summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp3720
1 files changed, 3720 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp b/contrib/llvm-project/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
new file mode 100644
index 000000000000..95cbf46d37ed
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
@@ -0,0 +1,3720 @@
+//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86IntelInstPrinter.h"
+#include "MCTargetDesc/X86MCExpr.h"
+#include "MCTargetDesc/X86TargetStreamer.h"
+#include "TargetInfo/X86TargetInfo.h"
+#include "X86AsmParserCommon.h"
+#include "X86Operand.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCParser/MCTargetAsmParser.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <memory>
+
+using namespace llvm;
+
+static bool checkScale(unsigned Scale, StringRef &ErrMsg) {
+ if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
+ ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
+ return true;
+ }
+ return false;
+}
+
+namespace {
+
+static const char OpPrecedence[] = {
+ 0, // IC_OR
+ 1, // IC_XOR
+ 2, // IC_AND
+ 3, // IC_LSHIFT
+ 3, // IC_RSHIFT
+ 4, // IC_PLUS
+ 4, // IC_MINUS
+ 5, // IC_MULTIPLY
+ 5, // IC_DIVIDE
+ 5, // IC_MOD
+ 6, // IC_NOT
+ 7, // IC_NEG
+ 8, // IC_RPAREN
+ 9, // IC_LPAREN
+ 0, // IC_IMM
+ 0 // IC_REGISTER
+};
+
+class X86AsmParser : public MCTargetAsmParser {
+ ParseInstructionInfo *InstInfo;
+ bool Code16GCC;
+
+ enum VEXEncoding {
+ VEXEncoding_Default,
+ VEXEncoding_VEX2,
+ VEXEncoding_VEX3,
+ VEXEncoding_EVEX,
+ };
+
+ VEXEncoding ForcedVEXEncoding = VEXEncoding_Default;
+
+private:
+ SMLoc consumeToken() {
+ MCAsmParser &Parser = getParser();
+ SMLoc Result = Parser.getTok().getLoc();
+ Parser.Lex();
+ return Result;
+ }
+
+ X86TargetStreamer &getTargetStreamer() {
+ assert(getParser().getStreamer().getTargetStreamer() &&
+ "do not have a target streamer");
+ MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
+ return static_cast<X86TargetStreamer &>(TS);
+ }
+
+ unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst,
+ uint64_t &ErrorInfo, FeatureBitset &MissingFeatures,
+ bool matchingInlineAsm, unsigned VariantID = 0) {
+ // In Code16GCC mode, match as 32-bit.
+ if (Code16GCC)
+ SwitchMode(X86::Mode32Bit);
+ unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MissingFeatures, matchingInlineAsm,
+ VariantID);
+ if (Code16GCC)
+ SwitchMode(X86::Mode16Bit);
+ return rv;
+ }
+
+ enum InfixCalculatorTok {
+ IC_OR = 0,
+ IC_XOR,
+ IC_AND,
+ IC_LSHIFT,
+ IC_RSHIFT,
+ IC_PLUS,
+ IC_MINUS,
+ IC_MULTIPLY,
+ IC_DIVIDE,
+ IC_MOD,
+ IC_NOT,
+ IC_NEG,
+ IC_RPAREN,
+ IC_LPAREN,
+ IC_IMM,
+ IC_REGISTER
+ };
+
+ enum IntelOperatorKind {
+ IOK_INVALID = 0,
+ IOK_LENGTH,
+ IOK_SIZE,
+ IOK_TYPE,
+ IOK_OFFSET
+ };
+
+ class InfixCalculator {
+ typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
+ SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
+ SmallVector<ICToken, 4> PostfixStack;
+
+ bool isUnaryOperator(const InfixCalculatorTok Op) {
+ return Op == IC_NEG || Op == IC_NOT;
+ }
+
+ public:
+ int64_t popOperand() {
+ assert (!PostfixStack.empty() && "Poped an empty stack!");
+ ICToken Op = PostfixStack.pop_back_val();
+ if (!(Op.first == IC_IMM || Op.first == IC_REGISTER))
+ return -1; // The invalid Scale value will be caught later by checkScale
+ return Op.second;
+ }
+ void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
+ assert ((Op == IC_IMM || Op == IC_REGISTER) &&
+ "Unexpected operand!");
+ PostfixStack.push_back(std::make_pair(Op, Val));
+ }
+
+ void popOperator() { InfixOperatorStack.pop_back(); }
+ void pushOperator(InfixCalculatorTok Op) {
+ // Push the new operator if the stack is empty.
+ if (InfixOperatorStack.empty()) {
+ InfixOperatorStack.push_back(Op);
+ return;
+ }
+
+ // Push the new operator if it has a higher precedence than the operator
+ // on the top of the stack or the operator on the top of the stack is a
+ // left parentheses.
+ unsigned Idx = InfixOperatorStack.size() - 1;
+ InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
+ if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
+ InfixOperatorStack.push_back(Op);
+ return;
+ }
+
+ // The operator on the top of the stack has higher precedence than the
+ // new operator.
+ unsigned ParenCount = 0;
+ while (1) {
+ // Nothing to process.
+ if (InfixOperatorStack.empty())
+ break;
+
+ Idx = InfixOperatorStack.size() - 1;
+ StackOp = InfixOperatorStack[Idx];
+ if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
+ break;
+
+ // If we have an even parentheses count and we see a left parentheses,
+ // then stop processing.
+ if (!ParenCount && StackOp == IC_LPAREN)
+ break;
+
+ if (StackOp == IC_RPAREN) {
+ ++ParenCount;
+ InfixOperatorStack.pop_back();
+ } else if (StackOp == IC_LPAREN) {
+ --ParenCount;
+ InfixOperatorStack.pop_back();
+ } else {
+ InfixOperatorStack.pop_back();
+ PostfixStack.push_back(std::make_pair(StackOp, 0));
+ }
+ }
+ // Push the new operator.
+ InfixOperatorStack.push_back(Op);
+ }
+
+ int64_t execute() {
+ // Push any remaining operators onto the postfix stack.
+ while (!InfixOperatorStack.empty()) {
+ InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
+ if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
+ PostfixStack.push_back(std::make_pair(StackOp, 0));
+ }
+
+ if (PostfixStack.empty())
+ return 0;
+
+ SmallVector<ICToken, 16> OperandStack;
+ for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
+ ICToken Op = PostfixStack[i];
+ if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
+ OperandStack.push_back(Op);
+ } else if (isUnaryOperator(Op.first)) {
+ assert (OperandStack.size() > 0 && "Too few operands.");
+ ICToken Operand = OperandStack.pop_back_val();
+ assert (Operand.first == IC_IMM &&
+ "Unary operation with a register!");
+ switch (Op.first) {
+ default:
+ report_fatal_error("Unexpected operator!");
+ break;
+ case IC_NEG:
+ OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second));
+ break;
+ case IC_NOT:
+ OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second));
+ break;
+ }
+ } else {
+ assert (OperandStack.size() > 1 && "Too few operands.");
+ int64_t Val;
+ ICToken Op2 = OperandStack.pop_back_val();
+ ICToken Op1 = OperandStack.pop_back_val();
+ switch (Op.first) {
+ default:
+ report_fatal_error("Unexpected operator!");
+ break;
+ case IC_PLUS:
+ Val = Op1.second + Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_MINUS:
+ Val = Op1.second - Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_MULTIPLY:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Multiply operation with an immediate and a register!");
+ Val = Op1.second * Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_DIVIDE:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Divide operation with an immediate and a register!");
+ assert (Op2.second != 0 && "Division by zero!");
+ Val = Op1.second / Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_MOD:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Modulo operation with an immediate and a register!");
+ Val = Op1.second % Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_OR:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Or operation with an immediate and a register!");
+ Val = Op1.second | Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_XOR:
+ assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Xor operation with an immediate and a register!");
+ Val = Op1.second ^ Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_AND:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "And operation with an immediate and a register!");
+ Val = Op1.second & Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_LSHIFT:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Left shift operation with an immediate and a register!");
+ Val = Op1.second << Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_RSHIFT:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Right shift operation with an immediate and a register!");
+ Val = Op1.second >> Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ }
+ }
+ }
+ assert (OperandStack.size() == 1 && "Expected a single result.");
+ return OperandStack.pop_back_val().second;
+ }
+ };
+
+ enum IntelExprState {
+ IES_INIT,
+ IES_OR,
+ IES_XOR,
+ IES_AND,
+ IES_LSHIFT,
+ IES_RSHIFT,
+ IES_PLUS,
+ IES_MINUS,
+ IES_NOT,
+ IES_MULTIPLY,
+ IES_DIVIDE,
+ IES_MOD,
+ IES_LBRAC,
+ IES_RBRAC,
+ IES_LPAREN,
+ IES_RPAREN,
+ IES_REGISTER,
+ IES_INTEGER,
+ IES_IDENTIFIER,
+ IES_ERROR
+ };
+
+ class IntelExprStateMachine {
+ IntelExprState State, PrevState;
+ unsigned BaseReg, IndexReg, TmpReg, Scale;
+ int64_t Imm;
+ const MCExpr *Sym;
+ StringRef SymName;
+ InfixCalculator IC;
+ InlineAsmIdentifierInfo Info;
+ short BracCount;
+ bool MemExpr;
+
+ public:
+ IntelExprStateMachine()
+ : State(IES_INIT), PrevState(IES_ERROR), BaseReg(0), IndexReg(0),
+ TmpReg(0), Scale(0), Imm(0), Sym(nullptr), BracCount(0),
+ MemExpr(false) {}
+
+ void addImm(int64_t imm) { Imm += imm; }
+ short getBracCount() { return BracCount; }
+ bool isMemExpr() { return MemExpr; }
+ unsigned getBaseReg() { return BaseReg; }
+ unsigned getIndexReg() { return IndexReg; }
+ unsigned getScale() { return Scale; }
+ const MCExpr *getSym() { return Sym; }
+ StringRef getSymName() { return SymName; }
+ int64_t getImm() { return Imm + IC.execute(); }
+ bool isValidEndState() {
+ return State == IES_RBRAC || State == IES_INTEGER;
+ }
+ bool hadError() { return State == IES_ERROR; }
+ InlineAsmIdentifierInfo &getIdentifierInfo() { return Info; }
+
+ void onOr() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_OR;
+ IC.pushOperator(IC_OR);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onXor() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_XOR;
+ IC.pushOperator(IC_XOR);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onAnd() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_AND;
+ IC.pushOperator(IC_AND);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onLShift() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_LSHIFT;
+ IC.pushOperator(IC_LSHIFT);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onRShift() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_RSHIFT;
+ IC.pushOperator(IC_RSHIFT);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ bool onPlus(StringRef &ErrMsg) {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_PLUS;
+ IC.pushOperator(IC_PLUS);
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // no explicit scale.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ if (IndexReg) {
+ ErrMsg = "BaseReg/IndexReg already set!";
+ return true;
+ }
+ IndexReg = TmpReg;
+ Scale = 0;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ return false;
+ }
+ bool onMinus(StringRef &ErrMsg) {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_OR:
+ case IES_XOR:
+ case IES_AND:
+ case IES_LSHIFT:
+ case IES_RSHIFT:
+ case IES_PLUS:
+ case IES_NOT:
+ case IES_MULTIPLY:
+ case IES_DIVIDE:
+ case IES_MOD:
+ case IES_LPAREN:
+ case IES_RPAREN:
+ case IES_LBRAC:
+ case IES_RBRAC:
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_INIT:
+ State = IES_MINUS;
+ // push minus operator if it is not a negate operator
+ if (CurrState == IES_REGISTER || CurrState == IES_RPAREN ||
+ CurrState == IES_INTEGER || CurrState == IES_RBRAC)
+ IC.pushOperator(IC_MINUS);
+ else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
+ // We have negate operator for Scale: it's illegal
+ ErrMsg = "Scale can't be negative";
+ return true;
+ } else
+ IC.pushOperator(IC_NEG);
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // no explicit scale.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ if (IndexReg) {
+ ErrMsg = "BaseReg/IndexReg already set!";
+ return true;
+ }
+ IndexReg = TmpReg;
+ Scale = 0;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ return false;
+ }
+ void onNot() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_OR:
+ case IES_XOR:
+ case IES_AND:
+ case IES_LSHIFT:
+ case IES_RSHIFT:
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ case IES_MULTIPLY:
+ case IES_DIVIDE:
+ case IES_MOD:
+ case IES_LPAREN:
+ case IES_LBRAC:
+ case IES_INIT:
+ State = IES_NOT;
+ IC.pushOperator(IC_NOT);
+ break;
+ }
+ PrevState = CurrState;
+ }
+
+ bool onRegister(unsigned Reg, StringRef &ErrMsg) {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_LPAREN:
+ case IES_LBRAC:
+ State = IES_REGISTER;
+ TmpReg = Reg;
+ IC.pushOperand(IC_REGISTER);
+ break;
+ case IES_MULTIPLY:
+ // Index Register - Scale * Register
+ if (PrevState == IES_INTEGER) {
+ if (IndexReg) {
+ ErrMsg = "BaseReg/IndexReg already set!";
+ return true;
+ }
+ State = IES_REGISTER;
+ IndexReg = Reg;
+ // Get the scale and replace the 'Scale * Register' with '0'.
+ Scale = IC.popOperand();
+ if (checkScale(Scale, ErrMsg))
+ return true;
+ IC.pushOperand(IC_IMM);
+ IC.popOperator();
+ } else {
+ State = IES_ERROR;
+ }
+ break;
+ }
+ PrevState = CurrState;
+ return false;
+ }
+ bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName,
+ const InlineAsmIdentifierInfo &IDInfo,
+ bool ParsingInlineAsm, StringRef &ErrMsg) {
+ // InlineAsm: Treat an enum value as an integer
+ if (ParsingInlineAsm)
+ if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
+ return onInteger(IDInfo.Enum.EnumVal, ErrMsg);
+ // Treat a symbolic constant like an integer
+ if (auto *CE = dyn_cast<MCConstantExpr>(SymRef))
+ return onInteger(CE->getValue(), ErrMsg);
+ PrevState = State;
+ bool HasSymbol = Sym != nullptr;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ case IES_INIT:
+ case IES_LBRAC:
+ MemExpr = true;
+ State = IES_INTEGER;
+ Sym = SymRef;
+ SymName = SymRefName;
+ IC.pushOperand(IC_IMM);
+ if (ParsingInlineAsm)
+ Info = IDInfo;
+ break;
+ }
+ if (HasSymbol)
+ ErrMsg = "cannot use more than one symbol in memory operand";
+ return HasSymbol;
+ }
+ bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ case IES_OR:
+ case IES_XOR:
+ case IES_AND:
+ case IES_LSHIFT:
+ case IES_RSHIFT:
+ case IES_DIVIDE:
+ case IES_MOD:
+ case IES_MULTIPLY:
+ case IES_LPAREN:
+ case IES_INIT:
+ case IES_LBRAC:
+ State = IES_INTEGER;
+ if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
+ // Index Register - Register * Scale
+ if (IndexReg) {
+ ErrMsg = "BaseReg/IndexReg already set!";
+ return true;
+ }
+ IndexReg = TmpReg;
+ Scale = TmpInt;
+ if (checkScale(Scale, ErrMsg))
+ return true;
+ // Get the scale and replace the 'Register * Scale' with '0'.
