diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp | 4006 |
1 files changed, 4006 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp new file mode 100644 index 000000000000..7b9ce0271205 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp @@ -0,0 +1,4006 @@ +//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the X86-specific support for the FastISel class. Much +// of the target-specific code is generated by tablegen in the file +// X86GenFastISel.inc, which is #included here. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86CallingConv.h" +#include "X86InstrBuilder.h" +#include "X86InstrInfo.h" +#include "X86MachineFunctionInfo.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Operator.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +namespace { + +class X86FastISel final : public FastISel { + /// Subtarget - Keep a pointer to the X86Subtarget around so that we can + /// make the right decision when generating code for different targets. + const X86Subtarget *Subtarget; + + /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 + /// floating point ops. + /// When SSE is available, use it for f32 operations. + /// When SSE2 is available, use it for f64 operations. + bool X86ScalarSSEf64; + bool X86ScalarSSEf32; + +public: + explicit X86FastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) + : FastISel(funcInfo, libInfo) { + Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); + X86ScalarSSEf64 = Subtarget->hasSSE2(); + X86ScalarSSEf32 = Subtarget->hasSSE1(); + } + + bool fastSelectInstruction(const Instruction *I) override; + + /// The specified machine instr operand is a vreg, and that + /// vreg is being provided by the specified load instruction. If possible, + /// try to fold the load as an operand to the instruction, returning true if + /// possible. + bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, + const LoadInst *LI) override; + + bool fastLowerArguments() override; + bool fastLowerCall(CallLoweringInfo &CLI) override; + bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; + +#include "X86GenFastISel.inc" + +private: + bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, + const DebugLoc &DL); + + bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, + unsigned &ResultReg, unsigned Alignment = 1); + + bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, + MachineMemOperand *MMO = nullptr, bool Aligned = false); + bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, + X86AddressMode &AM, + MachineMemOperand *MMO = nullptr, bool Aligned = false); + + bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, + unsigned &ResultReg); + + bool X86SelectAddress(const Value *V, X86AddressMode &AM); + bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); + + bool X86SelectLoad(const Instruction *I); + + bool X86SelectStore(const Instruction *I); + + bool X86SelectRet(const Instruction *I); + + bool X86SelectCmp(const Instruction *I); + + bool X86SelectZExt(const Instruction *I); + + bool X86SelectSExt(const Instruction *I); + + bool X86SelectBranch(const Instruction *I); + + bool X86SelectShift(const Instruction *I); + + bool X86SelectDivRem(const Instruction *I); + + bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); + + bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); + + bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); + + bool X86SelectSelect(const Instruction *I); + + bool X86SelectTrunc(const Instruction *I); + + bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, + const TargetRegisterClass *RC); + + bool X86SelectFPExt(const Instruction *I); + bool X86SelectFPTrunc(const Instruction *I); + bool X86SelectSIToFP(const Instruction *I); + bool X86SelectUIToFP(const Instruction *I); + bool X86SelectIntToFP(const Instruction *I, bool IsSigned); + + const X86InstrInfo *getInstrInfo() const { + return Subtarget->getInstrInfo(); + } + const X86TargetMachine *getTargetMachine() const { + return static_cast<const X86TargetMachine *>(&TM); + } + + bool handleConstantAddresses(const Value *V, X86AddressMode &AM); + + unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); + unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); + unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); + unsigned fastMaterializeConstant(const Constant *C) override; + + unsigned fastMaterializeAlloca(const AllocaInst *C) override; + + unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; + + /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is + /// computed in an SSE register, not on the X87 floating point stack. + bool isScalarFPTypeInSSEReg(EVT VT) const { + return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 + (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 + } + + bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); + + bool IsMemcpySmall(uint64_t Len); + + bool TryEmitSmallMemcpy(X86AddressMode DestAM, + X86AddressMode SrcAM, uint64_t Len); + + bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, + const Value *Cond); + + const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, + X86AddressMode &AM); + + unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, unsigned Op0, + bool Op0IsKill, unsigned Op1, bool Op1IsKill, + unsigned Op2, bool Op2IsKill, unsigned Op3, + bool Op3IsKill); +}; + +} // end anonymous namespace. + +static std::pair<unsigned, bool> +getX86SSEConditionCode(CmpInst::Predicate Predicate) { + unsigned CC; + bool NeedSwap = false; + + // SSE Condition code mapping: + // 0 - EQ + // 1 - LT + // 2 - LE + // 3 - UNORD + // 4 - NEQ + // 5 - NLT + // 6 - NLE + // 7 - ORD + switch (Predicate) { + default: llvm_unreachable("Unexpected predicate"); + case CmpInst::FCMP_OEQ: CC = 0; break; + case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; + case CmpInst::FCMP_OLT: CC = 1; break; + case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; + case CmpInst::FCMP_OLE: CC = 2; break; + case CmpInst::FCMP_UNO: CC = 3; break; + case CmpInst::FCMP_UNE: CC = 4; break; + case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; + case CmpInst::FCMP_UGE: CC = 5; break; + case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; + case CmpInst::FCMP_UGT: CC = 6; break; + case CmpInst::FCMP_ORD: CC = 7; break; + case CmpInst::FCMP_UEQ: CC = 8; break; + case CmpInst::FCMP_ONE: CC = 12; break; + } + + return std::make_pair(CC, NeedSwap); +} + +/// Adds a complex addressing mode to the given machine instr builder. +/// Note, this will constrain the index register. If its not possible to +/// constrain the given index register, then a new one will be created. The +/// IndexReg field of the addressing mode will be updated to match in this case. +const MachineInstrBuilder & +X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, + X86AddressMode &AM) { + // First constrain the index register. It needs to be a GR64_NOSP. + AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, + MIB->getNumOperands() + + X86::AddrIndexReg); + return ::addFullAddress(MIB, AM); +} + +/// Check if it is possible to fold the condition from the XALU intrinsic +/// into the user. The condition code will only be updated on success. +bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, + const Value *Cond) { + if (!isa<ExtractValueInst>(Cond)) + return false; + + const auto *EV = cast<ExtractValueInst>(Cond); + if (!isa<IntrinsicInst>(EV->getAggregateOperand())) + return false; + + const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); + MVT RetVT; + const Function *Callee = II->getCalledFunction(); + Type *RetTy = + cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); + if (!isTypeLegal(RetTy, RetVT)) + return false; + + if (RetVT != MVT::i32 && RetVT != MVT::i64) + return false; + + X86::CondCode TmpCC; + switch (II->getIntrinsicID()) { + default: return false; + case Intrinsic::sadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; + case Intrinsic::uadd_with_overflow: + case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; + } + + // Check if both instructions are in the same basic block. + if (II->getParent() != I->getParent()) + return false; + + // Make sure nothing is in the way + BasicBlock::const_iterator Start(I); + BasicBlock::const_iterator End(II); + for (auto Itr = std::prev(Start); Itr != End; --Itr) { + // We only expect extractvalue instructions between the intrinsic and the + // instruction to be selected. + if (!isa<ExtractValueInst>(Itr)) + return false; + + // Check that the extractvalue operand comes from the intrinsic. + const