))) {
+ Sub = &*I;
+ break;
+ }
+
+ if (I == B)
+ // The 'and' is below the comparison instruction.
+ return false;
+ }
+
+ // Return false if no candidates exist.
+ if (!MI && !Sub)
+ return false;
+
+ // The single candidate is called MI.
+ if (!MI) MI = Sub;
+
+ int NewOpC = -1;
+ int MIOpC = MI->getOpcode();
+ if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
+ MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
+ NewOpC = MIOpC;
+ else {
+ NewOpC = PPC::getRecordFormOpcode(MIOpC);
+ if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
+ NewOpC = MIOpC;
+ }
+
+ // FIXME: On the non-embedded POWER architectures, only some of the record
+ // forms are fast, and we should use only the fast ones.
+
+ // The defining instruction has a record form (or is already a record
+ // form). It is possible, however, that we'll need to reverse the condition
+ // code of the users.
+ if (NewOpC == -1)
+ return false;
+
+ // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
+ // needs to be updated to be based on SUB. Push the condition code
+ // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
+ // condition code of these operands will be modified.
+ // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
+ // comparison against 0, which may modify predicate.
+ bool ShouldSwap = false;
+ if (Sub && Value == 0) {
+ ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
+ Sub->getOperand(2).getReg() == SrcReg;
+
+ // The operands to subf are the opposite of sub, so only in the fixed-point
+ // case, invert the order.
+ ShouldSwap = !ShouldSwap;
+ }
+
+ if (ShouldSwap)
+ for (MachineRegisterInfo::use_instr_iterator
+ I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
+ I != IE; ++I) {
+ MachineInstr *UseMI = &*I;
+ if (UseMI->getOpcode() == PPC::BCC) {
+ PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
+ unsigned PredCond = PPC::getPredicateCondition(Pred);
+ assert((!equalityOnly ||
+ PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
+ "Invalid predicate for equality-only optimization");
+ (void)PredCond; // To suppress warning in release build.
+ PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
+ PPC::getSwappedPredicate(Pred)));
+ } else if (UseMI->getOpcode() == PPC::ISEL ||
+ UseMI->getOpcode() == PPC::ISEL8) {
+ unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
+ assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
+ "Invalid CR bit for equality-only optimization");
+
+ if (NewSubReg == PPC::sub_lt)
+ NewSubReg = PPC::sub_gt;
+ else if (NewSubReg == PPC::sub_gt)
+ NewSubReg = PPC::sub_lt;
+
+ SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
+ NewSubReg));
+ } else // We need to abort on a user we don't understand.
+ return false;
+ }
+ assert(!(Value != 0 && ShouldSwap) &&
+ "Non-zero immediate support and ShouldSwap"
+ "may conflict in updating predicate");
+
+ // Create a new virtual register to hold the value of the CR set by the
+ // record-form instruction. If the instruction was not previously in
+ // record form, then set the kill flag on the CR.
+ CmpInstr.eraseFromParent();
+
+ MachineBasicBlock::iterator MII = MI;
+ BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
+ get(TargetOpcode::COPY), CRReg)
+ .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
+
+ // Even if CR0 register were dead before, it is alive now since the
+ // instruction we just built uses it.
+ MI->clearRegisterDeads(PPC::CR0);
+
+ if (MIOpC != NewOpC) {
+ // We need to be careful here: we're replacing one instruction with
+ // another, and we need to make sure that we get all of the right
+ // implicit uses and defs. On the other hand, the caller may be holding
+ // an iterator to this instruction, and so we can't delete it (this is
+ // specifically the case if this is the instruction directly after the
+ // compare).
+
+ // Rotates are expensive instructions. If we're emitting a record-form
+ // rotate that can just be an andi/andis, we should just emit that.
+ if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
+ unsigned GPRRes = MI->getOperand(0).getReg();
+ int64_t SH = MI->getOperand(2).getImm();
+ int64_t MB = MI->getOperand(3).getImm();
+ int64_t ME = MI->getOperand(4).getImm();
+ // We can only do this if both the start and end of the mask are in the
+ // same halfword.
+ bool MBInLoHWord = MB >= 16;
+ bool MEInLoHWord = ME >= 16;
+ uint64_t Mask = ~0LLU;
+
+ if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
+ Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
+ // The mask value needs to shift right 16 if we're emitting andis.
+ Mask >>= MBInLoHWord ? 0 : 16;
+ NewOpC = MIOpC == PPC::RLWINM ?
+ (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
+ (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
+ } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
+ (ME - MB + 1 == SH) && (MB >= 16)) {
+ // If we are rotating by the exact number of bits as are in the mask
+ // and the mask is in the least significant bits of the register,
+ // that's just an andis. (as long as the GPR result has no uses).
+ Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
+ Mask >>= 16;
+ NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
+ }
+ // If we've set the mask, we can transform.
+ if (Mask != ~0LLU) {
+ MI->RemoveOperand(4);
+ MI->RemoveOperand(3);
+ MI->getOperand(2).setImm(Mask);
+ NumRcRotatesConvertedToRcAnd++;
+ }
+ } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
+ int64_t MB = MI->getOperand(3).getImm();
+ if (MB >= 48) {
+ uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
+ NewOpC = PPC::ANDIo8;
+ MI->RemoveOperand(3);
+ MI->getOperand(2).setImm(Mask);
+ NumRcRotatesConvertedToRcAnd++;
+ }
+ }
+
+ const MCInstrDesc &NewDesc = get(NewOpC);
+ MI->setDesc(NewDesc);
+
+ if (NewDesc.ImplicitDefs)
+ for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
+ *ImpDefs; ++ImpDefs)
+ if (!MI->definesRegister(*ImpDefs))
+ MI->addOperand(*MI->getParent()->getParent(),
+ MachineOperand::CreateReg(*ImpDefs, true, true));
+ if (NewDesc.ImplicitUses)
+ for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
+ *ImpUses; ++ImpUses)
+ if (!MI->readsRegister(*ImpUses))
+ MI->addOperand(*MI->getParent()->getParent(),
+ MachineOperand::CreateReg(*ImpUses, false, true));
+ }
+ assert(MI->definesRegister(PPC::CR0) &&
+ "Record-form instruction does not define cr0?");
+
+ // Modify the condition code of operands in OperandsToUpdate.
+ // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
+ // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
+ for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
+ PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
+
+ for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
+ SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
+
+ return true;
+}
+
+/// GetInstSize - Return the number of bytes of code the specified
+/// instruction may be. This returns the maximum number of bytes.
+///
+unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
+ unsigned Opcode = MI.getOpcode();
+
+ if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
+ const MachineFunction *MF = MI.getParent()->getParent();
+ const char *AsmStr = MI.getOperand(0).getSymbolName();
+ return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
+ } else if (Opcode == TargetOpcode::STACKMAP) {
+ StackMapOpers Opers(&MI);
+ return Opers.getNumPatchBytes();
+ } else if (Opcode == TargetOpcode::PATCHPOINT) {
+ PatchPointOpers Opers(&MI);
+ return Opers.getNumPatchBytes();
+ } else {
+ return get(Opcode).getSize();
+ }
+}
+
+std::pair<unsigned, unsigned>
+PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
+ const unsigned Mask = PPCII::MO_ACCESS_MASK;
+ return std::make_pair(TF & Mask, TF & ~Mask);
+}
+
+ArrayRef<std::pair<unsigned, const char *>>
+PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
+ using namespace PPCII;
+ static const std::pair<unsigned, const char *> TargetFlags[] = {
+ {MO_LO, "ppc-lo"},
+ {MO_HA, "ppc-ha"},
+ {MO_TPREL_LO, "ppc-tprel-lo"},
+ {MO_TPREL_HA, "ppc-tprel-ha"},
+ {MO_DTPREL_LO, "ppc-dtprel-lo"},
+ {MO_TLSLD_LO, "ppc-tlsld-lo"},
+ {MO_TOC_LO, "ppc-toc-lo"},
+ {MO_TLS, "ppc-tls"}};
+ return makeArrayRef(TargetFlags);
+}
+
+ArrayRef<std::pair<unsigned, const char *>>
+PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
+ using namespace PPCII;
+ static const std::pair<unsigned, const char *> TargetFlags[] = {
+ {MO_PLT, "ppc-plt"},
+ {MO_PIC_FLAG, "ppc-pic"},
+ {MO_NLP_FLAG, "ppc-nlp"},
+ {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
+ return makeArrayRef(TargetFlags);
+}
+
+// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
+// The VSX versions have the advantage of a full 64-register target whereas
+// the FP ones have the advantage of lower latency and higher throughput. So
+// what we are after is using the faster instructions in low register pressure
+// situations and using the larger register file in high register pressure
+// situations.
+bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
+ unsigned UpperOpcode, LowerOpcode;
+ switch (MI.getOpcode()) {
+ case PPC::DFLOADf32:
+ UpperOpcode = PPC::LXSSP;
+ LowerOpcode = PPC::LFS;
+ break;
+ case PPC::DFLOADf64:
+ UpperOpcode = PPC::LXSD;
+ LowerOpcode = PPC::LFD;
+ break;
+ case PPC::DFSTOREf32:
+ UpperOpcode = PPC::STXSSP;
+ LowerOpcode = PPC::STFS;
+ break;
+ case PPC::DFSTOREf64:
+ UpperOpcode = PPC::STXSD;
+ LowerOpcode = PPC::STFD;
+ break;
+ case PPC::XFLOADf32:
+ UpperOpcode = PPC::LXSSPX;
+ LowerOpcode = PPC::LFSX;
+ break;
+ case PPC::XFLOADf64:
+ UpperOpcode = PPC::LXSDX;
+ LowerOpcode = PPC::LFDX;
+ break;
+ case PPC::XFSTOREf32:
+ UpperOpcode = PPC::STXSSPX;
+ LowerOpcode = PPC::STFSX;
+ break;
+ case PPC::XFSTOREf64:
+ UpperOpcode = PPC::STXSDX;
+ LowerOpcode = PPC::STFDX;
+ break;
+ case PPC::LIWAX:
+ UpperOpcode = PPC::LXSIWAX;
+ LowerOpcode = PPC::LFIWAX;
+ break;
+ case PPC::LIWZX:
+ UpperOpcode = PPC::LXSIWZX;
+ LowerOpcode = PPC::LFIWZX;
+ break;
+ case PPC::STIWX:
+ UpperOpcode = PPC::STXSIWX;
+ LowerOpcode = PPC::STFIWX;
+ break;
+ default:
+ llvm_unreachable("Unknown Operation!");
+ }
+
+ unsigned TargetReg = MI.getOperand(0).getReg();
+ unsigned Opcode;
+ if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
+ (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
+ Opcode = LowerOpcode;
+ else
+ Opcode = UpperOpcode;
+ MI.setDesc(get(Opcode));
+ return true;
+}
+
+static bool isAnImmediateOperand(const MachineOperand &MO) {
+ return MO.isCPI() || MO.isGlobal() || MO.isImm();
+}
+
+bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
+ auto &MBB = *MI.getParent();
+ auto DL = MI.getDebugLoc();
+
+ switch (MI.getOpcode()) {
+ case TargetOpcode::LOAD_STACK_GUARD: {
+ assert(Subtarget.isTargetLinux() &&
+ "Only Linux target is expected to contain LOAD_STACK_GUARD");
+ const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
+ const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
+ MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .addImm(Offset)
+ .addReg(Reg);
+ return true;
+ }
+ case PPC::DFLOADf32:
+ case PPC::DFLOADf64:
+ case PPC::DFSTOREf32:
+ case PPC::DFSTOREf64: {
+ assert(Subtarget.hasP9Vector() &&
+ "Invalid D-Form Pseudo-ops on Pre-P9 target.");
+ assert(MI.getOperand(2).isReg() &&
+ isAnImmediateOperand(MI.getOperand(1)) &&
+ "D-form op must have register and immediate operands");
+ return expandVSXMemPseudo(MI);
+ }
+ case PPC::XFLOADf32:
+ case PPC::XFSTOREf32:
+ case PPC::LIWAX:
+ case PPC::LIWZX:
+ case PPC::STIWX: {
+ assert(Subtarget.hasP8Vector() &&
+ "Invalid X-Form Pseudo-ops on Pre-P8 target.");
+ assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
+ "X-form op must have register and register operands");
+ return expandVSXMemPseudo(MI);
+ }
+ case PPC::XFLOADf64:
+ case PPC::XFSTOREf64: {
+ assert(Subtarget.hasVSX() &&
+ "Invalid X-Form Pseudo-ops on target that has no VSX.");
+ assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
+ "X-form op must have register and register operands");
+ return expandVSXMemPseudo(MI);
+ }
+ case PPC::SPILLTOVSR_LD: {
+ unsigned TargetReg = MI.getOperand(0).getReg();
+ if (PPC::VSFRCRegClass.contains(TargetReg)) {
+ MI.setDesc(get(PPC::DFLOADf64));
+ return expandPostRAPseudo(MI);
+ }
+ else
+ MI.setDesc(get(PPC::LD));
+ return true;
+ }
+ case PPC::SPILLTOVSR_ST: {
+ unsigned SrcReg = MI.getOperand(0).getReg();
+ if (PPC::VSFRCRegClass.contains(SrcReg)) {
+ NumStoreSPILLVSRRCAsVec++;
+ MI.setDesc(get(PPC::DFSTOREf64));
+ return expandPostRAPseudo(MI);
+ } else {
+ NumStoreSPILLVSRRCAsGpr++;
+ MI.setDesc(get(PPC::STD));
+ }
+ return true;
+ }
+ case PPC::SPILLTOVSR_LDX: {
+ unsigned TargetReg = MI.getOperand(0).getReg();
+ if (PPC::VSFRCRegClass.contains(TargetReg))
+ MI.setDesc(get(PPC::LXSDX));
+ else
+ MI.setDesc(get(PPC::LDX));
+ return true;
+ }
+ case PPC::SPILLTOVSR_STX: {
+ unsigned SrcReg = MI.getOperand(0).getReg();
+ if (PPC::VSFRCRegClass.contains(SrcReg)) {
+ NumStoreSPILLVSRRCAsVec++;
+ MI.setDesc(get(PPC::STXSDX));
+ } else {
+ NumStoreSPILLVSRRCAsGpr++;
+ MI.setDesc(get(PPC::STDX));
+ }
+ return true;
+ }
+
+ case PPC::CFENCE8: {
+ auto Val = MI.getOperand(0).getReg();
+ BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
+ BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
+ .addImm(PPC::PRED_NE_MINUS)
+ .addReg(PPC::CR7)
+ .addImm(1);
+ MI.setDesc(get(PPC::ISYNC));
+ MI.RemoveOperand(0);
+ return true;
+ }
+ }
+ return false;
+}
+
+// Essentially a compile-time implementation of a compare->isel sequence.
+// It takes two constants to compare, along with the true/false registers
+// and the comparison type (as a subreg to a CR field) and returns one
+// of the true/false registers, depending on the comparison results.
+static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
+ unsigned TrueReg, unsigned FalseReg,
+ unsigned CRSubReg) {
+ // Signed comparisons. The immediates are assumed to be sign-extended.
+ if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
+ switch (CRSubReg) {
+ default: llvm_unreachable("Unknown integer comparison type.");
+ case PPC::sub_lt:
+ return Imm1 < Imm2 ? TrueReg : FalseReg;
+ case PPC::sub_gt:
+ return Imm1 > Imm2 ? TrueReg : FalseReg;
+ case PPC::sub_eq:
+ return Imm1 == Imm2 ? TrueReg : FalseReg;
+ }
+ }
+ // Unsigned comparisons.
+ else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
+ switch (CRSubReg) {
+ default: llvm_unreachable("Unknown integer comparison type.");
+ case PPC::sub_lt:
+ return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
+ case PPC::sub_gt:
+ return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
+ case PPC::sub_eq:
+ return Imm1 == Imm2 ? TrueReg : FalseReg;
+ }
+ }
+ return PPC::NoRegister;
+}
+
+void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
+ unsigned OpNo,
+ int64_t Imm) const {
+ assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
+ // Replace the REG with the Immediate.
+ unsigned InUseReg = MI.getOperand(OpNo).getReg();
+ MI.getOperand(OpNo).ChangeToImmediate(Imm);
+
+ if (empty(MI.implicit_operands()))
+ return;
+
+ // We need to make sure that the MI didn't have any implicit use
+ // of this REG any more.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
+ if (UseOpIdx >= 0) {
+ MachineOperand &MO = MI.getOperand(UseOpIdx);
+ if (MO.isImplicit())
+ // The operands must always be in the following order:
+ // - explicit reg defs,
+ // - other explicit operands (reg uses, immediates, etc.),
+ // - implicit reg defs
+ // - implicit reg uses
+ // Therefore, removing the implicit operand won't change the explicit
+ // operands layout.
+ MI.RemoveOperand(UseOpIdx);
+ }
+}
+
+// Replace an instruction with one that materializes a constant (and sets
+// CR0 if the original instruction was a record-form instruction).
+void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
+ const LoadImmediateInfo &LII) const {
+ // Remove existing operands.
+ int OperandToKeep = LII.SetCR ? 1 : 0;
+ for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
+ MI.RemoveOperand(i);
+
+ // Replace the instruction.
+ if (LII.SetCR) {
+ MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
+ // Set the immediate.
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
+ return;
+ }
+ else
+ MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
+
+ // Set the immediate.
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .addImm(LII.Imm);
+}
+
+MachineInstr *PPCInstrInfo::getForwardingDefMI(
+ MachineInstr &MI,
+ unsigned &OpNoForForwarding,
+ bool &SeenIntermediateUse) const {
+ OpNoForForwarding = ~0U;
+ MachineInstr *DefMI = nullptr;
+ MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ // If we're in SSA, get the defs through the MRI. Otherwise, only look
+ // within the basic block to see if the register is defined using an LI/LI8.
