diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp | 1146 |
1 files changed, 1146 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp b/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp new file mode 100644 index 000000000000..145cf87ef9f5 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp @@ -0,0 +1,1146 @@ +//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements a TargetTransformInfo analysis pass specific to the +// SystemZ target machine. It uses the target's detailed information to provide +// more precise answers to certain TTI queries, while letting the target +// independent and default TTI implementations handle the rest. +// +//===----------------------------------------------------------------------===// + +#include "SystemZTargetTransformInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/CodeGen/BasicTTIImpl.h" +#include "llvm/CodeGen/CostTable.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/Support/Debug.h" +using namespace llvm; + +#define DEBUG_TYPE "systemztti" + +//===----------------------------------------------------------------------===// +// +// SystemZ cost model. +// +//===----------------------------------------------------------------------===// + +int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { + assert(Ty->isIntegerTy()); + + unsigned BitSize = Ty->getPrimitiveSizeInBits(); + // There is no cost model for constants with a bit size of 0. Return TCC_Free + // here, so that constant hoisting will ignore this constant. + if (BitSize == 0) + return TTI::TCC_Free; + // No cost model for operations on integers larger than 64 bit implemented yet. + if (BitSize > 64) + return TTI::TCC_Free; + + if (Imm == 0) + return TTI::TCC_Free; + + if (Imm.getBitWidth() <= 64) { + // Constants loaded via lgfi. + if (isInt<32>(Imm.getSExtValue())) + return TTI::TCC_Basic; + // Constants loaded via llilf. + if (isUInt<32>(Imm.getZExtValue())) + return TTI::TCC_Basic; + // Constants loaded via llihf: + if ((Imm.getZExtValue() & 0xffffffff) == 0) + return TTI::TCC_Basic; + + return 2 * TTI::TCC_Basic; + } + + return 4 * TTI::TCC_Basic; +} + +int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, + const APInt &Imm, Type *Ty) { + assert(Ty->isIntegerTy()); + + unsigned BitSize = Ty->getPrimitiveSizeInBits(); + // There is no cost model for constants with a bit size of 0. Return TCC_Free + // here, so that constant hoisting will ignore this constant. + if (BitSize == 0) + return TTI::TCC_Free; + // No cost model for operations on integers larger than 64 bit implemented yet. + if (BitSize > 64) + return TTI::TCC_Free; + + switch (Opcode) { + default: + return TTI::TCC_Free; + case Instruction::GetElementPtr: + // Always hoist the base address of a GetElementPtr. This prevents the + // creation of new constants for every base constant that gets constant + // folded with the offset. + if (Idx == 0) + return 2 * TTI::TCC_Basic; + return TTI::TCC_Free; + case Instruction::Store: + if (Idx == 0 && Imm.getBitWidth() <= 64) { + // Any 8-bit immediate store can by implemented via mvi. + if (BitSize == 8) + return TTI::TCC_Free; + // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. + if (isInt<16>(Imm.getSExtValue())) + return TTI::TCC_Free; + } + break; + case Instruction::ICmp: + if (Idx == 1 && Imm.getBitWidth() <= 64) { + // Comparisons against signed 32-bit immediates implemented via cgfi. + if (isInt<32>(Imm.getSExtValue())) + return TTI::TCC_Free; + // Comparisons against unsigned 32-bit immediates implemented via clgfi. + if (isUInt<32>(Imm.getZExtValue())) + return TTI::TCC_Free; + } + break; + case Instruction::Add: + case Instruction::Sub: + if (Idx == 1 && Imm.getBitWidth() <= 64) { + // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. + if (isUInt<32>(Imm.getZExtValue())) + return TTI::TCC_Free; + // Or their negation, by swapping addition vs. subtraction. + if (isUInt<32>(-Imm.getSExtValue())) + return TTI::TCC_Free; + } + break; + case Instruction::Mul: + if (Idx == 1 && Imm.getBitWidth() <= 64) { + // We use msgfi to multiply by 32-bit signed immediates. + if (isInt<32>(Imm.getSExtValue())) + return TTI::TCC_Free; + } + break; + case Instruction::Or: + case Instruction::Xor: + if (Idx == 1 && Imm.getBitWidth() <= 64) { + // Masks supported by oilf/xilf. + if (isUInt<32>(Imm.getZExtValue())) + return TTI::TCC_Free; + // Masks supported by oihf/xihf. + if ((Imm.getZExtValue() & 0xffffffff) == 0) + return TTI::TCC_Free; + } + break; + case Instruction::And: + if (Idx == 1 && Imm.getBitWidth() <= 64) { + // Any 32-bit AND operation can by implemented via nilf. + if (BitSize <= 32) + return TTI::TCC_Free; + // 64-bit masks supported by nilf. + if (isUInt<32>(~Imm.getZExtValue())) + return TTI::TCC_Free; + // 64-bit masks supported by