summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp1376
1 files changed, 1376 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp b/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
new file mode 100644
index 000000000000..a259ba3433d6
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
@@ -0,0 +1,1376 @@
+//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SystemZInstPrinter.h"
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "TargetInfo/SystemZTargetInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCAsmParserExtension.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCParser/MCTargetAsmParser.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SMLoc.h"
+#include "llvm/Support/TargetRegistry.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <memory>
+#include <string>
+
+using namespace llvm;
+
+// Return true if Expr is in the range [MinValue, MaxValue].
+static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
+ if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
+ int64_t Value = CE->getValue();
+ return Value >= MinValue && Value <= MaxValue;
+ }
+ return false;
+}
+
+namespace {
+
+enum RegisterKind {
+ GR32Reg,
+ GRH32Reg,
+ GR64Reg,
+ GR128Reg,
+ ADDR32Reg,
+ ADDR64Reg,
+ FP32Reg,
+ FP64Reg,
+ FP128Reg,
+ VR32Reg,
+ VR64Reg,
+ VR128Reg,
+ AR32Reg,
+ CR64Reg,
+};
+
+enum MemoryKind {
+ BDMem,
+ BDXMem,
+ BDLMem,
+ BDRMem,
+ BDVMem
+};
+
+class SystemZOperand : public MCParsedAsmOperand {
+private:
+ enum OperandKind {
+ KindInvalid,
+ KindToken,
+ KindReg,
+ KindImm,
+ KindImmTLS,
+ KindMem
+ };
+
+ OperandKind Kind;
+ SMLoc StartLoc, EndLoc;
+
+ // A string of length Length, starting at Data.
+ struct TokenOp {
+ const char *Data;
+ unsigned Length;
+ };
+
+ // LLVM register Num, which has kind Kind. In some ways it might be
+ // easier for this class to have a register bank (general, floating-point
+ // or access) and a raw register number (0-15). This would postpone the
+ // interpretation of the operand to the add*() methods and avoid the need
+ // for context-dependent parsing. However, we do things the current way
+ // because of the virtual getReg() method, which needs to distinguish
+ // between (say) %r0 used as a single register and %r0 used as a pair.
+ // Context-dependent parsing can also give us slightly better error
+ // messages when invalid pairs like %r1 are used.
+ struct RegOp {
+ RegisterKind Kind;
+ unsigned Num;
+ };
+
+ // Base + Disp + Index, where Base and Index are LLVM registers or 0.
+ // MemKind says what type of memory this is and RegKind says what type
+ // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand
+ // length for D(L,B)-style operands, otherwise it is null.
+ struct MemOp {
+ unsigned Base : 12;
+ unsigned Index : 12;
+ unsigned MemKind : 4;
+ unsigned RegKind : 4;
+ const MCExpr *Disp;
+ union {
+ const MCExpr *Imm;
+ unsigned Reg;
+ } Length;
+ };
+
+ // Imm is an immediate operand, and Sym is an optional TLS symbol
+ // for use with a __tls_get_offset marker relocation.
+ struct ImmTLSOp {
+ const MCExpr *Imm;
+ const MCExpr *Sym;
+ };
+
+ union {
+ TokenOp Token;
+ RegOp Reg;
+ const MCExpr *Imm;
+ ImmTLSOp ImmTLS;
+ MemOp Mem;
+ };
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediates when possible. Null MCExpr = 0.
+ if (!Expr)
+ Inst.addOperand(MCOperand::createImm(0));
+ else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::createImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::createExpr(Expr));
+ }
+
+public:
+ SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
+ : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
+
+ // Create particular kinds of operand.
+ static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
+ SMLoc EndLoc) {
+ return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
+ }
+
+ static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
+ auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
+ Op->Token.Data = Str.data();
+ Op->Token.Length = Str.size();
+ return Op;
+ }
+
+ static std::unique_ptr<SystemZOperand>
+ createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
+ auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
+ Op->Reg.Kind = Kind;
+ Op->Reg.Num = Num;
+ return Op;
+ }
+
+ static std::unique_ptr<SystemZOperand>
+ createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
+ auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
+ Op->Imm = Expr;
+ return Op;
+ }
+
+ static std::unique_ptr<SystemZOperand>
+ createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
+ const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
+ unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
+ auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
+ Op->Mem.MemKind = MemKind;
+ Op->Mem.RegKind = RegKind;
+ Op->Mem.Base = Base;
+ Op->Mem.Index = Index;
+ Op->Mem.Disp = Disp;
+ if (MemKind == BDLMem)
+ Op->Mem.Length.Imm = LengthImm;
+ if (MemKind == BDRMem)
+ Op->Mem.Length.Reg = LengthReg;
+ return Op;
+ }
+
+ static std::unique_ptr<SystemZOperand>
+ createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
+ SMLoc StartLoc, SMLoc EndLoc) {
+ auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
+ Op->ImmTLS.Imm = Imm;
+ Op->ImmTLS.Sym = Sym;
+ return Op;
+ }
+
+ // Token operands
+ bool isToken() const override {
+ return Kind == KindToken;
+ }
+ StringRef getToken() const {
+ assert(Kind == KindToken && "Not a token");
+ return StringRef(Token.Data, Token.Length);
+ }
+
+ // Register operands.