+ if (MRI->isSSA()) {
+ for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
+ if (!MI.getOperand(i).isReg())
+ continue;
+ unsigned Reg = MI.getOperand(i).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
+ if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
+ DefMI = MRI->getVRegDef(TrueReg);
+ if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
+ OpNoForForwarding = i;
+ break;
+ }
+ }
+ }
+ } else {
+ // Looking back through the definition for each operand could be expensive,
+ // so exit early if this isn't an instruction that either has an immediate
+ // form or is already an immediate form that we can handle.
+ ImmInstrInfo III;
+ unsigned Opc = MI.getOpcode();
+ bool ConvertibleImmForm =
+ Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
+ Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
+ Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
+ Opc == PPC::ORI || Opc == PPC::ORI8 ||
+ Opc == PPC::XORI || Opc == PPC::XORI8 ||
+ Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
+ Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
+ Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
+ Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
+ if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm)
+ return nullptr;
+
+ // Don't convert or %X, %Y, %Y since that's just a register move.
+ if ((Opc == PPC::OR || Opc == PPC::OR8) &&
+ MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
+ return nullptr;
+ for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
+ MachineOperand &MO = MI.getOperand(i);
+ SeenIntermediateUse = false;
+ if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
+ MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
+ It++;
+ unsigned Reg = MI.getOperand(i).getReg();
+
+ // Is this register defined by some form of add-immediate (including
+ // load-immediate) within this basic block?
+ for ( ; It != E; ++It) {
+ if (It->modifiesRegister(Reg, &getRegisterInfo())) {
+ switch (It->getOpcode()) {
+ default: break;
+ case PPC::LI:
+ case PPC::LI8:
+ case PPC::ADDItocL:
+ case PPC::ADDI:
+ case PPC::ADDI8:
+ OpNoForForwarding = i;
+ return &*It;
+ }
+ break;
+ } else if (It->readsRegister(Reg, &getRegisterInfo()))
+ // If we see another use of this reg between the def and the MI,
+ // we want to flat it so the def isn't deleted.
+ SeenIntermediateUse = true;
+ }
+ }
+ }
+ }
+ return OpNoForForwarding == ~0U ? nullptr : DefMI;
+}
+
+const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
+ static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
+ // Power 8
+ {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
+ PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
+ PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
+ PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
+ // Power 9
+ {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
+ PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
+ PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
+ PPC::SPILLTOVSR_ST}};
+
+ return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
+}
+
+const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
+ static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
+ // Power 8
+ {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
+ PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
+ PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
+ PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
+ // Power 9
+ {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
+ PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
+ PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
+ PPC::SPILLTOVSR_LD}};
+
+ return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
+}
+
+void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
+ unsigned RegNo) const {
+ const MachineRegisterInfo &MRI =
+ StartMI.getParent()->getParent()->getRegInfo();
+ if (MRI.isSSA())
+ return;
+
+ // Instructions between [StartMI, EndMI] should be in same basic block.
+ assert((StartMI.getParent() == EndMI.getParent()) &&
+ "Instructions are not in same basic block");
+
+ bool IsKillSet = false;
+
+ auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
+ MachineOperand &MO = MI.getOperand(Index);
+ if (MO.isReg() && MO.isUse() && MO.isKill() &&
+ getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
+ MO.setIsKill(false);
+ };
+
+ // Set killed flag for EndMI.
+ // No need to do anything if EndMI defines RegNo.
+ int UseIndex =
+ EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
+ if (UseIndex != -1) {
+ EndMI.getOperand(UseIndex).setIsKill(true);
+ IsKillSet = true;
+ // Clear killed flag for other EndMI operands related to RegNo. In some
+ // upexpected cases, killed may be set multiple times for same register
+ // operand in same MI.
+ for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
+ if (i != UseIndex)
+ clearOperandKillInfo(EndMI, i);
+ }
+
+ // Walking the inst in reverse order (EndMI -> StartMI].
+ MachineBasicBlock::reverse_iterator It = EndMI;
+ MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
+ // EndMI has been handled above, skip it here.
+ It++;
+ MachineOperand *MO = nullptr;
+ for (; It != E; ++It) {
+ // Skip insturctions which could not be a def/use of RegNo.
+ if (It->isDebugInstr() || It->isPosition())
+ continue;
+
+ // Clear killed flag for all It operands related to RegNo. In some
+ // upexpected cases, killed may be set multiple times for same register
+ // operand in same MI.
+ for (int i = 0, e = It->getNumOperands(); i != e; ++i)
+ clearOperandKillInfo(*It, i);
+
+ // If killed is not set, set killed for its last use or set dead for its def
+ // if no use found.
+ if (!IsKillSet) {
+ if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
+ // Use found, set it killed.
+ IsKillSet = true;
+ MO->setIsKill(true);
+ continue;
+ } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
+ &getRegisterInfo()))) {
+ // No use found, set dead for its def.
+ assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
+ MO->setIsDead(true);
+ break;
+ }
+ }
+
+ if ((&*It) == &StartMI)
+ break;
+ }
+ // Ensure RegMo liveness is killed after EndMI.
+ assert((IsKillSet || (MO && MO->isDead())) &&
+ "RegNo should be killed or dead");
+}
+
+// If this instruction has an immediate form and one of its operands is a
+// result of a load-immediate or an add-immediate, convert it to
+// the immediate form if the constant is in range.
+bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
+ MachineInstr **KilledDef) const {
+ MachineFunction *MF = MI.getParent()->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ bool PostRA = !MRI->isSSA();
+ bool SeenIntermediateUse = true;
+ unsigned ForwardingOperand = ~0U;
+ MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
+ SeenIntermediateUse);
+ if (!DefMI)
+ return false;
+ assert(ForwardingOperand < MI.getNumOperands() &&
+ "The forwarding operand needs to be valid at this point");
+ bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
+ bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
+ unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
+ if (KilledDef && KillFwdDefMI)
+ *KilledDef = DefMI;
+
+ ImmInstrInfo III;
+ bool HasImmForm = instrHasImmForm(MI, III, PostRA);
+ // If this is a reg+reg instruction that has a reg+imm form,
+ // and one of the operands is produced by an add-immediate,
+ // try to convert it.
+ if (HasImmForm &&
+ transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
+ KillFwdDefMI))
+ return true;
+
+ if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
+ !DefMI->getOperand(1).isImm())
+ return false;
+
+ int64_t Immediate = DefMI->getOperand(1).getImm();
+ // Sign-extend to 64-bits.
+ int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
+ (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
+
+ // If this is a reg+reg instruction that has a reg+imm form,
+ // and one of the operands is produced by LI, convert it now.
+ if (HasImmForm)
+ return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
+
+ bool ReplaceWithLI = false;
+ bool Is64BitLI = false;
+ int64_t NewImm = 0;
+ bool SetCR = false;
+ unsigned Opc = MI.getOpcode();
+ switch (Opc) {
+ default: return false;
+
+ // FIXME: Any branches conditional on such a comparison can be made
+ // unconditional. At this time, this happens too infrequently to be worth
+ // the implementation effort, but if that ever changes, we could convert
+ // such a pattern here.
+ case PPC::CMPWI:
+ case PPC::CMPLWI:
+ case PPC::CMPDI:
+ case PPC::CMPLDI: {
+ // Doing this post-RA would require dataflow analysis to reliably find uses
+ // of the CR register set by the compare.
+ // No need to fixup killed/dead flag since this transformation is only valid
+ // before RA.
+ if (PostRA)
+ return false;
+ // If a compare-immediate is fed by an immediate and is itself an input of
+ // an ISEL (the most common case) into a COPY of the correct register.
+ bool Changed = false;
+ unsigned DefReg = MI.getOperand(0).getReg();
+ int64_t Comparand = MI.getOperand(2).getImm();
+ int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
+ (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
+
+ for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
+ unsigned UseOpc = CompareUseMI.getOpcode();
+ if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
+ continue;
+ unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
+ unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
+ unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
+ unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
+ FalseReg, CRSubReg);
+ if (RegToCopy == PPC::NoRegister)
+ continue;
+ // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
+ if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
+ CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
+ replaceInstrOperandWithImm(CompareUseMI, 1, 0);
+ CompareUseMI.RemoveOperand(3);
+ CompareUseMI.RemoveOperand(2);
+ continue;
+ }
+ LLVM_DEBUG(
+ dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
+ LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
+ LLVM_DEBUG(dbgs() << "Is converted to:\n");
+ // Convert to copy and remove unneeded operands.
+ CompareUseMI.setDesc(get(PPC::COPY));
+ CompareUseMI.RemoveOperand(3);
+ CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
+ CmpIselsConverted++;
+ Changed = true;
+ LLVM_DEBUG(CompareUseMI.dump());
+ }
+ if (Changed)
+ return true;
+ // This may end up incremented multiple times since this function is called
+ // during a fixed-point transformation, but it is only meant to indicate the
+ // presence of this opportunity.