+ IC.popOperator();
+ } else {
+ IC.pushOperand(IC_IMM, TmpInt);
+ }
+ break;
+ }
+ PrevState = CurrState;
+ return false;
+ }
+ void onStar() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ State = IES_MULTIPLY;
+ IC.pushOperator(IC_MULTIPLY);
+ break;
+ }
+ }
+ void onDivide() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ State = IES_DIVIDE;
+ IC.pushOperator(IC_DIVIDE);
+ break;
+ }
+ }
+ void onMod() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ State = IES_MOD;
+ IC.pushOperator(IC_MOD);
+ break;
+ }
+ }
+ bool onLBrac() {
+ if (BracCount)
+ return true;
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_RBRAC:
+ case IES_INTEGER:
+ case IES_RPAREN:
+ State = IES_PLUS;
+ IC.pushOperator(IC_PLUS);
+ break;
+ case IES_INIT:
+ assert(!BracCount && "BracCount should be zero on parsing's start");
+ State = IES_LBRAC;
+ break;
+ }
+ MemExpr = true;
+ BracCount++;
+ return false;
+ }
+ bool onRBrac() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ if (BracCount-- != 1)
+ return true;
+ State = IES_RBRAC;
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // no explicit scale.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ assert (!IndexReg && "BaseReg/IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = 0;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ return false;
+ }
+ void onLParen() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ case IES_OR:
+ case IES_XOR:
+ case IES_AND:
+ case IES_LSHIFT:
+ case IES_RSHIFT:
+ case IES_MULTIPLY:
+ case IES_DIVIDE:
+ case IES_MOD:
+ case IES_LPAREN:
+ case IES_INIT:
+ case IES_LBRAC:
+ State = IES_LPAREN;
+ IC.pushOperator(IC_LPAREN);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onRParen() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ State = IES_RPAREN;
+ IC.pushOperator(IC_RPAREN);
+ break;
+ }
+ }
+ };
+
+ bool Error(SMLoc L, const Twine &Msg, SMRange Range = None,
+ bool MatchingInlineAsm = false) {
+ MCAsmParser &Parser = getParser();
+ if (MatchingInlineAsm) {
+ if (!getLexer().isAtStartOfStatement())
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ return Parser.Error(L, Msg, Range);
+ }
+
+ std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg, SMRange R = SMRange()) {
+ Error(Loc, Msg, R);
+ return nullptr;
+ }
+
+ std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
+ std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
+ bool IsSIReg(unsigned Reg);
+ unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg);
+ void
+ AddDefaultSrcDestOperands(OperandVector &Operands,
+ std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
+ std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
+ bool VerifyAndAdjustOperands(OperandVector &OrigOperands,
+ OperandVector &FinalOperands);
+ std::unique_ptr<X86Operand> ParseOperand();
+ std::unique_ptr<X86Operand> ParseATTOperand();
+ std::unique_ptr<X86Operand> ParseIntelOperand();
+ std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
+ bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End);
+ unsigned IdentifyIntelInlineAsmOperator(StringRef Name);
+ unsigned ParseIntelInlineAsmOperator(unsigned OpKind);
+ std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start);
+ bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM);
+ void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start,
+ SMLoc End);
+ bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
+ bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier,
+ InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedOperand, SMLoc &End);
+
+ std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg,
+ const MCExpr *&Disp,
+ const SMLoc &StartLoc,
+ SMLoc &EndLoc);
+
+ X86::CondCode ParseConditionCode(StringRef CCode);
+
+ bool ParseIntelMemoryOperandSize(unsigned &Size);
+ std::unique_ptr<X86Operand>
+ CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
+ unsigned IndexReg, unsigned Scale, SMLoc Start,
+ SMLoc End, unsigned Size, StringRef Identifier,
+ const InlineAsmIdentifierInfo &Info);
+
+ bool parseDirectiveEven(SMLoc L);
+ bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
+
+ /// CodeView FPO data directives.
+ bool parseDirectiveFPOProc(SMLoc L);
+ bool parseDirectiveFPOSetFrame(SMLoc L);
+ bool parseDirectiveFPOPushReg(SMLoc L);
+ bool parseDirectiveFPOStackAlloc(SMLoc L);
+ bool parseDirectiveFPOStackAlign(SMLoc L);
+ bool parseDirectiveFPOEndPrologue(SMLoc L);
+ bool parseDirectiveFPOEndProc(SMLoc L);
+ bool parseDirectiveFPOData(SMLoc L);
+
+ unsigned checkTargetMatchPredicate(MCInst &Inst) override;
+
+ bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
+ bool processInstruction(MCInst &Inst, const OperandVector &Ops);
+
+ /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
+ /// instrumentation around Inst.
+ void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) override;
+
+ void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
+ MCStreamer &Out, bool MatchingInlineAsm);
+
+ bool ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures,
+ bool MatchingInlineAsm);
+
+ bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm);
+
+ bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm);
+
+ bool OmitRegisterFromClobberLists(unsigned RegNo) override;
+
+ /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
+ /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
+ /// return false if no parsing errors occurred, true otherwise.
+ bool HandleAVX512Operand(OperandVector &Operands,
+ const MCParsedAsmOperand &Op);
+
+ bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc);
+
+ bool is64BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return getSTI().getFeatureBits()[X86::Mode64Bit];
+ }
+ bool is32BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return getSTI().getFeatureBits()[X86::Mode32Bit];
+ }
+ bool is16BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return getSTI().getFeatureBits()[X86::Mode16Bit];
+ }
+ void SwitchMode(unsigned mode) {
+ MCSubtargetInfo &STI = copySTI();
+ FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
+ FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
+ FeatureBitset FB = ComputeAvailableFeatures(
+ STI.ToggleFeature(OldMode.flip(mode)));
+ setAvailableFeatures(FB);
+
+ assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
+ }
+
+ unsigned getPointerWidth() {
+ if (is16BitMode()) return 16;
+ if (is32BitMode()) return 32;
+ if (is64BitMode()) return 64;
+ llvm_unreachable("invalid mode");
+ }
+
+ bool isParsingIntelSyntax() {
+ return getParser().getAssemblerDialect();
+ }
+
+ /// @name Auto-generated Matcher Functions
+ /// {
+
+#define GET_ASSEMBLER_HEADER
+#include "X86GenAsmMatcher.inc"
+
+ /// }
+
+public:
+ enum X86MatchResultTy {
+ Match_Unsupported = FIRST_TARGET_MATCH_RESULT_TY,
+ };
+
+ X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
+ const MCInstrInfo &mii, const MCTargetOptions &Options)
+ : MCTargetAsmParser(Options, sti, mii), InstInfo(nullptr),
+ Code16GCC(false) {
+
+ Parser.addAliasForDirective(".word", ".2byte");
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
+ }
+
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+
+ bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override;
+
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+
+ bool ParseDirective(AsmToken DirectiveID) override;
+};
+} // end anonymous namespace
+
+/// @name Auto-generated Match Functions
+/// {
+
+static unsigned MatchRegisterName(StringRef Name);
+
+/// }
+
+static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg,
+ unsigned Scale, bool Is64BitMode,
+ StringRef &ErrMsg) {
+ // If we have both a base register and an index register make sure they are
+ // both 64-bit or 32-bit registers.
+ // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
+
+ if (BaseReg != 0 &&
+ !(BaseReg == X86::RIP || BaseReg == X86::EIP ||
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) ||
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) {
+ ErrMsg = "invalid base+index expression";
+ return true;
+ }
+
+ if (IndexReg != 0 &&
+ !(IndexReg == X86::EIZ || IndexReg == X86::RIZ ||
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) {
+ ErrMsg = "invalid base+index expression";
+ return true;
+ }
+
+ if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) ||
+ IndexReg == X86::EIP || IndexReg == X86::RIP ||
+ IndexReg == X86::ESP || IndexReg == X86::RSP) {
+ ErrMsg = "invalid base+index expression";
+ return true;
+ }
+
+ // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
+ // and then only in non-64-bit modes.
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
+ (Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP &&
+ BaseReg != X86::SI && BaseReg != X86::DI))) {
+ ErrMsg = "invalid 16-bit base register";
+ return true;
+ }
+
+ if (BaseReg == 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
+ ErrMsg = "16-bit memory operand may not include only index register";
+ return true;
+ }
+
+ if (BaseReg != 0 && IndexReg != 0) {
+ if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
+ (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
+ IndexReg == X86::EIZ)) {
+ ErrMsg = "base register is 64-bit, but index register is not";
+ return true;
+ }
+ if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
+ (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
+ IndexReg == X86::RIZ)) {
+ ErrMsg = "base register is 32-bit, but index register is not";
+ return true;
+ }
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
+ if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
+ ErrMsg = "base register is 16-bit, but index register is not";
+ return true;
+ }
+ if ((BaseReg != X86::BX && BaseReg != X86::BP) ||
+ (IndexReg != X86::SI && IndexReg != X86::DI)) {
+ ErrMsg = "invalid 16-bit base/index register combination";
+ return true;
+ }
+ }
+ }
+
+ // RIP/EIP-relative addressing is only supported in 64-bit mode.
+ if (!Is64BitMode && BaseReg != 0 &&
+ (BaseReg == X86::RIP || BaseReg == X86::EIP)) {
+ ErrMsg = "IP-relative addressing requires 64-bit mode";
+ return true;
+ }
+
+ return checkScale(Scale, ErrMsg);
+}
+
+bool X86AsmParser::ParseRegister(unsigned &RegNo,
+ SMLoc &StartLoc, SMLoc &EndLoc) {
+ MCAsmParser &Parser = getParser();
+ RegNo = 0;
+ const AsmToken &PercentTok = Parser.getTok();
+ StartLoc = PercentTok.getLoc();
+
+ // If we encounter a %, ignore it. This code handles registers with and
+ // without the prefix, unprefixed registers can occur in cfi directives.
+ if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
+ Parser.Lex(); // Eat percent token.
+
+ const AsmToken &Tok = Parser.getTok();
+ EndLoc = Tok.getEndLoc();
+
+ if (Tok.isNot(AsmToken::Identifier)) {
+ if (isParsingIntelSyntax()) return true;
+ return Error(StartLoc, "invalid register name",
+ SMRange(StartLoc, EndLoc));
+ }
+
+ RegNo = MatchRegisterName(Tok.getString());
+
+ // If the match failed, try the register name as lowercase.
+ if (RegNo == 0)
+ RegNo = MatchRegisterName(Tok.getString().lower());
+
+ // The "flags" register cannot be referenced directly.
+ // Treat it as an identifier instead.
+ if (isParsingInlineAsm() && isParsingIntelSyntax() && RegNo == X86::EFLAGS)
+ RegNo = 0;
+
+ if (!is64BitMode()) {
+ // FIXME: This should be done using Requires<Not64BitMode> and
+ // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
+ // checked.
+ // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
+ // REX prefix.
+ if (RegNo == X86::RIZ || RegNo == X86::RIP ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
+ X86II::isX86_64NonExtLowByteReg(RegNo) ||
+ X86II::isX86_64ExtendedReg(RegNo)) {
+ StringRef RegName = Tok.getString();
+ Parser.Lex(); // Eat register name.
+ return Error(StartLoc,
+ "register %" + RegName + " is only available in 64-bit mode",
+ SMRange(StartLoc, EndLoc));
+ }
+ }
+
+ // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
+ if (RegNo == X86::ST0) {
+ Parser.Lex(); // Eat 'st'
+
+ // Check to see if we have '(4)' after %st.
+ if (getLexer().isNot(AsmToken::LParen))
+ return false;
+ // Lex the paren.
+ getParser().Lex();
+
+ const AsmToken &IntTok = Parser.getTok();
+ if (IntTok.isNot(AsmToken::Integer))
+ return Error(IntTok.getLoc(), "expected stack index");
+ switch (IntTok.getIntVal()) {
+ case 0: RegNo = X86::ST0; break;
+ case 1: RegNo = X86::ST1; break;
+ case 2: RegNo = X86::ST2; break;
+ case 3: RegNo = X86::ST3; break;
+ case 4: RegNo = X86::ST4; break;
+ case 5: RegNo = X86::ST5; break;
+ case 6: RegNo = X86::ST6; break;
+ case 7: RegNo = X86::ST7; break;
+ default: return Error(IntTok.getLoc(), "invalid stack index");
+ }
+
+ if (getParser().Lex().isNot(AsmToken::RParen))
+ return Error(Parser.getTok().getLoc(), "expected ')'");
+
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat ')'
+ return false;
+ }
+
+ EndLoc = Parser.getTok().getEndLoc();
+
+ // If this is "db[0-15]", match it as an alias
+ // for dr[0-15].
+ if (RegNo == 0 && Tok.getString().startswith("db")) {
+ if (Tok.getString().size() == 3) {
+ switch (Tok.getString()[2]) {
+ case '0': RegNo = X86::DR0; break;
+ case '1': RegNo = X86::DR1; break;
+ case '2': RegNo = X86::DR2; break;
+ case '3': RegNo = X86::DR3; break;
+ case '4': RegNo = X86::DR4; break;
+ case '5': RegNo = X86::DR5; break;
+ case '6': RegNo = X86::DR6; break;
+ case '7': RegNo = X86::DR7; break;
+ case '8': RegNo = X86::DR8; break;
+ case '9': RegNo = X86::DR9; break;
+ }
+ } else if (Tok.getString().size() == 4 && Tok.getString()[2] == '1') {
+ switch (Tok.getString()[3]) {
+ case '0': RegNo = X86::DR10; break;
+ case '1': RegNo = X86::DR11; break;
+ case '2': RegNo = X86::DR12; break;
+ case '3': RegNo = X86::DR13; break;
+ case '4': RegNo = X86::DR14; break;
+ case '5': RegNo = X86::DR15; break;
+ }
+ }
+
+ if (RegNo != 0) {
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat it.