auto *EVI = cast<ExtractValueInst>(Itr); + if (EVI->getAggregateOperand() != II) + return false; + } + + CC = TmpCC; + return true; +} + +bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { + EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); + if (evt == MVT::Other || !evt.isSimple()) + // Unhandled type. Halt "fast" selection and bail. + return false; + + VT = evt.getSimpleVT(); + // For now, require SSE/SSE2 for performing floating-point operations, + // since x87 requires additional work. + if (VT == MVT::f64 && !X86ScalarSSEf64) + return false; + if (VT == MVT::f32 && !X86ScalarSSEf32) + return false; + // Similarly, no f80 support yet. + if (VT == MVT::f80) + return false; + // We only handle legal types. For example, on x86-32 the instruction + // selector contains all of the 64-bit instructions from x86-64, + // under the assumption that i64 won't be used if the target doesn't + // support it. + return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); +} + +/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. +/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. +/// Return true and the result register by reference if it is possible. +bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, + MachineMemOperand *MMO, unsigned &ResultReg, + unsigned Alignment) { + bool HasSSE41 = Subtarget->hasSSE41(); + bool HasAVX = Subtarget->hasAVX(); + bool HasAVX2 = Subtarget->hasAVX2(); + bool HasAVX512 = Subtarget->hasAVX512(); + bool HasVLX = Subtarget->hasVLX(); + bool IsNonTemporal = MMO && MMO->isNonTemporal(); + + // Treat i1 loads the same as i8 loads. Masking will be done when storing. + if (VT == MVT::i1) + VT = MVT::i8; + + // Get opcode and regclass of the output for the given load instruction. + unsigned Opc = 0; + switch (VT.SimpleTy) { + default: return false; + case MVT::i8: + Opc = X86::MOV8rm; + break; + case MVT::i16: + Opc = X86::MOV16rm; + break; + case MVT::i32: + Opc = X86::MOV32rm; + break; + case MVT::i64: + // Must be in x86-64 mode. + Opc = X86::MOV64rm; + break; + case MVT::f32: + if (X86ScalarSSEf32) + Opc = HasAVX512 ? X86::VMOVSSZrm_alt : + HasAVX ? X86::VMOVSSrm_alt : + X86::MOVSSrm_alt; + else + Opc = X86::LD_Fp32m; + break; + case MVT::f64: + if (X86ScalarSSEf64) + Opc = HasAVX512 ? X86::VMOVSDZrm_alt : + HasAVX ? X86::VMOVSDrm_alt : + X86::MOVSDrm_alt; + else + Opc = X86::LD_Fp64m; + break; + case MVT::f80: + // No f80 support yet. + return false; + case MVT::v4f32: + if (IsNonTemporal && Alignment >= 16 && HasSSE41) + Opc = HasVLX ? X86::VMOVNTDQAZ128rm : + HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; + else if (Alignment >= 16) + Opc = HasVLX ? X86::VMOVAPSZ128rm : + HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; + else + Opc = HasVLX ? X86::VMOVUPSZ128rm : + HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; + break; + case MVT::v2f64: + if (IsNonTemporal && Alignment >= 16 && HasSSE41) + Opc = HasVLX ? X86::VMOVNTDQAZ128rm : + HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; + else if (Alignment >= 16) + Opc = HasVLX ? X86::VMOVAPDZ128rm : + HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; + else + Opc = HasVLX ? X86::VMOVUPDZ128rm : + HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; + break; + case MVT::v4i32: + case MVT::v2i64: + case MVT::v8i16: + case MVT::v16i8: + if (IsNonTemporal && Alignment >= 16 && HasSSE41) + Opc = HasVLX ? X86::VMOVNTDQAZ128rm : + HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; + else if (Alignment >= 16) + Opc = HasVLX ? X86::VMOVDQA64Z128rm : + HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; + else + Opc = HasVLX ? X86::VMOVDQU64Z128rm : + HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; + break; + case MVT::v8f32: + assert(HasAVX); + if (IsNonTemporal && Alignment >= 32 && HasAVX2) + Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; + else if (IsNonTemporal && Alignment >= 16) + return false; // Force split for X86::VMOVNTDQArm + else if (Alignment >= 32) + Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; + else + Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; + break; + case MVT::v4f64: + assert(HasAVX); + if (IsNonTemporal && Alignment >= 32 && HasAVX2) + Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; + else if (IsNonTemporal && Alignment >= 16) + return false; // Force split for X86::VMOVNTDQArm + else if (Alignment >= 32) + Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; + else + Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; + break; + case MVT::v8i32: + case MVT::v4i64: + case MVT::v16i16: + case MVT::v32i8: + assert(HasAVX); + if (IsNonTemporal && Alignment >= 32 && HasAVX2) + Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; + else if (IsNonTemporal && Alignment >= 16) + return false; // Force split for X86::VMOVNTDQArm + else if (Alignment >= 32) + Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; + else + Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; + break; + case MVT::v16f32: + assert(HasAVX512); + if (IsNonTemporal && Alignment >= 64) + Opc = X86::VMOVNTDQAZrm; + else + Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; + break; + case MVT::v8f64: + assert(HasAVX512); + if (IsNonTemporal && Alignment >= 64) + Opc = X86::VMOVNTDQAZrm; + else + Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; + break; + case MVT::v8i64: + case MVT::v16i32: + case MVT::v32i16: + case MVT::v64i8: + assert(HasAVX512); + // Note: There are a lot more choices based on type with AVX-512, but + // there's really no advantage when the load isn't masked. + if (IsNonTemporal && Alignment >= 64) + Opc = X86::VMOVNTDQAZrm; + else + Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; + break; + } + + const TargetRegisterClass *RC = TLI.getRegClassFor(VT); + + ResultReg = createResultReg(RC); + MachineInstrBuilder MIB = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); + addFullAddress(MIB, AM); + if (MMO) + MIB->addMemOperand(*FuncInfo.MF, MMO); + return true; +} + +/// X86FastEmitStore - Emit a machine instruction to store a value Val of +/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr +/// and a displacement offset, or a GlobalAddress, +/// i.e. V. Return true if it is possible. +bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, + X86AddressMode &AM, + MachineMemOperand *MMO, bool Aligned) { + bool HasSSE1 = Subtarget->hasSSE1(); + bool HasSSE2 = Subtarget->hasSSE2(); + bool HasSSE4A = Subtarget->hasSSE4A(); + bool HasAVX = Subtarget->hasAVX(); + bool HasAVX512 = Subtarget->hasAVX512(); + bool HasVLX = Subtarget->hasVLX(); + bool IsNonTemporal = MMO && MMO->isNonTemporal(); + + // Get opcode and regclass of the output for the given store instruction. + unsigned Opc = 0; + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f80: // No f80 support yet. + default: return false; + case MVT::i1: { + // Mask out all but lowest bit. + unsigned AndResult = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(X86::AND8ri), AndResult) + .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); + ValReg = AndResult; + LLVM_FALLTHROUGH; // handle i1 as i8. + } + case MVT::i8: Opc = X86::MOV8mr; break; + case MVT::i16: Opc = X86::MOV16mr; break; + case MVT::i32: + Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; + break; + case MVT::i64: + // Must be in x86-64 mode. + Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; + break; + case MVT::f32: + if (X86ScalarSSEf32) { + if (IsNonTemporal && HasSSE4A) + Opc = X86::MOVNTSS; + else + Opc = HasAVX512 ? X86::VMOVSSZmr : + HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; + } else + Opc = X86::ST_Fp32m; + break; + case MVT::f64: + if (X86ScalarSSEf32) { + if (IsNonTemporal && HasSSE4A) + Opc = X86::MOVNTSD; + else + Opc = HasAVX512 ? X86::VMOVSDZmr : + HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; + } else + Opc = X86::ST_Fp64m; + break; + case MVT::x86mmx: + Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; + break; + case MVT::v4f32: + if (Aligned) { + if (IsNonTemporal) + Opc = HasVLX ? X86::VMOVNTPSZ128mr : + HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; + else + Opc = HasVLX ? X86::VMOVAPSZ128mr : + HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; + } else + Opc = HasVLX ? X86::VMOVUPSZ128mr : + HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; + break; + case MVT::v2f64: + if (Aligned) { + if (IsNonTemporal) + Opc = HasVLX ? X86::VMOVNTPDZ128mr : + HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; + else + Opc = HasVLX ? X86::VMOVAPDZ128mr : + HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; + } else + Opc = HasVLX ? X86::VMOVUPDZ128mr : + HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; + break; + case MVT::v4i32: + case MVT::v2i64: + case MVT::v8i16: + case MVT::v16i8: + if (Aligned) { + if (IsNonTemporal) + Opc = HasVLX ? X86::VMOVNTDQZ128mr : + HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; + else + Opc = HasVLX ? X86::VMOVDQA64Z128mr : + HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; + } else + Opc = HasVLX ? X86::VMOVDQU64Z128mr : + HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; + break; + case MVT::v8f32: + assert(HasAVX); + if (Aligned) { + if (IsNonTemporal) + Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; + else + Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; + } else + Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; + break; + case MVT::v4f64: + assert(HasAVX); + if (Aligned) { + if (IsNonTemporal) + Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; + else + Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; + } else + Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; + break; + case MVT::v8i32: + case MVT::v4i64: + case MVT::v16i16: + case MVT::v32i8: + assert(HasAVX); + if (Aligned) { + if (IsNonTemporal) + Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; + else + Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; + } else + Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; + break; + case MVT::v16f32: + assert(HasAVX512); + if (Aligned) + Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; + else + Opc = X86::VMOVUPSZmr; + break; + case MVT::v8f64: + assert(HasAVX512); + if (Aligned) { + Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; + } else + Opc = X86::VMOVUPDZmr; + break; + case MVT::v8i64: + case MVT::v16i32: + case MVT::v32i16: + case MVT::v64i8: + assert(HasAVX512); + // Note: There are a lot more choices based on type with AVX-512, but + // there's really no advantage when the store isn't masked. + if (Aligned) + Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; + else + Opc = X86::VMOVDQU64Zmr; + break; + } + + const MCInstrDesc &Desc = TII.get(Opc); + // Some of the instructions in the previous switch use FR128 instead + // of FR32 for ValReg. Make sure the register we feed the instruction + // matches its register class constraints. + // Note: This is fine to do a copy from FR32 to FR128, this is the + // same registers behind the scene and actually why it did not trigger + // any bugs before. + ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); + MachineInstrBuilder MIB = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); + addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); + if (MMO) + MIB->addMemOperand(*FuncInfo.MF, MMO); + + return true; +} + +bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, + X86AddressMode &AM, + MachineMemOperand *MMO, bool Aligned) { + // Handle 'null' like i32/i64 0. + if (isa<ConstantPointerNull>(Val)) + Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); + + // If this is a store of a simple constant, fold the constant into the store. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { + unsigned Opc = 0; + bool Signed = true; + switch (VT.getSimpleVT().SimpleTy) { + default: break; + case MVT::i1: + Signed = false; + LLVM_FALLTHROUGH; // Handle as i8. + case MVT::i8: Opc = X86::MOV8mi; break; + case MVT::i16: Opc = X86::MOV16mi; break; + case MVT::i32: Opc = X86::MOV32mi; break; + case MVT::i64: + // Must be a 32-bit sign extended value. + if (isInt<32>(CI->getSExtValue())) + Opc = X86::MOV64mi32; + break; + } + + if (Opc) { + MachineInstrBuilder MIB = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); + addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() + : CI->getZExtValue()); + if (MMO) + MIB->addMemOperand(*FuncInfo.MF, MMO); + return true; + } + } + + unsigned ValReg = getRegForValue(Val); + if (ValReg == 0) + return false; + + bool ValKill = hasTrivialKill(Val); + return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); +} + +/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of +/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. +/// ISD::SIGN_EXTEND). +bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, + unsigned Src, EVT SrcVT, + unsigned &ResultReg) { + unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, + Src, /*TODO: Kill=*/false); + if (RR == 0) + return false; + + ResultReg = RR; + return true; +} + +bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { + // Handle constant address. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return false; + + // Can't handle TLS yet. + if (GV->isThreadLocal()) + return false; + + // Can't handle !absolute_symbol references yet. + if (GV->isAbsoluteSymbolRef()) + return false; + + // RIP-relative addresses can't have additional register operands, so if + // we've already folded stuff into the addressing mode, just force the + // global value into its own register, which we can use as the basereg. + if (!Subtarget->isPICStyleRIPRel() || + (AM.Base.Reg == 0 && AM.IndexReg == 0)) { + // Okay, we've committed to selecting this global. Set up the address. + AM.GV = GV; + + // Allow the subtarget to classify the global. + unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); + + // If this reference is relative to the pic base, set it now. + if (isGlobalRelativeToPICBase(GVFlags)) { + // FIXME: How do we know Base.Reg is free?? + AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + } + + // Unless the ABI requires an extra load, return a direct reference to + // the global. + if (!isGlobalStubReference(GVFlags)) { + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } + AM.GVOpFlags = GVFlags; + return true; + } + + // Ok, we need to do a load from a stub. If we've already loaded from + // this stub, reuse the loaded pointer, otherwise emit the load now. + DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V); + unsigned LoadReg; + if (I != LocalValueMap.end() && I->second != 0) { + LoadReg = I->second; + } else { + // Issue load from stub. + unsigned Opc = 0; + const TargetRegisterClass *RC = nullptr; + X86AddressMode StubAM; + StubAM.Base.Reg = AM.Base.Reg; + StubAM.GV = GV; + StubAM.GVOpFlags = GVFlags; + + // Prepare for inserting code in the local-value area. + SavePoint SaveInsertPt = enterLocalValueArea(); + + if (TLI.getPointerTy(DL) == MVT::i64) { + Opc = X86::MOV64rm; + RC = &X86::GR64RegClass; + + if (Subtarget->isPICStyleRIPRel()) + StubAM.Base.Reg = X86::RIP; + } else { + Opc = X86::MOV32rm; + RC = &X86::GR32RegClass; + } + + LoadReg = createResultReg(RC); + MachineInstrBuilder LoadMI = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); + addFullAddress(LoadMI, StubAM); + + // Ok, back to normal mode. + leaveLocalValueArea(SaveInsertPt); + + // Prevent loading GV stub multiple times in same MBB. + LocalValueMap[V] = LoadReg; + } + + // Now construct the final address. Note that the Disp, Scale, + // and Index values may already be set here. + AM.Base.Reg = LoadReg; + AM.GV = nullptr; + return true; + } + } + + // If all else fails, try to materialize the value in a register. + if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { + if (AM.Base.Reg == 0) { + AM.Base.Reg = getRegForValue(V); + return AM.Base.Reg != 0; + } + if (AM.IndexReg == 0) { + assert(AM.Scale == 1 && "Scale with no index!"); + AM.IndexReg = getRegForValue(V); + return AM.IndexReg != 0; + } + } + + return false; +} + +/// X86SelectAddress - Attempt to fill in an address from the given value. +/// +bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { + SmallVector<const Value *, 32> GEPs; +redo_gep: + const User *U = nullptr; + unsigned Opcode = Instruction::UserOp1; + if (const Instruction *I = dyn_cast<Instruction>(V)) { + // Don't walk into other basic blocks; it's possible we haven't + // visited them yet, so the instructions may not yet be assigned + // virtual registers. + if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || + FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { + Opcode = I->getOpcode(); + U = I; + } + } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { + Opcode = C->getOpcode(); + U = C; + } + + if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) + if (Ty->getAddressSpace() > 255) + // Fast instruction selection doesn't support the special + // address spaces. + return false; + + switch (Opcode) { + default: break; + case Instruction::BitCast: + // Look past bitcasts. + return X86SelectAddress(U->getOperand(0), AM); + + case Instruction::IntToPtr: + // Look past no-op inttoptrs. + if (TLI.getValueType(DL, U->getOperand(0)->getType()) == + TLI.getPointerTy(DL)) + return X86SelectAddress(U->getOperand(0), AM); + break; + + case Instruction::PtrToInt: + // Look past no-op ptrtoints. + if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) + return X86SelectAddress(U->getOperand(0), AM); + break; + + case Instruction::Alloca: { + // Do static allocas. + const AllocaInst *A = cast<AllocaInst>(V); + DenseMap<const AllocaInst *, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(A); + if (SI != FuncInfo.StaticAllocaMap.end()) { + AM.BaseType = X86AddressMode::FrameIndexBase; + AM.Base.FrameIndex = SI->second; + return true; + } + break; + } + + case Instruction::Add: { + // Adds of constants are common and easy enough. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { + uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); + // They have to fit in the 32-bit signed displacement field though. + if (isInt<32>(Disp)) { + AM.Disp = (uint32_t)Disp; + return X86SelectAddress(U->getOperand(0), AM); + } + } + break; + } + + case Instruction::GetElementPtr: { + X86AddressMode SavedAM = AM; + + // Pattern-match simple GEPs. + uint64_t Disp = (int32_t)AM.Disp; + unsigned IndexReg = AM.IndexReg; + unsigned Scale = AM.Scale; + gep_type_iterator GTI = gep_type_begin(U); + // Iterate through the indices, folding what we can. Constants can be + // folded, and one dynamic index can be handled, if the scale is supported. + for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); + i != e; ++i, ++GTI) { + const Value *Op = *i; + if (StructType *STy = GTI.getStructTypeOrNull()) { + const StructLayout *SL = DL.getStructLayout(STy); + Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); + continue; + } + + // A array/variable index is always of the form i*S where S is the + // constant scale size. See if we can push the scale into immediates. + uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); + for (;;) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + // Constant-offset addressing. + Disp += CI->getSExtValue() * S; + break; + } + if (canFoldAddIntoGEP(U, Op)) { + // A compatible add with a constant operand. Fold the constant. + ConstantInt *CI = + cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); + Disp += CI->getSExtValue() * S; + // Iterate on the other operand. + Op = cast<AddOperator>(Op)->getOperand(0); + continue; + } + if (IndexReg == 0 && + (!AM.GV || !Subtarget->isPICStyleRIPRel()) && + (S == 1 || S == 2 || S == 4 || S == 8)) { + // Scaled-index addressing. + Scale = S; + IndexReg = getRegForGEPIndex(Op).first; + if (IndexReg == 0) + return false; + break; + } + // Unsupported. + goto unsupported_gep; + } + } + + // Check for displacement overflow. + if (!isInt<32>(Disp)) + break; + + AM.IndexReg = IndexReg; + AM.Scale = Scale; + AM.Disp = (uint32_t)Disp; + GEPs.push_back(V); + + if (const GetElementPtrInst *GEP = + dyn_cast<GetElementPtrInst>(U->getOperand(0))) { + // Ok, the GEP indices were covered by constant-offset and scaled-index + // addressing. Update the address state and move on to examining the base. + V = GEP; + goto redo_gep; + } else if (X86SelectAddress(U->getOperand(0), AM)) { + return true; + } + + // If we couldn't merge the gep value into this addr mode, revert back to + // our address and just match the value instead of completely failing. + AM = SavedAM; + + for (const Value *I : reverse(GEPs)) + if (handleConstantAddresses(I, AM)) + return true; + + return false; + unsupported_gep: + // Ok, the GEP indices weren't all covered. + break; + } + } + + return handleConstantAddresses(V, AM); +} + +/// X86SelectCallAddress - Attempt to fill in an address from the given value. +/// +bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { + const User *U = nullptr; + unsigned Opcode = Instruction::UserOp1; + const Instruction *I = dyn_cast<Instruction>(V); + // Record if the value is defined in the same basic block. + // + // This information is crucial to know whether or not folding an + // operand is valid. + // Indeed, FastISel generates or reuses a virtual register for all + // operands of all instructions it selects. Obviously, the definition and + // its uses must use the same virtual register otherwise the produced + // code is incorrect. + // Before instruction selection, FunctionLoweringInfo::set sets the virtual + // registers for values that are alive across basic blocks. This ensures + // that the values are consistently set between across basic block, even + // if different instruction selection mechanisms are used (e.g., a mix of + // SDISel and FastISel). + // For values local to a basic block, the instruction selection process + // generates these virtual registers with whatever method is appropriate + // for its needs. In particular, FastISel and SDISel do not share the way + // local virtual registers are set. + // Therefore, this is impossible (or at least unsafe) to share values + // between basic blocks unless they use the same instruction selection + // method, which is not guarantee for X86. + // Moreover, things like hasOneUse could not be used accurately, if we + // allow to reference values across basic blocks whereas they are not + // alive across basic blocks initially. + bool InMBB = true; + if (I) { + Opcode = I->getOpcode(); + U = I; + InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); + } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { + Opcode = C->getOpcode(); + U = C; + } + + switch (Opcode) { + default: break; + case Instruction::BitCast: + // Look past bitcasts if its operand is in the same BB. + if (InMBB) + return X86SelectCallAddress(U->getOperand(0), AM); + break; + + case Instruction::IntToPtr: + // Look past no-op inttoptrs if its operand is in the same BB. + if (InMBB && + TLI.getValueType(DL, U->getOperand(0)->getType()) == + TLI.getPointerTy(DL)) + return X86SelectCallAddress(U->getOperand(0), AM); + break; + + case Instruction::PtrToInt: + // Look past no-op ptrtoints if its operand is in the same BB. + if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) + return X86SelectCallAddress(U->getOperand(0), AM); + break; + } + + // Handle constant address. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return false; + + // RIP-relative addresses can't have additional register operands. + if (Subtarget->isPICStyleRIPRel() && + (AM.Base.Reg != 0 || AM.IndexReg != 0)) + return false; + + // Can't handle TLS. + if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) + if (GVar->isThreadLocal()) + return false; + + // Okay, we've committed to selecting this global. Set up the basic address. + AM.GV = GV; + + // Return a direct reference to the global. Fastisel can handle calls to + // functions that require loads, such as dllimport and nonlazybind + // functions. + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } else { + AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); + } + + return true; + } + + // If all else fails, try to materialize the value in a register. + if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { + if (AM.Base.Reg == 0) { + AM.Base.Reg = getRegForValue(V); + return AM.Base.Reg != 0; + } + if (AM.IndexReg == 0) { + assert(AM.Scale == 1 && "Scale with no index!"); + AM.IndexReg = getRegForValue(V); + return AM.IndexReg != 0; + } + } + + return false; +} + + +/// X86SelectStore - Select and emit code to implement store instructions. +bool X86FastISel::X86SelectStore(const Instruction *I) { + // Atomic stores need special handling. + const StoreInst *S = cast<StoreInst>(I); + + if (S->isAtomic()) + return false; + + const Value *PtrV = I->getOperand(1); + if (TLI.supportSwiftError()) { + // Swifterror values can come from either a function parameter with + // swifterror attribute or an alloca with swifterror attribute. + if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { + if (Arg->hasSwiftErrorAttr()) + return false; + } + + if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { + if (Alloca->isSwiftError()) + return false; + } + } + + const Value *Val = S->getValueOperand(); + const Value *Ptr = S->getPointerOperand(); + + MVT VT; + if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) + return false; + + unsigned Alignment = S->getAlignment(); + unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = ABIAlignment; + bool Aligned = Alignment >= ABIAlignment; + + X86AddressMode AM; + if (!X86SelectAddress(Ptr, AM)) + return false; + + return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); +} + +/// X86SelectRet - Select and emit code to implement ret instructions. +bool X86FastISel::X86SelectRet(const Instruction *I) { + const ReturnInst *Ret = cast<ReturnInst>(I); + const Function &F = *I->getParent()->getParent(); + const X86MachineFunctionInfo *X86MFInfo = + FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); + + if (!FuncInfo.CanLowerReturn) + return false; + + if (TLI.supportSwiftError() && + F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) + return false; + + if (TLI.supportSplitCSR(FuncInfo.MF)) + return false; + + CallingConv::ID CC = F.getCallingConv(); + if (CC != CallingConv::C && + CC != CallingConv::Fast && + CC != CallingConv::X86_FastCall && + CC != CallingConv::X86_StdCall && + CC != CallingConv::X86_ThisCall && + CC != CallingConv::X86_64_SysV && + CC != CallingConv::Win64) + return false; + + // Don't handle popping bytes if they don't fit the ret's immediate. + if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) + return false; + + // fastcc with -tailcallopt is intended to provide a guaranteed + // tail call optimization. Fastisel doesn't know how to do that. + if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) + return false; + + // Let SDISel handle vararg functions. + if (F.isVarArg()) + return false; + + // Build a list of return value registers. + SmallVector<unsigned, 4> RetRegs; + + if (Ret->getNumOperands() > 0) { + SmallVector<ISD::OutputArg, 4> Outs; + GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ValLocs; + CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); + CCInfo.AnalyzeReturn(Outs, RetCC_X86); + + const Value *RV = Ret->getOperand(0); + unsigned Reg = getRegForValue(RV); + if (Reg == 0) + return false; + + // Only handle a single return value for now. + if (ValLocs.size() != 1) + return false; + + CCValAssign &VA = ValLocs[0]; + + // Don't bother handling odd stuff for now. + if (VA.getLocInfo() != CCValAssign::Full) + return false; + // Only handle register returns for now. + if (!VA.isRegLoc()) + return false; + + // The calling-convention tables for x87 returns don't tell + // the whole story. + if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) + return false; + + unsigned SrcReg = Reg + VA.getValNo(); + EVT SrcVT = TLI.getValueType(DL, RV->getType()); + EVT DstVT = VA.getValVT(); + // Special handling for extended integers. + if (SrcVT != DstVT) { + if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) + return false; + + if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) + return false; + + assert(DstVT == MVT::i32 && "X86 should always ext to i32"); + + if (SrcVT == MVT::i1) { + if (Outs[0].Flags.isSExt()) + return false; + SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); + SrcVT = MVT::i8; + } + unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : + ISD::SIGN_EXTEND; + SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, + SrcReg, /*TODO: Kill=*/false); + } + + // Make the copy. + unsigned DstReg = VA.getLocReg(); + const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); + // Avoid a cross-class copy. This is very unlikely. + if (!SrcRC->contains(DstReg)) + return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); + + // Add register to return instruction. + RetRegs.push_back(VA.getLocReg()); + } + + // Swift calling convention does not require we copy the sret argument + // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. + + // All x86 ABIs require that for returning structs by value we copy + // the sret argument into %rax/%eax (depending on ABI) for the return. + // We saved the argument into a virtual register in the entry block, + // so now we copy the value out and into %rax/%eax. + if (F.hasStructRetAttr() && CC != CallingConv::Swift) { + unsigned Reg = X86MFInfo->getSRetReturnReg(); + assert(Reg && + "SRetReturnReg should have been set in LowerFormalArguments()!"); + unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); + RetRegs.push_back(RetReg); + } + + // Now emit the RET. + MachineInstrBuilder MIB; + if (X86MFInfo->getBytesToPopOnReturn()) { + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL)) + .addImm(X86MFInfo->getBytesToPopOnReturn()); + } else { + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); + } + for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) + MIB.addReg(RetRegs[i], RegState::Implicit); + return true; +} + +/// X86SelectLoad - Select and emit code to implement load instructions. +/// +bool X86FastISel::X86SelectLoad(const Instruction *I) { + const LoadInst *LI = cast<LoadInst>(I); + + // Atomic loads need special handling. + if (LI->isAtomic()) + return false; + + const Value *SV = I->getOperand(0); + if (TLI.supportSwiftError()) { + // Swifterror values can come from either a function parameter with + // swifterror attribute or an alloca with swifterror attribute. + if (const Argument *Arg = dyn_cast<Argument>(SV)) { + if (Arg->hasSwiftErrorAttr()) + return false; + } + + if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { + if (Alloca->isSwiftError()) + return false; + } + } + + MVT VT; + if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) + return false; + + const Value *Ptr = LI->getPointerOperand(); + + X86AddressMode AM; + if (!X86SelectAddress(Ptr, AM)) + return false; + + unsigned Alignment = LI->getAlignment(); + unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType()); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = ABIAlignment; + + unsigned ResultReg = 0; + if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, + Alignment)) + return false; + + updateValueMap(I, ResultReg); + return true; +} + +static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { + bool HasAVX512 = Subtarget->hasAVX512(); + bool HasAVX = Subtarget->hasAVX(); + bool X86ScalarSSEf32 = Subtarget->hasSSE1(); + bool X86ScalarSSEf64 = Subtarget->hasSSE2(); + + switch (VT.getSimpleVT().SimpleTy) { + default: return 0; + case MVT::i8: return X86::CMP8rr; + case MVT::i16: return X86::CMP16rr; + case MVT::i32: return X86::CMP32rr; + case MVT::i64: return X86::CMP64rr; + case MVT::f32: + return X86ScalarSSEf32 + ? (HasAVX512 ? X86::VUCOMISSZrr + : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) + : 0; + case MVT::f64: + return X86ScalarSSEf64 + ? (HasAVX512 ? X86::VUCOMISDZrr + : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) + : 0; + } +} + +/// If we have a comparison with RHS as the RHS of the comparison, return an +/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. +static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { + int64_t Val = RHSC->getSExtValue(); + switch (VT.getSimpleVT().SimpleTy) { + // Otherwise, we can't fold the immediate into this comparison. + default: + return 0; + case MVT::i8: + return X86::CMP8ri; + case MVT::i16: + if (isInt<8>(Val)) + return X86::CMP16ri8; + return X86::CMP16ri; + case MVT::i32: + if (isInt<8>(Val)) + return X86::CMP32ri8; + return X86::CMP32ri; + case MVT::i64: + if (isInt<8>(Val)) + return X86::CMP64ri8; + // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext + // field. + if (isInt<32>(Val)) + return X86::CMP64ri32; + return 0; + } +} + +bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, + const DebugLoc &CurDbgLoc) { + unsigned Op0Reg = getRegForValue(Op0); + if (Op0Reg == 0) return false; + + // Handle 'null' like i32/i64 0. + if (isa<ConstantPointerNull>(Op1)) + Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); + + // We have two options: compare with register or immediate. If the RHS of + // the compare is an immediate that we can fold into this compare, use + // CMPri, otherwise use CMPrr. + if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { + if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) + .addReg(Op0Reg) + .addImm(Op1C->getSExtValue()); + return true; + } + } + + unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); + if (CompareOpc == 0) return false; + + unsigned Op1Reg = getRegForValue(Op1); + if (Op1Reg == 0) return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) + .addReg(Op0Reg) + .addReg(Op1Reg); + + return true; +} + +bool X86FastISel::X86SelectCmp(const Instruction *I) { + const CmpInst *CI = cast<CmpInst>(I); + + MVT VT; + if (!isTypeLegal(I->getOperand(0)->getType(), VT)) + return false; + + // Try to optimize or fold the cmp. + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + unsigned ResultReg = 0; + switch (Predicate) { + default: break; + case CmpInst::FCMP_FALSE: { + ResultReg = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), + ResultReg); + ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, + X86::sub_8bit); + if (!ResultReg) + return false; + break; + } + case CmpInst::FCMP_TRUE: { + ResultReg = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), + ResultReg).addImm(1); + break; + } + } + + if (ResultReg) { + updateValueMap(I, ResultReg); + return true; + } + + const Value *LHS = CI->getOperand(0); + const Value *RHS = CI->getOperand(1); + + // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. + // We don't have to materialize a zero constant for this case and can just use + // %x again on the RHS. + if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { + const auto *RHSC = dyn_cast<ConstantFP>(RHS); + if (RHSC && RHSC->isNullValue()) + RHS = LHS; + } + + // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. + static const uint16_t SETFOpcTable[2][3] = { + { X86::COND_E, X86::COND_NP, X86::AND8rr }, + { X86::COND_NE, X86::COND_P, X86::OR8rr } + }; + const uint16_t *SETFOpc = nullptr; + switch (Predicate) { + default: break; + case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; + case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; + } + + ResultReg = createResultReg(&X86::GR8RegClass); + if (SETFOpc) { + if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) + return false; + + unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); + unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), + FlagReg1).addImm(SETFOpc[0]); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), + FlagReg2).addImm(SETFOpc[1]); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), + ResultReg).addReg(FlagReg1).addReg(FlagReg2); + updateValueMap(I, ResultReg); + return true; + } + + X86::CondCode CC; + bool SwapArgs; + std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); + assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + + if (SwapArgs) + std::swap(LHS, RHS); + + // Emit a compare of LHS/RHS. + if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) + return false; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), + ResultReg).addImm(CC); + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectZExt(const Instruction *I) { + EVT DstVT = TLI.getValueType(DL, I->getType()); + if (!TLI.isTypeLegal(DstVT)) + return false; + + unsigned ResultReg = getRegForValue(I->getOperand(0)); + if (ResultReg == 0) + return false; + + // Handle zero-extension from i1 to i8, which is common. + MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); + if (SrcVT == MVT::i1) { + // Set the high bits to zero. + ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); + SrcVT = MVT::i8; + + if (ResultReg == 0) + return false; + } + + if (DstVT == MVT::i64) { + // Handle extension to 64-bits via sub-register shenanigans. + unsigned MovInst; + + switch (SrcVT.SimpleTy) { + case MVT::i8: MovInst = X86::MOVZX32rr8; break; + case MVT::i16: MovInst = X86::MOVZX32rr16; break; + case MVT::i32: MovInst = X86::MOV32rr; break; + default: llvm_unreachable("Unexpected zext to i64 source type"); + } + + unsigned Result32 = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) + .addReg(ResultReg); + + ResultReg = createResultReg(&X86::GR64RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), + ResultReg) + .addImm(0).addReg(Result32).addImm(X86::sub_32bit); + } else if (DstVT == MVT::i16) { + // i8->i16 doesn't exist in the autogenerated isel table. Need to zero + // extend to 32-bits and then extract down to 16-bits. + unsigned Result32 = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), + Result32).addReg(ResultReg); + + ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, + X86::sub_16bit); + } else if (DstVT != MVT::i8) { + ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, + ResultReg, /*Kill=*/true); + if (ResultReg == 0) + return false; + } + + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectSExt(const Instruction *I) { + EVT DstVT = TLI.getValueType(DL, I->getType()); + if (!TLI.isTypeLegal(DstVT)) + return false; + + unsigned ResultReg = getRegForValue(I->getOperand(0)); + if (ResultReg == 0) + return false; + + // Handle sign-extension from i1 to i8. + MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); + if (SrcVT == MVT::i1) { + // Set the high bits to zero. + unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg, + /*TODO: Kill=*/false); + if (ZExtReg == 0) + return false; + + // Negate the result to make an 8-bit sign extended value. + ResultReg = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), + ResultReg).addReg(ZExtReg); + + SrcVT = MVT::i8; + } + + if (DstVT == MVT::i16) { + // i8->i16 doesn't exist in the autogenerated isel table. Need to sign + // extend to 32-bits and then extract down to 16-bits. + unsigned Result32 = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), + Result32).addReg(ResultReg); + + ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, + X86::sub_16bit); + } else if (DstVT != MVT::i8) { + ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, + ResultReg, /*Kill=*/true); + if (ResultReg == 0) + return false; + } + + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectBranch(const Instruction *I) { + // Unconditional branches are selected by tablegen-generated code. + // Handle a conditional branch. + const BranchInst *BI = cast<BranchInst>(I); + MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; + MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; + + // Fold the common case of a conditional branch with a comparison + // in the same block (values defined on other blocks may not have + // initialized registers). + X86::CondCode CC; + if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { + if (CI->hasOneUse() && CI->getParent() == I->getParent()) { + EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); + + // Try to optimize or fold the cmp. + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + switch (Predicate) { + default: break; + case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; + case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; + } + + const Value *CmpLHS = CI->getOperand(0); + const Value *CmpRHS = CI->getOperand(1); + + // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, + // 0.0. + // We don't have to materialize a zero constant for this case and can just + // use %x again on the RHS. + if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { + const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); + if (CmpRHSC && CmpRHSC->isNullValue()) + CmpRHS = CmpLHS; + } + + // Try to take advantage of fallthrough opportunities. + if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { + std::swap(TrueMBB, FalseMBB); + Predicate = CmpInst::getInversePredicate(Predicate); + } + + // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition + // code check. Instead two branch instructions are required to check all + // the flags. First we change the predicate to a supported condition code, + // which will be the first branch. Later one we will emit the second + // branch. + bool NeedExtraBranch = false; + switch (Predicate) { + default: break; + case CmpInst::FCMP_OEQ: + std::swap(TrueMBB, FalseMBB); + LLVM_FALLTHROUGH; + case CmpInst::FCMP_UNE: + NeedExtraBranch = true; + Predicate = CmpInst::FCMP_ONE; + break; + } + + bool SwapArgs; + std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); + assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + + if (SwapArgs) + std::swap(CmpLHS, CmpRHS); + + // Emit a compare of the LHS and RHS, setting the flags. + if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) + return false; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) + .addMBB(TrueMBB).addImm(CC); + + // X86 requires a second branch to handle UNE (and OEQ, which is mapped + // to UNE above). + if (NeedExtraBranch) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) + .addMBB(TrueMBB).addImm(X86::COND_P); + } + + finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); + return true; + } + } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { + // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which + // typically happen for _Bool and C++ bools. + MVT SourceVT; + if (TI->hasOneUse() && TI->getParent() == I->getParent() && + isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { + unsigned TestOpc = 0; + switch (SourceVT.SimpleTy) { + default: break; + case MVT::i8: TestOpc = X86::TEST8ri; break; + case