+ MissedConvertibleImmediateInstrs++;
+ return false;
+ }
+
+ // Immediate forms - may simply be convertable to an LI.
+ case PPC::ADDI:
+ case PPC::ADDI8: {
+ // Does the sum fit in a 16-bit signed field?
+ int64_t Addend = MI.getOperand(2).getImm();
+ if (isInt<16>(Addend + SExtImm)) {
+ ReplaceWithLI = true;
+ Is64BitLI = Opc == PPC::ADDI8;
+ NewImm = Addend + SExtImm;
+ break;
+ }
+ return false;
+ }
+ case PPC::RLDICL:
+ case PPC::RLDICLo:
+ case PPC::RLDICL_32:
+ case PPC::RLDICL_32_64: {
+ // Use APInt's rotate function.
+ int64_t SH = MI.getOperand(2).getImm();
+ int64_t MB = MI.getOperand(3).getImm();
+ APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
+ 64 : 32, SExtImm, true);
+ InVal = InVal.rotl(SH);
+ uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
+ InVal &= Mask;
+ // Can't replace negative values with an LI as that will sign-extend
+ // and not clear the left bits. If we're setting the CR bit, we will use
+ // ANDIo which won't sign extend, so that's safe.
+ if (isUInt<15>(InVal.getSExtValue()) ||
+ (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
+ ReplaceWithLI = true;
+ Is64BitLI = Opc != PPC::RLDICL_32;
+ NewImm = InVal.getSExtValue();
+ SetCR = Opc == PPC::RLDICLo;
+ break;
+ }
+ return false;
+ }
+ case PPC::RLWINM:
+ case PPC::RLWINM8:
+ case PPC::RLWINMo:
+ case PPC::RLWINM8o: {
+ int64_t SH = MI.getOperand(2).getImm();
+ int64_t MB = MI.getOperand(3).getImm();
+ int64_t ME = MI.getOperand(4).getImm();
+ APInt InVal(32, SExtImm, true);
+ InVal = InVal.rotl(SH);
+ // Set the bits ( MB + 32 ) to ( ME + 32 ).
+ uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
+ InVal &= Mask;
+ // Can't replace negative values with an LI as that will sign-extend
+ // and not clear the left bits. If we're setting the CR bit, we will use
+ // ANDIo which won't sign extend, so that's safe.
+ bool ValueFits = isUInt<15>(InVal.getSExtValue());
+ ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
+ isUInt<16>(InVal.getSExtValue()));
+ if (ValueFits) {
+ ReplaceWithLI = true;
+ Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
+ NewImm = InVal.getSExtValue();
+ SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
+ break;
+ }
+ return false;
+ }
+ case PPC::ORI:
+ case PPC::ORI8:
+ case PPC::XORI:
+ case PPC::XORI8: {
+ int64_t LogicalImm = MI.getOperand(2).getImm();
+ int64_t Result = 0;
+ if (Opc == PPC::ORI || Opc == PPC::ORI8)
+ Result = LogicalImm | SExtImm;
+ else
+ Result = LogicalImm ^ SExtImm;
+ if (isInt<16>(Result)) {
+ ReplaceWithLI = true;
+ Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
+ NewImm = Result;
+ break;
+ }
+ return false;
+ }
+ }
+
+ if (ReplaceWithLI) {
+ // We need to be careful with CR-setting instructions we're replacing.
+ if (SetCR) {
+ // We don't know anything about uses when we're out of SSA, so only
+ // replace if the new immediate will be reproduced.
+ bool ImmChanged = (SExtImm & NewImm) != NewImm;
+ if (PostRA && ImmChanged)
+ return false;
+
+ if (!PostRA) {
+ // If the defining load-immediate has no other uses, we can just replace
+ // the immediate with the new immediate.
+ if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
+ DefMI->getOperand(1).setImm(NewImm);
+
+ // If we're not using the GPR result of the CR-setting instruction, we
+ // just need to and with zero/non-zero depending on the new immediate.
+ else if (MRI->use_empty(MI.getOperand(0).getReg())) {
+ if (NewImm) {
+ assert(Immediate && "Transformation converted zero to non-zero?");
+ NewImm = Immediate;
+ }
+ }
+ else if (ImmChanged)
+ return false;
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
+ LLVM_DEBUG(MI.dump());
+ LLVM_DEBUG(dbgs() << "Fed by:\n");
+ LLVM_DEBUG(DefMI->dump());
+ LoadImmediateInfo LII;
+ LII.Imm = NewImm;
+ LII.Is64Bit = Is64BitLI;
+ LII.SetCR = SetCR;
+ // If we're setting the CR, the original load-immediate must be kept (as an
+ // operand to ANDIo/ANDI8o).
+ if (KilledDef && SetCR)
+ *KilledDef = nullptr;
+ replaceInstrWithLI(MI, LII);
+
+ // Fixup killed/dead flag after transformation.
+ // Pattern:
+ // ForwardingOperandReg = LI imm1
+ // y = op2 imm2, ForwardingOperandReg(killed)
+ if (IsForwardingOperandKilled)
+ fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
+
+ LLVM_DEBUG(dbgs() << "With:\n");
+ LLVM_DEBUG(MI.dump());
+ return true;
+ }
+ return false;
+}
+
+bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
+ ImmInstrInfo &III, bool PostRA) const {
+ unsigned Opc = MI.getOpcode();
+ // The vast majority of the instructions would need their operand 2 replaced
+ // with an immediate when switching to the reg+imm form. A marked exception
+ // are the update form loads/stores for which a constant operand 2 would need
+ // to turn into a displacement and move operand 1 to the operand 2 position.
+ III.ImmOpNo = 2;
+ III.OpNoForForwarding = 2;
+ III.ImmWidth = 16;
+ III.ImmMustBeMultipleOf = 1;
+ III.TruncateImmTo = 0;
+ III.IsSummingOperands = false;
+ switch (Opc) {
+ default: return false;
+ case PPC::ADD4:
+ case PPC::ADD8:
+ III.SignedImm = true;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 1;
+ III.IsCommutative = true;
+ III.IsSummingOperands = true;
+ III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
+ break;
+ case PPC::ADDC:
+ case PPC::ADDC8:
+ III.SignedImm = true;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 0;
+ III.IsCommutative = true;
+ III.IsSummingOperands = true;
+ III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
+ break;
+ case PPC::ADDCo:
+ III.SignedImm = true;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 0;
+ III.IsCommutative = true;
+ III.IsSummingOperands = true;
+ III.ImmOpcode = PPC::ADDICo;
+ break;
+ case PPC::SUBFC:
+ case PPC::SUBFC8:
+ III.SignedImm = true;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 0;
+ III.IsCommutative = false;
+ III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
+ break;
+ case PPC::CMPW:
+ case PPC::CMPD:
+ III.SignedImm = true;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 0;
+ III.IsCommutative = false;
+ III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
+ break;
+ case PPC::CMPLW:
+ case PPC::CMPLD:
+ III.SignedImm = false;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 0;
+ III.IsCommutative = false;
+ III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
+ break;
+ case PPC::ANDo:
+ case PPC::AND8o:
+ case PPC::OR:
+ case PPC::OR8:
+ case PPC::XOR:
+ case PPC::XOR8:
+ III.SignedImm = false;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 0;
+ III.IsCommutative = true;
+ switch(Opc) {
+ default: llvm_unreachable("Unknown opcode");
+ case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
+ case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
+ case PPC::OR: III.ImmOpcode = PPC::ORI; break;
+ case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
+ case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
+ case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
+ }
+ break;
+ case PPC::RLWNM:
+ case PPC::RLWNM8:
+ case PPC::RLWNMo:
+ case PPC::RLWNM8o:
+ case PPC::SLW:
+ case PPC::SLW8:
+ case PPC::SLWo:
+ case PPC::SLW8o:
+ case PPC::SRW:
+ case PPC::SRW8:
+ case PPC::SRWo:
+ case PPC::SRW8o:
+ case PPC::SRAW:
+ case PPC::SRAWo:
+ III.SignedImm = false;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 0;
+ III.IsCommutative = false;
+ // This isn't actually true, but the instructions ignore any of the
+ // upper bits, so any immediate loaded with an LI is acceptable.
+ // This does not apply to shift right algebraic because a value
+ // out of range will produce a -1/0.