+ return false;
+ }
+ }
+
+ if (RegNo == 0) {
+ if (isParsingIntelSyntax()) return true;
+ return Error(StartLoc, "invalid register name",
+ SMRange(StartLoc, EndLoc));
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ return false;
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
+ bool Parse32 = is32BitMode() || Code16GCC;
+ unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI);
+ const MCExpr *Disp = MCConstantExpr::create(0, getContext());
+ return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
+ /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
+ Loc, Loc, 0);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
+ bool Parse32 = is32BitMode() || Code16GCC;
+ unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI);
+ const MCExpr *Disp = MCConstantExpr::create(0, getContext());
+ return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
+ /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
+ Loc, Loc, 0);
+}
+
+bool X86AsmParser::IsSIReg(unsigned Reg) {
+ switch (Reg) {
+ default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!");
+ case X86::RSI:
+ case X86::ESI:
+ case X86::SI:
+ return true;
+ case X86::RDI:
+ case X86::EDI:
+ case X86::DI:
+ return false;
+ }
+}
+
+unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg,
+ bool IsSIReg) {
+ switch (RegClassID) {
+ default: llvm_unreachable("Unexpected register class");
+ case X86::GR64RegClassID:
+ return IsSIReg ? X86::RSI : X86::RDI;
+ case X86::GR32RegClassID:
+ return IsSIReg ? X86::ESI : X86::EDI;
+ case X86::GR16RegClassID:
+ return IsSIReg ? X86::SI : X86::DI;
+ }
+}
+
+void X86AsmParser::AddDefaultSrcDestOperands(
+ OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
+ std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
+ if (isParsingIntelSyntax()) {
+ Operands.push_back(std::move(Dst));
+ Operands.push_back(std::move(Src));
+ }
+ else {
+ Operands.push_back(std::move(Src));
+ Operands.push_back(std::move(Dst));
+ }
+}
+
+bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands,
+ OperandVector &FinalOperands) {
+
+ if (OrigOperands.size() > 1) {
+ // Check if sizes match, OrigOperands also contains the instruction name
+ assert(OrigOperands.size() == FinalOperands.size() + 1 &&
+ "Operand size mismatch");
+
+ SmallVector<std::pair<SMLoc, std::string>, 2> Warnings;
+ // Verify types match
+ int RegClassID = -1;
+ for (unsigned int i = 0; i < FinalOperands.size(); ++i) {
+ X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]);
+ X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]);
+
+ if (FinalOp.isReg() &&
+ (!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg()))
+ // Return false and let a normal complaint about bogus operands happen
+ return false;
+
+ if (FinalOp.isMem()) {
+
+ if (!OrigOp.isMem())
+ // Return false and let a normal complaint about bogus operands happen
+ return false;
+
+ unsigned OrigReg = OrigOp.Mem.BaseReg;
+ unsigned FinalReg = FinalOp.Mem.BaseReg;
+
+ // If we've already encounterd a register class, make sure all register
+ // bases are of the same register class
+ if (RegClassID != -1 &&
+ !X86MCRegisterClasses[RegClassID].contains(OrigReg)) {
+ return Error(OrigOp.getStartLoc(),
+ "mismatching source and destination index registers");
+ }
+
+ if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg))
+ RegClassID = X86::GR64RegClassID;
+ else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg))
+ RegClassID = X86::GR32RegClassID;
+ else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg))
+ RegClassID = X86::GR16RegClassID;
+ else
+ // Unexpected register class type
+ // Return false and let a normal complaint about bogus operands happen
+ return false;
+
+ bool IsSI = IsSIReg(FinalReg);
+ FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI);
+
+ if (FinalReg != OrigReg) {
+ std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI";
+ Warnings.push_back(std::make_pair(
+ OrigOp.getStartLoc(),
+ "memory operand is only for determining the size, " + RegName +
+ " will be used for the location"));
+ }
+
+ FinalOp.Mem.Size = OrigOp.Mem.Size;
+ FinalOp.Mem.SegReg = OrigOp.Mem.SegReg;
+ FinalOp.Mem.BaseReg = FinalReg;
+ }
+ }
+
+ // Produce warnings only if all the operands passed the adjustment - prevent
+ // legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings
+ for (auto &WarningMsg : Warnings) {
+ Warning(WarningMsg.first, WarningMsg.second);
+ }
+
+ // Remove old operands
+ for (unsigned int i = 0; i < FinalOperands.size(); ++i)
+ OrigOperands.pop_back();
+ }
+ // OrigOperands.append(FinalOperands.begin(), FinalOperands.end());
+ for (unsigned int i = 0; i < FinalOperands.size(); ++i)
+ OrigOperands.push_back(std::move(FinalOperands[i]));
+
+ return false;
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
+ if (isParsingIntelSyntax())
+ return ParseIntelOperand();
+ return ParseATTOperand();
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
+ unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
+ unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
+ const InlineAsmIdentifierInfo &Info) {
+ // If we found a decl other than a VarDecl, then assume it is a FuncDecl or
+ // some other label reference.
+ if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) {
+ // Insert an explicit size if the user didn't have one.
+ if (!Size) {
+ Size = getPointerWidth();
+ InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
+ /*Len=*/0, Size);
+ }
+ // Create an absolute memory reference in order to match against
+ // instructions taking a PC relative operand.
+ return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
+ Identifier, Info.Label.Decl);
+ }
+ // We either have a direct symbol reference, or an offset from a symbol. The
+ // parser always puts the symbol on the LHS, so look there for size
+ // calculation purposes.
+ unsigned FrontendSize = 0;
+ void *Decl = nullptr;
+ bool IsGlobalLV = false;
+ if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
+ // Size is in terms of bits in this context.
+ FrontendSize = Info.Var.Type * 8;
+ Decl = Info.Var.Decl;
+ IsGlobalLV = Info.Var.IsGlobalLV;
+ }
+ // It is widely common for MS InlineAsm to use a global variable and one/two
+ // registers in a mmory expression, and though unaccessible via rip/eip.
+ if (IsGlobalLV && (BaseReg || IndexReg)) {
+ return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End);
+ // Otherwise, we set the base register to a non-zero value
+ // if we don't know the actual value at this time. This is necessary to
+ // get the matching correct in some cases.
+ } else {
+ BaseReg = BaseReg ? BaseReg : 1;
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
+ IndexReg, Scale, Start, End, Size, Identifier,
+ Decl, FrontendSize);
+ }
+}
+
+// Some binary bitwise operators have a named synonymous
+// Query a candidate string for being such a named operator
+// and if so - invoke the appropriate handler
+bool X86AsmParser::ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM) {
+ // A named operator should be either lower or upper case, but not a mix
+ if (Name.compare(Name.lower()) && Name.compare(Name.upper()))
+ return false;
+ if (Name.equals_lower("not"))
+ SM.onNot();
+ else if (Name.equals_lower("or"))
+ SM.onOr();
+ else if (Name.equals_lower("shl"))
+ SM.onLShift();
+ else if (Name.equals_lower("shr"))
+ SM.onRShift();
+ else if (Name.equals_lower("xor"))
+ SM.onXor();
+ else if (Name.equals_lower("and"))
+ SM.onAnd();
+ else if (Name.equals_lower("mod"))
+ SM.onMod();
+ else
+ return false;
+ return true;
+}
+
+bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ StringRef ErrMsg;
+
+ AsmToken::TokenKind PrevTK = AsmToken::Error;
+ bool Done = false;
+ while (!Done) {
+ bool UpdateLocLex = true;
+ AsmToken::TokenKind TK = getLexer().getKind();
+
+ switch (TK) {
+ default:
+ if ((Done = SM.isValidEndState()))
+ break;
+ return Error(Tok.getLoc(), "unknown token in expression");
+ case AsmToken::EndOfStatement:
+ Done = true;
+ break;
+ case AsmToken::Real:
+ // DotOperator: [ebx].0
+ UpdateLocLex = false;
+ if (ParseIntelDotOperator(SM, End))
+ return true;
+ break;
+ case AsmToken::At:
+ case AsmToken::String:
+ case AsmToken::Identifier: {
+ SMLoc IdentLoc = Tok.getLoc();
+ StringRef Identifier = Tok.getString();
+ UpdateLocLex = false;
+ // Register
+ unsigned Reg;
+ if (Tok.is(AsmToken::Identifier) && !ParseRegister(Reg, IdentLoc, End)) {
+ if (SM.onRegister(Reg, ErrMsg))
+ return Error(Tok.getLoc(), ErrMsg);
+ break;
+ }
+ // Operator synonymous ("not", "or" etc.)
+ if ((UpdateLocLex = ParseIntelNamedOperator(Identifier, SM)))
+ break;
+ // Symbol reference, when parsing assembly content
+ InlineAsmIdentifierInfo Info;
+ const MCExpr *Val;
+ if (!isParsingInlineAsm()) {
+ if (getParser().parsePrimaryExpr(Val, End)) {
+ return Error(Tok.getLoc(), "Unexpected identifier!");
+ } else if (SM.onIdentifierExpr(Val, Identifier, Info, false, ErrMsg)) {
+ return Error(IdentLoc, ErrMsg);
+ } else
+ break;
+ }
+ // MS InlineAsm operators (TYPE/LENGTH/SIZE)
+ if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) {
+ if (OpKind == IOK_OFFSET)
+ return Error(IdentLoc, "Dealing OFFSET operator as part of"
+ "a compound immediate expression is yet to be supported");
+ if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) {
+ if (SM.onInteger(Val, ErrMsg))
+ return Error(IdentLoc, ErrMsg);
+ } else
+ return true;
+ break;
+ }
+ // MS Dot Operator expression
+ if (Identifier.count('.') && PrevTK == AsmToken::RBrac) {
+ if (ParseIntelDotOperator(SM, End))
+ return true;
+ break;
+ }
+ // MS InlineAsm identifier
+ // Call parseIdentifier() to combine @ with the identifier behind it.
+ if (TK == AsmToken::At && Parser.parseIdentifier(Identifier))
+ return Error(IdentLoc, "expected identifier");
+ if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End))
+ return true;
+ else if (SM.onIdentifierExpr(Val, Identifier, Info, true, ErrMsg))
+ return Error(IdentLoc, ErrMsg);
+ break;
+ }
+ case AsmToken::Integer: {
+ // Look for 'b' or 'f' following an Integer as a directional label
+ SMLoc Loc = getTok().getLoc();
+ int64_t IntVal = getTok().getIntVal();
+ End = consumeToken();
+ UpdateLocLex = false;
+ if (getLexer().getKind() == AsmToken::Identifier) {
+ StringRef IDVal = getTok().getString();
+ if (IDVal == "f" || IDVal == "b") {
+ MCSymbol *Sym =
+ getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
+ MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
+ const MCExpr *Val =
+ MCSymbolRefExpr::create(Sym, Variant, getContext());
+ if (IDVal == "b" && Sym->isUndefined())
+ return Error(Loc, "invalid reference to undefined symbol");
+ StringRef Identifier = Sym->getName();
+ InlineAsmIdentifierInfo Info;
+ if (SM.onIdentifierExpr(Val, Identifier, Info,
+ isParsingInlineAsm(), ErrMsg))
+ return Error(Loc, ErrMsg);
+ End = consumeToken();
+ } else {
+ if (SM.onInteger(IntVal, ErrMsg))
+ return Error(Loc, ErrMsg);
+ }
+ } else {
+ if (SM.onInteger(IntVal, ErrMsg))
+ return Error(Loc, ErrMsg);
+ }
+ break;
+ }
+ case AsmToken::Plus:
+ if (SM.onPlus(ErrMsg))
+ return Error(getTok().getLoc(), ErrMsg);
+ break;
+ case AsmToken::Minus:
+ if (SM.onMinus(ErrMsg))
+ return Error(getTok().getLoc(), ErrMsg);
+ break;
+ case AsmToken::Tilde: SM.onNot(); break;
+ case AsmToken::Star: SM.onStar(); break;
+ case AsmToken::Slash: SM.onDivide(); break;
+ case AsmToken::Percent: SM.onMod(); break;
+ case AsmToken::Pipe: SM.onOr(); break;
+ case AsmToken::Caret: SM.onXor(); break;
+ case AsmToken::Amp: SM.onAnd(); break;
+ case AsmToken::LessLess:
+ SM.onLShift(); break;
+ case AsmToken::GreaterGreater:
+ SM.onRShift(); break;
+ case AsmToken::LBrac:
+ if (SM.onLBrac())
+ return Error(Tok.getLoc(), "unexpected bracket encountered");
+ break;
+ case AsmToken::RBrac:
+ if (SM.onRBrac())
+ return Error(Tok.getLoc(), "unexpected bracket encountered");
+ break;
+ case AsmToken::LParen: SM.onLParen(); break;
+ case AsmToken::RParen: SM.onRParen(); break;
+ }
+ if (SM.hadError())
+ return Error(Tok.getLoc(), "unknown token in expression");
+
+ if (!Done && UpdateLocLex)
+ End = consumeToken();
+
+ PrevTK = TK;
+ }
+ return false;
+}
+
+void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM,
+ SMLoc Start, SMLoc End) {
+ SMLoc Loc = Start;
+ unsigned ExprLen = End.getPointer() - Start.getPointer();
+ // Skip everything before a symbol displacement (if we have one)
+ if (SM.getSym()) {
+ StringRef SymName = SM.getSymName();
+ if (unsigned Len = SymName.data() - Start.getPointer())
+ InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len);
+ Loc = SMLoc::getFromPointer(SymName.data() + SymName.size());
+ ExprLen = End.getPointer() - (SymName.data() + SymName.size());
+ // If we have only a symbol than there's no need for complex rewrite,
+ // simply skip everything after it
+ if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) {
+ if (ExprLen)
+ InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen);
+ return;
+ }
+ }
+ // Build an Intel Expression rewrite
+ StringRef BaseRegStr;
+ StringRef IndexRegStr;
+ if (SM.getBaseReg())
+ BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg());
+ if (SM.getIndexReg())
+ IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg());
+ // Emit it
+ IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), SM.getImm(), SM.isMemExpr());
+ InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr);
+}
+
+// Inline assembly may use variable names with namespace alias qualifiers.
+bool X86AsmParser::ParseIntelInlineAsmIdentifier(const MCExpr *&Val,
+ StringRef &Identifier,
+ InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedOperand,
+ SMLoc &End) {
+ MCAsmParser &Parser = getParser();
+ assert(isParsingInlineAsm() && "Expected to be parsing inline assembly.");
+ Val = nullptr;
+
+ StringRef LineBuf(Identifier.data());
+ SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
+
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc Loc = Tok.getLoc();
+
+ // Advance the token stream until the end of the current token is
+ // after the end of what the frontend claimed.
+ const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
+ do {
+ End = Tok.getEndLoc();
+ getLexer().Lex();
+ } while (End.getPointer() < EndPtr);
+ Identifier = LineBuf;
+
+ // The frontend should end parsing on an assembler token boundary, unless it
+ // failed parsing.
+ assert((End.getPointer() == EndPtr ||
+ Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) &&
+ "frontend claimed part of a token?");
+
+ // If the identifier lookup was unsuccessful, assume that we are dealing with
+ // a label.
+ if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) {
+ StringRef InternalName =
+ SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
+ Loc, false);
+ assert(InternalName.size() && "We should have an internal name here.");
+ // Push a rewrite for replacing the identifier name with the internal name.
+ InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
+ InternalName);
+ } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
+ return false;
+ // Create the symbol reference.
+ MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
+ MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
+ Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
+ return false;
+}
+
+//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
+std::unique_ptr<X86Operand>
+X86AsmParser::ParseRoundingModeOp(SMLoc Start) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ // Eat "{" and mark the current place.
+ const SMLoc consumedToken = consumeToken();
+ if (Tok.isNot(AsmToken::Identifier))
+ return ErrorOperand(Tok.getLoc(), "Expected an identifier after {");
+ if (Tok.getIdentifier().startswith("r")){
+ int rndMode = StringSwitch<int>(Tok.getIdentifier())
+ .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
+ .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
+ .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
+ .Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
+ .Default(-1);
+ if (-1 == rndMode)
+ return ErrorOperand(Tok.getLoc(), "Invalid rounding mode.");
+ Parser.Lex(); // Eat "r*" of r*-sae
+ if (!getLexer().is(AsmToken::Minus))
+ return ErrorOperand(Tok.getLoc(), "Expected - at this point");
+ Parser.Lex(); // Eat "-"
+ Parser.Lex(); // Eat the sae
+ if (!getLexer().is(AsmToken::RCurly))
+ return ErrorOperand(Tok.getLoc(), "Expected } at this point");
+ SMLoc End = Tok.getEndLoc();
+ Parser.Lex(); // Eat "}"
+ const MCExpr *RndModeOp =
+ MCConstantExpr::create(rndMode, Parser.getContext());
+ return X86Operand::CreateImm(RndModeOp, Start, End);
+ }
+ if(Tok.getIdentifier().equals("sae")){
+ Parser.Lex(); // Eat the sae
+ if (!getLexer().is(AsmToken::RCurly))
+ return ErrorOperand(Tok.getLoc(), "Expected } at this point");
+ Parser.Lex(); // Eat "}"
+ return X86Operand::CreateToken("{sae}", consumedToken);
+ }
+ return ErrorOperand(Tok.getLoc(), "unknown token in expression");
+}
+
+/// Parse the '.' operator.
+bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End) {
+ const AsmToken &Tok = getTok();
+ unsigned Offset;
+
+ // Drop the optional '.'.
+ StringRef DotDispStr = Tok.getString();
+ if (DotDispStr.startswith("."))
+ DotDispStr = DotDispStr.drop_front(1);
+
+ // .Imm gets lexed as a real.
+ if (Tok.is(AsmToken::Real)) {
+ APInt DotDisp;
+ DotDispStr.getAsInteger(10, DotDisp);
+ Offset = DotDisp.getZExtValue();
+ } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
+ std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
+ if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
+ Offset))
+ return Error(Tok.getLoc(), "Unable to lookup field reference!");
+ } else
+ return Error(Tok.getLoc(), "Unexpected token type!");
+
+ // Eat the DotExpression and update End
+ End = SMLoc::getFromPointer(DotDispStr.data());
+ const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size();
+ while (Tok.getLoc().getPointer() < DotExprEndLoc)
+ Lex();
+ SM.addImm(Offset);
+ return false;
+}
+
+/// Parse the 'offset' operator. This operator is used to specify the
+/// location rather then the content of a variable.
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc OffsetOfLoc = Tok.getLoc();
+ Parser.Lex(); // Eat offset.
+
+ const MCExpr *Val;
+ InlineAsmIdentifierInfo Info;
+ SMLoc Start = Tok.getLoc(), End;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return nullptr;
+
+ void *Decl = nullptr;
+ // FIXME: MS evaluates "offset <Constant>" to the underlying integral
+ if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
+ return ErrorOperand(Start, "offset operator cannot yet handle constants");
+ else if (Info.isKind(InlineAsmIdentifierInfo::IK_Var))
+ Decl = Info.Var.Decl;
+ // Don't emit the offset operator.
+ InstInfo->AsmRewrites->emplace_back(AOK_Skip, OffsetOfLoc, 7);
+
+ // The offset operator will have an 'r' constraint, thus we need to create
+ // register operand to ensure proper matching. Just pick a GPR based on
+ // the size of a pointer.
+ bool Parse32 = is32BitMode() || Code16GCC;
+ unsigned RegNo = is64BitMode() ? X86::RBX : (Parse32 ? X86::EBX : X86::BX);
+
+ return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
+ OffsetOfLoc, Identifier, Decl);
+}
+
+// Query a candidate string for being an Intel assembly operator
+// Report back its kind, or IOK_INVALID if does not evaluated as a known one
+unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) {
+ return StringSwitch<unsigned>(Name)
+ .Cases("TYPE","type",IOK_TYPE)
+ .Cases("SIZE","size",IOK_SIZE)
+ .Cases("LENGTH","length",IOK_LENGTH)
+ .Cases("OFFSET","offset",IOK_OFFSET)
+ .Default(IOK_INVALID);
+}
+
+/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
+/// returns the number of elements in an array. It returns the value 1 for
+/// non-array variables. The SIZE operator returns the size of a C or C++
+/// variable. A variable's size is the product of its LENGTH and TYPE. The
+/// TYPE operator returns the size of a C or C++ type or variable. If the
+/// variable is an array, TYPE returns the size of a single element.
+unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ Parser.Lex(); // Eat operator.
+
+ const MCExpr *Val = nullptr;
+ InlineAsmIdentifierInfo Info;
+ SMLoc Start = Tok.getLoc(), End;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/true, End))
+ return 0;
+
+ if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
+ Error(Start, "unable to lookup expression");
+ return 0;
+ }
+
+ unsigned CVal = 0;
+ switch(OpKind) {
+ default: llvm_unreachable("Unexpected operand kind!");
+ case IOK_LENGTH: CVal = Info.Var.Length; break;
+ case IOK_SIZE: CVal = Info.Var.Size; break;
+ case IOK_TYPE: CVal = Info.Var.Type; break;
+ }
+
+ return CVal;
+}
+
+bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) {
+ Size = StringSwitch<unsigned>(getTok().getString())
+ .Cases("BYTE", "byte", 8)
+ .Cases("WORD", "word", 16)
+ .Cases("DWORD", "dword", 32)
+ .Cases("FLOAT", "float", 32)
+ .Cases("LONG", "long", 32)
+ .Cases("FWORD", "fword", 48)
+ .Cases("DOUBLE", "double", 64)
+ .Cases("QWORD", "qword", 64)
+ .Cases("MMWORD","mmword", 64)
+ .Cases("XWORD", "xword", 80)
+ .Cases("TBYTE", "tbyte", 80)
+ .Cases("XMMWORD", "xmmword", 128)
+ .Cases("YMMWORD", "ymmword", 256)
+ .Cases("ZMMWORD", "zmmword", 512)
+ .Default(0);
+ if (Size) {
+ const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word).
+ if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr")))
+ return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
+ Lex(); // Eat ptr.
+ }
+ return false;
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc Start, End;
+
+ // FIXME: Offset operator
+ // Should be handled as part of immediate expression, as other operators
+ // Currently, only supported as a stand-alone operand
+ if (isParsingInlineAsm())
+ if (IdentifyIntelInlineAsmOperator(Tok.getString()) == IOK_OFFSET)
+ return ParseIntelOffsetOfOperator();
+
+ // Parse optional Size directive.
+ unsigned Size;
+ if (ParseIntelMemoryOperandSize(Size))
+ return nullptr;
+ bool PtrInOperand = bool(Size);
+
+ Start = Tok.getLoc();
+
+ // Rounding mode operand.
+ if (getLexer().is(AsmToken::LCurly))
+ return ParseRoundingModeOp(Start);
+
+ // Register operand.
+ unsigned RegNo = 0;
+ if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) {
+ if (RegNo == X86::RIP)
+ return ErrorOperand(Start, "rip can only be used as a base register");
+ // A Register followed by ':' is considered a segment override
+ if (Tok.isNot(AsmToken::Colon))
+ return !PtrInOperand ? X86Operand::CreateReg(RegNo, Start, End) :
+ ErrorOperand(Start, "expected memory operand after 'ptr', "
+ "found register operand instead");
+ // An alleged segment override. check if we have a valid segment register
+ if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
+ return ErrorOperand(Start, "invalid segment register");
+ // Eat ':' and update Start location
+ Start = Lex().getLoc();
+ }
+
+ // Immediates and Memory
+ IntelExprStateMachine SM;
+ if (ParseIntelExpression(SM, End))
+ return nullptr;
+
+ if (isParsingInlineAsm())
+ RewriteIntelExpression(SM, Start, Tok.getLoc());
+
+ int64_t Imm = SM.getImm();
+ const MCExpr *Disp = SM.getSym();
+ const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext());
+ if (Disp && Imm)
+ Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext());
+ if (!Disp)
+ Disp = ImmDisp;
+
+ // RegNo != 0 specifies a valid segment register,
+ // and we are parsing a segment override
+ if (!SM.isMemExpr() && !RegNo)
+ return X86Operand::CreateImm(Disp, Start, End);
+
+ StringRef ErrMsg;
+ unsigned BaseReg = SM.getBaseReg();
+ unsigned IndexReg = SM.getIndexReg();
+ unsigned Scale = SM.getScale();
+
+ if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP &&
+ (IndexReg == X86::ESP || IndexReg == X86::RSP))
+ std::swap(BaseReg, IndexReg);
+
+ // If BaseReg is a vector register and IndexReg is not, swap them unless
+ // Scale was specified in which case it would be an error.
+ if (Scale == 0 &&
+ !(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) &&
+ (X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) ||
+ X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) ||
+ X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg)))
+ std::swap(BaseReg, IndexReg);
+
+ if (Scale != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg))
+ return ErrorOperand(Start, "16-bit addresses cannot have a scale");
+
+ // If there was no explicit scale specified, change it to 1.
+ if (Scale == 0)
+ Scale = 1;
+
+ // If this is a 16-bit addressing mode with the base and index in the wrong
+ // order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is
+ // shared with att syntax where order matters.
+ if ((BaseReg == X86::SI || BaseReg == X86::DI) &&
+ (IndexReg == X86::BX || IndexReg == X86::BP))
+ std::swap(BaseReg, IndexReg);
+
+ if ((BaseReg || IndexReg) &&
+ CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
+ ErrMsg))
+ return ErrorOperand(Start, ErrMsg);
+ if (isParsingInlineAsm())
+ return CreateMemForInlineAsm(RegNo, Disp, BaseReg, IndexReg,
+ Scale, Start, End, Size, SM.getSymName(),
+ SM.getIdentifierInfo());
+ if (!(BaseReg || IndexReg || RegNo))
+ return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
+ return X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
+ BaseReg, IndexReg, Scale, Start, End, Size);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
+ MCAsmParser &Parser = getParser();
+ switch (getLexer().getKind()) {
+ case AsmToken::Dollar: {
+ // $42 or $ID -> immediate.
+ SMLoc Start = Parser.getTok().getLoc(), End;
+ Parser.Lex();
+ const MCExpr *Val;
+ // This is an immediate, so we should not parse a register. Do a precheck
+ // for '%' to supercede intra-register parse errors.
+ SMLoc L = Parser.getTok().getLoc();
+ if (check(getLexer().is(AsmToken::Percent), L,
+ "expected immediate expression") ||
+ getParser().parseExpression(Val, End) ||
+ check(isa<X86MCExpr>(Val), L, "expected immediate expression"))
+ return nullptr;
+ return X86Operand::CreateImm(Val, Start, End);
+ }
+ case AsmToken::LCurly: {
+ SMLoc Start = Parser.getTok().getLoc();
+ return ParseRoundingModeOp(Start);
+ }
+ default: {
+ // This a memory operand or a register. We have some parsing complications
+ // as a '(' may be part of an immediate expression or the addressing mode
+ // block. This is complicated by the fact that an assembler-level variable
+ // may refer either to a register or an immediate expression.
+
+ SMLoc Loc = Parser.getTok().getLoc(), EndLoc;
+ const MCExpr *Expr = nullptr;
+ unsigned Reg = 0;
+ if (getLexer().isNot(AsmToken::LParen)) {
+ // No '(' so this is either a displacement expression or a register.
+ if (Parser.parseExpression(Expr, EndLoc))
+ return nullptr;
+ if (auto *RE = dyn_cast<X86MCExpr>(Expr)) {
+ // Segment Register. Reset Expr and copy value to register.
+ Expr = nullptr;
+ Reg = RE->getRegNo();
+
+ // Sanity check register.
+ if (Reg == X86::EIZ || Reg == X86::RIZ)
+ return ErrorOperand(
+ Loc, "%eiz and %riz can only be used as index registers",
+ SMRange(Loc, EndLoc));
+ if (Reg == X86::RIP)
+ return ErrorOperand(Loc, "%rip can only be used as a base register",
+ SMRange(Loc, EndLoc));
+ // Return register that are not segment prefixes immediately.
+ if (!Parser.parseOptionalToken(AsmToken::Colon))
+ return X86Operand::CreateReg(Reg, Loc, EndLoc);
+ if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(Reg))
+ return ErrorOperand(Loc, "invalid segment register");
+ }
+ }
+ // This is a Memory operand.
+ return ParseMemOperand(Reg, Expr, Loc, EndLoc);
+ }
+ }
+}
+
+// X86::COND_INVALID if not a recognized condition code or alternate mnemonic,
+// otherwise the EFLAGS Condition Code enumerator.
+X86::CondCode X86AsmParser::ParseConditionCode(StringRef CC) {
+ return StringSwitch<X86::CondCode>(CC)
+ .Case("o", X86::COND_O) // Overflow
+ .Case("no", X86::COND_NO) // No Overflow
+ .Cases("b", "nae", X86::COND_B) // Below/Neither Above nor Equal
+ .Cases("ae", "nb", X86::COND_AE) // Above or Equal/Not Below
+ .Cases("e", "z", X86::COND_E) // Equal/Zero
+ .Cases("ne", "nz", X86::COND_NE) // Not Equal/Not Zero
+ .Cases("be", "na", X86::COND_BE) // Below or Equal/Not Above
+ .Cases("a", "nbe", X86::COND_A) // Above/Neither Below nor Equal
+ .Case("s", X86::COND_S) // Sign
+ .Case("ns", X86::COND_NS) // No Sign
+ .Cases("p", "pe", X86::COND_P) // Parity/Parity Even
+ .Cases("np", "po", X86::COND_NP) // No Parity/Parity Odd
+ .Cases("l", "nge", X86::COND_L) // Less/Neither Greater nor Equal
+ .Cases("ge", "nl", X86::COND_GE) // Greater or Equal/Not Less
+ .Cases("le", "ng", X86::COND_LE) // Less or Equal/Not Greater
+ .Cases("g", "nle", X86::COND_G) // Greater/Neither Less nor Equal
+ .Default(X86::COND_INVALID);
+}
+
+// true on failure, false otherwise
+// If no {z} mark was found - Parser doesn't advance
+bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z,
+ const SMLoc &StartLoc) {
+ MCAsmParser &Parser = getParser();
+ // Assuming we are just pass the '{' mark, quering the next token
+ // Searched for {z}, but none was found. Return false, as no parsing error was
+ // encountered
+ if (!(getLexer().is(AsmToken::Identifier) &&
+ (getLexer().getTok().getIdentifier() == "z")))
+ return false;
+ Parser.Lex(); // Eat z
+ // Query and eat the '}' mark
+ if (!getLexer().is(AsmToken::RCurly))
+ return Error(getLexer().getLoc(), "Expected } at this point");
+ Parser.Lex(); // Eat '}'
+ // Assign Z with the {z} mark opernad
+ Z = X86Operand::CreateToken("{z}", StartLoc);
+ return false;
+}
+
+// true on failure, false otherwise
+bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
+ const MCParsedAsmOperand &Op) {
+ MCAsmParser &Parser = getParser();
+ if (getLexer().is(AsmToken::LCurly)) {
+ // Eat "{" and mark the current place.