nilh. + if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) + return TTI::TCC_Free; + // Some 64-bit AND operations can be implemented via risbg. + const SystemZInstrInfo *TII = ST->getInstrInfo(); + unsigned Start, End; + if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) + return TTI::TCC_Free; + } + break; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + // Always return TCC_Free for the shift value of a shift instruction. + if (Idx == 1) + return TTI::TCC_Free; + break; + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::IntToPtr: + case Instruction::PtrToInt: + case Instruction::BitCast: + case Instruction::PHI: + case Instruction::Call: + case Instruction::Select: + case Instruction::Ret: + case Instruction::Load: + break; + } + + return SystemZTTIImpl::getIntImmCost(Imm, Ty); +} + +int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, + const APInt &Imm, Type *Ty) { + assert(Ty->isIntegerTy()); + + unsigned BitSize = Ty->getPrimitiveSizeInBits(); + // There is no cost model for constants with a bit size of 0. Return TCC_Free + // here, so that constant hoisting will ignore this constant. + if (BitSize == 0) + return TTI::TCC_Free; + // No cost model for operations on integers larger than 64 bit implemented yet. + if (BitSize > 64) + return TTI::TCC_Free; + + switch (IID) { + default: + return TTI::TCC_Free; + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::usub_with_overflow: + // These get expanded to include a normal addition/subtraction. + if (Idx == 1 && Imm.getBitWidth() <= 64) { + if (isUInt<32>(Imm.getZExtValue())) + return TTI::TCC_Free; + if (isUInt<32>(-Imm.getSExtValue())) + return TTI::TCC_Free; + } + break; + case Intrinsic::smul_with_overflow: + case Intrinsic::umul_with_overflow: + // These get expanded to include a normal multiplication. + if (Idx == 1 && Imm.getBitWidth() <= 64) { + if (isInt<32>(Imm.getSExtValue())) + return TTI::TCC_Free; + } + break; + case Intrinsic::experimental_stackmap: + if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) + return TTI::TCC_Free; + break; + case Intrinsic::experimental_patchpoint_void: + case Intrinsic::experimental_patchpoint_i64: + if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) + return TTI::TCC_Free; + break; + } + return SystemZTTIImpl::getIntImmCost(Imm, Ty); +} + +TargetTransformInfo::PopcntSupportKind +SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { + assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); + if (ST->hasPopulationCount() && TyWidth <= 64) + return TTI::PSK_FastHardware; + return TTI::PSK_Software; +} + +void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, + TTI::UnrollingPreferences &UP) { + // Find out if L contains a call, what the machine instruction count + // estimate is, and how many stores there are. + bool HasCall = false; + unsigned NumStores = 0; + for (auto &BB : L->blocks()) + for (auto &I : *BB) { + if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { + ImmutableCallSite CS(&I); + if (const Function *F = CS.getCalledFunction()) { + if (isLoweredToCall(F)) + HasCall = true; + if (F->getIntrinsicID() == Intrinsic::memcpy || + F->getIntrinsicID() == Intrinsic::memset) + NumStores++; + } else { // indirect call. + HasCall = true; + } + } + if (isa<StoreInst>(&I)) { + Type *MemAccessTy = I.getOperand(0)->getType(); + NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); + } + } + + // The z13 processor will run out of store tags if too many stores + // are fed into it too quickly. Therefore make sure there are not + // too many stores in the resulting unrolled loop. + unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); + + if (HasCall) { + // Only allow full unrolling if loop has any calls. + UP.FullUnrollMaxCount = Max; + UP.MaxCount = 1; + return; + } + + UP.MaxCount = Max; + if (UP.MaxCount <= 1) + return; + + // Allow partial and runtime trip count unrolling. + UP.Partial = UP.Runtime = true; + + UP.PartialThreshold = 75; + UP.DefaultUnrollRuntimeCount = 4; + + // Allow expensive instructions in the pre-header of the loop. + UP.AllowExpensiveTripCount = true; + + UP.Force = true; +} + + +bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, + TargetTransformInfo::LSRCost &C2) { + // SystemZ specific: check instruction count (first), and don't care about + // ImmCost, since offsets are checked explicitly. + return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, + C1.NumIVMuls, C1.NumBaseAdds, + C1.ScaleCost, C1.SetupCost) < + std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, + C2.NumIVMuls, C2.NumBaseAdds, + C2.ScaleCost, C2.SetupCost); +} + +unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { + if (!Vector) + // Discount the stack pointer. Also leave out %r0, since it can't + // be used in an address. + return 14; + if (ST->hasVector()) + return 32; + return 