+ III.ImmWidth = 16;
+ if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
+ Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
+ III.TruncateImmTo = 5;
+ else
+ III.TruncateImmTo = 6;
+ switch(Opc) {
+ default: llvm_unreachable("Unknown opcode");
+ case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
+ case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
+ case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
+ case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
+ case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
+ case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
+ case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
+ case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
+ case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
+ case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
+ case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
+ case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
+ case PPC::SRAW:
+ III.ImmWidth = 5;
+ III.TruncateImmTo = 0;
+ III.ImmOpcode = PPC::SRAWI;
+ break;
+ case PPC::SRAWo:
+ III.ImmWidth = 5;
+ III.TruncateImmTo = 0;
+ III.ImmOpcode = PPC::SRAWIo;
+ break;
+ }
+ break;
+ case PPC::RLDCL:
+ case PPC::RLDCLo:
+ case PPC::RLDCR:
+ case PPC::RLDCRo:
+ case PPC::SLD:
+ case PPC::SLDo:
+ case PPC::SRD:
+ case PPC::SRDo:
+ case PPC::SRAD:
+ case PPC::SRADo:
+ III.SignedImm = false;
+ III.ZeroIsSpecialOrig = 0;
+ III.ZeroIsSpecialNew = 0;
+ III.IsCommutative = false;
+ // This isn't actually true, but the instructions ignore any of the
+ // upper bits, so any immediate loaded with an LI is acceptable.
+ // This does not apply to shift right algebraic because a value
+ // out of range will produce a -1/0.
+ III.ImmWidth = 16;
+ if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
+ Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
+ III.TruncateImmTo = 6;
+ else
+ III.TruncateImmTo = 7;
+ switch(Opc) {
+ default: llvm_unreachable("Unknown opcode");
+ case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
+ case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
+ case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
+ case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
+ case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
+ case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
+ case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
+ case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
+ case PPC::SRAD:
+ III.ImmWidth = 6;
+ III.TruncateImmTo = 0;
+ III.ImmOpcode = PPC::SRADI;
+ break;
+ case PPC::SRADo:
+ III.ImmWidth = 6;
+ III.TruncateImmTo = 0;
+ III.ImmOpcode = PPC::SRADIo;
+ break;
+ }
+ break;
+ // Loads and stores:
+ case PPC::LBZX:
+ case PPC::LBZX8:
+ case PPC::LHZX:
+ case PPC::LHZX8:
+ case PPC::LHAX:
+ case PPC::LHAX8:
+ case PPC::LWZX:
+ case PPC::LWZX8:
+ case PPC::LWAX:
+ case PPC::LDX:
+ case PPC::LFSX:
+ case PPC::LFDX:
+ case PPC::STBX:
+ case PPC::STBX8:
+ case PPC::STHX:
+ case PPC::STHX8:
+ case PPC::STWX:
+ case PPC::STWX8:
+ case PPC::STDX:
+ case PPC::STFSX:
+ case PPC::STFDX:
+ III.SignedImm = true;
+ III.ZeroIsSpecialOrig = 1;
+ III.ZeroIsSpecialNew = 2;
+ III.IsCommutative = true;
+ III.IsSummingOperands = true;
+ III.ImmOpNo = 1;
+ III.OpNoForForwarding = 2;
+ switch(Opc) {
+ default: llvm_unreachable("Unknown opcode");
+ case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
+ case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
+ case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
+ case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
+ case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
+ case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
+ case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
+ case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
+ case PPC::LWAX:
+ III.ImmOpcode = PPC::LWA;
+ III.ImmMustBeMultipleOf = 4;
+ break;
+ case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
+ case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
+ case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
+ case PPC::STBX: III.ImmOpcode = PPC::STB; break;
+ case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
+ case PPC::STHX: III.ImmOpcode = PPC::STH; break;
+ case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
+ case PPC::STWX: III.ImmOpcode = PPC::STW; break;
+ case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
+ case PPC::STDX:
+ III.ImmOpcode = PPC::STD;
+ III.ImmMustBeMultipleOf = 4;
+ break;
+ case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
+ case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
+ }
+ break;
+ case PPC::LBZUX:
+ case PPC::LBZUX8:
+ case PPC::LHZUX:
+ case PPC::LHZUX8:
+ case PPC::LHAUX:
+ case PPC::LHAUX8:
+ case PPC::LWZUX:
+ case PPC::LWZUX8:
+ case PPC::LDUX:
+ case PPC::LFSUX:
+ case PPC::LFDUX:
+ case PPC::STBUX:
+ case PPC::STBUX8:
+ case PPC::STHUX:
+ case PPC::STHUX8:
+ case PPC::STWUX:
+ case PPC::STWUX8:
+ case PPC::STDUX:
+ case PPC::STFSUX:
+ case PPC::STFDUX:
+ III.SignedImm = true;
+ III.ZeroIsSpecialOrig = 2;
+ III.ZeroIsSpecialNew = 3;
+ III.IsCommutative = false;
+ III.IsSummingOperands = true;
+ III.ImmOpNo = 2;
+ III.OpNoForForwarding = 3;
+ switch(Opc) {
+ default: llvm_unreachable("Unknown opcode");
+ case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
+ case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
+ case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
+ case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
+ case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
+ case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
+ case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
+ case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
+ case PPC::LDUX:
+ III.ImmOpcode = PPC::LDU;
+ III.ImmMustBeMultipleOf = 4;
+ break;
+ case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
+ case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
+ case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
+ case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
+ case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
+ case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
+ case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
+ case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
+ case PPC::STDUX:
+ III.ImmOpcode = PPC::STDU;
+ III.ImmMustBeMultipleOf = 4;
+ break;
+ case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
+ case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
+ }
+ break;
+ // Power9 and up only. For some of these, the X-Form version has access to all
+ // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
+ // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
+ // into or stored from is one of the VR registers.
+ case PPC::LXVX:
+ case PPC::LXSSPX:
+ case PPC::LXSDX:
+ case PPC::STXVX:
+ case PPC::STXSSPX:
+ case PPC::STXSDX:
+ case PPC::XFLOADf32:
+ case PPC::XFLOADf64:
+ case PPC::XFSTOREf32:
+ case PPC::XFSTOREf64:
+ if (!Subtarget.hasP9Vector())
+ return false;
+ III.SignedImm = true;
+ III.ZeroIsSpecialOrig = 1;
+ III.ZeroIsSpecialNew = 2;
+ III.IsCommutative = true;
+ III.IsSummingOperands = true;
+ III.ImmOpNo = 1;
+ III.OpNoForForwarding = 2;
+ III.ImmMustBeMultipleOf = 4;
+ switch(Opc) {
+ default: llvm_unreachable("Unknown opcode");
+ case PPC::LXVX:
+ III.ImmOpcode = PPC::LXV;
+ III.ImmMustBeMultipleOf = 16;
+ break;
+ case PPC::LXSSPX:
+ if (PostRA) {
+ if (isVFRegister(MI.getOperand(0).getReg()))
+ III.ImmOpcode = PPC::LXSSP;
+ else {
+ III.ImmOpcode = PPC::LFS;
+ III.ImmMustBeMultipleOf = 1;
+ }
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ case PPC::XFLOADf32:
+ III.ImmOpcode = PPC::DFLOADf32;
+ break;
+ case PPC::LXSDX:
+ if (PostRA) {
+ if (isVFRegister(MI.getOperand(0).getReg()))
+ III.ImmOpcode = PPC::LXSD;
+ else {
+ III.ImmOpcode = PPC::LFD;
+ III.ImmMustBeMultipleOf = 1;
+ }
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ case PPC::XFLOADf64:
+ III.ImmOpcode = PPC::DFLOADf64;
+ break;
+ case PPC::STXVX:
+ III.ImmOpcode = PPC::STXV;
+ III.ImmMustBeMultipleOf = 16;
+ break;
+ case PPC::STXSSPX:
+ if (PostRA) {
+ if (isVFRegister(MI.getOperand(0).getReg()))
+ III.ImmOpcode = PPC::STXSSP;
+ else {
+ III.ImmOpcode = PPC::STFS;
+ III.ImmMustBeMultipleOf = 1;
+ }
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ case PPC::XFSTOREf32:
+ III.ImmOpcode = PPC::DFSTOREf32;
+ break;
+ case PPC::STXSDX:
+ if (PostRA) {
+ if (isVFRegister(MI.getOperand(0).getReg()))
+ III.ImmOpcode = PPC::STXSD;
+ else {
+ III.ImmOpcode = PPC::STFD;
+ III.ImmMustBeMultipleOf = 1;
+ }
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ case PPC::XFSTOREf64:
+ III.ImmOpcode = PPC::DFSTOREf64;
+ break;
+ }
+ break;
+ }
+ return true;
+}
+
+// Utility function for swaping two arbitrary operands of an instruction.
+static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
+ assert(Op1 != Op2 && "Cannot swap operand with itself.");
+
+ unsigned MaxOp = std::max(Op1, Op2);
+ unsigned MinOp = std::min(Op1, Op2);
+ MachineOperand MOp1 = MI.getOperand(MinOp);
+ MachineOperand MOp2 = MI.getOperand(MaxOp);
+ MI.RemoveOperand(std::max(Op1, Op2));
+ MI.RemoveOperand(std::min(Op1, Op2));
+
+ // If the operands we are swapping are the two at the end (the common case)
+ // we can just remove both and add them in the opposite order.
