summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp903
1 files changed, 903 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
new file mode 100644
index 000000000000..9e9997df9ed1
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
@@ -0,0 +1,903 @@
+//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCTargetTransformInfo.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/BasicTTIImpl.h"
+#include "llvm/CodeGen/CostTable.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "ppctti"
+
+static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
+cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
+
+// This is currently only used for the data prefetch pass which is only enabled
+// for BG/Q by default.
+static cl::opt<unsigned>
+CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
+ cl::desc("The loop prefetch cache line size"));
+
+static cl::opt<bool>
+EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
+ cl::desc("Enable using coldcc calling conv for cold "
+ "internal functions"));
+
+// The latency of mtctr is only justified if there are more than 4
+// comparisons that will be removed as a result.
+static cl::opt<unsigned>
+SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
+ cl::desc("Loops with a constant trip count smaller than "
+ "this value will not use the count register."));
+
+//===----------------------------------------------------------------------===//
+//
+// PPC cost model.
+//
+//===----------------------------------------------------------------------===//
+
+TargetTransformInfo::PopcntSupportKind
+PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
+ return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
+ TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
+ return TTI::PSK_Software;
+}
+
+int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
+ if (DisablePPCConstHoist)
+ return BaseT::getIntImmCost(Imm, Ty);
+
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ if (Imm == 0)
+ return TTI::TCC_Free;
+
+ if (Imm.getBitWidth() <= 64) {
+ if (isInt<16>(Imm.getSExtValue()))
+ return TTI::TCC_Basic;
+
+ if (isInt<32>(Imm.getSExtValue())) {
+ // A constant that can be materialized using lis.
+ if ((Imm.getZExtValue() & 0xFFFF) == 0)
+ return TTI::TCC_Basic;
+
+ return 2 * TTI::TCC_Basic;
+ }
+ }
+
+ return 4 * TTI::TCC_Basic;
+}
+
+int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) {
+ if (DisablePPCConstHoist)
+ return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
+
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ switch (IID) {
+ default:
+ return TTI::TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
+ return TTI::TCC_Free;
+ break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ }
+ return PPCTTIImpl::getIntImmCost(Imm, Ty);
+}
+
+int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) {
+ if (DisablePPCConstHoist)
+ return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
+
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ unsigned ImmIdx = ~0U;
+ bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
+ ZeroFree = false;
+ switch (Opcode) {
+ default:
+ return TTI::TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr. This prevents the
+ // creation of new constants for every base constant that gets constant
+ // folded with the offset.
+ if (Idx == 0)
+ return 2 * TTI::TCC_Basic;
+ return TTI::TCC_Free;
+ case Instruction::And:
+ RunFree = true; // (for the rotate-and-mask instructions)
+ LLVM_FALLTHROUGH;
+ case Instruction::Add:
+ case Instruction::Or:
+ case Instruction::Xor:
+ ShiftedFree = true;
+ LLVM_FALLTHROUGH;
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ ImmIdx = 1;
+ break;
+ case Instruction::ICmp:
+ UnsignedFree = true;
+ ImmIdx = 1;
+ // Zero comparisons can use record-form instructions.
+ LLVM_FALLTHROUGH;
+ case Instruction::Select:
+ ZeroFree = true;
+ break;
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Ret:
+ case Instruction::Load:
+ case Instruction::Store:
+ break;
+ }
+
+ if (ZeroFree && Imm == 0)
+ return TTI::TCC_Free;
+
+ if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
+ if (isInt<16>(Imm.getSExtValue()))
+ return TTI::TCC_Free;
+
+ if (RunFree) {
+ if (Imm.getBitWidth() <= 32 &&
+ (isShiftedMask_32(Imm.getZExtValue()) ||
+ isShiftedMask_32(~Imm.getZExtValue())))
+ return TTI::TCC_Free;
+
+ if (ST->isPPC64() &&
+ (isShiftedMask_64(Imm.getZExtValue()) ||
+ isShiftedMask_64(~Imm.getZExtValue())))
+ return TTI::TCC_Free;
+ }
+
+ if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
+ return TTI::TCC_Free;
+
+ if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
+ return TTI::TCC_Free;
+ }
+
+ return PPCTTIImpl::getIntImmCost(Imm, Ty);
+}
+
+unsigned PPCTTIImpl::getUserCost(const User *U,
+ ArrayRef<const Value *> Operands) {
+ if (U->getType()->isVectorTy()) {
+ // Instructions that need to be split should cost more.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
+ return LT.first * BaseT::getUserCost(U, Operands);
+ }
+
+ return BaseT::getUserCost(U, Operands);
+}
+
+bool PPCTTIImpl::mightUseCTR(BasicBlock *BB,
+ TargetLibraryInfo *LibInfo) {
+ const PPCTargetMachine &TM = ST->getTargetMachine();
+
+ // Loop through the inline asm constraints and look for something that
+ // clobbers ctr.