0; +} + +unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { + if (!Vector) + return 64; + if (ST->hasVector()) + return 128; + return 0; +} + +bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { + EVT VT = TLI->getValueType(DL, DataType); + return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); +} + +// Return the bit size for the scalar type or vector element +// type. getScalarSizeInBits() returns 0 for a pointer type. +static unsigned getScalarSizeInBits(Type *Ty) { + unsigned Size = + (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); + assert(Size > 0 && "Element must have non-zero size."); + return Size; +} + +// getNumberOfParts() calls getTypeLegalizationCost() which splits the vector +// type until it is legal. This would e.g. return 4 for <6 x i64>, instead of +// 3. +static unsigned getNumVectorRegs(Type *Ty) { + assert(Ty->isVectorTy() && "Expected vector type"); + unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements(); + assert(WideBits > 0 && "Could not compute size of vector"); + return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); +} + +int SystemZTTIImpl::getArithmeticInstrCost( + unsigned Opcode, Type *Ty, + TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, + TTI::OperandValueProperties Opd1PropInfo, + TTI::OperandValueProperties Opd2PropInfo, + ArrayRef<const Value *> Args) { + + // TODO: return a good value for BB-VECTORIZER that includes the + // immediate loads, which we do not want to count for the loop + // vectorizer, since they are hopefully hoisted out of the loop. This + // would require a new parameter 'InLoop', but not sure if constant + // args are common enough to motivate this. + + unsigned ScalarBits = Ty->getScalarSizeInBits(); + + // There are thre cases of division and remainder: Dividing with a register + // needs a divide instruction. A divisor which is a power of two constant + // can be implemented with a sequence of shifts. Any other constant needs a + // multiply and shifts. + const unsigned DivInstrCost = 20; + const unsigned DivMulSeqCost = 10; + const unsigned SDivPow2Cost = 4; + + bool SignedDivRem = + Opcode == Instruction::SDiv || Opcode == Instruction::SRem; + bool UnsignedDivRem = + Opcode == Instruction::UDiv || Opcode == Instruction::URem; + + // Check for a constant divisor. + bool DivRemConst = false; + bool DivRemConstPow2 = false; + if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { + if (const Constant *C = dyn_cast<Constant>(Args[1])) { + const ConstantInt *CVal = + (C->getType()->isVectorTy() + ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) + : dyn_cast<const ConstantInt>(C)); + if (CVal != nullptr && + (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) + DivRemConstPow2 = true; + else + DivRemConst = true; + } + } + + if (Ty->isVectorTy()) { + assert(ST->hasVector() && + "getArithmeticInstrCost() called with vector type."); + unsigned VF = Ty->getVectorNumElements(); + unsigned NumVectors = getNumVectorRegs(Ty); + + // These vector operations are custom handled, but are still supported + // with one instruction per vector, regardless of element size. + if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || + Opcode == Instruction::AShr) { + return NumVectors; + } + + if (DivRemConstPow2) + return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); + if (DivRemConst) + return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args); + if ((SignedDivRem || UnsignedDivRem) && VF > 4) + // Temporary hack: disable high vectorization factors with integer + // division/remainder, which will get scalarized and handled with + // GR128 registers. The mischeduler is not clever enough to avoid + // spilling yet. + return 1000; + + // These FP operations are supported with a single vector instruction for + // double (base implementation assumes float generally costs 2). For + // FP128, the scalar cost is 1, and there is no overhead since the values + // are already in scalar registers. + if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || + Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { + switch (ScalarBits) { + case 32: { + // The vector enhancements facility 1 provides v4f32 instructions. + if (ST->hasVectorEnhancements1()) + return NumVectors; + // Return the cost of multiple scalar invocation plus the cost of + // inserting and extracting the values. + unsigned ScalarCost = + getArithmeticInstrCost(Opcode, Ty->getScalarType()); + unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); + // FIXME: VF 2 for these FP operations are currently just as + // expensive as for VF 4. + if (VF == 2) + Cost *= 2; + return Cost; + } + case 64: + case 128: + return NumVectors; + default: + break; + } + } + + // There is no native support for FRem. + if (Opcode == Instruction::FRem) { + unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); + // FIXME: VF 2 for float is currently just as expensive as for VF 4. + if (VF == 2 && ScalarBits == 32) + Cost *= 2; + return Cost; + } + } + else { // Scalar: + // These FP operations are supported with a dedicated instruction for + // float, double and fp128 (base implementation assumes float generally + // costs 2). + if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || + Opcode == Instruction::FMul || Opcode == Instruction::FDiv) + return 1; + + // There is no native support for FRem. + if (Opcode == Instruction::FRem) + return LIBCALL_COST; + + // Give discount for some combined logical operations if supported. + if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { + if (Opcode == Instruction::Xor) { + for (const Value *A : Args) { + if (const Instruction *I = dyn_cast<Instruction>(A)) + if (I->hasOneUse() && + (I->getOpcode() == Instruction::And || + I->getOpcode() == Instruction::Or || + I->getOpcode() == Instruction::Xor)) + return 0; + } + } + else if (Opcode == Instruction::Or || Opcode == Instruction::And) { + for (const Value *A : Args) { + if (const Instruction *I = dyn_cast<Instruction>(A)) + if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) + return 0; + } + } + } + + // Or requires one instruction, although it has custom handling for i64. + if (Opcode == Instruction::Or) + return 1; + + if (Opcode == Instruction::Xor && ScalarBits == 1) { + if (ST->hasLoadStoreOnCond2()) + return 5; // 2 * (li 0; loc 1); xor + return 7; // 2 * ipm sequences ; xor ; shift ; compare + } + + if (DivRemConstPow2) + return (SignedDivRem ? SDivPow2Cost : 1); + if (DivRemConst) + return DivMulSeqCost; + if (SignedDivRem || UnsignedDivRem) + return DivInstrCost; + } + + // Fallback to the default implementation. + return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, + Opd1PropInfo, Opd2PropInfo, Args); +} + +int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, + Type *SubTp) { + assert (Tp->isVectorTy()); + assert (ST->hasVector() && "getShuffleCost() called."); + unsigned NumVectors = getNumVectorRegs(Tp); + + // TODO: Since fp32 is expanded, the shuffle cost should always be 0. + + // FP128 values are always in scalar registers, so there is no work + // involved with a shuffle, except for broadcast. In that case register + // moves are done with a single instruction per element. + if (Tp->getScalarType()->isFP128Ty()) + return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); + + switch (Kind) { + case TargetTransformInfo::SK_ExtractSubvector: + // ExtractSubvector Index indicates start offset. + + // Extracting a subvector from first index is a noop. + return (Index == 0 ? 0 : NumVectors); + + case TargetTransformInfo::SK_Broadcast: + // Loop vectorizer calls here to figure out the extra cost of + // broadcasting a loaded value to all elements of a vector. Since vlrep + // loads and replicates with a single instruction, adjust the returned + // value. + return NumVectors - 1; + + default: + + // SystemZ supports single instruction permutation / replication. + return NumVectors; + } + + return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); +} + +// Return the log2 difference of the element sizes of the two vector types. +static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { + unsigned Bits0 = Ty0->getScalarSizeInBits(); + unsigned Bits1 = Ty1->getScalarSizeInBits(); + + if (Bits1 > Bits0) + return (Log2_32(Bits1) - Log2_32(Bits0)); + + return (Log2_32(Bits0) - Log2_32(Bits1)); +} + +// Return the number of instructions needed to truncate SrcTy to DstTy. +unsigned SystemZTTIImpl:: +getVectorTruncCost(Type *SrcTy, Type *DstTy) { + assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); + assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && + "Packing must reduce size of vector type."); + assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && + "Packing should not change number of elements."); + + // TODO: Since fp32 is expanded, the extract cost should always be 0. + + unsigned NumParts = getNumVectorRegs(SrcTy); + if (NumParts <= 2) + // Up to 2 vector registers can be truncated efficiently with pack or + // permute. The latter requires an immediate mask to be loaded, which + // typically gets hoisted out of a loop. TODO: return a good value for + // BB-VECTORIZER that includes the immediate loads, which we do not want + // to count for the loop vectorizer. + return 1; + + unsigned Cost = 0; + unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); + unsigned VF = SrcTy->getVectorNumElements(); + for (unsigned P = 0; P < Log2Diff; ++P) { + if (NumParts > 1) + NumParts /= 2; + Cost += NumParts; + } + + // Currently, a general mix of permutes and pack instructions is output by + // isel, which follow the cost computation