+ if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
+ MI.addOperand(MOp2);
+ MI.addOperand(MOp1);
+ } else {
+ // Store all operands in a temporary vector, remove them and re-add in the
+ // right order.
+ SmallVector<MachineOperand, 2> MOps;
+ unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
+ for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
+ MOps.push_back(MI.getOperand(i));
+ MI.RemoveOperand(i);
+ }
+ // MOp2 needs to be added next.
+ MI.addOperand(MOp2);
+ // Now add the rest.
+ for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
+ if (i == MaxOp)
+ MI.addOperand(MOp1);
+ else {
+ MI.addOperand(MOps.back());
+ MOps.pop_back();
+ }
+ }
+ }
+}
+
+// Check if the 'MI' that has the index OpNoForForwarding
+// meets the requirement described in the ImmInstrInfo.
+bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
+ const ImmInstrInfo &III,
+ unsigned OpNoForForwarding
+ ) const {
+ // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
+ // would not work pre-RA, we can only do the check post RA.
+ MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+ if (MRI.isSSA())
+ return false;
+
+ // Cannot do the transform if MI isn't summing the operands.
+ if (!III.IsSummingOperands)
+ return false;
+
+ // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
+ if (!III.ZeroIsSpecialOrig)
+ return false;
+
+ // We cannot do the transform if the operand we are trying to replace
+ // isn't the same as the operand the instruction allows.
+ if (OpNoForForwarding != III.OpNoForForwarding)
+ return false;
+
+ // Check if the instruction we are trying to transform really has
+ // the special zero register as its operand.
+ if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
+ MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
+ return false;
+
+ // This machine instruction is convertible if it is,
+ // 1. summing the operands.
+ // 2. one of the operands is special zero register.
+ // 3. the operand we are trying to replace is allowed by the MI.
+ return true;
+}
+
+// Check if the DefMI is the add inst and set the ImmMO and RegMO
+// accordingly.
+bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
+ const ImmInstrInfo &III,
+ MachineOperand *&ImmMO,
+ MachineOperand *&RegMO) const {
+ unsigned Opc = DefMI.getOpcode();
+ if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
+ return false;
+
+ assert(DefMI.getNumOperands() >= 3 &&
+ "Add inst must have at least three operands");
+ RegMO = &DefMI.getOperand(1);
+ ImmMO = &DefMI.getOperand(2);
+
+ // This DefMI is elgible for forwarding if it is:
+ // 1. add inst
+ // 2. one of the operands is Imm/CPI/Global.
+ return isAnImmediateOperand(*ImmMO);
+}
+
+bool PPCInstrInfo::isRegElgibleForForwarding(
+ const MachineOperand &RegMO, const MachineInstr &DefMI,
+ const MachineInstr &MI, bool KillDefMI,
+ bool &IsFwdFeederRegKilled) const {
+ // x = addi y, imm
+ // ...
+ // z = lfdx 0, x -> z = lfd imm(y)
+ // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
+ // of "y" between the DEF of "x" and "z".
+ // The query is only valid post RA.
+ const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+ if (MRI.isSSA())
+ return false;
+
+ unsigned Reg = RegMO.getReg();
+
+ // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
+ MachineBasicBlock::const_reverse_iterator It = MI;
+ MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
+ It++;
+ for (; It != E; ++It) {
+ if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
+ return false;
+ else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
+ IsFwdFeederRegKilled = true;
+ // Made it to DefMI without encountering a clobber.
+ if ((&*It) == &DefMI)
+ break;
+ }
+ assert((&*It) == &DefMI && "DefMI is missing");
+
+ // If DefMI also defines the register to be forwarded, we can only forward it
+ // if DefMI is being erased.
+ if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
+ return KillDefMI;
+
+ return true;
+}
+
+bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
+ const MachineInstr &DefMI,
+ const ImmInstrInfo &III,
+ int64_t &Imm) const {
+ assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
+ if (DefMI.getOpcode() == PPC::ADDItocL) {
+ // The operand for ADDItocL is CPI, which isn't imm at compiling time,
+ // However, we know that, it is 16-bit width, and has the alignment of 4.
+ // Check if the instruction met the requirement.
+ if (III.ImmMustBeMultipleOf > 4 ||
+ III.TruncateImmTo || III.ImmWidth != 16)
+ return false;
+
+ // Going from XForm to DForm loads means that the displacement needs to be
+ // not just an immediate but also a multiple of 4, or 16 depending on the
+ // load. A DForm load cannot be represented if it is a multiple of say 2.
+ // XForm loads do not have this restriction.
+ if (ImmMO.isGlobal() &&
+ ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
+ return false;
+
+ return true;
+ }
+
+ if (ImmMO.isImm()) {
+ // It is Imm, we need to check if the Imm fit the range.
+ int64_t Immediate = ImmMO.getImm();
+ // Sign-extend to 64-bits.
+ Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
+ (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
+
+ if (Imm % III.ImmMustBeMultipleOf)
+ return false;
+ if (III.TruncateImmTo)
+ Imm &= ((1 << III.TruncateImmTo) - 1);
+ if (III.SignedImm) {
+ APInt ActualValue(64, Imm, true);
+ if (!ActualValue.isSignedIntN(III.ImmWidth))
+ return false;
+ } else {
+ uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
+ if ((uint64_t)Imm > UnsignedMax)
+ return false;
+ }
+ }
+ else
+ return false;
+
+ // This ImmMO is forwarded if it meets the requriement describle
+ // in ImmInstrInfo
+ return true;
+}
+
+// If an X-Form instruction is fed by an add-immediate and one of its operands
+// is the literal zero, attempt to forward the source of the add-immediate to
+// the corresponding D-Form instruction with the displacement coming from
+// the immediate being added.
+bool PPCInstrInfo::transformToImmFormFedByAdd(
+ MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
+ MachineInstr &DefMI, bool KillDefMI) const {
+ // RegMO ImmMO
+ // | |
+ // x = addi reg, imm <----- DefMI
+ // y = op 0 , x <----- MI
+ // |
+ // OpNoForForwarding
+ // Check if the MI meet the requirement described in the III.
+ if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
+ return false;
+
+ // Check if the DefMI meet the requirement
+ // described in the III. If yes, set the ImmMO and RegMO accordingly.
+ MachineOperand *ImmMO = nullptr;
+ MachineOperand *RegMO = nullptr;
+ if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
+ return false;
+ assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
+
+ // As we get the Imm operand now, we need to check if the ImmMO meet
+ // the requirement described in the III. If yes set the Imm.
+ int64_t Imm = 0;
+ if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
+ return false;
+
+ bool IsFwdFeederRegKilled = false;
+ // Check if the RegMO can be forwarded to MI.
+ if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
+ IsFwdFeederRegKilled))
+ return false;
+
+ // Get killed info in case fixup needed after transformation.
+ unsigned ForwardKilledOperandReg = ~0U;
+ MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+ bool PostRA = !MRI.isSSA();
+ if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
+ ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
+
+ // We know that, the MI and DefMI both meet the pattern, and
+ // the Imm also meet the requirement with the new Imm-form.
+ // It is safe to do the transformation now.
+ LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
+ LLVM_DEBUG(MI.dump());
+ LLVM_DEBUG(dbgs() << "Fed by:\n");
+ LLVM_DEBUG(DefMI.dump());
+
+ // Update the base reg first.
+ MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
+ false, false,
+ RegMO->isKill());
+
+ // Then, update the imm.
+ if (ImmMO->isImm()) {
+ // If the ImmMO is Imm, change the operand that has ZERO to that Imm
+ // directly.
+ replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
+ }
+ else {
+ // Otherwise, it is Constant Pool Index(CPI) or Global,
+ // which is relocation in fact. We need to replace the special zero
+ // register with ImmMO.
+ // Before that, we need to fixup the target flags for imm.
+ // For some reason, we miss to set the flag for the ImmMO if it is CPI.
+ if (DefMI.getOpcode() == PPC::ADDItocL)
+ ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
+
+ // MI didn't have the interface such as MI.setOperand(i) though
+ // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
+ // ImmMO, we need to remove ZERO operand and all the operands behind it,
+ // and, add the ImmMO, then, move back all the operands behind ZERO.
+ SmallVector<MachineOperand, 2> MOps;
+ for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
+ MOps.push_back(MI.getOperand(i));
+ MI.RemoveOperand(i);
+ }
+
+ // Remove the last MO in the list, which is ZERO operand in fact.
+ MOps.pop_back();
+ // Add the imm operand.
+ MI.addOperand(*ImmMO);
+ // Now add the rest back.
+ for (auto &MO : MOps)
+ MI.addOperand(MO);
+ }
+
+ // Update the opcode.
+ MI.setDesc(get(III.ImmOpcode));
+
+ // Fix up killed/dead flag after transformation.