+ bool isReg() const override {
+ return Kind == KindReg;
+ }
+ bool isReg(RegisterKind RegKind) const {
+ return Kind == KindReg && Reg.Kind == RegKind;
+ }
+ unsigned getReg() const override {
+ assert(Kind == KindReg && "Not a register");
+ return Reg.Num;
+ }
+
+ // Immediate operands.
+ bool isImm() const override {
+ return Kind == KindImm;
+ }
+ bool isImm(int64_t MinValue, int64_t MaxValue) const {
+ return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
+ }
+ const MCExpr *getImm() const {
+ assert(Kind == KindImm && "Not an immediate");
+ return Imm;
+ }
+
+ // Immediate operands with optional TLS symbol.
+ bool isImmTLS() const {
+ return Kind == KindImmTLS;
+ }
+
+ const ImmTLSOp getImmTLS() const {
+ assert(Kind == KindImmTLS && "Not a TLS immediate");
+ return ImmTLS;
+ }
+
+ // Memory operands.
+ bool isMem() const override {
+ return Kind == KindMem;
+ }
+ bool isMem(MemoryKind MemKind) const {
+ return (Kind == KindMem &&
+ (Mem.MemKind == MemKind ||
+ // A BDMem can be treated as a BDXMem in which the index
+ // register field is 0.
+ (Mem.MemKind == BDMem && MemKind == BDXMem)));
+ }
+ bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
+ return isMem(MemKind) && Mem.RegKind == RegKind;
+ }
+ bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
+ return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
+ }
+ bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
+ return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
+ }
+ bool isMemDisp12Len4(RegisterKind RegKind) const {
+ return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
+ }
+ bool isMemDisp12Len8(RegisterKind RegKind) const {
+ return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
+ }
+
+ const MemOp& getMem() const {
+ assert(Kind == KindMem && "Not a Mem operand");
+ return Mem;
+ }
+
+ // Override MCParsedAsmOperand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+ SMLoc getEndLoc() const override { return EndLoc; }
+ void print(raw_ostream &OS) const override;
+
+ /// getLocRange - Get the range between the first and last token of this
+ /// operand.
+ SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
+
+ // Used by the TableGen code to add particular types of operand
+ // to an instruction.
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands");
+ Inst.addOperand(MCOperand::createReg(getReg()));
+ }
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands");
+ addExpr(Inst, getImm());
+ }
+ void addBDAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands");
+ assert(isMem(BDMem) && "Invalid operand type");
+ Inst.addOperand(MCOperand::createReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ }
+ void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands");
+ assert(isMem(BDXMem) && "Invalid operand type");
+ Inst.addOperand(MCOperand::createReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ Inst.addOperand(MCOperand::createReg(Mem.Index));
+ }
+ void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands");
+ assert(isMem(BDLMem) && "Invalid operand type");
+ Inst.addOperand(MCOperand::createReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ addExpr(Inst, Mem.Length.Imm);
+ }
+ void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands");
+ assert(isMem(BDRMem) && "Invalid operand type");
+ Inst.addOperand(MCOperand::createReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
+ }
+ void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands");
+ assert(isMem(BDVMem) && "Invalid operand type");
+ Inst.addOperand(MCOperand::createReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ Inst.addOperand(MCOperand::createReg(Mem.Index));
+ }
+ void addImmTLSOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands");
+ assert(Kind == KindImmTLS && "Invalid operand type");
+ addExpr(Inst, ImmTLS.Imm);
+ if (ImmTLS.Sym)
+ addExpr(Inst, ImmTLS.Sym);
+ }
+
+ // Used by the TableGen code to check for particular operand types.