above except for this case which + // is one instruction less: + if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && + DstTy->getScalarSizeInBits() == 8) + Cost--; + + return Cost; +} + +// Return the cost of converting a vector bitmask produced by a compare +// (SrcTy), to the type of the select or extend instruction (DstTy). +unsigned SystemZTTIImpl:: +getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { + assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && + "Should only be called with vector types."); + + unsigned PackCost = 0; + unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); + unsigned DstScalarBits = DstTy->getScalarSizeInBits(); + unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); + if (SrcScalarBits > DstScalarBits) + // The bitmask will be truncated. + PackCost = getVectorTruncCost(SrcTy, DstTy); + else if (SrcScalarBits < DstScalarBits) { + unsigned DstNumParts = getNumVectorRegs(DstTy); + // Each vector select needs its part of the bitmask unpacked. + PackCost = Log2Diff * DstNumParts; + // Extra cost for moving part of mask before unpacking. + PackCost += DstNumParts - 1; + } + + return PackCost; +} + +// Return the type of the compared operands. This is needed to compute the +// cost for a Select / ZExt or SExt instruction. +static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { + Type *OpTy = nullptr; + if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) + OpTy = CI->getOperand(0)->getType(); + else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) + if (LogicI->getNumOperands() == 2) + if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) + if (isa<CmpInst>(LogicI->getOperand(1))) + OpTy = CI0->getOperand(0)->getType(); + + if (OpTy != nullptr) { + if (VF == 1) { + assert (!OpTy->isVectorTy() && "Expected scalar type"); + return OpTy; + } + // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may + // be either scalar or already vectorized with a same or lesser VF. + Type *ElTy = OpTy->getScalarType(); + return VectorType::get(ElTy, VF); + } + + return nullptr; +} + +// Get the cost of converting a boolean vector to a vector with same width +// and element size as Dst, plus the cost of zero extending if needed. +unsigned SystemZTTIImpl:: +getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, + const Instruction *I) { + assert (Dst->isVectorTy()); + unsigned VF = Dst->getVectorNumElements(); + unsigned Cost = 0; + // If we know what the widths of the compared operands, get any cost of + // converting it to match Dst. Otherwise assume same widths. + Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); + if (CmpOpTy != nullptr) + Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); + if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) + // One 'vn' per dst vector with an immediate mask. + Cost += getNumVectorRegs(Dst); + return Cost; +} + +int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, + const Instruction *I) { + unsigned DstScalarBits = Dst->getScalarSizeInBits(); + unsigned SrcScalarBits = Src->getScalarSizeInBits(); + + if (Src->isVectorTy()) { + assert (ST->hasVector() && "getCastInstrCost() called with vector type."); + assert (Dst->isVectorTy()); + unsigned VF = Src->getVectorNumElements(); + unsigned NumDstVectors = getNumVectorRegs(Dst); + unsigned NumSrcVectors = getNumVectorRegs(Src); + + if (Opcode == Instruction::Trunc) { + if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) + return 0; // Check for NOOP conversions. + return getVectorTruncCost(Src, Dst); + } + + if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { + if (SrcScalarBits >= 8) { + // ZExt/SExt will be handled with one unpack per doubling of width. + unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); + + // For types that spans multiple vector registers, some additional + // instructions are used to setup the unpacking. + unsigned NumSrcVectorOps = + (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) + : (NumDstVectors / 2)); + + return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; + } + else if (SrcScalarBits == 1) + return getBoolVecToIntConversionCost(Opcode, Dst, I); + } + + if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || + Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { + // TODO: Fix base implementation which could simplify things a bit here + // (seems to miss on differentiating on scalar/vector types). + + // Only 64 bit vector conversions are natively supported before arch13. + if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { + if (SrcScalarBits == DstScalarBits) + return NumDstVectors; + + if (SrcScalarBits == 1) + return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; + } + + // Return the cost of multiple scalar invocation plus the cost of + // inserting and extracting the values. Base