+ // Pattern 1:
+ // x = ADD KilledFwdFeederReg, imm
+ // n = opn KilledFwdFeederReg(killed), regn
+ // y = XOP 0, x
+ // Pattern 2:
+ // x = ADD reg(killed), imm
+ // y = XOP 0, x
+ if (IsFwdFeederRegKilled || RegMO->isKill())
+ fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
+ // Pattern 3:
+ // ForwardKilledOperandReg = ADD reg, imm
+ // y = XOP 0, ForwardKilledOperandReg(killed)
+ if (ForwardKilledOperandReg != ~0U)
+ fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
+
+ LLVM_DEBUG(dbgs() << "With:\n");
+ LLVM_DEBUG(MI.dump());
+
+ return true;
+}
+
+bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
+ const ImmInstrInfo &III,
+ unsigned ConstantOpNo,
+ MachineInstr &DefMI,
+ int64_t Imm) const {
+ MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+ bool PostRA = !MRI.isSSA();
+ // Exit early if we can't convert this.
+ if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
+ return false;
+ if (Imm % III.ImmMustBeMultipleOf)
+ return false;
+ if (III.TruncateImmTo)
+ Imm &= ((1 << III.TruncateImmTo) - 1);
+ if (III.SignedImm) {
+ APInt ActualValue(64, Imm, true);
+ if (!ActualValue.isSignedIntN(III.ImmWidth))
+ return false;
+ } else {
+ uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
+ if ((uint64_t)Imm > UnsignedMax)
+ return false;
+ }
+
+ // If we're post-RA, the instructions don't agree on whether register zero is
+ // special, we can transform this as long as the register operand that will
+ // end up in the location where zero is special isn't R0.
+ if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
+ unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
+ III.ZeroIsSpecialNew + 1;
+ unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
+ unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
+ // If R0 is in the operand where zero is special for the new instruction,
+ // it is unsafe to transform if the constant operand isn't that operand.
+ if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
+ ConstantOpNo != III.ZeroIsSpecialNew)
+ return false;
+ if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
+ ConstantOpNo != PosForOrigZero)
+ return false;
+ }
+
+ // Get killed info in case fixup needed after transformation.
+ unsigned ForwardKilledOperandReg = ~0U;
+ if (PostRA && MI.getOperand(ConstantOpNo).isKill())
+ ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
+
+ unsigned Opc = MI.getOpcode();
+ bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLWo ||
+ Opc == PPC::SRW || Opc == PPC::SRWo ||
+ Opc == PPC::SLW8 || Opc == PPC::SLW8o ||
+ Opc == PPC::SRW8 || Opc == PPC::SRW8o;
+ bool SpecialShift64 =
+ Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
+ bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
+ Opc == PPC::SLDo || Opc == PPC::SRDo;
+ bool RightShift =
+ Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
+
+ MI.setDesc(get(III.ImmOpcode));
+ if (ConstantOpNo == III.OpNoForForwarding) {
+ // Converting shifts to immediate form is a bit tricky since they may do
+ // one of three things:
+ // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
+ // 2. If the shift amount is zero, the result is unchanged (save for maybe
+ // setting CR0)
+ // 3. If the shift amount is in [1, OpSize), it's just a shift
+ if (SpecialShift32 || SpecialShift64) {
+ LoadImmediateInfo LII;
+ LII.Imm = 0;
+ LII.SetCR = SetCR;
+ LII.Is64Bit = SpecialShift64;
+ uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
+ if (Imm & (SpecialShift32 ? 0x20 : 0x40))
+ replaceInstrWithLI(MI, LII);
+ // Shifts by zero don't change the value. If we don't need to set CR0,
+ // just convert this to a COPY. Can't do this post-RA since we've already
+ // cleaned up the copies.
+ else if (!SetCR && ShAmt == 0 && !PostRA) {
+ MI.RemoveOperand(2);
+ MI.setDesc(get(PPC::COPY));
+ } else {
+ // The 32 bit and 64 bit instructions are quite different.
+ if (SpecialShift32) {
+ // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
+ uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
+ uint64_t MB = RightShift ? ShAmt : 0;
+ uint64_t ME = RightShift ? 31 : 31 - ShAmt;
+ replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
+ .addImm(ME);
+ } else {
+ // Left shifts use (N, 63-N), right shifts use (64-N, N).
+ uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
+ uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
+ replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
+ }
+ }
+ } else
+ replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
+ }
+ // Convert commutative instructions (switch the operands and convert the
+ // desired one to an immediate.
+ else if (III.IsCommutative) {
+ replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
+ swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
+ } else
+ llvm_unreachable("Should have exited early!");
+
+ // For instructions for which the constant register replaces a different
+ // operand than where the immediate goes, we need to swap them.
+ if (III.OpNoForForwarding != III.ImmOpNo)
+ swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
+
+ // If the special R0/X0 register index are different for original instruction
+ // and new instruction, we need to fix up the register class in new
+ // instruction.
+ if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
+ if (III.ZeroIsSpecialNew) {
+ // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
+ // need to fix up register class.
+ unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(RegToModify)) {
+ const TargetRegisterClass *NewRC =
+ MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
+ &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
+ MRI.setRegClass(RegToModify, NewRC);
+ }
+ }
+ }
+
+ // Fix up killed/dead flag after transformation.
+ // Pattern:
+ // ForwardKilledOperandReg = LI imm
+ // y = XOP reg, ForwardKilledOperandReg(killed)
+ if (ForwardKilledOperandReg != ~0U)
+ fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
+ return true;
+}
+
+const TargetRegisterClass *
+PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
+ if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
+ return &PPC::VSRCRegClass;
+ return RC;
+}
+
+int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
+ return PPC::getRecordFormOpcode(Opcode);
+}
+
+// This function returns true if the machine instruction
+// always outputs a value by sign-extending a 32 bit value,
+// i.e. 0 to 31-th bits are same as 32-th bit.
+static bool isSignExtendingOp(const MachineInstr &MI) {
+ int Opcode = MI.getOpcode();
+ if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
+ Opcode == PPC::LIS || Opcode == PPC::LIS8 ||
+ Opcode == PPC::SRAW || Opcode == PPC::SRAWo ||
+ Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo ||
+ Opcode == PPC::LWA || Opcode == PPC::LWAX ||
+ Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
+ Opcode == PPC::LHA || Opcode == PPC::LHAX ||
+ Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 ||
+ Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
+ Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
+ Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
+ Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
+ Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
+ Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
+ Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
+ Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
+ Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo ||
+ Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo ||
+ Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 ||
+ Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo ||
+ Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
+ Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
+ Opcode == PPC::EXTSB8_32_64)
+ return true;
+
+ if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
+ return true;
+
+ if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
+ Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) &&
+ MI.getOperand(3).getImm() > 0 &&
+ MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
+ return true;
+
+ return false;
+}
+
+// This function returns true if the machine instruction
+// always outputs zeros in higher 32 bits.
+static bool isZeroExtendingOp(const MachineInstr &MI) {
+ int Opcode = MI.getOpcode();
+ // The 16-bit immediate is sign-extended in li/lis.
+ // If the most significant bit is zero, all higher bits are zero.
+ if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
+ Opcode == PPC::LIS || Opcode == PPC::LIS8) {
+ int64_t Imm = MI.getOperand(1).getImm();
+ if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
+ return true;
+ }
+
+ // We have some variations of rotate-and-mask instructions
+ // that clear higher 32-bits.
+ if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
+ Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo ||
+ Opcode == PPC::RLDICL_32_64) &&
+ MI.getOperand(3).getImm() >= 32)
+ return true;
+
+ if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
+ MI.getOperand(3).getImm() >= 32 &&
+ MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
+ return true;
+
+ if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
+ Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
+ Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
+ MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
+ return true;
+
+ // There are other instructions that clear higher 32-bits.
+ if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
+ Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
+ Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
+ Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
+ Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo ||
+ Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
+ Opcode == PPC::SLW || Opcode == PPC::SLWo ||
+ Opcode == PPC::SRW || Opcode == PPC::SRWo ||
+ Opcode == PPC::SLW8 || Opcode == PPC::SRW8 ||
+ Opcode == PPC::SLWI || Opcode == PPC::SLWIo ||
+ Opcode == PPC::SRWI || Opcode == PPC::SRWIo ||
+ Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
+ Opcode == PPC::LWZU || Opcode == PPC::LWZUX ||
+ Opcode == PPC::LWBRX || Opcode == PPC::LHBRX ||
+ Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
+ Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
+ Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
+ Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
+ Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 ||
+ Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 ||
+ Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
+ Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
+ Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
+ Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
+ Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
+ Opcode == PPC::ANDIo || Opcode == PPC::ANDISo ||
+ Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo ||
+ Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo ||
+ Opcode == PPC::MFVSRWZ)
+ return true;
+
+ return false;
+}
+
+// This function returns true if the input MachineInstr is a TOC save
+// instruction.
+bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
+ if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
+ return false;
+ unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
+ unsigned StackOffset = MI.getOperand(1).getImm();
+ unsigned StackReg = MI.getOperand(2).getReg();
+ if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
+ return true;
+
+ return false;
+}
+
+// We limit the max depth to track incoming values of PHIs or binary ops
+// (e.g. AND) to avoid excessive cost.