+ bool isGR32() const { return isReg(GR32Reg); }
+ bool isGRH32() const { return isReg(GRH32Reg); }
+ bool isGRX32() const { return false; }
+ bool isGR64() const { return isReg(GR64Reg); }
+ bool isGR128() const { return isReg(GR128Reg); }
+ bool isADDR32() const { return isReg(ADDR32Reg); }
+ bool isADDR64() const { return isReg(ADDR64Reg); }
+ bool isADDR128() const { return false; }
+ bool isFP32() const { return isReg(FP32Reg); }
+ bool isFP64() const { return isReg(FP64Reg); }
+ bool isFP128() const { return isReg(FP128Reg); }
+ bool isVR32() const { return isReg(VR32Reg); }
+ bool isVR64() const { return isReg(VR64Reg); }
+ bool isVF128() const { return false; }
+ bool isVR128() const { return isReg(VR128Reg); }
+ bool isAR32() const { return isReg(AR32Reg); }
+ bool isCR64() const { return isReg(CR64Reg); }
+ bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
+ bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); }
+ bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); }
+ bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); }
+ bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); }
+ bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); }
+ bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); }
+ bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(ADDR64Reg); }
+ bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
+ bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); }
+ bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); }
+ bool isU1Imm() const { return isImm(0, 1); }
+ bool isU2Imm() const { return isImm(0, 3); }
+ bool isU3Imm() const { return isImm(0, 7); }
+ bool isU4Imm() const { return isImm(0, 15); }
+ bool isU6Imm() const { return isImm(0, 63); }
+ bool isU8Imm() const { return isImm(0, 255); }
+ bool isS8Imm() const { return isImm(-128, 127); }
+ bool isU12Imm() const { return isImm(0, 4095); }
+ bool isU16Imm() const { return isImm(0, 65535); }
+ bool isS16Imm() const { return isImm(-32768, 32767); }
+ bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
+ bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
+ bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
+};
+
+class SystemZAsmParser : public MCTargetAsmParser {
+#define GET_ASSEMBLER_HEADER
+#include "SystemZGenAsmMatcher.inc"
+
+private:
+ MCAsmParser &Parser;
+ enum RegisterGroup {
+ RegGR,
+ RegFP,
+ RegV,
+ RegAR,
+ RegCR
+ };
+ struct Register {
+ RegisterGroup Group;
+ unsigned Num;
+ SMLoc StartLoc, EndLoc;
+ };
+
+ bool parseRegister(Register &Reg);
+
+ bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
+ bool IsAddress = false);
+
+ OperandMatchResultTy parseRegister(OperandVector &Operands,
+ RegisterGroup Group, const unsigned *Regs,
+ RegisterKind Kind);
+
+ OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
+
+ bool parseAddress(bool &HaveReg1, Register &Reg1,
+ bool &HaveReg2, Register &Reg2,
+ const MCExpr *&Disp, const MCExpr *&Length);
+ bool parseAddressRegister(Register &Reg);
+
+ bool ParseDirectiveInsn(SMLoc L);
+
+ OperandMatchResultTy parseAddress(OperandVector &Operands,
+ MemoryKind MemKind, const unsigned *Regs,
+ RegisterKind RegKind);
+
+ OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
+ int64_t MaxVal, bool AllowTLS);
+
+ bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
+
+public:
+ SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
+ const MCInstrInfo &MII,
+ const MCTargetOptions &Options)
+ : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
+ MCAsmParserExtension::Initialize(Parser);
+
+ // Alias the .word directive to .short.
+ parser.addAliasForDirective(".word", ".short");
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
+ }
+
+ // Override MCTargetAsmParser.
+ bool ParseDirective(AsmToken DirectiveID) override;
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) override;
+
+ // Used by the TableGen code to parse particular operand types.
+ OperandMatchResultTy parseGR32(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
+ }
+ OperandMatchResultTy parseGRH32(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
+ }
+ OperandMatchResultTy parseGRX32(OperandVector &Operands) {
+ llvm_unreachable("GRX32 should only be used for pseudo instructions");
+ }
+ OperandMatchResultTy parseGR64(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
+ }
+ OperandMatchResultTy parseGR128(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
+ }
+ OperandMatchResultTy parseADDR32(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
+ }
+ OperandMatchResultTy parseADDR64(OperandVector &Operands) {
+ return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
+ }
+ OperandMatchResultTy parseADDR128(OperandVector &Operands) {
+ llvm_unreachable("Shouldn't be used as an operand");
+ }
+ OperandMatchResultTy parseFP32(OperandVector &Operands) {
+ return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
+ }
+ OperandMatchResultTy parseFP64(OperandVector &Operands) {
+ return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
+ }
+ OperandMatchResultTy parseFP128(OperandVector &Operands) {
+ return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
+ }
+ OperandMatchResultTy parseVR32(OperandVector &Operands) {
+ return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg);
+ }
+ OperandMatchResultTy parseVR64(OperandVector &Operands) {
+ return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg);
+ }
+ OperandMatchResultTy parseVF128(OperandVector &Operands) {
+ llvm_unreachable("Shouldn't be used as an operand");
+ }
+ OperandMatchResultTy parseVR128(OperandVector &Operands) {
+ return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg);
+ }
+ OperandMatchResultTy parseAR32(OperandVector &Operands) {
+ return parseRegister(Operands, RegAR, SystemZMC::AR32Regs, AR32Reg);
+ }
+ OperandMatchResultTy parseCR64(OperandVector &Operands) {
+ return parseRegister(Operands, RegCR, SystemZMC::CR64Regs, CR64Reg);
+ }
+ OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
+ return parseAnyRegister(Operands);
+ }
+ OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
+ return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg);
+ }
+ OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
+ return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg);
+ }
+ OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
+ return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg);
+ }
+ OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
+ return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg);
+ }
+ OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
+ return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg);
+ }
+ OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
+ return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg);
+ }
+ OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
+ return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
+ }
+ OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
+ return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
+ }
+ OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
+ return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
+ }
+ OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
+ return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
+ }
+ OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
+ return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
+ }
+ OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
+ return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
+ }
+};
+
+} // end anonymous namespace
+
+#define GET_REGISTER_MATCHER
+#define GET_SUBTARGET_FEATURE_NAME
+#define GET_MATCHER_IMPLEMENTATION
+#define GET_MNEMONIC_SPELL_CHECKER
+#include "SystemZGenAsmMatcher.inc"
+
+// Used for the .insn directives; contains information needed to parse the
+// operands in the directive.