implementation does not + // realize float->int gets scalarized. + unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), + Src->getScalarType()); + unsigned TotCost = VF * ScalarCost; + bool NeedsInserts = true, NeedsExtracts = true; + // FP128 registers do not get inserted or extracted. + if (DstScalarBits == 128 && + (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) + NeedsInserts = false; + if (SrcScalarBits == 128 && + (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) + NeedsExtracts = false; + + TotCost += getScalarizationOverhead(Src, false, NeedsExtracts); + TotCost += getScalarizationOverhead(Dst, NeedsInserts, false); + + // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. + if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) + TotCost *= 2; + + return TotCost; + } + + if (Opcode == Instruction::FPTrunc) { + if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. + return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); + else // double -> float + return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); + } + + if (Opcode == Instruction::FPExt) { + if (SrcScalarBits == 32 && DstScalarBits == 64) { + // float -> double is very rare and currently unoptimized. Instead of + // using vldeb, which can do two at a time, all conversions are + // scalarized. + return VF * 2; + } + // -> fp128. VF * lxdb/lxeb + extraction of elements. + return VF + getScalarizationOverhead(Src, false, true); + } + } + else { // Scalar + assert (!Dst->isVectorTy()); + + if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { + if (SrcScalarBits >= 32 || + (I != nullptr && isa<LoadInst>(I->getOperand(0)))) + return 1; + return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; + } + + if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && + Src->isIntegerTy(1)) { + if (ST->hasLoadStoreOnCond2()) + return 2; // li 0; loc 1 + + // This should be extension of a compare i1 result, which is done with + // ipm and a varying sequence of instructions. + unsigned Cost = 0; + if (Opcode == Instruction::SExt) + Cost = (DstScalarBits < 64 ? 3 : 4); + if (Opcode == Instruction::ZExt) + Cost = 3; + Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); + if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) + // If operands of an fp-type was compared, this costs +1. + Cost++; + return Cost; + } + } + + return BaseT::getCastInstrCost(Opcode, Dst, Src, I); +} + +// Scalar i8 / i16 operations will typically be made after first extending +// the operands to i32. +static unsigned getOperandsExtensionCost(const Instruction *I) { + unsigned ExtCost = 0; + for (Value *Op : I->operands()) + // A load of i8 or i16 sign/zero extends to i32. + if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) + ExtCost++; + + return ExtCost; +} + +int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, + Type *CondTy, const Instruction *I) { + if (ValTy->isVectorTy()) { + assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); + unsigned VF = ValTy->getVectorNumElements(); + + // Called with a compare instruction. + if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { + unsigned PredicateExtraCost = 0; + if (I != nullptr) { + // Some predicates cost one or two extra instructions. + switch (cast<CmpInst>(I)->getPredicate()) { + case CmpInst::Predicate::ICMP_NE: + case CmpInst::Predicate::ICMP_UGE: + case CmpInst::Predicate::ICMP_ULE: + case CmpInst::Predicate::ICMP_SGE: + case CmpInst::Predicate::ICMP_SLE: + PredicateExtraCost = 1; + break; + case CmpInst::Predicate::FCMP_ONE: + case CmpInst::Predicate::FCMP_ORD: + case CmpInst::Predicate::FCMP_UEQ: + case CmpInst::Predicate::FCMP_UNO: + PredicateExtraCost = 2; + break; + default: + break; + } + } + + // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of + // floats. FIXME: <2 x float> generates same code as <4 x float>. + unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); + unsigned NumVecs_cmp = getNumVectorRegs(ValTy); + + unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); + return Cost; + } + else { // Called with a select instruction. + assert (Opcode == Instruction::Select); + + // We can figure out the extra cost of packing / unpacking if the + // instruction was passed and the compare instruction is found. + unsigned PackCost = 0; + Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); + if (CmpOpTy != nullptr) + PackCost = + getVectorBitmaskConversionCost(CmpOpTy, ValTy); + + return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; + } + } + else { // Scalar + switch (Opcode) { + case Instruction::ICmp: { + // A loaded value compared with 0 with multiple users becomes Load and + // Test. The load is then not foldable, so return 0 cost for the ICmp. + unsigned ScalarBits = ValTy->getScalarSizeInBits(); + if (I != nullptr && ScalarBits >= 