+const unsigned MAX_DEPTH = 1;
+
+bool
+PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
+ const unsigned Depth) const {
+ const MachineFunction *MF = MI.getParent()->getParent();
+ const MachineRegisterInfo *MRI = &MF->getRegInfo();
+
+ // If we know this instruction returns sign- or zero-extended result,
+ // return true.
+ if (SignExt ? isSignExtendingOp(MI):
+ isZeroExtendingOp(MI))
+ return true;
+
+ switch (MI.getOpcode()) {
+ case PPC::COPY: {
+ unsigned SrcReg = MI.getOperand(1).getReg();
+
+ // In both ELFv1 and v2 ABI, method parameters and the return value
+ // are sign- or zero-extended.
+ if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
+ const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
+ // We check the ZExt/SExt flags for a method parameter.
+ if (MI.getParent()->getBasicBlock() ==
+ &MF->getFunction().getEntryBlock()) {
+ unsigned VReg = MI.getOperand(0).getReg();
+ if (MF->getRegInfo().isLiveIn(VReg))
+ return SignExt ? FuncInfo->isLiveInSExt(VReg) :
+ FuncInfo->isLiveInZExt(VReg);
+ }
+
+ // For a method return value, we check the ZExt/SExt flags in attribute.
+ // We assume the following code sequence for method call.
+ // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
+ // BL8_NOP @func,...
+ // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
+ // %5 = COPY %x3; G8RC:%5
+ if (SrcReg == PPC::X3) {
+ const MachineBasicBlock *MBB = MI.getParent();
+ MachineBasicBlock::const_instr_iterator II =
+ MachineBasicBlock::const_instr_iterator(&MI);
+ if (II != MBB->instr_begin() &&
+ (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
+ const MachineInstr &CallMI = *(--II);
+ if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
+ const Function *CalleeFn =
+ dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
+ if (!CalleeFn)
+ return false;
+ const IntegerType *IntTy =
+ dyn_cast<IntegerType>(CalleeFn->getReturnType());
+ const AttributeSet &Attrs =
+ CalleeFn->getAttributes().getRetAttributes();
+ if (IntTy && IntTy->getBitWidth() <= 32)
+ return Attrs.hasAttribute(SignExt ? Attribute::SExt :
+ Attribute::ZExt);
+ }
+ }
+ }
+ }
+
+ // If this is a copy from another register, we recursively check source.
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ return false;
+ const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
+ if (SrcMI != NULL)
+ return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
+
+ return false;
+ }
+
+ case PPC::ANDIo:
+ case PPC::ANDISo:
+ case PPC::ORI:
+ case PPC::ORIS:
+ case PPC::XORI:
+ case PPC::XORIS:
+ case PPC::ANDIo8:
+ case PPC::ANDISo8:
+ case PPC::ORI8:
+ case PPC::ORIS8:
+ case PPC::XORI8:
+ case PPC::XORIS8: {
+ // logical operation with 16-bit immediate does not change the upper bits.
+ // So, we track the operand register as we do for register copy.
+ unsigned SrcReg = MI.getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ return false;
+ const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
+ if (SrcMI != NULL)
+ return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
+
+ return false;
+ }
+
+ // If all incoming values are sign-/zero-extended,
+ // the output of OR, ISEL or PHI is also sign-/zero-extended.
+ case PPC::OR:
+ case PPC::OR8:
+ case PPC::ISEL:
+ case PPC::PHI: {
+ if (Depth >= MAX_DEPTH)
+ return false;
+
+ // The input registers for PHI are operand 1, 3, ...
+ // The input registers for others are operand 1 and 2.
+ unsigned E = 3, D = 1;
+ if (MI.getOpcode() == PPC::PHI) {
+ E = MI.getNumOperands();
+ D = 2;
+ }
+
+ for (unsigned I = 1; I != E; I += D) {
+ if (MI.getOperand(I).isReg()) {
+ unsigned SrcReg = MI.getOperand(I).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ return false;
+ const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
+ if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
+ return false;
+ }
+ else
+ return false;
+ }
+ return true;
+ }
+
+ // If at least one of the incoming values of an AND is zero extended
+ // then the output is also zero-extended. If both of the incoming values
+ // are sign-extended then the output is also sign extended.
+ case PPC::AND:
+ case PPC::AND8: {
+ if (Depth >= MAX_DEPTH)
+ return false;
+
+ assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
+
+ unsigned SrcReg1 = MI.getOperand(1).getReg();
+ unsigned SrcReg2 = MI.getOperand(2).getReg();
+
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
+ !TargetRegisterInfo::isVirtualRegister(SrcReg2))
+ return false;
+
+ const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
+ const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
+ if (!MISrc1 || !MISrc2)
+ return false;
+
+ if(SignExt)
+ return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
+ isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
+ else
+ return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
+ isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
+ }
+
+ default:
+ break;
+ }
+ return false;
+}
+
+bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
+ return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
+}
+
+bool PPCInstrInfo::analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
+ MachineInstr *&CmpInst) const {
+ MachineBasicBlock *LoopEnd = L.getBottomBlock();
+ MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
+ // We really "analyze" only CTR loops right now.
+ if (I != LoopEnd->end() && isBDNZ(I->getOpcode())) {
+ IndVarInst = nullptr;
+ CmpInst = &*I;
+ return false;
+ }
+ return true;
+}
+
+MachineInstr *
+PPCInstrInfo::findLoopInstr(MachineBasicBlock &PreHeader) const {
+
+ unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
+
+ // The loop set-up instruction should be in preheader
+ for (auto &I : PreHeader.instrs())
+ if (I.getOpcode() == LOOPi)
+ return &I;
+ return nullptr;
+}
+
+unsigned PPCInstrInfo::reduceLoopCount(
+ MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar,
+ MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond,
+ SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter,
+ unsigned MaxIter) const {
+ // We expect a hardware loop currently. This means that IndVar is set
+ // to null, and the compare is the ENDLOOP instruction.
+ assert((!IndVar) && isBDNZ(Cmp.getOpcode()) && "Expecting a CTR loop");
+ MachineFunction *MF = MBB.getParent();
+ DebugLoc DL = Cmp.getDebugLoc();
+ MachineInstr *Loop = findLoopInstr(PreHeader);
+ if (!Loop)
+ return 0;
+ unsigned LoopCountReg = Loop->getOperand(0).getReg();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
+
+ if (!LoopCount)
+ return 0;
+ // If the loop trip count is a compile-time value, then just change the
+ // value.
+ if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) {
+ int64_t Offset = LoopCount->getOperand(1).getImm();
+ if (Offset <= 1) {
+ LoopCount->eraseFromParent();
+ Loop->eraseFromParent();
+ return 0;
+ }
+ LoopCount->getOperand(1).setImm(Offset - 1);
+ return Offset - 1;
+ }
+
+ // The loop trip count is a run-time value.
+ // We need to subtract one from the trip count,
+ // and insert branch later to check if we're done with the loop.
+
+ // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
+ // so we don't need to generate any thing here.
+ Cond.push_back(MachineOperand::CreateImm(0));
+ Cond.push_back(MachineOperand::CreateReg(
+ Subtarget.isPPC64() ? PPC::CTR8 : PPC::CTR, true));
+ return LoopCountReg;
+}
+
+// Return true if get the base operand, byte offset of an instruction and the
+// memory width. Width is the size of memory that is being loaded/stored.
+bool PPCInstrInfo::getMemOperandWithOffsetWidth(
+ const MachineInstr &LdSt,
+ const MachineOperand *&BaseReg,
+ int64_t &Offset,
+ unsigned &Width,
+ const TargetRegisterInfo *TRI) const {
+ assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
+
+ // Handle only loads/stores with base register followed by immediate offset.
+ if (LdSt.getNumExplicitOperands() != 3)
+ return false;
+ if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
+ return false;
+
+ if (!LdSt.hasOneMemOperand())
+ return false;
+
+ Width = (*LdSt.memoperands_begin())->getSize();
+ Offset = LdSt.getOperand(1).getImm();
+ BaseReg = &LdSt.getOperand(2);
+ return true;
+}
+
+bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
+ const MachineInstr &MIa, const MachineInstr &MIb,
+ AliasAnalysis * /*AA*/) const {
+ assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
+ assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
+
+ if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
+ MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
+ return false;
+
+ // Retrieve the base register, offset from the base register and width. Width
+ // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
+ // base registers are identical, and the offset of a lower memory access +
+ // the width doesn't overlap the offset of a higher memory access,
+ // then the memory accesses are different.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
+ int64_t OffsetA = 0, OffsetB = 0;
+ unsigned int WidthA = 0, WidthB = 0;
+ if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
+ getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
+ if (BaseOpA->isIdenticalTo(*BaseOpB)) {
+ int LowOffset = std::min(OffsetA, OffsetB);
+ int HighOffset = std::max(OffsetA, OffsetB);
+ int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
+ if (LowOffset + LowWidth <= HighOffset)
+ return true;
+ }
+ }
+ return false;
+}