+ auto asmClobbersCTR = [](InlineAsm *IA) {
+ InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
+ for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
+ InlineAsm::ConstraintInfo &C = CIV[i];
+ if (C.Type != InlineAsm::isInput)
+ for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
+ if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
+ return true;
+ }
+ return false;
+ };
+
+ // Determining the address of a TLS variable results in a function call in
+ // certain TLS models.
+ std::function<bool(const Value*)> memAddrUsesCTR =
+ [&memAddrUsesCTR, &TM](const Value *MemAddr) -> bool {
+ const auto *GV = dyn_cast<GlobalValue>(MemAddr);
+ if (!GV) {
+ // Recurse to check for constants that refer to TLS global variables.
+ if (const auto *CV = dyn_cast<Constant>(MemAddr))
+ for (const auto &CO : CV->operands())
+ if (memAddrUsesCTR(CO))
+ return true;
+
+ return false;
+ }
+
+ if (!GV->isThreadLocal())
+ return false;
+ TLSModel::Model Model = TM.getTLSModel(GV);
+ return Model == TLSModel::GeneralDynamic ||
+ Model == TLSModel::LocalDynamic;
+ };
+
+ auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
+ if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
+ return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
+
+ return false;
+ };
+
+ for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
+ J != JE; ++J) {
+ if (CallInst *CI = dyn_cast<CallInst>(J)) {
+ // Inline ASM is okay, unless it clobbers the ctr register.
+ if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
+ if (asmClobbersCTR(IA))
+ return true;
+ continue;
+ }
+
+ if (Function *F = CI->getCalledFunction()) {
+ // Most intrinsics don't become function calls, but some might.
+ // sin, cos, exp and log are always calls.
+ unsigned Opcode = 0;
+ if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
+ switch (F->getIntrinsicID()) {
+ default: continue;
+ // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
+ // we're definitely using CTR.
+ case Intrinsic::set_loop_iterations:
+ case Intrinsic::loop_decrement:
+ return true;
+
+// VisualStudio defines setjmp as _setjmp
+#if defined(_MSC_VER) && defined(setjmp) && \
+ !defined(setjmp_undefined_for_msvc)
+# pragma push_macro("setjmp")
+# undef setjmp
+# define setjmp_undefined_for_msvc
+#endif
+
+ case Intrinsic::setjmp:
+
+#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
+ // let's return it to _setjmp state
+# pragma pop_macro("setjmp")
+# undef setjmp_undefined_for_msvc
+#endif
+
+ case Intrinsic::longjmp:
+
+ // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
+ // because, although it does clobber the counter register, the
+ // control can't then return to inside the loop unless there is also
+ // an eh_sjlj_setjmp.
+ case Intrinsic::eh_sjlj_setjmp:
+
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ case Intrinsic::memset:
+ case Intrinsic::powi:
+ case Intrinsic::log:
+ case Intrinsic::log2:
+ case Intrinsic::log10:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::pow:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ return true;
+ case Intrinsic::copysign:
+ if (CI->getArgOperand(0)->getType()->getScalarType()->
+ isPPC_FP128Ty())
+ return true;
+ else
+ continue; // ISD::FCOPYSIGN is never a library call.