32) + if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) + if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) + if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && + C->getZExtValue() == 0) + return 0; + + unsigned Cost = 1; + if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) + Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); + return Cost; + } + case Instruction::Select: + if (ValTy->isFloatingPointTy()) + return 4; // No load on condition for FP - costs a conditional jump. + return 1; // Load On Condition / Select Register. + } + } + + return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); +} + +int SystemZTTIImpl:: +getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { + // vlvgp will insert two grs into a vector register, so only count half the + // number of instructions. + if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) + return ((Index % 2 == 0) ? 1 : 0); + + if (Opcode == Instruction::ExtractElement) { + int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); + + // Give a slight penalty for moving out of vector pipeline to FXU unit. + if (Index == 0 && Val->isIntOrIntVectorTy()) + Cost += 1; + + return Cost; + } + + return BaseT::getVectorInstrCost(Opcode, Val, Index); +} + +// Check if a load may be folded as a memory operand in its user. +bool SystemZTTIImpl:: +isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { + if (!Ld->hasOneUse()) + return false; + FoldedValue = Ld; + const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); + unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); + unsigned TruncBits = 0; + unsigned SExtBits = 0; + unsigned ZExtBits = 0; + if (UserI->hasOneUse()) { + unsigned UserBits = UserI->getType()->getScalarSizeInBits(); + if (isa<TruncInst>(UserI)) + TruncBits = UserBits; + else if (isa<SExtInst>(UserI)) + SExtBits = UserBits; + else if (isa<ZExtInst>(UserI)) + ZExtBits = UserBits; + } + if (TruncBits || SExtBits || ZExtBits) { + FoldedValue = UserI; + UserI = cast<Instruction>(*UserI->user_begin()); + // Load (single use) -> trunc/extend (single use) -> UserI + } + if ((UserI->getOpcode() == Instruction::Sub || + UserI->getOpcode() == Instruction::SDiv || + UserI->getOpcode() == Instruction::UDiv) && + UserI->getOperand(1) != FoldedValue) + return false; // Not commutative, only RHS foldable. + // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an + // extension was made of the load. + unsigned LoadOrTruncBits = + ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); + switch (UserI->getOpcode()) { + case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 + case Instruction::Sub: + case Instruction::ICmp: + if (LoadedBits == 32 && ZExtBits == 64) + return true; + LLVM_FALLTHROUGH; + case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 + if (UserI->getOpcode() != Instruction::ICmp) { + if (LoadedBits == 16 && + (SExtBits == 32 || + (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) + return true; + if (LoadOrTruncBits == 16) + return true; + } + LLVM_FALLTHROUGH; + case Instruction::SDiv:// SE: 32->64 + if (LoadedBits == 32 && SExtBits == 64) + return true; + LLVM_FALLTHROUGH; + case Instruction::UDiv: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + // This also makes sense for float operations, but disabled for now due + // to regressions. + // case Instruction::FCmp: + // case Instruction::FAdd: + // case Instruction::FSub: + // case Instruction::FMul: + // case Instruction::FDiv: + + // All possible extensions of memory checked above. + + // Comparison between memory and immediate. + if (UserI->getOpcode() == Instruction::ICmp) + if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) + if (isUInt<16>(CI->getZExtValue())) + return true; + return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); + break; + } + return false; +} + +static bool isBswapIntrinsicCall(const Value *V) { + if (const Instruction *I = dyn_cast<Instruction>(V)) + if (auto *CI = dyn_cast<CallInst>(I)) + if (auto *F = CI->getCalledFunction()) + if (F->getIntrinsicID() == Intrinsic::bswap) + return true; + return false; +} + +int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, + unsigned Alignment, unsigned AddressSpace, + const Instruction *I) { + assert(!Src->isVoidTy() && "Invalid type"); + + if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { + // Store the load or its truncated or extended value in FoldedValue. + const Instruction *FoldedValue = nullptr; + if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { + const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); + assert (UserI->getNumOperands() == 2 && "Expected a binop."); + + // UserI can't fold two loads, so in that case return 0 cost only + // half of the time. + for (unsigned i = 0; i < 2; ++i) { + if (UserI->getOperand(i) == FoldedValue) + continue; + + if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ + LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); + if (!OtherLoad && + (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || + isa<ZExtInst>(OtherOp))) + OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); + if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) + return i == 0; // Both operands foldable. + } + } + + return 0; // Only I is foldable in user. + } + } + + unsigned NumOps = + (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); + + // Store/Load reversed saves one instruction. + if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && + I != nullptr) { + if (Opcode == Instruction::Load && I->hasOneUse()) { + const Instruction *LdUser = cast<Instruction>(*I->user_begin()); + // In case of load -> bswap -> store, return normal cost for the load. + if (isBswapIntrinsicCall(LdUser) && + (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) + return 0; + } + else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { + const Value *StoredVal = SI->getValueOperand(); + if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) + return 0; + } + } + + if (Src->getScalarSizeInBits() == 128) + // 128 bit scalars are held in a pair of two 64 bit registers. + NumOps *= 2; + + return NumOps; +} + +// The generic implementation of getInterleavedMemoryOpCost() is based on +// adding costs of the memory operations plus all the extracts and inserts +// needed for using / defining the vector operands. The SystemZ version does +// roughly the same but bases the computations on vector permutations +// instead. +int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, + unsigned Factor, + ArrayRef<unsigned> Indices, + unsigned Alignment, + unsigned AddressSpace, + bool UseMaskForCond, + bool UseMaskForGaps) { + if (UseMaskForCond || UseMaskForGaps) + return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, + Alignment, AddressSpace, + UseMaskForCond, UseMaskForGaps); + assert(isa<VectorType>(VecTy) && + "Expect a vector type for interleaved memory op"); + + // Return the ceiling of dividing A by B. + auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; + + unsigned NumElts = VecTy->getVectorNumElements(); + assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); + unsigned VF = NumElts / Factor; + unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); + unsigned NumVectorMemOps = getNumVectorRegs(VecTy); + unsigned NumPermutes = 0; + + if (Opcode == Instruction::Load) { + // Loading interleave groups may have gaps, which may mean fewer + // loads. Find out how many vectors will be loaded in total, and in how + // many of them each value will be in. + BitVector UsedInsts(NumVectorMemOps, false); + std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); + for (unsigned Index : Indices) + for (unsigned Elt = 0; Elt < VF; ++Elt) { + unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; + UsedInsts.set(Vec); + ValueVecs[Index].set(Vec); + } + NumVectorMemOps = UsedInsts.count(); + + for (unsigned Index : Indices) { + // Estimate that each loaded source vector containing this Index + // requires one operation, except that vperm can handle two input + // registers first time for each dst vector. + unsigned NumSrcVecs = ValueVecs[Index].count(); + unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); + assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); + NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); + } + } else { + // Estimate the permutes for each stored vector as the smaller of the + // number of elements and the number of source vectors. Subtract one per + // dst vector for vperm (S.A.). + unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); + unsigned NumDstVecs = NumVectorMemOps; + assert (NumSrcVecs > 1 && "Expected at least two source vectors."); + NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; + } + + // Cost of load/store operations and the permutations needed. + return NumVectorMemOps + NumPermutes; +} + +static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { + if (RetTy->isVectorTy() && ID == Intrinsic::bswap) + return getNumVectorRegs(RetTy); // VPERM + return -1; +} + +int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, + ArrayRef<Value *> Args, + FastMathFlags FMF, unsigned VF) { + int Cost = getVectorIntrinsicInstrCost(ID, RetTy); + if (Cost != -1) + return Cost; + return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); +} + +int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, + ArrayRef<Type *> Tys, + FastMathFlags FMF, + unsigned ScalarizationCostPassed) { + int Cost = getVectorIntrinsicInstrCost(ID, RetTy); + if (Cost != -1) + return Cost; + return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, + FMF, ScalarizationCostPassed); +} |