MVT::i16: TestOpc = X86::TEST16ri; break; + case MVT::i32: TestOpc = X86::TEST32ri; break; + case MVT::i64: TestOpc = X86::TEST64ri32; break; + } + if (TestOpc) { + unsigned OpReg = getRegForValue(TI->getOperand(0)); + if (OpReg == 0) return false; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) + .addReg(OpReg).addImm(1); + + unsigned JmpCond = X86::COND_NE; + if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { + std::swap(TrueMBB, FalseMBB); + JmpCond = X86::COND_E; + } + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) + .addMBB(TrueMBB).addImm(JmpCond); + + finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); + return true; + } + } + } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { + // Fake request the condition, otherwise the intrinsic might be completely + // optimized away. + unsigned TmpReg = getRegForValue(BI->getCondition()); + if (TmpReg == 0) + return false; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) + .addMBB(TrueMBB).addImm(CC); + finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); + return true; + } + + // Otherwise do a clumsy setcc and re-test it. + // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used + // in an explicit cast, so make sure to handle that correctly. + unsigned OpReg = getRegForValue(BI->getCondition()); + if (OpReg == 0) return false; + + // In case OpReg is a K register, COPY to a GPR + if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { + unsigned KOpReg = OpReg; + OpReg = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), OpReg) + .addReg(KOpReg); + OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true, + X86::sub_8bit); + } + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) + .addReg(OpReg) + .addImm(1); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) + .addMBB(TrueMBB).addImm(X86::COND_NE); + finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); + return true; +} + +bool X86FastISel::X86SelectShift(const Instruction *I) { + unsigned CReg = 0, OpReg = 0; + const TargetRegisterClass *RC = nullptr; + if (I->getType()->isIntegerTy(8)) { + CReg = X86::CL; + RC = &X86::GR8RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR8rCL; break; + case Instruction::AShr: OpReg = X86::SAR8rCL; break; + case Instruction::Shl: OpReg = X86::SHL8rCL; break; + default: return false; + } + } else if (I->getType()->isIntegerTy(16)) { + CReg = X86::CX; + RC = &X86::GR16RegClass; + switch (I->getOpcode()) { + default: llvm_unreachable("Unexpected shift opcode"); + case Instruction::LShr: OpReg = X86::SHR16rCL; break; + case Instruction::AShr: OpReg = X86::SAR16rCL; break; + case Instruction::Shl: OpReg = X86::SHL16rCL; break; + } + } else if (I->getType()->isIntegerTy(32)) { + CReg = X86::ECX; + RC = &X86::GR32RegClass; + switch (I->getOpcode()) { + default: llvm_unreachable("Unexpected shift opcode"); + case Instruction::LShr: OpReg = X86::SHR32rCL; break; + case Instruction::AShr: OpReg = X86::SAR32rCL; break; + case Instruction::Shl: OpReg = X86::SHL32rCL; break; + } + } else if (I->getType()->isIntegerTy(64)) { + CReg = X86::RCX; + RC = &X86::GR64RegClass; + switch (I->getOpcode()) { + default: llvm_unreachable("Unexpected shift opcode"); + case Instruction::LShr: OpReg = X86::SHR64rCL; break; + case Instruction::AShr: OpReg = X86::SAR64rCL; break; + case Instruction::Shl: OpReg = X86::SHL64rCL; break; + } + } else { + return false; + } + + MVT VT; + if (!isTypeLegal(I->getType(), VT)) + return false; + + unsigned Op0Reg = getRegForValue(I->getOperand(0)); + if (Op0Reg == 0) return false; + + unsigned Op1Reg = getRegForValue(I->getOperand(1)); + if (Op1Reg == 0) return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), + CReg).addReg(Op1Reg); + + // The shift instruction uses X86::CL. If we defined a super-register + // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. + if (CReg != X86::CL) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::KILL), X86::CL) + .addReg(CReg, RegState::Kill); + + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) + .addReg(Op0Reg); + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectDivRem(const Instruction *I) { + const static unsigned NumTypes = 4; // i8, i16, i32, i64 + const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem + const static bool S = true; // IsSigned + const static bool U = false; // !IsSigned + const static unsigned Copy = TargetOpcode::COPY; + // For the X86 DIV/IDIV instruction, in most cases the dividend + // (numerator) must be in a specific register pair highreg:lowreg, + // producing the quotient in lowreg and the remainder in highreg. + // For most data types, to set up the instruction, the dividend is + // copied into lowreg, and lowreg is sign-extended or zero-extended + // into highreg. The exception is i8, where the dividend is defined + // as a single register rather than a register pair, and we + // therefore directly sign-extend or zero-extend the dividend into + // lowreg, instead of copying, and ignore the highreg. + const static struct DivRemEntry { + // The following portion depends only on the data type. + const TargetRegisterClass *RC; + unsigned LowInReg; // low part of the register pair + unsigned HighInReg; // high part of the register pair + // The following portion depends on both the data type and the operation. + struct DivRemResult { + unsigned OpDivRem; // The specific DIV/IDIV opcode to use. + unsigned OpSignExtend; // Opcode for sign-extending lowreg into + // highreg, or copying a zero into highreg. + unsigned OpCopy; // Opcode for copying dividend into lowreg, or + // zero/sign-extending into lowreg for i8. + unsigned DivRemResultReg; // Register containing the desired result. + bool IsOpSigned; // Whether to use signed or unsigned form. + } ResultTable[NumOps]; + } OpTable[NumTypes] = { + { &X86::GR8RegClass, X86::AX, 0, { + { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv + { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem + { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv + { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem + } + }, // i8 + { &X86::GR16RegClass, X86::AX, X86::DX, { + { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv + { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem + { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv + { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem + } + }, // i16 + { &X86::GR32RegClass, X86::EAX, X86::EDX, { + { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv + { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem + { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv + { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem + } + }, // i32 + { &X86::GR64RegClass, X86::RAX, X86::RDX, { + { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv + { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem + { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv + { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem + } + }, // i64 + }; + + MVT VT; + if (!isTypeLegal(I->getType(), VT)) + return false; + + unsigned TypeIndex, OpIndex; + switch (VT.SimpleTy) { + default: return false; + case MVT::i8: TypeIndex = 0; break; + case MVT::i16: TypeIndex = 1; break; + case MVT::i32: TypeIndex = 2; break; + case MVT::i64: TypeIndex = 3; + if (!Subtarget->is64Bit()) + return false; + break; + } + + switch (I->getOpcode()) { + default: llvm_unreachable("Unexpected div/rem opcode"); + case Instruction::SDiv: OpIndex = 0; break; + case Instruction::SRem: OpIndex = 1; break; + case Instruction::UDiv: OpIndex = 2; break; + case Instruction::URem: OpIndex = 3; break; + } + + const DivRemEntry &TypeEntry = OpTable[TypeIndex]; + const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; + unsigned Op0Reg = getRegForValue(I->getOperand(0)); + if (Op0Reg == 0) + return false; + unsigned Op1Reg = getRegForValue(I->getOperand(1)); + if (Op1Reg == 0) + return false; + + // Move op0 into low-order input register. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); + // Zero-extend or sign-extend into high-order input register. + if (OpEntry.OpSignExtend) { + if (OpEntry.IsOpSigned) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(OpEntry.OpSignExtend)); + else { + unsigned Zero32 = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(X86::MOV32r0), Zero32); + + // Copy the zero into the appropriate sub/super/identical physical + // register. Unfortunately the operations needed are not uniform enough + // to fit neatly into the table above. + if (VT == MVT::i16) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Copy), TypeEntry.HighInReg) + .addReg(Zero32, 0, X86::sub_16bit); + } else if (VT == MVT::i32) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Copy), TypeEntry.HighInReg) + .addReg(Zero32); + } else if (VT == MVT::i64) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) + .