+struct InsnMatchEntry {
+ StringRef Format;
+ uint64_t Opcode;
+ int32_t NumOperands;
+ MatchClassKind OperandKinds[5];
+};
+
+// For equal_range comparison.
+struct CompareInsn {
+ bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
+ return LHS.Format < RHS;
+ }
+ bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
+ return LHS < RHS.Format;
+ }
+ bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
+ return LHS.Format < RHS.Format;
+ }
+};
+
+// Table initializing information for parsing the .insn directive.
+static struct InsnMatchEntry InsnMatchTable[] = {
+ /* Format, Opcode, NumOperands, OperandKinds */
+ { "e", SystemZ::InsnE, 1,
+ { MCK_U16Imm } },
+ { "ri", SystemZ::InsnRI, 3,
+ { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
+ { "rie", SystemZ::InsnRIE, 4,
+ { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
+ { "ril", SystemZ::InsnRIL, 3,
+ { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
+ { "rilu", SystemZ::InsnRILU, 3,
+ { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
+ { "ris", SystemZ::InsnRIS, 5,
+ { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
+ { "rr", SystemZ::InsnRR, 3,
+ { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
+ { "rre", SystemZ::InsnRRE, 3,
+ { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
+ { "rrf", SystemZ::InsnRRF, 5,
+ { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
+ { "rrs", SystemZ::InsnRRS, 5,
+ { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
+ { "rs", SystemZ::InsnRS, 4,
+ { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
+ { "rse", SystemZ::InsnRSE, 4,
+ { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
+ { "rsi", SystemZ::InsnRSI, 4,
+ { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
+ { "rsy", SystemZ::InsnRSY, 4,
+ { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
+ { "rx", SystemZ::InsnRX, 3,
+ { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
+ { "rxe", SystemZ::InsnRXE, 3,
+ { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
+ { "rxf", SystemZ::InsnRXF, 4,
+ { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
+ { "rxy", SystemZ::InsnRXY, 3,
+ { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
+ { "s", SystemZ::InsnS, 2,
+ { MCK_U32Imm, MCK_BDAddr64Disp12 } },
+ { "si", SystemZ::InsnSI, 3,
+ { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
+ { "sil", SystemZ::InsnSIL, 3,
+ { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
+ { "siy", SystemZ::InsnSIY, 3,
+ { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
+ { "ss", SystemZ::InsnSS, 4,
+ { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
+ { "sse", SystemZ::InsnSSE, 3,
+ { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
+ { "ssf", SystemZ::InsnSSF, 4,
+ { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
+};
+
+static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
+ if (!E)
+ return;
+ if (auto *CE = dyn_cast<MCConstantExpr>(E))
+ OS << *CE;
+ else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
+ OS << *UE;
+ else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
+ OS << *BE;
+ else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
+ OS << *SRE;
+ else
+ OS << *E;
+}
+
+void SystemZOperand::print(raw_ostream &OS) const {
+ switch (Kind) {
+ case KindToken:
+ OS << "Token:" << getToken();
+ break;
+ case KindReg:
+ OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
+ break;
+ case KindImm:
+ OS << "Imm:";
+ printMCExpr(getImm(), OS);
+ break;
+ case KindImmTLS:
+ OS << "ImmTLS:";
+ printMCExpr(getImmTLS().Imm, OS);
+ if (getImmTLS().Sym) {
+ OS << ", ";
+ printMCExpr(getImmTLS().Sym, OS);
+ }
+ break;
+ case KindMem: {
+ const MemOp &Op = getMem();
+ OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
+ if (Op.Base) {
+ OS << "(";
+ if (Op.MemKind == BDLMem)
+ OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
+ else if (Op.MemKind == BDRMem)
+ OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
+ if (Op.Index)
+ OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
+ OS << SystemZInstPrinter::getRegisterName(Op.Base);
+ OS << ")";
+ }
+ break;
+ }
+ case KindInvalid:
+ break;
+ }
+}
+
+// Parse one register of the form %<prefix><number>.
+bool SystemZAsmParser::parseRegister(Register &Reg) {
+ Reg.StartLoc = Parser.getTok().getLoc();
+
+ // Eat the % prefix.
+ if (Parser.getTok().isNot(AsmToken::Percent))
+ return Error(Parser.getTok().getLoc(), "register expected");
+ Parser.Lex();
+
+ // Expect a register name.
+ if (Parser.getTok().isNot(AsmToken::Identifier))
+ return Error(Reg.StartLoc, "invalid register");
+
+ // Check that there's a prefix.