+ case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
+ case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
+ case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
+ case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
+ case Intrinsic::rint: Opcode = ISD::FRINT; break;
+ case Intrinsic::lrint: Opcode = ISD::LRINT; break;
+ case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
+ case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
+ case Intrinsic::round: Opcode = ISD::FROUND; break;
+ case Intrinsic::lround: Opcode = ISD::LROUND; break;
+ case Intrinsic::llround: Opcode = ISD::LLROUND; break;
+ case Intrinsic::minnum: Opcode = ISD::FMINNUM; break;
+ case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break;
+ case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break;
+ case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break;
+ }
+ }
+
+ // PowerPC does not use [US]DIVREM or other library calls for
+ // operations on regular types which are not otherwise library calls
+ // (i.e. soft float or atomics). If adapting for targets that do,
+ // additional care is required here.
+
+ LibFunc Func;
+ if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
+ LibInfo->getLibFunc(F->getName(), Func) &&
+ LibInfo->hasOptimizedCodeGen(Func)) {
+ // Non-read-only functions are never treated as intrinsics.
+ if (!CI->onlyReadsMemory())
+ return true;
+
+ // Conversion happens only for FP calls.
+ if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
+ return true;
+
+ switch (Func) {
+ default: return true;
+ case LibFunc_copysign:
+ case LibFunc_copysignf:
+ continue; // ISD::FCOPYSIGN is never a library call.
+ case LibFunc_copysignl:
+ return true;
+ case LibFunc_fabs:
+ case LibFunc_fabsf:
+ case LibFunc_fabsl:
+ continue; // ISD::FABS is never a library call.
+ case LibFunc_sqrt:
+ case LibFunc_sqrtf:
+ case LibFunc_sqrtl:
+ Opcode = ISD::FSQRT; break;
+ case LibFunc_floor:
+ case LibFunc_floorf:
+ case LibFunc_floorl:
+ Opcode = ISD::FFLOOR; break;
+ case LibFunc_nearbyint:
+ case LibFunc_nearbyintf:
+ case LibFunc_nearbyintl:
+ Opcode = ISD::FNEARBYINT; break;
+ case LibFunc_ceil:
+ case LibFunc_ceilf:
+ case LibFunc_ceill:
+ Opcode = ISD::FCEIL; break;
+ case LibFunc_rint:
+ case LibFunc_rintf:
+ case LibFunc_rintl:
+ Opcode = ISD::FRINT; break;
+ case LibFunc_round:
+ case LibFunc_roundf:
+ case LibFunc_roundl:
+ Opcode = ISD::FROUND; break;
+ case LibFunc_trunc:
+ case LibFunc_truncf:
+ case LibFunc_truncl:
+ Opcode = ISD::FTRUNC; break;
+ case LibFunc_fmin:
+ case LibFunc_fminf:
+ case LibFunc_fminl:
+ Opcode = ISD::FMINNUM; break;
+ case LibFunc_fmax:
+ case LibFunc_fmaxf:
+ case LibFunc_fmaxl:
+ Opcode = ISD::FMAXNUM; break;
+ }
+ }
+
+ if (Opcode) {
+ EVT EVTy =
+ TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
+
+ if (EVTy == MVT::Other)
+ return true;
+
+ if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
+ continue;
+ else if (EVTy.isVector() &&
+ TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
+ continue;
+
+ return true;
+ }
+ }
+
+ return true;
+ } else if (isa<BinaryOperator>(J) &&
+ J->getType()->getScalarType()->isPPC_FP128Ty()) {
+ // Most operations on ppc_f128 values become calls.
+ return true;
+ } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
+ isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
+ CastInst *CI = cast<CastInst>(J);
+ if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
+ CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
+ isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
+ isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
+ return true;
+ } else if (isLargeIntegerTy(!TM.isPPC64(),
+ J->getType()->getScalarType()) &&
+ (J->getOpcode() == Instruction::UDiv ||
+ J->getOpcode() == Instruction::SDiv ||
+ J->getOpcode() == Instruction::URem ||
+ J->getOpcode() == Instruction::SRem)) {
+ return true;
+ } else if (!TM.isPPC64() &&
+ isLargeIntegerTy(false, J->getType()->getScalarType()) &&
+ (J->getOpcode() == Instruction::Shl ||
+ J->getOpcode() == Instruction::AShr ||
+ J->getOpcode() == Instruction::LShr)) {
+ // Only on PPC32, for 128-bit integers (specifically not 64-bit
+ // integers), these might be runtime calls.