+ const SMLoc consumedToken = consumeToken();
+ // Distinguish {1to<NUM>} from {%k<NUM>}.
+ if(getLexer().is(AsmToken::Integer)) {
+ // Parse memory broadcasting ({1to<NUM>}).
+ if (getLexer().getTok().getIntVal() != 1)
+ return TokError("Expected 1to<NUM> at this point");
+ Parser.Lex(); // Eat "1" of 1to8
+ if (!getLexer().is(AsmToken::Identifier) ||
+ !getLexer().getTok().getIdentifier().startswith("to"))
+ return TokError("Expected 1to<NUM> at this point");
+ // Recognize only reasonable suffixes.
+ const char *BroadcastPrimitive =
+ StringSwitch<const char*>(getLexer().getTok().getIdentifier())
+ .Case("to2", "{1to2}")
+ .Case("to4", "{1to4}")
+ .Case("to8", "{1to8}")
+ .Case("to16", "{1to16}")
+ .Default(nullptr);
+ if (!BroadcastPrimitive)
+ return TokError("Invalid memory broadcast primitive.");
+ Parser.Lex(); // Eat "toN" of 1toN
+ if (!getLexer().is(AsmToken::RCurly))
+ return TokError("Expected } at this point");
+ Parser.Lex(); // Eat "}"
+ Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
+ consumedToken));
+ // No AVX512 specific primitives can pass
+ // after memory broadcasting, so return.
+ return false;
+ } else {
+ // Parse either {k}{z}, {z}{k}, {k} or {z}
+ // last one have no meaning, but GCC accepts it
+ // Currently, we're just pass a '{' mark
+ std::unique_ptr<X86Operand> Z;
+ if (ParseZ(Z, consumedToken))
+ return true;
+ // Reaching here means that parsing of the allegadly '{z}' mark yielded
+ // no errors.
+ // Query for the need of further parsing for a {%k<NUM>} mark
+ if (!Z || getLexer().is(AsmToken::LCurly)) {
+ SMLoc StartLoc = Z ? consumeToken() : consumedToken;
+ // Parse an op-mask register mark ({%k<NUM>}), which is now to be
+ // expected
+ unsigned RegNo;
+ SMLoc RegLoc;
+ if (!ParseRegister(RegNo, RegLoc, StartLoc) &&
+ X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) {
+ if (RegNo == X86::K0)
+ return Error(RegLoc, "Register k0 can't be used as write mask");
+ if (!getLexer().is(AsmToken::RCurly))
+ return Error(getLexer().getLoc(), "Expected } at this point");
+ Operands.push_back(X86Operand::CreateToken("{", StartLoc));
+ Operands.push_back(
+ X86Operand::CreateReg(RegNo, StartLoc, StartLoc));
+ Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
+ } else
+ return Error(getLexer().getLoc(),
+ "Expected an op-mask register at this point");
+ // {%k<NUM>} mark is found, inquire for {z}
+ if (getLexer().is(AsmToken::LCurly) && !Z) {
+ // Have we've found a parsing error, or found no (expected) {z} mark
+ // - report an error
+ if (ParseZ(Z, consumeToken()) || !Z)
+ return Error(getLexer().getLoc(),
+ "Expected a {z} mark at this point");
+
+ }
+ // '{z}' on its own is meaningless, hence should be ignored.
+ // on the contrary - have it been accompanied by a K register,
+ // allow it.
+ if (Z)
+ Operands.push_back(std::move(Z));
+ }
+ }
+ }
+ return false;
+}
+
+/// ParseMemOperand: 'seg : disp(basereg, indexreg, scale)'. The '%ds:' prefix
+/// has already been parsed if present. disp may be provided as well.
+std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
+ const MCExpr *&Disp,
+ const SMLoc &StartLoc,
+ SMLoc &EndLoc) {
+ MCAsmParser &Parser = getParser();
+ SMLoc Loc;
+ // Based on the initial passed values, we may be in any of these cases, we are
+ // in one of these cases (with current position (*)):
+
+ // 1. seg : * disp (base-index-scale-expr)
+ // 2. seg : *(disp) (base-index-scale-expr)
+ // 3. seg : *(base-index-scale-expr)
+ // 4. disp *(base-index-scale-expr)
+ // 5. *(disp) (base-index-scale-expr)
+ // 6. *(base-index-scale-expr)
+ // 7. disp *
+ // 8. *(disp)
+
+ // If we do not have an displacement yet, check if we're in cases 4 or 6 by
+ // checking if the first object after the parenthesis is a register (or an
+ // identifier referring to a register) and parse the displacement or default
+ // to 0 as appropriate.
+ auto isAtMemOperand = [this]() {
+ if (this->getLexer().isNot(AsmToken::LParen))
+ return false;
+ AsmToken Buf[2];
+ StringRef Id;
+ auto TokCount = this->getLexer().peekTokens(Buf, true);
+ if (TokCount == 0)
+ return false;
+ switch (Buf[0].getKind()) {
+ case AsmToken::Percent:
+ case AsmToken::Comma:
+ return true;
+ // These lower cases are doing a peekIdentifier.
+ case AsmToken::At:
+ case AsmToken::Dollar:
+ if ((TokCount > 1) &&
+ (Buf[1].is(AsmToken::Identifier) || Buf[1].is(AsmToken::String)) &&
+ (Buf[0].getLoc().getPointer() + 1 == Buf[1].getLoc().getPointer()))
+ Id = StringRef(Buf[0].getLoc().getPointer(),
+ Buf[1].getIdentifier().size() + 1);
+ break;
+ case AsmToken::Identifier:
+ case AsmToken::String:
+ Id = Buf[0].getIdentifier();
+ break;
+ default:
+ return false;
+ }
+ // We have an ID. Check if it is bound to a register.
+ if (!Id.empty()) {
+ MCSymbol *Sym = this->getContext().getOrCreateSymbol(Id);
+ if (Sym->isVariable()) {
+ auto V = Sym->getVariableValue(/*SetUsed*/ false);
+ return isa<X86MCExpr>(V);
+ }
+ }
+ return false;
+ };
+
+ if (!Disp) {
+ // Parse immediate if we're not at a mem operand yet.
+ if (!isAtMemOperand()) {
+ if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(Disp, EndLoc))
+ return nullptr;
+ assert(!isa<X86MCExpr>(Disp) && "Expected non-register here.");
+ } else {
+ // Disp is implicitly zero if we haven't parsed it yet.
+ Disp = MCConstantExpr::create(0, Parser.getContext());
+ }
+ }
+
+ // We are now either at the end of the operand or at the '(' at the start of a
+ // base-index-scale-expr.
+
+ if (!parseOptionalToken(AsmToken::LParen)) {
+ if (SegReg == 0)
+ return X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
+ StartLoc, EndLoc);
+ }
+
+ // If we reached here, then eat the '(' and Process
+ // the rest of the memory operand.
+ unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
+ SMLoc BaseLoc = getLexer().getLoc();
+ const MCExpr *E;
+ StringRef ErrMsg;
+
+ // Parse BaseReg if one is provided.
+ if (getLexer().isNot(AsmToken::Comma) && getLexer().isNot(AsmToken::RParen)) {
+ if (Parser.parseExpression(E, EndLoc) ||
+ check(!isa<X86MCExpr>(E), BaseLoc, "expected register here"))
+ return nullptr;
+
+ // Sanity check register.
+ BaseReg = cast<X86MCExpr>(E)->getRegNo();
+ if (BaseReg == X86::EIZ || BaseReg == X86::RIZ)
+ return ErrorOperand(BaseLoc,
+ "eiz and riz can only be used as index registers",
+ SMRange(BaseLoc, EndLoc));
+ }
+
+ if (parseOptionalToken(AsmToken::Comma)) {
+ // Following the comma we should have either an index register, or a scale
+ // value. We don't support the later form, but we want to parse it
+ // correctly.
+ //
+ // Even though it would be completely consistent to support syntax like
+ // "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
+ if (getLexer().isNot(AsmToken::RParen)) {
+ if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(E, EndLoc))
+ return nullptr;
+
+ if (!isa<X86MCExpr>(E)) {
+ // We've parsed an unexpected Scale Value instead of an index
+ // register. Interpret it as an absolute.
+ int64_t ScaleVal;
+ if (!E->evaluateAsAbsolute(ScaleVal, getStreamer().getAssemblerPtr()))
+ return ErrorOperand(Loc, "expected absolute expression");
+ if (ScaleVal != 1)
+ Warning(Loc, "scale factor without index register is ignored");
+ Scale = 1;
+ } else { // IndexReg Found.
+ IndexReg = cast<X86MCExpr>(E)->getRegNo();
+
+ if (BaseReg == X86::RIP)
+ return ErrorOperand(
+ Loc, "%rip as base register can not have an index register");
+ if (IndexReg == X86::RIP)
+ return ErrorOperand(Loc, "%rip is not allowed as an index register");
+
+ if (parseOptionalToken(AsmToken::Comma)) {
+ // Parse the scale amount:
+ // ::= ',' [scale-expression]
+
+ // A scale amount without an index is ignored.
+ if (getLexer().isNot(AsmToken::RParen)) {
+ int64_t ScaleVal;
+ if (Parser.parseTokenLoc(Loc) ||
+ Parser.parseAbsoluteExpression(ScaleVal))
+ return ErrorOperand(Loc, "expected scale expression");
+ Scale = (unsigned)ScaleVal;
+ // Validate the scale amount.
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
+ Scale != 1)
+ return ErrorOperand(Loc,
+ "scale factor in 16-bit address must be 1");
+ if (checkScale(Scale, ErrMsg))
+ return ErrorOperand(Loc, ErrMsg);
+ }
+ }
+ }
+ }
+ }
+
+ // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
+ if (parseToken(AsmToken::RParen, "unexpected token in memory operand"))
+ return nullptr;
+
+ // This is to support otherwise illegal operand (%dx) found in various
+ // unofficial manuals examples (e.g. "out[s]?[bwl]? %al, (%dx)") and must now
+ // be supported. Mark such DX variants separately fix only in special cases.
+ if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 && SegReg == 0 &&
+ isa<MCConstantExpr>(Disp) && cast<MCConstantExpr>(Disp)->getValue() == 0)
+ return X86Operand::CreateDXReg(BaseLoc, BaseLoc);
+
+ if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
+ ErrMsg))
+ return ErrorOperand(BaseLoc, ErrMsg);
+
+ if (SegReg || BaseReg || IndexReg)
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
+ IndexReg, Scale, StartLoc, EndLoc);
+ return X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc);
+}
+
+// Parse either a standard primary expression or a register.
+bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
+ MCAsmParser &Parser = getParser();
+ // See if this is a register first.
+ if (getTok().is(AsmToken::Percent) ||
+ (isParsingIntelSyntax() && getTok().is(AsmToken::Identifier) &&
+ MatchRegisterName(Parser.getTok().getString()))) {
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ unsigned RegNo;
+ if (ParseRegister(RegNo, StartLoc, EndLoc))
+ return true;
+ Res = X86MCExpr::create(RegNo, Parser.getContext());
+ return false;
+ }
+ return Parser.parsePrimaryExpr(Res, EndLoc);
+}
+
+bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ InstInfo = &Info;
+
+ // Reset the forced VEX encoding.
+ ForcedVEXEncoding = VEXEncoding_Default;
+
+ // Parse pseudo prefixes.
+ while (1) {
+ if (Name == "{") {
+ if (getLexer().isNot(AsmToken::Identifier))
+ return Error(Parser.getTok().getLoc(), "Unexpected token after '{'");
+ std::string Prefix = Parser.getTok().getString().lower();
+ Parser.Lex(); // Eat identifier.
+ if (getLexer().isNot(AsmToken::RCurly))
+ return Error(Parser.getTok().getLoc(), "Expected '}'");
+ Parser.Lex(); // Eat curly.
+
+ if (Prefix == "vex2")
+ ForcedVEXEncoding = VEXEncoding_VEX2;
+ else if (Prefix == "vex3")
+ ForcedVEXEncoding = VEXEncoding_VEX3;
+ else if (Prefix == "evex")
+ ForcedVEXEncoding = VEXEncoding_EVEX;
+ else
+ return Error(NameLoc, "unknown prefix");
+
+ NameLoc = Parser.getTok().getLoc();
+ if (getLexer().is(AsmToken::LCurly)) {
+ Parser.Lex();
+ Name = "{";
+ } else {
+ if (getLexer().isNot(AsmToken::Identifier))
+ return Error(Parser.getTok().getLoc(), "Expected identifier");
+ // FIXME: The mnemonic won't match correctly if its not in lower case.
+ Name = Parser.getTok().getString();
+ Parser.Lex();
+ }
+ continue;
+ }
+
+ break;
+ }
+
+ StringRef PatchedName = Name;
+
+ // Hack to skip "short" following Jcc.
+ if (isParsingIntelSyntax() &&
+ (PatchedName == "jmp" || PatchedName == "jc" || PatchedName == "jnc" ||
+ PatchedName == "jcxz" || PatchedName == "jexcz" ||
+ (PatchedName.startswith("j") &&
+ ParseConditionCode(PatchedName.substr(1)) != X86::COND_INVALID))) {
+ StringRef NextTok = Parser.getTok().getString();
+ if (NextTok == "short") {
+ SMLoc NameEndLoc =
+ NameLoc.getFromPointer(NameLoc.getPointer() + Name.size());
+ // Eat the short keyword.
+ Parser.Lex();
+ // MS and GAS ignore the short keyword; they both determine the jmp type
+ // based on the distance of the label. (NASM does emit different code with
+ // and without "short," though.)
+ InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc,
+ NextTok.size() + 1);
+ }
+ }
+
+ // FIXME: Hack to recognize setneb as setne.