+ StringRef Name = Parser.getTok().getString();
+ if (Name.size() < 2)
+ return Error(Reg.StartLoc, "invalid register");
+ char Prefix = Name[0];
+
+ // Treat the rest of the register name as a register number.
+ if (Name.substr(1).getAsInteger(10, Reg.Num))
+ return Error(Reg.StartLoc, "invalid register");
+
+ // Look for valid combinations of prefix and number.
+ if (Prefix == 'r' && Reg.Num < 16)
+ Reg.Group = RegGR;
+ else if (Prefix == 'f' && Reg.Num < 16)
+ Reg.Group = RegFP;
+ else if (Prefix == 'v' && Reg.Num < 32)
+ Reg.Group = RegV;
+ else if (Prefix == 'a' && Reg.Num < 16)
+ Reg.Group = RegAR;
+ else if (Prefix == 'c' && Reg.Num < 16)
+ Reg.Group = RegCR;
+ else
+ return Error(Reg.StartLoc, "invalid register");
+
+ Reg.EndLoc = Parser.getTok().getLoc();
+ Parser.Lex();
+ return false;
+}
+
+// Parse a register of group Group. If Regs is nonnull, use it to map
+// the raw register number to LLVM numbering, with zero entries
+// indicating an invalid register. IsAddress says whether the
+// register appears in an address context. Allow FP Group if expecting
+// RegV Group, since the f-prefix yields the FP group even while used
+// with vector instructions.
+bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
+ const unsigned *Regs, bool IsAddress) {
+ if (parseRegister(Reg))
+ return true;
+ if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV))
+ return Error(Reg.StartLoc, "invalid operand for instruction");
+ if (Regs && Regs[Reg.Num] == 0)
+ return Error(Reg.StartLoc, "invalid register pair");
+ if (Reg.Num == 0 && IsAddress)
+ return Error(Reg.StartLoc, "%r0 used in an address");
+ if (Regs)
+ Reg.Num = Regs[Reg.Num];
+ return false;
+}
+
+// Parse a register and add it to Operands. The other arguments are as above.
+OperandMatchResultTy
+SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
+ const unsigned *Regs, RegisterKind Kind) {
+ if (Parser.getTok().isNot(AsmToken::Percent))
+ return MatchOperand_NoMatch;
+
+ Register Reg;
+ bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
+ if (parseRegister(Reg, Group, Regs, IsAddress))
+ return MatchOperand_ParseFail;
+
+ Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
+ Reg.StartLoc, Reg.EndLoc));
+ return MatchOperand_Success;
+}
+
+// Parse any type of register (including integers) and add it to Operands.
+OperandMatchResultTy
+SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
+ // Handle integer values.
+ if (Parser.getTok().is(AsmToken::Integer)) {
+ const MCExpr *Register;
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ if (Parser.parseExpression(Register))
+ return MatchOperand_ParseFail;
+
+ if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
+ int64_t Value = CE->getValue();
+ if (Value < 0 || Value > 15) {
+ Error(StartLoc, "invalid register");
+ return MatchOperand_ParseFail;
+ }
+ }
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
+ }
+ else {
+ Register Reg;
+ if (parseRegister(Reg))
+ return MatchOperand_ParseFail;
+
+ // Map to the correct register kind.
+ RegisterKind Kind;
+ unsigned RegNo;
+ if (Reg.Group == RegGR) {
+ Kind = GR64Reg;
+ RegNo = SystemZMC::GR64Regs[Reg.Num];
+ }
+ else if (Reg.Group == RegFP) {
+ Kind = FP64Reg;
+ RegNo = SystemZMC::FP64Regs[Reg.Num];
+ }
+ else if (Reg.Group == RegV) {
+ Kind = VR128Reg;
+ RegNo = SystemZMC::VR128Regs[Reg.Num];
+ }
+ else if (Reg.Group == RegAR) {
+ Kind = AR32Reg;
+ RegNo = SystemZMC::AR32Regs[Reg.Num];
+ }
+ else if (Reg.Group == RegCR) {
+ Kind = CR64Reg;
+ RegNo = SystemZMC::CR64Regs[Reg.Num];
+ }
+ else {
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
+ Reg.StartLoc, Reg.EndLoc));
+ }
+ return MatchOperand_Success;
+}
+
+// Parse a memory operand into Reg1, Reg2, Disp, and Length.
+bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
+ bool &HaveReg2, Register &Reg2,
+ const MCExpr *&Disp,
+ const MCExpr *&Length) {
+ // Parse the displacement, which must always be present.
+ if (getParser().parseExpression(Disp))
+ return true;
+
+ // Parse the optional base and index.
+ HaveReg1 = false;
+ HaveReg2 = false;
+ Length = nullptr;
+ if (getLexer().is(AsmToken::LParen)) {
+ Parser.Lex();
+
+ if (getLexer().is(AsmToken::Percent)) {
+ // Parse the first register.