+ return true;
+ } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
+ // On PowerPC, indirect jumps use the counter register.
+ return true;
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
+ if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
+ return true;
+ }
+
+ // FREM is always a call.
+ if (J->getOpcode() == Instruction::FRem)
+ return true;
+
+ if (ST->useSoftFloat()) {
+ switch(J->getOpcode()) {
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FCmp:
+ return true;
+ }
+ }
+
+ for (Value *Operand : J->operands())
+ if (memAddrUsesCTR(Operand))
+ return true;
+ }
+
+ return false;
+}
+
+bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
+ AssumptionCache &AC,
+ TargetLibraryInfo *LibInfo,
+ HardwareLoopInfo &HWLoopInfo) {
+ const PPCTargetMachine &TM = ST->getTargetMachine();
+ TargetSchedModel SchedModel;
+ SchedModel.init(ST);
+
+ // Do not convert small short loops to CTR loop.
+ unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
+ if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
+ CodeMetrics Metrics;
+ for (BasicBlock *BB : L->blocks())
+ Metrics.analyzeBasicBlock(BB, *this, EphValues);
+ // 6 is an approximate latency for the mtctr instruction.
+ if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
+ return false;
+ }
+
+ // We don't want to spill/restore the counter register, and so we don't
+ // want to use the counter register if the loop contains calls.
+ for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
+ I != IE; ++I)
+ if (mightUseCTR(*I, LibInfo))
+ return false;
+
+ SmallVector<BasicBlock*, 4> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ // If there is an exit edge known to be frequently taken,
+ // we should not transform this loop.
+ for (auto &BB : ExitingBlocks) {
+ Instruction *TI = BB->getTerminator();
+ if (!TI) continue;
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ uint64_t TrueWeight = 0, FalseWeight = 0;
+ if (!BI->isConditional() ||
+ !BI->extractProfMetadata(TrueWeight, FalseWeight))
+ continue;
+
+ // If the exit path is more frequent than the loop path,
+ // we return here without further analysis for this loop.
+ bool TrueIsExit = !L->contains(BI->getSuccessor(0));
+ if (( TrueIsExit && FalseWeight < TrueWeight) ||
+ (!TrueIsExit && FalseWeight > TrueWeight))
+ return false;
+ }
+ }
+
+ LLVMContext &C = L->getHeader()->getContext();
+ HWLoopInfo.CountType = TM.isPPC64() ?
+ Type::getInt64Ty(C) : Type::getInt32Ty(C);
+ HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
+ return true;
+}
+
+void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+ TTI::UnrollingPreferences &UP) {
+ if (ST->getDarwinDirective() == PPC::DIR_A2) {
+ // The A2 is in-order with a deep pipeline, and concatenation unrolling
+ // helps expose latency-hiding opportunities to the instruction scheduler.
+ UP.Partial = UP.Runtime = true;
+
+ // We unroll a lot on the A2 (hundreds of instructions), and the benefits
+ // often outweigh the cost of a division to compute the trip count.
+ UP.AllowExpensiveTripCount = true;
+ }
+
+ BaseT::getUnrollingPreferences(L, SE, UP);
+}
+
+// This function returns true to allow using coldcc calling convention.
+// Returning true results in coldcc being used for functions which are cold at
+// all call sites when the callers of the functions are not calling any other
+// non coldcc functions.
+bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
+ return EnablePPCColdCC;
+}
+
+bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
+ // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
+ // on combining the loads generated for consecutive accesses, and failure to
+ // do so is particularly expensive. This makes it much more likely (compared
+ // to only using concatenation unrolling).
+ if (ST->getDarwinDirective() == PPC::DIR_A2)
+ return true;
+
+ return LoopHasReductions;
+}
+
+PPCTTIImpl::TTI::MemCmpExpansionOptions
+PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
+ TTI::MemCmpExpansionOptions Options;
+ Options.LoadSizes = {8, 4, 2, 1};
+ Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
+ return Options;
+}
+
+bool PPCTTIImpl::enableInterleavedAccessVectorization() {
+ return true;
+}
+
+unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
+ if (Vector && !ST->hasAltivec() && !ST->hasQPX())
+ return 0;
+ return ST->hasVSX() ? 64 : 32;
+}
+
+unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
+ if (Vector) {
+ if (ST->hasQPX()) return 256;
+ if (ST->hasAltivec()) return 128;
+ return 0;
+ }
+
+ if (ST->isPPC64())
+ return 64;
+ return 32;
+
+}
+
+unsigned PPCTTIImpl::getCacheLineSize() {
+ // Check first if the user specified a custom line size.