+ if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
+ PatchedName != "setb" && PatchedName != "setnb")
+ PatchedName = PatchedName.substr(0, Name.size()-1);
+
+ unsigned ComparisonPredicate = ~0U;
+
+ // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
+ if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
+ (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
+ PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
+ bool IsVCMP = PatchedName[0] == 'v';
+ unsigned CCIdx = IsVCMP ? 4 : 3;
+ unsigned CC = StringSwitch<unsigned>(
+ PatchedName.slice(CCIdx, PatchedName.size() - 2))
+ .Case("eq", 0x00)
+ .Case("eq_oq", 0x00)
+ .Case("lt", 0x01)
+ .Case("lt_os", 0x01)
+ .Case("le", 0x02)
+ .Case("le_os", 0x02)
+ .Case("unord", 0x03)
+ .Case("unord_q", 0x03)
+ .Case("neq", 0x04)
+ .Case("neq_uq", 0x04)
+ .Case("nlt", 0x05)
+ .Case("nlt_us", 0x05)
+ .Case("nle", 0x06)
+ .Case("nle_us", 0x06)
+ .Case("ord", 0x07)
+ .Case("ord_q", 0x07)
+ /* AVX only from here */
+ .Case("eq_uq", 0x08)
+ .Case("nge", 0x09)
+ .Case("nge_us", 0x09)
+ .Case("ngt", 0x0A)
+ .Case("ngt_us", 0x0A)
+ .Case("false", 0x0B)
+ .Case("false_oq", 0x0B)
+ .Case("neq_oq", 0x0C)
+ .Case("ge", 0x0D)
+ .Case("ge_os", 0x0D)
+ .Case("gt", 0x0E)
+ .Case("gt_os", 0x0E)
+ .Case("true", 0x0F)
+ .Case("true_uq", 0x0F)
+ .Case("eq_os", 0x10)
+ .Case("lt_oq", 0x11)
+ .Case("le_oq", 0x12)
+ .Case("unord_s", 0x13)
+ .Case("neq_us", 0x14)
+ .Case("nlt_uq", 0x15)
+ .Case("nle_uq", 0x16)
+ .Case("ord_s", 0x17)
+ .Case("eq_us", 0x18)
+ .Case("nge_uq", 0x19)
+ .Case("ngt_uq", 0x1A)
+ .Case("false_os", 0x1B)
+ .Case("neq_os", 0x1C)
+ .Case("ge_oq", 0x1D)
+ .Case("gt_oq", 0x1E)
+ .Case("true_us", 0x1F)
+ .Default(~0U);
+ if (CC != ~0U && (IsVCMP || CC < 8)) {
+ if (PatchedName.endswith("ss"))
+ PatchedName = IsVCMP ? "vcmpss" : "cmpss";
+ else if (PatchedName.endswith("sd"))
+ PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
+ else if (PatchedName.endswith("ps"))
+ PatchedName = IsVCMP ? "vcmpps" : "cmpps";
+ else if (PatchedName.endswith("pd"))
+ PatchedName = IsVCMP ? "vcmppd" : "cmppd";
+ else
+ llvm_unreachable("Unexpected suffix!");
+
+ ComparisonPredicate = CC;
+ }
+ }
+
+ // FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
+ if (PatchedName.startswith("vpcmp") &&
+ (PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
+ PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
+ unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
+ unsigned CC = StringSwitch<unsigned>(
+ PatchedName.slice(5, PatchedName.size() - SuffixSize))
+ .Case("eq", 0x0) // Only allowed on unsigned. Checked below.
+ .Case("lt", 0x1)
+ .Case("le", 0x2)
+ //.Case("false", 0x3) // Not a documented alias.
+ .Case("neq", 0x4)
+ .Case("nlt", 0x5)
+ .Case("nle", 0x6)
+ //.Case("true", 0x7) // Not a documented alias.
+ .Default(~0U);
+ if (CC != ~0U && (CC != 0 || SuffixSize == 2)) {
+ switch (PatchedName.back()) {
+ default: llvm_unreachable("Unexpected character!");
+ case 'b': PatchedName = SuffixSize == 2 ? "vpcmpub" : "vpcmpb"; break;
+ case 'w': PatchedName = SuffixSize == 2 ? "vpcmpuw" : "vpcmpw"; break;
+ case 'd': PatchedName = SuffixSize == 2 ? "vpcmpud" : "vpcmpd"; break;
+ case 'q': PatchedName = SuffixSize == 2 ? "vpcmpuq" : "vpcmpq"; break;
+ }
+ // Set up the immediate to push into the operands later.
+ ComparisonPredicate = CC;
+ }
+ }
+
+ // FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
+ if (PatchedName.startswith("vpcom") &&
+ (PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
+ PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
+ unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
+ unsigned CC = StringSwitch<unsigned>(
+ PatchedName.slice(5, PatchedName.size() - SuffixSize))
+ .Case("lt", 0x0)
+ .Case("le", 0x1)
+ .Case("gt", 0x2)
+ .Case("ge", 0x3)
+ .Case("eq", 0x4)
+ .Case("neq", 0x5)
+ .Case("false", 0x6)
+ .Case("true", 0x7)
+ .Default(~0U);
+ if (CC != ~0U) {
+ switch (PatchedName.back()) {
+ default: llvm_unreachable("Unexpected character!");
+ case 'b': PatchedName = SuffixSize == 2 ? "vpcomub" : "vpcomb"; break;
+ case 'w': PatchedName = SuffixSize == 2 ? "vpcomuw" : "vpcomw"; break;
+ case 'd': PatchedName = SuffixSize == 2 ? "vpcomud" : "vpcomd"; break;
+ case 'q': PatchedName = SuffixSize == 2 ? "vpcomuq" : "vpcomq"; break;
+ }
+ // Set up the immediate to push into the operands later.
+ ComparisonPredicate = CC;
+ }
+ }
+
+
+ // Determine whether this is an instruction prefix.
+ // FIXME:
+ // Enhance prefixes integrity robustness. for example, following forms
+ // are currently tolerated:
+ // repz repnz <insn> ; GAS errors for the use of two similar prefixes
+ // lock addq %rax, %rbx ; Destination operand must be of memory type
+ // xacquire <insn> ; xacquire must be accompanied by 'lock'
+ bool isPrefix = StringSwitch<bool>(Name)
+ .Cases("rex64", "data32", "data16", true)
+ .Cases("xacquire", "xrelease", true)
+ .Cases("acquire", "release", isParsingIntelSyntax())
+ .Default(false);
+
+ auto isLockRepeatNtPrefix = [](StringRef N) {
+ return StringSwitch<bool>(N)
+ .Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true)
+ .Default(false);
+ };
+
+ bool CurlyAsEndOfStatement = false;
+
+ unsigned Flags = X86::IP_NO_PREFIX;
+ while (isLockRepeatNtPrefix(Name.lower())) {
+ unsigned Prefix =
+ StringSwitch<unsigned>(Name)
+ .Cases("lock", "lock", X86::IP_HAS_LOCK)
+ .Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT)
+ .Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE)
+ .Cases("notrack", "notrack", X86::IP_HAS_NOTRACK)
+ .Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible)
+ Flags |= Prefix;
+ if (getLexer().is(AsmToken::EndOfStatement)) {
+ // We don't have real instr with the given prefix
+ // let's use the prefix as the instr.
+ // TODO: there could be several prefixes one after another
+ Flags = X86::IP_NO_PREFIX;
+ break;
+ }
+ // FIXME: The mnemonic won't match correctly if its not in lower case.
+ Name = Parser.getTok().getString();
+ Parser.Lex(); // eat the prefix
+ // Hack: we could have something like "rep # some comment" or
+ // "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl"
+ while (Name.startswith(";") || Name.startswith("\n") ||
+ Name.startswith("#") || Name.startswith("\t") ||
+ Name.startswith("/")) {
+ // FIXME: The mnemonic won't match correctly if its not in lower case.
+ Name = Parser.getTok().getString();
+ Parser.Lex(); // go to next prefix or instr
+ }
+ }
+
+ if (Flags)
+ PatchedName = Name;
+
+ // Hacks to handle 'data16' and 'data32'
+ if (PatchedName == "data16" && is16BitMode()) {
+ return Error(NameLoc, "redundant data16 prefix");
+ }
+ if (PatchedName == "data32") {
+ if (is32BitMode())
+ return Error(NameLoc, "redundant data32 prefix");
+ if (is64BitMode())
+ return Error(NameLoc, "'data32' is not supported in 64-bit mode");
+ // Hack to 'data16' for the table lookup.
+ PatchedName = "data16";
+ }
+
+ Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
+
+ // Push the immediate if we extracted one from the mnemonic.
+ if (ComparisonPredicate != ~0U && !isParsingIntelSyntax()) {
+ const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
+ getParser().getContext());
+ Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
+ }
+
+ // This does the actual operand parsing. Don't parse any more if we have a
+ // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
+ // just want to parse the "lock" as the first instruction and the "incl" as
+ // the next one.
+ if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
+ // Parse '*' modifier.
+ if (getLexer().is(AsmToken::Star))
+ Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
+
+ // Read the operands.
+ while(1) {
+ if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
+ Operands.push_back(std::move(Op));
+ if (HandleAVX512Operand(Operands, *Operands.back()))
+ return true;
+ } else {
+ return true;
+ }
+ // check for comma and eat it
+ if (getLexer().is(AsmToken::Comma))
+ Parser.Lex();
+ else
+ break;
+ }
+
+ // In MS inline asm curly braces mark the beginning/end of a block,
+ // therefore they should be interepreted as end of statement
+ CurlyAsEndOfStatement =
+ isParsingIntelSyntax() && isParsingInlineAsm() &&
+ (getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly));
+ if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement)
+ return TokError("unexpected token in argument list");
+ }
+
+ // Push the immediate if we extracted one from the mnemonic.
+ if (ComparisonPredicate != ~0U && isParsingIntelSyntax()) {
+ const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
+ getParser().getContext());
+ Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
+ }
+
+ // Consume the EndOfStatement or the prefix separator Slash
+ if (getLexer().is(AsmToken::EndOfStatement) ||
+ (isPrefix && getLexer().is(AsmToken::Slash)))
+ Parser.Lex();
+ else if (CurlyAsEndOfStatement)
+ // Add an actual EndOfStatement before the curly brace
+ Info.AsmRewrites->emplace_back(AOK_EndOfStatement,
+ getLexer().getTok().getLoc(), 0);
+
+ // This is for gas compatibility and cannot be done in td.
+ // Adding "p" for some floating point with no argument.
+ // For example: fsub --> fsubp
+ bool IsFp =
+ Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
+ if (IsFp && Operands.size() == 1) {
+ const char *Repl = StringSwitch<const char *>(Name)
+ .Case("fsub", "fsubp")
+ .Case("fdiv", "fdivp")
+ .Case("fsubr", "fsubrp")
+ .Case("fdivr", "fdivrp");
+ static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
+ }
+
+ if ((Name == "mov" || Name == "movw" || Name == "movl") &&
+ (Operands.size() == 3)) {
+ X86Operand &Op1 = (X86Operand &)*Operands[1];
+ X86Operand &Op2 = (X86Operand &)*Operands[2];
+ SMLoc Loc = Op1.getEndLoc();
+ // Moving a 32 or 16 bit value into a segment register has the same
+ // behavior. Modify such instructions to always take shorter form.
+ if (Op1.isReg() && Op2.isReg() &&
+ X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(
+ Op2.getReg()) &&
+ (X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) ||
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) {
+ // Change instruction name to match new instruction.
+ if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) {
+ Name = is16BitMode() ? "movw" : "movl";
+ Operands[0] = X86Operand::CreateToken(Name, NameLoc);
+ }
+ // Select the correct equivalent 16-/32-bit source register.
+ unsigned Reg =
+ getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32);
+ Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc);
+ }
+ }
+
+ // This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
+ // "outb %al, %dx". Out doesn't take a memory form, but this is a widely
+ // documented form in various unofficial manuals, so a lot of code uses it.
+ if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" ||
+ Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") &&
+ Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands.back();
+ if (Op.isDXReg())
+ Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
+ Op.getEndLoc());
+ }
+ // Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al".
+ if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" ||
+ Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") &&
+ Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands[1];
+ if (Op.isDXReg())
+ Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
+ Op.getEndLoc());
+ }
+
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands;
+ bool HadVerifyError = false;
+
+ // Append default arguments to "ins[bwld]"
+ if (Name.startswith("ins") &&
+ (Operands.size() == 1 || Operands.size() == 3) &&
+ (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" ||
+ Name == "ins")) {
+
+ AddDefaultSrcDestOperands(TmpOperands,
+ X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
+ DefaultMemDIOperand(NameLoc));
+ HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
+ }
+
+ // Append default arguments to "outs[bwld]"
+ if (Name.startswith("outs") &&
+ (Operands.size() == 1 || Operands.size() == 3) &&
+ (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
+ Name == "outsd" || Name == "outs")) {
+ AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
+ X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
+ HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
+ }
+
+ // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
+ // values of $SIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("lods") &&
+ (Operands.size() == 1 || Operands.size() == 2) &&
+ (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
+ Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) {
+ TmpOperands.push_back(DefaultMemSIOperand(NameLoc));
+ HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
+ }
+
+ // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
+ // values of $DIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("stos") &&
+ (Operands.size() == 1 || Operands.size() == 2) &&
+ (Name == "stos" || Name == "stosb" || Name == "stosw" ||
+ Name == "stosl" || Name == "stosd" || Name == "stosq")) {
+ TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
+ HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
+ }
+
+ // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
+ // values of $DIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("scas") &&
+ (Operands.size() == 1 || Operands.size() == 2) &&
+ (Name == "scas" || Name == "scasb" || Name == "scasw" ||
+ Name == "scasl" || Name == "scasd" || Name == "scasq")) {
+ TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
+ HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
+ }
+
+ // Add default SI and DI operands to "cmps[bwlq]".
+ if (Name.startswith("cmps") &&
+ (Operands.size() == 1 || Operands.size() == 3) &&
+ (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
+ Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
+ AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc),
+ DefaultMemSIOperand(NameLoc));
+ HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
+ }
+
+ // Add default SI and DI operands to "movs[bwlq]".
+ if (((Name.startswith("movs") &&
+ (Name == "movs" || Name == "movsb" || Name == "movsw" ||
+ Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
+ (Name.startswith("smov") &&
+ (Name == "smov" || Name == "smovb" || Name == "smovw" ||
+ Name == "smovl" || Name == "smovd" || Name == "smovq"))) &&
+ (Operands.size() == 1 || Operands.size() == 3)) {
+ if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax())
+ Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
+ AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
+ DefaultMemDIOperand(NameLoc));
+ HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
+ }
+
+ // Check if we encountered an error for one the string insturctions
+ if (HadVerifyError) {
+ return HadVerifyError;
+ }
+
+ // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
+ // "shift <op>".