+ HaveReg1 = true;
+ if (parseRegister(Reg1))
+ return true;
+ } else {
+ // Parse the length.
+ if (getParser().parseExpression(Length))
+ return true;
+ }
+
+ // Check whether there's a second register.
+ if (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex();
+ HaveReg2 = true;
+ if (parseRegister(Reg2))
+ return true;
+ }
+
+ // Consume the closing bracket.
+ if (getLexer().isNot(AsmToken::RParen))
+ return Error(Parser.getTok().getLoc(), "unexpected token in address");
+ Parser.Lex();
+ }
+ return false;
+}
+
+// Verify that Reg is a valid address register (base or index).
+bool
+SystemZAsmParser::parseAddressRegister(Register &Reg) {
+ if (Reg.Group == RegV) {
+ Error(Reg.StartLoc, "invalid use of vector addressing");
+ return true;
+ } else if (Reg.Group != RegGR) {
+ Error(Reg.StartLoc, "invalid address register");
+ return true;
+ } else if (Reg.Num == 0) {
+ Error(Reg.StartLoc, "%r0 used in an address");
+ return true;
+ }
+ return false;
+}
+
+// Parse a memory operand and add it to Operands. The other arguments
+// are as above.
+OperandMatchResultTy
+SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
+ const unsigned *Regs, RegisterKind RegKind) {
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ unsigned Base = 0, Index = 0, LengthReg = 0;
+ Register Reg1, Reg2;
+ bool HaveReg1, HaveReg2;
+ const MCExpr *Disp;
+ const MCExpr *Length;
+ if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length))
+ return MatchOperand_ParseFail;
+
+ switch (MemKind) {
+ case BDMem:
+ // If we have Reg1, it must be an address register.
+ if (HaveReg1) {
+ if (parseAddressRegister(Reg1))
+ return MatchOperand_ParseFail;
+ Base = Regs[Reg1.Num];
+ }
+ // There must be no Reg2 or length.
+ if (Length) {
+ Error(StartLoc, "invalid use of length addressing");
+ return MatchOperand_ParseFail;
+ }
+ if (HaveReg2) {
+ Error(StartLoc, "invalid use of indexed addressing");
+ return MatchOperand_ParseFail;
+ }
+ break;
+ case BDXMem:
+ // If we have Reg1, it must be an address register.
+ if (HaveReg1) {
+ if (parseAddressRegister(Reg1))
+ return MatchOperand_ParseFail;
+ // If the are two registers, the first one is the index and the
+ // second is the base.
+ if (HaveReg2)
+ Index = Regs[Reg1.Num];
+ else
+ Base = Regs[Reg1.Num];
+ }
+ // If we have Reg2, it must be an address register.
+ if (HaveReg2) {
+ if (parseAddressRegister(Reg2))
+ return MatchOperand_ParseFail;
+ Base = Regs[Reg2.Num];
+ }
+ // There must be no length.
+ if (Length) {
+ Error(StartLoc, "invalid use of length addressing");
+ return MatchOperand_ParseFail;
+ }
+ break;
+ case BDLMem:
+ // If we have Reg2, it must be an address register.
+ if (HaveReg2) {
+ if (parseAddressRegister(Reg2))
+ return MatchOperand_ParseFail;
+ Base = Regs[Reg2.Num];
+ }
+ // We cannot support base+index addressing.
+ if (HaveReg1 && HaveReg2) {
+ Error(StartLoc, "invalid use of indexed addressing");
+ return MatchOperand_ParseFail;
+ }
+ // We must have a length.
+ if (!Length) {
+ Error(StartLoc, "missing length in address");
+ return MatchOperand_ParseFail;
+ }
+ break;
+ case BDRMem:
+ // We must have Reg1, and it must be a GPR.
+ if (!HaveReg1 || Reg1.Group != RegGR) {
+ Error(StartLoc, "invalid operand for instruction");
+ return MatchOperand_ParseFail;
+ }
+ LengthReg = SystemZMC::GR64Regs[Reg1.Num];
+ // If we have Reg2, it must be an address register.
+ if (HaveReg2) {
+ if (parseAddressRegister(Reg2))
+ return MatchOperand_ParseFail;
+ Base = Regs[Reg2.Num];
+ }
+ // There must be no length.
+ if (Length) {
+ Error(StartLoc, "invalid use of length addressing");
+ return MatchOperand_ParseFail;
+ }
+ break;
+ case BDVMem:
+ // We must have Reg1, and it must be a vector register.
+ if (!HaveReg1 || Reg1.Group != RegV) {
+ Error(StartLoc, "vector index required in address");
+ return MatchOperand_ParseFail;
+ }
+ Index = SystemZMC::VR128Regs[Reg1.Num];
+ // If we have Reg2, it must be an address register.
+ if (HaveReg2) {
+ if (parseAddressRegister(Reg2))
+ return MatchOperand_ParseFail;
+ Base = Regs[Reg2.Num];
+ }
+ // There must be no length.