+ if (CacheLineSize.getNumOccurrences() > 0)
+ return CacheLineSize;
+
+ // On P7, P8 or P9 we have a cache line size of 128.
+ unsigned Directive = ST->getDarwinDirective();
+ if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
+ Directive == PPC::DIR_PWR9)
+ return 128;
+
+ // On other processors return a default of 64 bytes.
+ return 64;
+}
+
+unsigned PPCTTIImpl::getPrefetchDistance() {
+ // This seems like a reasonable default for the BG/Q (this pass is enabled, by
+ // default, only on the BG/Q).
+ return 300;
+}
+
+unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
+ unsigned Directive = ST->getDarwinDirective();
+ // The 440 has no SIMD support, but floating-point instructions
+ // have a 5-cycle latency, so unroll by 5x for latency hiding.
+ if (Directive == PPC::DIR_440)
+ return 5;
+
+ // The A2 has no SIMD support, but floating-point instructions
+ // have a 6-cycle latency, so unroll by 6x for latency hiding.
+ if (Directive == PPC::DIR_A2)
+ return 6;
+
+ // FIXME: For lack of any better information, do no harm...
+ if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
+ return 1;
+
+ // For P7 and P8, floating-point instructions have a 6-cycle latency and
+ // there are two execution units, so unroll by 12x for latency hiding.
+ // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
+ if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
+ Directive == PPC::DIR_PWR9)
+ return 12;
+
+ // For most things, modern systems have two execution units (and
+ // out-of-order execution).
+ return 2;
+}
+
+// Adjust the cost of vector instructions on targets which there is overlap
+// between the vector and scalar units, thereby reducing the overall throughput
+// of vector code wrt. scalar code.
+int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
+ Type *Ty2) {
+ if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
+ return Cost;
+
+ std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
+ // If type legalization involves splitting the vector, we don't want to
+ // double the cost at every step - only the last step.
+ if (LT1.first != 1 || !LT1.second.isVector())
+ return Cost;
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ if (TLI->isOperationExpand(ISD, LT1.second))
+ return Cost;
+
+ if (Ty2) {
+ std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
+ if (LT2.first != 1 || !LT2.second.isVector())
+ return Cost;
+ }
+
+ return Cost * 2;
+}
+
+int PPCTTIImpl::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
+ TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
+ assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
+
+ // Fallback to the default implementation.
+ int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
+ Opd1PropInfo, Opd2PropInfo);
+ return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
+}
+
+int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+
+ // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
+ // (at least in the sense that there need only be one non-loop-invariant
+ // instruction). We need one such shuffle instruction for each actual
+ // register (this is not true for arbitrary shuffles, but is true for the
+ // structured types of shuffles covered by TTI::ShuffleKind).
+ return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
+ nullptr);
+}
+
+int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+ const Instruction *I) {
+ assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
+
+ int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src);
+ return vectorCostAdjustment(Cost, Opcode, Dst, Src);
+}
+
+int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
+ const Instruction *I) {
+ int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
+ return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
+}
+
+int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
+ assert(Val->isVectorTy() && "This must be a vector type");
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
+ Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);
+
+ if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
+ // Double-precision scalars are already located in index #0 (or #1 if LE).
+ if (ISD == ISD::EXTRACT_VECTOR_ELT &&
+ Index == (ST->isLittleEndian() ? 1 : 0))
+ return 0;
+
+ return Cost;
+
+ } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
+ // Floating point scalars are already located in index #0.
+ if (Index == 0)
+ return 0;
+
+ return Cost;
+ }
+
+ // Estimated cost of a load-hit-store delay. This was obtained
+ // experimentally as a minimum needed to prevent unprofitable
+ // vectorization for the paq8p benchmark. It may need to be
+ // raised further if other unprofitable cases remain.