+ if ((Name.startswith("shr") || Name.startswith("sar") ||
+ Name.startswith("shl") || Name.startswith("sal") ||
+ Name.startswith("rcl") || Name.startswith("rcr") ||
+ Name.startswith("rol") || Name.startswith("ror")) &&
+ Operands.size() == 3) {
+ if (isParsingIntelSyntax()) {
+ // Intel syntax
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
+ if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
+ cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
+ Operands.pop_back();
+ } else {
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
+ if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
+ cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
+ Operands.erase(Operands.begin() + 1);
+ }
+ }
+
+ // Transforms "int $3" into "int3" as a size optimization. We can't write an
+ // instalias with an immediate operand yet.
+ if (Name == "int" && Operands.size() == 2) {
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
+ if (Op1.isImm())
+ if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm()))
+ if (CE->getValue() == 3) {
+ Operands.erase(Operands.begin() + 1);
+ static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
+ }
+ }
+
+ // Transforms "xlat mem8" into "xlatb"
+ if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) {
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
+ if (Op1.isMem8()) {
+ Warning(Op1.getStartLoc(), "memory operand is only for determining the "
+ "size, (R|E)BX will be used for the location");
+ Operands.pop_back();
+ static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb");
+ }
+ }
+
+ if (Flags)
+ Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc));
+ return false;
+}
+
+bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
+ const MCRegisterInfo *MRI = getContext().getRegisterInfo();
+
+ switch (Inst.getOpcode()) {
+ default: return false;
+ case X86::VMOVZPQILo2PQIrr:
+ case X86::VMOVAPDrr:
+ case X86::VMOVAPDYrr:
+ case X86::VMOVAPSrr:
+ case X86::VMOVAPSYrr:
+ case X86::VMOVDQArr:
+ case X86::VMOVDQAYrr:
+ case X86::VMOVDQUrr:
+ case X86::VMOVDQUYrr:
+ case X86::VMOVUPDrr:
+ case X86::VMOVUPDYrr:
+ case X86::VMOVUPSrr:
+ case X86::VMOVUPSYrr: {
+ // We can get a smaller encoding by using VEX.R instead of VEX.B if one of
+ // the registers is extended, but other isn't.
+ if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
+ MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
+ MRI->getEncodingValue(Inst.getOperand(1).getReg()) < 8)
+ return false;
+
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
+ case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
+ case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
+ case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
+ case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
+ case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
+ case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
+ case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
+ case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
+ case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
+ case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
+ case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
+ case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
+ }
+ Inst.setOpcode(NewOpc);
+ return true;
+ }
+ case X86::VMOVSDrr:
+ case X86::VMOVSSrr: {
+ // We can get a smaller encoding by using VEX.R instead of VEX.B if one of
+ // the registers is extended, but other isn't.
+ if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
+ MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
+ MRI->getEncodingValue(Inst.getOperand(2).getReg()) < 8)
+ return false;
+
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
+ case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
+ }
+ Inst.setOpcode(NewOpc);
+ return true;
+ }
+ }
+}
+
+bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
+ const MCRegisterInfo *MRI = getContext().getRegisterInfo();
+
+ switch (Inst.getOpcode()) {
+ case X86::VGATHERDPDYrm:
+ case X86::VGATHERDPDrm:
+ case X86::VGATHERDPSYrm:
+ case X86::VGATHERDPSrm:
+ case X86::VGATHERQPDYrm:
+ case X86::VGATHERQPDrm:
+ case X86::VGATHERQPSYrm:
+ case X86::VGATHERQPSrm:
+ case X86::VPGATHERDDYrm:
+ case X86::VPGATHERDDrm:
+ case X86::VPGATHERDQYrm:
+ case X86::VPGATHERDQrm:
+ case X86::VPGATHERQDYrm:
+ case X86::VPGATHERQDrm:
+ case X86::VPGATHERQQYrm:
+ case X86::VPGATHERQQrm: {
+ unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
+ unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ unsigned Index =
+ MRI->getEncodingValue(Inst.getOperand(3 + X86::AddrIndexReg).getReg());
+ if (Dest == Mask || Dest == Index || Mask == Index)
+ return Warning(Ops[0]->getStartLoc(), "mask, index, and destination "
+ "registers should be distinct");
+ break;
+ }
+ case X86::VGATHERDPDZ128rm:
+ case X86::VGATHERDPDZ256rm:
+ case X86::VGATHERDPDZrm:
+ case X86::VGATHERDPSZ128rm:
+ case X86::VGATHERDPSZ256rm:
+ case X86::VGATHERDPSZrm:
+ case X86::VGATHERQPDZ128rm:
+ case X86::VGATHERQPDZ256rm:
+ case X86::VGATHERQPDZrm:
+ case X86::VGATHERQPSZ128rm:
+ case X86::VGATHERQPSZ256rm:
+ case X86::VGATHERQPSZrm:
+ case X86::VPGATHERDDZ128rm:
+ case X86::VPGATHERDDZ256rm:
+ case X86::VPGATHERDDZrm:
+ case X86::VPGATHERDQZ128rm:
+ case X86::VPGATHERDQZ256rm:
+ case X86::VPGATHERDQZrm:
+ case X86::VPGATHERQDZ128rm:
+ case X86::VPGATHERQDZ256rm:
+ case X86::VPGATHERQDZrm:
+ case X86::VPGATHERQQZ128rm:
+ case X86::VPGATHERQQZ256rm:
+ case X86::VPGATHERQQZrm: {
+ unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
+ unsigned Index =
+ MRI->getEncodingValue(Inst.getOperand(4 + X86::AddrIndexReg).getReg());
+ if (Dest == Index)
+ return Warning(Ops[0]->getStartLoc(), "index and destination registers "
+ "should be distinct");
+ break;
+ }
+ case X86::V4FMADDPSrm:
+ case X86::V4FMADDPSrmk:
+ case X86::V4FMADDPSrmkz:
+ case X86::V4FMADDSSrm:
+ case X86::V4FMADDSSrmk:
+ case X86::V4FMADDSSrmkz:
+ case X86::V4FNMADDPSrm:
+ case X86::V4FNMADDPSrmk:
+ case X86::V4FNMADDPSrmkz:
+ case X86::V4FNMADDSSrm:
+ case X86::V4FNMADDSSrmk:
+ case X86::V4FNMADDSSrmkz:
+ case X86::VP4DPWSSDSrm:
+ case X86::VP4DPWSSDSrmk:
+ case X86::VP4DPWSSDSrmkz:
+ case X86::VP4DPWSSDrm:
+ case X86::VP4DPWSSDrmk:
+ case X86::VP4DPWSSDrmkz: {
+ unsigned Src2 = Inst.getOperand(Inst.getNumOperands() -
+ X86::AddrNumOperands - 1).getReg();
+ unsigned Src2Enc = MRI->getEncodingValue(Src2);
+ if (Src2Enc % 4 != 0) {
+ StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2);
+ unsigned GroupStart = (Src2Enc / 4) * 4;
+ unsigned GroupEnd = GroupStart + 3;
+ return Warning(Ops[0]->getStartLoc(),
+ "source register '" + RegName + "' implicitly denotes '" +
+ RegName.take_front(3) + Twine(GroupStart) + "' to '" +
+ RegName.take_front(3) + Twine(GroupEnd) +
+ "' source group");
+ }
+ break;
+ }
+ }
+
+ return false;
+}
+
+static const char *getSubtargetFeatureName(uint64_t Val);
+
+void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
+ MCStreamer &Out) {
+ Out.EmitInstruction(Inst, getSTI());
+}
+
+bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out, uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ if (isParsingIntelSyntax())
+ return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
+ MatchingInlineAsm);
+ return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
+ MatchingInlineAsm);
+}
+
+void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
+ OperandVector &Operands, MCStreamer &Out,
+ bool MatchingInlineAsm) {
+ // FIXME: This should be replaced with a real .td file alias mechanism.
+ // Also, MatchInstructionImpl should actually *do* the EmitInstruction
+ // call.
+ const char *Repl = StringSwitch<const char *>(Op.getToken())
+ .Case("finit", "fninit")
+ .Case("fsave", "fnsave")
+ .Case("fstcw", "fnstcw")
+ .Case("fstcww", "fnstcw")
+ .Case("fstenv", "fnstenv")
+ .Case("fstsw", "fnstsw")
+ .Case("fstsww", "fnstsw")
+ .Case("fclex", "fnclex")
+ .Default(nullptr);
+ if (Repl) {
+ MCInst Inst;
+ Inst.setOpcode(X86::WAIT);
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
+ }
+}
+
+bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc,
+ const FeatureBitset &MissingFeatures,
+ bool MatchingInlineAsm) {
+ assert(MissingFeatures.any() && "Unknown missing feature!");
+ SmallString<126> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "instruction requires:";
+ for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
+ if (MissingFeatures[i])
+ OS << ' ' << getSubtargetFeatureName(i);
+ }
+ return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm);
+}
+
+static unsigned getPrefixes(OperandVector &Operands) {
+ unsigned Result = 0;
+ X86Operand &Prefix = static_cast<X86Operand &>(*Operands.back());
+ if (Prefix.isPrefix()) {
+ Result = Prefix.getPrefix();
+ Operands.pop_back();
+ }
+ return Result;
+}
+
+unsigned X86AsmParser::checkTargetMatchPredicate(MCInst &Inst) {
+ unsigned Opc = Inst.getOpcode();
+ const MCInstrDesc &MCID = MII.get(Opc);
+
+ if (ForcedVEXEncoding == VEXEncoding_EVEX &&
+ (MCID.TSFlags & X86II::EncodingMask) != X86II::EVEX)
+ return Match_Unsupported;
+
+ if ((ForcedVEXEncoding == VEXEncoding_VEX2 ||
+ ForcedVEXEncoding == VEXEncoding_VEX3) &&
+ (MCID.TSFlags & X86II::EncodingMask) != X86II::VEX)
+ return Match_Unsupported;
+
+ // These instructions match ambiguously with their VEX encoded counterparts
+ // and appear first in the matching table. Reject them unless we're forcing
+ // EVEX encoding.
+ // FIXME: We really need a way to break the ambiguity.
+ switch (Opc) {
+ case X86::VCVTSD2SIZrm_Int:
+ case X86::VCVTSD2SI64Zrm_Int:
+ case X86::VCVTSS2SIZrm_Int:
+ case X86::VCVTSS2SI64Zrm_Int:
+ case X86::VCVTTSD2SIZrm: case X86::VCVTTSD2SIZrm_Int:
+ case X86::VCVTTSD2SI64Zrm: case X86::VCVTTSD2SI64Zrm_Int:
+ case X86::VCVTTSS2SIZrm: case X86::VCVTTSS2SIZrm_Int:
+ case X86::VCVTTSS2SI64Zrm: case X86::VCVTTSS2SI64Zrm_Int:
+ if (ForcedVEXEncoding != VEXEncoding_EVEX)
+ return Match_Unsupported;
+ }
+
+ return Match_Success;
+}
+
+bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
+ SMRange EmptyRange = None;
+
+ // First, handle aliases that expand to multiple instructions.
+ MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands,
+ Out, MatchingInlineAsm);
+ X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
+ unsigned Prefixes = getPrefixes(Operands);
+
+ MCInst Inst;
+
+ // If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the
+ // encoder.
+ if (ForcedVEXEncoding == VEXEncoding_VEX3)
+ Prefixes |= X86::IP_USE_VEX3;
+
+ if (Prefixes)
+ Inst.setFlags(Prefixes);
+
+ // First, try a direct match.
+ FeatureBitset MissingFeatures;
+ unsigned OriginalError = MatchInstruction(Operands, Inst, ErrorInfo,
+ MissingFeatures, MatchingInlineAsm,
+ isParsingIntelSyntax());
+ switch (OriginalError) {
+ default: llvm_unreachable("Unexpected match result!");
+ case Match_Success:
+ if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
+ return true;
+ // Some instructions need post-processing to, for example, tweak which
+ // encoding is selected. Loop on it while changes happen so the
+ // individual transformations can chain off each other.
+ if (!MatchingInlineAsm)
+ while (processInstruction(Inst, Operands))
+ ;
+
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ case Match_MissingFeature:
+ return ErrorMissingFeature(IDLoc, MissingFeatures, MatchingInlineAsm);
+ case Match_InvalidOperand:
+ case Match_MnemonicFail:
+ case Match_Unsupported:
+ break;
+ }
+ if (Op.getToken().empty()) {
+ Error(IDLoc, "instruction must have size higher than 0", EmptyRange,
+ MatchingInlineAsm);
+ return true;
+ }
+
+ // FIXME: Ideally, we would only attempt suffix matches for things which are
+ // valid prefixes, and we could just infer the right unambiguous
+ // type. However, that requires substantially more matcher support than the
+ // following hack.
+
+ // Change the operand to point to a temporary token.
+ StringRef Base = Op.getToken();
+ SmallString<16> Tmp;
+ Tmp += Base;
+ Tmp += ' ';
+ Op.setTokenValue(Tmp);
+
+ // If this instruction starts with an 'f', then it is a floating point stack
+ // instruction. These come in up to three forms for 32-bit, 64-bit, and
+ // 80-bit floating point, which use the suffixes s,l,t respectively.
+ //
+ // Otherwise, we assume that this may be an integer instruction, which comes
+ // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
+ const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
+
+ // Check for the various suffix matches.
+ uint64_t ErrorInfoIgnore;
+ FeatureBitset ErrorInfoMissingFeatures; // Init suppresses compiler warnings.
+ unsigned Match[4];
+
+ for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
+ Tmp.back() = Suffixes[I];
+ Match[I] = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
+ MissingFeatures, MatchingInlineAsm,
+ isParsingIntelSyntax());
+ // If this returned as a missing feature failure, remember that.
+ if (Match[I] == Match_MissingFeature)
+ ErrorInfoMissingFeatures = MissingFeatures;
+ }
+
+ // Restore the old token.
+ Op.setTokenValue(Base);
+
+ // If exactly one matched, then we treat that as a successful match (and the
+ // instruction will already have been filled in correctly, since the failing
+ // matches won't have modified it).
+ unsigned NumSuccessfulMatches =
+ std::count(std::begin(Match), std::end(Match), Match_Success);
+ if (NumSuccessfulMatches == 1) {
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ }
+
+ // Otherwise, the match failed, try to produce a decent error message.
+
+ // If we had multiple suffix matches, then identify this as an ambiguous
+ // match.