+ if (Length) {
+ Error(StartLoc, "invalid use of length addressing");
+ return MatchOperand_ParseFail;
+ }
+ break;
+ }
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
+ Index, Length, LengthReg,
+ StartLoc, EndLoc));
+ return MatchOperand_Success;
+}
+
+bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getIdentifier();
+
+ if (IDVal == ".insn")
+ return ParseDirectiveInsn(DirectiveID.getLoc());
+
+ return true;
+}
+
+/// ParseDirectiveInsn
+/// ::= .insn [ format, encoding, (operands (, operands)*) ]
+bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+
+ // Expect instruction format as identifier.
+ StringRef Format;
+ SMLoc ErrorLoc = Parser.getTok().getLoc();
+ if (Parser.parseIdentifier(Format))
+ return Error(ErrorLoc, "expected instruction format");
+
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
+
+ // Find entry for this format in InsnMatchTable.
+ auto EntryRange =
+ std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
+ Format, CompareInsn());
+
+ // If first == second, couldn't find a match in the table.
+ if (EntryRange.first == EntryRange.second)
+ return Error(ErrorLoc, "unrecognized format");
+
+ struct InsnMatchEntry *Entry = EntryRange.first;
+
+ // Format should match from equal_range.
+ assert(Entry->Format == Format);
+
+ // Parse the following operands using the table's information.
+ for (int i = 0; i < Entry->NumOperands; i++) {
+ MatchClassKind Kind = Entry->OperandKinds[i];
+
+ SMLoc StartLoc = Parser.getTok().getLoc();
+
+ // Always expect commas as separators for operands.
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(StartLoc, "unexpected token in directive");
+ Lex();
+
+ // Parse operands.
+ OperandMatchResultTy ResTy;
+ if (Kind == MCK_AnyReg)
+ ResTy = parseAnyReg(Operands);
+ else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
+ ResTy = parseBDXAddr64(Operands);
+ else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
+ ResTy = parseBDAddr64(Operands);
+ else if (Kind == MCK_PCRel32)
+ ResTy = parsePCRel32(Operands);
+ else if (Kind == MCK_PCRel16)
+ ResTy = parsePCRel16(Operands);
+ else {
+ // Only remaining operand kind is an immediate.
+ const MCExpr *Expr;
+ SMLoc StartLoc = Parser.getTok().getLoc();
+
+ // Expect immediate expression.
+ if (Parser.parseExpression(Expr))
+ return Error(StartLoc, "unexpected token in directive");
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
+ ResTy = MatchOperand_Success;
+ }
+
+ if (ResTy != MatchOperand_Success)
+ return true;
+ }
+
+ // Build the instruction with the parsed operands.
+ MCInst Inst = MCInstBuilder(Entry->Opcode);
+
+ for (size_t i = 0; i < Operands.size(); i++) {
+ MCParsedAsmOperand &Operand = *Operands[i];
+ MatchClassKind Kind = Entry->OperandKinds[i];
+
+ // Verify operand.
+ unsigned Res = validateOperandClass(Operand, Kind);
+ if (Res != Match_Success)
+ return Error(Operand.getStartLoc(), "unexpected operand type");
+
+ // Add operands to instruction.
+ SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
+ if (ZOperand.isReg())
+ ZOperand.addRegOperands(Inst, 1);
+ else if (ZOperand.isMem(BDMem))
+ ZOperand.addBDAddrOperands(Inst, 2);
+ else if (ZOperand.isMem(BDXMem))
+ ZOperand.addBDXAddrOperands(Inst, 3);
+ else if (ZOperand.isImm())
+ ZOperand.addImmOperands(Inst, 1);
+ else
+ llvm_unreachable("unexpected operand type");
+ }
+
+ // Emit as a regular instruction.
+ Parser.getStreamer().EmitInstruction(Inst, getSTI());
+
+ return false;
+}
+
+bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
+ SMLoc &EndLoc) {
+ Register Reg;
+ if (parseRegister(Reg))
+ return true;
+ if (Reg.Group == RegGR)
+ RegNo = SystemZMC::GR64Regs[Reg.Num];
+ else if (Reg.Group == RegFP)
+ RegNo = SystemZMC::FP64Regs[Reg.Num];
+ else if (Reg.Group == RegV)
+ RegNo = SystemZMC::VR128Regs[Reg.Num];
+ else if (Reg.Group == RegAR)
+ RegNo = SystemZMC::AR32Regs[Reg.Num];
+ else if (Reg.Group == RegCR)
+ RegNo = SystemZMC::CR64Regs[Reg.Num];
+ StartLoc = Reg.StartLoc;
+ EndLoc = Reg.EndLoc;
+ return false;
+}
+
+bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
+ StringRef Name, SMLoc NameLoc,
+ OperandVector &Operands) {
+ Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (parseOperand(Operands, Name)) {
+ return true;
+ }
+
+ // Read any subsequent operands.
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex();
+ if (parseOperand(Operands, Name)) {
+ return true;
+ }
+ }
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = getLexer().getLoc();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ }
+
+ // Consume the EndOfStatement.