+ unsigned LHSPenalty = 2;
+ if (ISD == ISD::INSERT_VECTOR_ELT)
+ LHSPenalty += 7;
+
+ // Vector element insert/extract with Altivec is very expensive,
+ // because they require store and reload with the attendant
+ // processor stall for load-hit-store. Until VSX is available,
+ // these need to be estimated as very costly.
+ if (ISD == ISD::EXTRACT_VECTOR_ELT ||
+ ISD == ISD::INSERT_VECTOR_ELT)
+ return LHSPenalty + Cost;
+
+ return Cost;
+}
+
+int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace, const Instruction *I) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
+ assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
+ "Invalid Opcode");
+
+ int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
+ Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);
+
+ bool IsAltivecType = ST->hasAltivec() &&
+ (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
+ LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
+ bool IsVSXType = ST->hasVSX() &&
+ (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
+ bool IsQPXType = ST->hasQPX() &&
+ (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
+
+ // VSX has 32b/64b load instructions. Legalization can handle loading of
+ // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
+ // PPCTargetLowering can't compute the cost appropriately. So here we
+ // explicitly check this case.
+ unsigned MemBytes = Src->getPrimitiveSizeInBits();
+ if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
+ (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
+ return 1;
+
+ // Aligned loads and stores are easy.
+ unsigned SrcBytes = LT.second.getStoreSize();
+ if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
+ return Cost;
+
+ // If we can use the permutation-based load sequence, then this is also
+ // relatively cheap (not counting loop-invariant instructions): one load plus
+ // one permute (the last load in a series has extra cost, but we're
+ // neglecting that here). Note that on the P7, we could do unaligned loads
+ // for Altivec types using the VSX instructions, but that's more expensive
+ // than using the permutation-based load sequence. On the P8, that's no
+ // longer true.
+ if (Opcode == Instruction::Load &&
+ ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
+ Alignment >= LT.second.getScalarType().getStoreSize())
+ return Cost + LT.first; // Add the cost of the permutations.
+
+ // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
+ // P7, unaligned vector loads are more expensive than the permutation-based
+ // load sequence, so that might be used instead, but regardless, the net cost
+ // is about the same (not counting loop-invariant instructions).
+ if (IsVSXType || (ST->hasVSX() && IsAltivecType))
+ return Cost;
+
+ // Newer PPC supports unaligned memory access.
+ if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
+ return Cost;
+
+ // PPC in general does not support unaligned loads and stores. They'll need
+ // to be decomposed based on the alignment factor.
+
+ // Add the cost of each scalar load or store.
+ Cost += LT.first*(SrcBytes/Alignment-1);
+
+ // For a vector type, there is also scalarization overhead (only for
+ // stores, loads are expanded using the vector-load + permutation sequence,
+ // which is much less expensive).
+ if (Src->isVectorTy() && Opcode == Instruction::Store)
+ for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
+ Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
+
+ return Cost;
+}
+
+int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+ unsigned Factor,
+ ArrayRef<unsigned> Indices,
+ unsigned Alignment,
+ unsigned AddressSpace,
+ bool UseMaskForCond,
+ bool UseMaskForGaps) {
+ if (UseMaskForCond || UseMaskForGaps)
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace,
+ UseMaskForCond, UseMaskForGaps);
+
+ assert(isa<VectorType>(VecTy) &&
+ "Expect a vector type for interleaved memory op");
+
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
+
+ // Firstly, the cost of load/store operation.
+ int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
+
+ // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
+ // (at least in the sense that there need only be one non-loop-invariant
+ // instruction). For each result vector, we need one shuffle per incoming
+ // vector (except that the first shuffle can take two incoming vectors
+ // because it does not need to take itself).
+ Cost += Factor*(LT.first-1);
+
+ return Cost;
+}
+
+bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
+ LoopInfo *LI, DominatorTree *DT,
+ AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
+ // Process nested loops first.
+ for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+ if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
+ return false; // Stop search.
+
+ HardwareLoopInfo HWLoopInfo(L);
+
+ if (!HWLoopInfo.canAnalyze(*LI))
+ return false;
+
+ if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
+ return false;
+
+ if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
+ return false;
+
+ *BI = HWLoopInfo.ExitBranch;
+ return true;
+}