+ if (NumSuccessfulMatches > 1) {
+ char MatchChars[4];
+ unsigned NumMatches = 0;
+ for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
+ if (Match[I] == Match_Success)
+ MatchChars[NumMatches++] = Suffixes[I];
+
+ SmallString<126> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ambiguous instructions require an explicit suffix (could be ";
+ for (unsigned i = 0; i != NumMatches; ++i) {
+ if (i != 0)
+ OS << ", ";
+ if (i + 1 == NumMatches)
+ OS << "or ";
+ OS << "'" << Base << MatchChars[i] << "'";
+ }
+ OS << ")";
+ Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm);
+ return true;
+ }
+
+ // Okay, we know that none of the variants matched successfully.
+
+ // If all of the instructions reported an invalid mnemonic, then the original
+ // mnemonic was invalid.
+ if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
+ if (OriginalError == Match_MnemonicFail)
+ return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
+ Op.getLocRange(), MatchingInlineAsm);
+
+ if (OriginalError == Match_Unsupported)
+ return Error(IDLoc, "unsupported instruction", EmptyRange,
+ MatchingInlineAsm);
+
+ assert(OriginalError == Match_InvalidOperand && "Unexpected error");
+ // Recover location info for the operand if we know which was the problem.
+ if (ErrorInfo != ~0ULL) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction", EmptyRange,
+ MatchingInlineAsm);
+
+ X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
+ if (Operand.getStartLoc().isValid()) {
+ SMRange OperandRange = Operand.getLocRange();
+ return Error(Operand.getStartLoc(), "invalid operand for instruction",
+ OperandRange, MatchingInlineAsm);
+ }
+ }
+
+ return Error(IDLoc, "invalid operand for instruction", EmptyRange,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched as unsupported, report this as unsupported.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_Unsupported) == 1) {
+ return Error(IDLoc, "unsupported instruction", EmptyRange,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with a missing feature, report this as a
+ // missing feature.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_MissingFeature) == 1) {
+ ErrorInfo = Match_MissingFeature;
+ return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with an invalid operand, report this as an
+ // operand failure.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_InvalidOperand) == 1) {
+ return Error(IDLoc, "invalid operand for instruction", EmptyRange,
+ MatchingInlineAsm);
+ }
+
+ // If all of these were an outright failure, report it in a useless way.
+ Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
+ EmptyRange, MatchingInlineAsm);
+ return true;
+}
+
+bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
+ StringRef Mnemonic = (static_cast<X86Operand &>(*Operands[0])).getToken();
+ SMRange EmptyRange = None;
+ StringRef Base = (static_cast<X86Operand &>(*Operands[0])).getToken();
+ unsigned Prefixes = getPrefixes(Operands);
+
+ // First, handle aliases that expand to multiple instructions.
+ MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands, Out, MatchingInlineAsm);
+ X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
+
+ MCInst Inst;
+
+ // If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the
+ // encoder.
+ if (ForcedVEXEncoding == VEXEncoding_VEX3)
+ Prefixes |= X86::IP_USE_VEX3;
+
+ if (Prefixes)
+ Inst.setFlags(Prefixes);
+
+ // Find one unsized memory operand, if present.
+ X86Operand *UnsizedMemOp = nullptr;
+ for (const auto &Op : Operands) {
+ X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
+ if (X86Op->isMemUnsized()) {
+ UnsizedMemOp = X86Op;
+ // Have we found an unqualified memory operand,
+ // break. IA allows only one memory operand.
+ break;
+ }
+ }
+
+ // Allow some instructions to have implicitly pointer-sized operands. This is
+ // compatible with gas.
+ if (UnsizedMemOp) {
+ static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
+ for (const char *Instr : PtrSizedInstrs) {
+ if (Mnemonic == Instr) {
+ UnsizedMemOp->Mem.Size = getPointerWidth();
+ break;
+ }
+ }
+ }
+
+ SmallVector<unsigned, 8> Match;
+ FeatureBitset ErrorInfoMissingFeatures;
+ FeatureBitset MissingFeatures;
+
+ // If unsized push has immediate operand we should default the default pointer
+ // size for the size.
+ if (Mnemonic == "push" && Operands.size() == 2) {
+ auto *X86Op = static_cast<X86Operand *>(Operands[1].get());
+ if (X86Op->isImm()) {
+ // If it's not a constant fall through and let remainder take care of it.
+ const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm());
+ unsigned Size = getPointerWidth();
+ if (CE &&
+ (isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) {
+ SmallString<16> Tmp;
+ Tmp += Base;
+ Tmp += (is64BitMode())
+ ? "q"
+ : (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " ";
+ Op.setTokenValue(Tmp);
+ // Do match in ATT mode to allow explicit suffix usage.
+ Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo,
+ MissingFeatures, MatchingInlineAsm,
+ false /*isParsingIntelSyntax()*/));
+ Op.setTokenValue(Base);
+ }
+ }
+ }
+
+ // If an unsized memory operand is present, try to match with each memory
+ // operand size. In Intel assembly, the size is not part of the instruction
+ // mnemonic.
+ if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
+ static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
+ for (unsigned Size : MopSizes) {
+ UnsizedMemOp->Mem.Size = Size;
+ uint64_t ErrorInfoIgnore;
+ unsigned LastOpcode = Inst.getOpcode();
+ unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
+ MissingFeatures, MatchingInlineAsm,
+ isParsingIntelSyntax());
+ if (Match.empty() || LastOpcode != Inst.getOpcode())
+ Match.push_back(M);
+
+ // If this returned as a missing feature failure, remember that.
+ if (Match.back() == Match_MissingFeature)
+ ErrorInfoMissingFeatures = MissingFeatures;
+ }
+
+ // Restore the size of the unsized memory operand if we modified it.
+ UnsizedMemOp->Mem.Size = 0;
+ }
+
+ // If we haven't matched anything yet, this is not a basic integer or FPU
+ // operation. There shouldn't be any ambiguity in our mnemonic table, so try
+ // matching with the unsized operand.
+ if (Match.empty()) {
+ Match.push_back(MatchInstruction(
+ Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
+ isParsingIntelSyntax()));
+ // If this returned as a missing feature failure, remember that.
+ if (Match.back() == Match_MissingFeature)
+ ErrorInfoMissingFeatures = MissingFeatures;
+ }
+
+ // Restore the size of the unsized memory operand if we modified it.
+ if (UnsizedMemOp)
+ UnsizedMemOp->Mem.Size = 0;
+
+ // If it's a bad mnemonic, all results will be the same.
+ if (Match.back() == Match_MnemonicFail) {
+ return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
+ Op.getLocRange(), MatchingInlineAsm);
+ }
+
+ unsigned NumSuccessfulMatches =
+ std::count(std::begin(Match), std::end(Match), Match_Success);
+
+ // If matching was ambiguous and we had size information from the frontend,
+ // try again with that. This handles cases like "movxz eax, m8/m16".
+ if (UnsizedMemOp && NumSuccessfulMatches > 1 &&
+ UnsizedMemOp->getMemFrontendSize()) {
+ UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize();
+ unsigned M = MatchInstruction(
+ Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
+ isParsingIntelSyntax());
+ if (M == Match_Success)
+ NumSuccessfulMatches = 1;
+
+ // Add a rewrite that encodes the size information we used from the
+ // frontend.
+ InstInfo->AsmRewrites->emplace_back(
+ AOK_SizeDirective, UnsizedMemOp->getStartLoc(),
+ /*Len=*/0, UnsizedMemOp->getMemFrontendSize());
+ }
+
+ // If exactly one matched, then we treat that as a successful match (and the
+ // instruction will already have been filled in correctly, since the failing
+ // matches won't have modified it).
+ if (NumSuccessfulMatches == 1) {
+ if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
+ return true;
+ // Some instructions need post-processing to, for example, tweak which
+ // encoding is selected. Loop on it while changes happen so the individual
+ // transformations can chain off each other.
+ if (!MatchingInlineAsm)
+ while (processInstruction(Inst, Operands))
+ ;
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ } else if (NumSuccessfulMatches > 1) {
+ assert(UnsizedMemOp &&
+ "multiple matches only possible with unsized memory operands");
+ return Error(UnsizedMemOp->getStartLoc(),
+ "ambiguous operand size for instruction '" + Mnemonic + "\'",
+ UnsizedMemOp->getLocRange());
+ }
+
+ // If one instruction matched as unsupported, report this as unsupported.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_Unsupported) == 1) {
+ return Error(IDLoc, "unsupported instruction", EmptyRange,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with a missing feature, report this as a
+ // missing feature.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_MissingFeature) == 1) {
+ ErrorInfo = Match_MissingFeature;
+ return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with an invalid operand, report this as an
+ // operand failure.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_InvalidOperand) == 1) {
+ return Error(IDLoc, "invalid operand for instruction", EmptyRange,
+ MatchingInlineAsm);
+ }
+
+ // If all of these were an outright failure, report it in a useless way.
+ return Error(IDLoc, "unknown instruction mnemonic", EmptyRange,
+ MatchingInlineAsm);
+}
+
+bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
+ return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
+}
+
+bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
+ MCAsmParser &Parser = getParser();
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if (IDVal.startswith(".code"))
+ return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
+ else if (IDVal.startswith(".att_syntax")) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ if (Parser.getTok().getString() == "prefix")
+ Parser.Lex();
+ else if (Parser.getTok().getString() == "noprefix")
+ return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
+ "supported: registers must have a "
+ "'%' prefix in .att_syntax");
+ }
+ getParser().setAssemblerDialect(0);
+ return false;
+ } else if (IDVal.startswith(".intel_syntax")) {
+ getParser().setAssemblerDialect(1);
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ if (Parser.getTok().getString() == "noprefix")
+ Parser.Lex();
+ else if (Parser.getTok().getString() == "prefix")
+ return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
+ "supported: registers must not have "
+ "a '%' prefix in .intel_syntax");
+ }
+ return false;
+ } else if (IDVal == ".even")
+ return parseDirectiveEven(DirectiveID.getLoc());
+ else if (IDVal == ".cv_fpo_proc")
+ return parseDirectiveFPOProc(DirectiveID.getLoc());
+ else if (IDVal == ".cv_fpo_setframe")
+ return parseDirectiveFPOSetFrame(DirectiveID.getLoc());
+ else if (IDVal == ".cv_fpo_pushreg")
+ return parseDirectiveFPOPushReg(DirectiveID.getLoc());
+ else if (IDVal == ".cv_fpo_stackalloc")
+ return parseDirectiveFPOStackAlloc(DirectiveID.getLoc());
+ else if (IDVal == ".cv_fpo_stackalign")
+ return parseDirectiveFPOStackAlign(DirectiveID.getLoc());
+ else if (IDVal == ".cv_fpo_endprologue")
+ return parseDirectiveFPOEndPrologue(DirectiveID.getLoc());
+ else if (IDVal == ".cv_fpo_endproc")
+ return parseDirectiveFPOEndProc(DirectiveID.getLoc());
+
+ return true;
+}
+
+/// parseDirectiveEven
+/// ::= .even
+bool X86AsmParser::parseDirectiveEven(SMLoc L) {
+ if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
+ return false;
+
+ const MCSection *Section = getStreamer().getCurrentSectionOnly();
+ if (!Section) {
+ getStreamer().InitSections(false);
+ Section = getStreamer().getCurrentSectionOnly();
+ }
+ if (Section->UseCodeAlign())
+ getStreamer().EmitCodeAlignment(2, 0);
+ else
+ getStreamer().EmitValueToAlignment(2, 0, 1, 0);
+ return false;
+}
+
+/// ParseDirectiveCode
+/// ::= .code16 | .code32 | .code64
+bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ Code16GCC = false;
+ if (IDVal == ".code16") {
+ Parser.Lex();
+ if (!is16BitMode()) {
+ SwitchMode(X86::Mode16Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
+ }
+ } else if (IDVal == ".code16gcc") {
+ // .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode.
+ Parser.Lex();
+ Code16GCC = true;
+ if (!is16BitMode()) {
+ SwitchMode(X86::Mode16Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
+ }
+ } else if (IDVal == ".code32") {
+ Parser.Lex();
+ if (!is32BitMode()) {
+ SwitchMode(X86::Mode32Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
+ }
+ } else if (IDVal == ".code64") {
+ Parser.Lex();
+ if (!is64BitMode()) {
+ SwitchMode(X86::Mode64Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
+ }
+ } else {
+ Error(L, "unknown directive " + IDVal);
+ return false;
+ }
+
+ return false;
+}
+
+// .cv_fpo_proc foo
+bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ StringRef ProcName;
+ int64_t ParamsSize;
+ if (Parser.parseIdentifier(ProcName))
+ return Parser.TokError("expected symbol name");
+ if (Parser.parseIntToken(ParamsSize, "expected parameter byte count"))
+ return true;
+ if (!isUIntN(32, ParamsSize))
+ return Parser.TokError("parameters size out of range");
+ if (Parser.parseEOL("unexpected tokens"))
+ return addErrorSuffix(" in '.cv_fpo_proc' directive");
+ MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
+ return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L);
+}
+
+// .cv_fpo_setframe ebp
+bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ unsigned Reg;
+ SMLoc DummyLoc;
+ if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
+ Parser.parseEOL("unexpected tokens"))
+ return addErrorSuffix(" in '.cv_fpo_setframe' directive");
+ return getTargetStreamer().emitFPOSetFrame(Reg, L);
+}
+
+// .cv_fpo_pushreg ebx
+bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ unsigned Reg;
+ SMLoc DummyLoc;
+ if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
+ Parser.parseEOL("unexpected tokens"))
+ return addErrorSuffix(" in '.cv_fpo_pushreg' directive");
+ return getTargetStreamer().emitFPOPushReg(Reg, L);
+}
+
+// .cv_fpo_stackalloc 20
+bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ int64_t Offset;
+ if (Parser.parseIntToken(Offset, "expected offset") ||
+ Parser.parseEOL("unexpected tokens"))
+ return addErrorSuffix(" in '.cv_fpo_stackalloc' directive");
+ return getTargetStreamer().emitFPOStackAlloc(Offset, L);
+}
+
+// .cv_fpo_stackalign 8
+bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ int64_t Offset;
+ if (Parser.parseIntToken(Offset, "expected offset") ||
+ Parser.parseEOL("unexpected tokens"))
+ return addErrorSuffix(" in '.cv_fpo_stackalign' directive");
+ return getTargetStreamer().emitFPOStackAlign(Offset, L);
+}
+
+// .cv_fpo_endprologue
+bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ if (Parser.parseEOL("unexpected tokens"))
+ return addErrorSuffix(" in '.cv_fpo_endprologue' directive");
+ return getTargetStreamer().emitFPOEndPrologue(L);
+}
+
+// .cv_fpo_endproc
+bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ if (Parser.parseEOL("unexpected tokens"))
+ return addErrorSuffix(" in '.cv_fpo_endproc' directive");
+ return getTargetStreamer().emitFPOEndProc(L);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeX86AsmParser() {
+ RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target());
+ RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target());
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_MATCHER_IMPLEMENTATION
+#define GET_SUBTARGET_FEATURE_NAME
+#include "X86GenAsmMatcher.inc"