+ Parser.Lex();
+ return false;
+}
+
+bool SystemZAsmParser::parseOperand(OperandVector &Operands,
+ StringRef Mnemonic) {
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach. Force all
+ // features to be available during the operand check, or else we will fail to
+ // find the custom parser, and then we will later get an InvalidOperand error
+ // instead of a MissingFeature errror.
+ FeatureBitset AvailableFeatures = getAvailableFeatures();
+ FeatureBitset All;
+ All.set();
+ setAvailableFeatures(All);
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+ setAvailableFeatures(AvailableFeatures);
+ if (ResTy == MatchOperand_Success)
+ return false;
+
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ // Check for a register. All real register operands should have used
+ // a context-dependent parse routine, which gives the required register
+ // class. The code is here to mop up other cases, like those where
+ // the instruction isn't recognized.
+ if (Parser.getTok().is(AsmToken::Percent)) {
+ Register Reg;
+ if (parseRegister(Reg))
+ return true;
+ Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
+ return false;
+ }
+
+ // The only other type of operand is an immediate or address. As above,
+ // real address operands should have used a context-dependent parse routine,
+ // so we treat any plain expression as an immediate.
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ Register Reg1, Reg2;
+ bool HaveReg1, HaveReg2;
+ const MCExpr *Expr;
+ const MCExpr *Length;
+ if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length))
+ return true;
+ // If the register combination is not valid for any instruction, reject it.
+ // Otherwise, fall back to reporting an unrecognized instruction.
+ if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
+ && parseAddressRegister(Reg1))
+ return true;
+ if (HaveReg2 && parseAddressRegister(Reg2))
+ return true;
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ if (HaveReg1 || HaveReg2 || Length)
+ Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
+ else
+ Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
+ return false;
+}
+
+static std::string SystemZMnemonicSpellCheck(StringRef S,
+ const FeatureBitset &FBS,
+ unsigned VariantID = 0);
+
+bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ MCInst Inst;
+ unsigned MatchResult;
+
+ FeatureBitset MissingFeatures;
+ MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MissingFeatures, MatchingInlineAsm);
+ switch (MatchResult) {
+ case Match_Success:
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst, getSTI());
+ return false;
+
+ case Match_MissingFeature: {
+ assert(MissingFeatures.any() && "Unknown missing feature!");
+ // Special case the error message for the very common case where only
+ // a single subtarget feature is missing
+ std::string Msg = "instruction requires:";
+ for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
+ if (MissingFeatures[I]) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(I);
+ }
+ }
+ return Error(IDLoc, Msg);
+ }
+
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0ULL) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+
+ case Match_MnemonicFail: {
+ FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
+ std::string Suggestion = SystemZMnemonicSpellCheck(
+ ((SystemZOperand &)*Operands[0]).getToken(), FBS);
+ return Error(IDLoc, "invalid instruction" + Suggestion,
+ ((SystemZOperand &)*Operands[0]).getLocRange());
+ }
+ }
+
+ llvm_unreachable("Unexpected match type");
+}
+
+OperandMatchResultTy
+SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
+ int64_t MaxVal, bool AllowTLS) {
+ MCContext &Ctx = getContext();
+ MCStreamer &Out = getStreamer();
+ const MCExpr *Expr;
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ if (getParser().parseExpression(Expr))
+ return MatchOperand_NoMatch;
+
+ // For consistency with the GNU assembler, treat immediates as offsets
+ // from ".".
+ if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
+ int64_t Value = CE->getValue();
+ if ((Value & 1) || Value < MinVal || Value > MaxVal) {
+ Error(StartLoc, "offset out of range");
+ return MatchOperand_ParseFail;
+ }
+ MCSymbol *Sym = Ctx.createTempSymbol();
+ Out.EmitLabel(Sym);
+ const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
+ Ctx);
+ Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
+ }
+
+ // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
+ const MCExpr *Sym = nullptr;
+ if (AllowTLS && getLexer().is(AsmToken::Colon)) {
+ Parser.Lex();
+
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), "unexpected token");
+ return MatchOperand_ParseFail;
+ }
+
+ MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
+ StringRef Name = Parser.getTok().getString();
+ if (Name == "tls_gdcall")
+ Kind = MCSymbolRefExpr::VK_TLSGD;
+ else if (Name == "tls_ldcall")
+ Kind = MCSymbolRefExpr::VK_TLSLDM;
+ else {
+ Error(Parser.getTok().getLoc(), "unknown TLS tag");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex();
+
+ if (Parser.getTok().isNot(AsmToken::Colon)) {
+ Error(Parser.getTok().getLoc(), "unexpected token");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex();
+
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), "unexpected token");
+ return MatchOperand_ParseFail;
+ }
+
+ StringRef Identifier = Parser.getTok().getString();
+ Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
+ Kind, Ctx);
+ Parser.Lex();
+ }
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ if (AllowTLS)
+ Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
+ StartLoc, EndLoc));
+ else
+ Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeSystemZAsmParser() {
+ RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
+}