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); + } + } + } + // Generate the DIV/IDIV instruction. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); + // For i8 remainder, we can't reference ah directly, as we'll end + // up with bogus copies like %r9b = COPY %ah. Reference ax + // instead to prevent ah references in a rex instruction. + // + // The current assumption of the fast register allocator is that isel + // won't generate explicit references to the GR8_NOREX registers. If + // the allocator and/or the backend get enhanced to be more robust in + // that regard, this can be, and should be, removed. + unsigned ResultReg = 0; + if ((I->getOpcode() == Instruction::SRem || + I->getOpcode() == Instruction::URem) && + OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { + unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); + unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Copy), SourceSuperReg).addReg(X86::AX); + + // Shift AX right by 8 bits instead of using AH. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), + ResultSuperReg).addReg(SourceSuperReg).addImm(8); + + // Now reference the 8-bit subreg of the result. + ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, + /*Kill=*/true, X86::sub_8bit); + } + // Copy the result out of the physreg if we haven't already. + if (!ResultReg) { + ResultReg = createResultReg(TypeEntry.RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) + .addReg(OpEntry.DivRemResultReg); + } + updateValueMap(I, ResultReg); + + return true; +} + +/// Emit a conditional move instruction (if the are supported) to lower +/// the select. +bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { + // Check if the subtarget supports these instructions. + if (!Subtarget->hasCMov()) + return false; + + // FIXME: Add support for i8. + if (RetVT < MVT::i16 || RetVT > MVT::i64) + return false; + + const Value *Cond = I->getOperand(0); + const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + bool NeedTest = true; + X86::CondCode CC = X86::COND_NE; + + // Optimize conditions coming from a compare if both instructions are in the + // same basic block (values defined in other basic blocks may not have + // initialized registers). + const auto *CI = dyn_cast<CmpInst>(Cond); + if (CI && (CI->getParent() == I->getParent())) { + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + + // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. + static const uint16_t SETFOpcTable[2][3] = { + { X86::COND_NP, X86::COND_E, X86::TEST8rr }, + { X86::COND_P, X86::COND_NE, X86::OR8rr } + }; + const uint16_t *SETFOpc = nullptr; + switch (Predicate) { + default: break; + case CmpInst::FCMP_OEQ: + SETFOpc = &SETFOpcTable[0][0]; + Predicate = CmpInst::ICMP_NE; + break; + case CmpInst::FCMP_UNE: + SETFOpc = &SETFOpcTable[1][0]; + Predicate = CmpInst::ICMP_NE; + break; + } + + bool NeedSwap; + std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); + assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + + const Value *CmpLHS = CI->getOperand(0); + const Value *CmpRHS = CI->getOperand(1); + if (NeedSwap) + std::swap(CmpLHS, CmpRHS); + + EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); + // Emit a compare of the LHS and RHS, setting the flags. + if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) + return false; + + if (SETFOpc) { + unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); + unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), + FlagReg1).addImm(SETFOpc[0]); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), + FlagReg2).addImm(SETFOpc[1]); + auto const &II = TII.get(SETFOpc[2]); + if (II.getNumDefs()) { + unsigned TmpReg = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) + .addReg(FlagReg2).addReg(FlagReg1); + } else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) + .addReg(FlagReg2).addReg(FlagReg1); + } + } + NeedTest = false; + } else if (foldX86XALUIntrinsic(CC, I, Cond)) { + // Fake request the condition, otherwise the intrinsic might be completely + // optimized away. + unsigned TmpReg = getRegForValue(Cond); + if (TmpReg == 0) + return false; + + NeedTest = false; + } + + if (NeedTest) { + // Selects operate on i1, however, CondReg is 8 bits width and may contain + // garbage. Indeed, only the less significant bit is supposed to be + // accurate. If we read more than the lsb, we may see non-zero values + // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for + // the select. This is achieved by performing TEST against 1. + unsigned CondReg = getRegForValue(Cond); + if (CondReg == 0) + return false; + bool CondIsKill = hasTrivialKill(Cond); + + // In case OpReg is a K register, COPY to a GPR + if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { + unsigned KCondReg = CondReg; + CondReg = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), CondReg) + .addReg(KCondReg, getKillRegState(CondIsKill)); + CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, + X86::sub_8bit); + } + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) + .addReg(CondReg, getKillRegState(CondIsKill)) + .addImm(1); + } + + const Value *LHS = I->getOperand(1); + const Value *RHS = I->getOperand(2); + + unsigned RHSReg = getRegForValue(RHS); + bool RHSIsKill = hasTrivialKill(RHS); + + unsigned LHSReg = getRegForValue(LHS); + bool LHSIsKill = hasTrivialKill(LHS); + + if (!LHSReg || !RHSReg) + return false; + + const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); + unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); + unsigned ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, + LHSReg, LHSIsKill, CC); + updateValueMap(I, ResultReg); + return true; +} + +/// Emit SSE or AVX instructions to lower the select. +/// +/// Try to use SSE1/SSE2 instructions to simulate a select without branches. +/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary +/// SSE instructions are available. If AVX is available, try to use a VBLENDV. +bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { + // Optimize conditions coming from a compare if both instructions are in the + // same basic block (values defined in other basic blocks may not have + // initialized registers). + const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); + if (!CI || (CI->getParent() != I->getParent())) + return false; + + if (I->getType() != CI->getOperand(0)->getType() || + !((Subtarget->hasSSE1() && RetVT == MVT::f32) || + (Subtarget->hasSSE2() && RetVT == MVT::f64))) + return false; + + const Value *CmpLHS = CI->getOperand(0); + const Value *CmpRHS = CI->getOperand(1); + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + + // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. + // We don't have to materialize a zero constant for this case and can just use + // %x again on the RHS. + if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { + const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); + if (CmpRHSC && CmpRHSC->isNullValue()) + CmpRHS = CmpLHS; + } + + unsigned CC; + bool NeedSwap; + std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); + if (CC > 7 && !Subtarget->hasAVX()) + return false; + + if (NeedSwap) + std::swap(CmpLHS, CmpRHS); + + const Value *LHS = I->getOperand(1); + const Value *RHS = I->getOperand(2); + + unsigned LHSReg = getRegForValue(LHS); + bool LHSIsKill = hasTrivialKill(LHS); + + unsigned RHSReg = getRegForValue(RHS); + bool RHSIsKill = hasTrivialKill(RHS); + + unsigned CmpLHSReg = getRegForValue(CmpLHS); + bool CmpLHSIsKill = hasTrivialKill(CmpLHS); + + unsigned CmpRHSReg = getRegForValue(CmpRHS); + bool CmpRHSIsKill = hasTrivialKill(CmpRHS); + + if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) + return false; + + const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + unsigned ResultReg; + + if (Subtarget->hasAVX512()) { + // If we have AVX512 we can use a mask compare and masked movss/sd. + const TargetRegisterClass *VR128X = &X86::VR128XRegClass; + const TargetRegisterClass *VK1 = &X86::VK1RegClass; + + unsigned CmpOpcode = + (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; + unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill, + CmpRHSReg, CmpRHSIsKill, CC); + + // Need an IMPLICIT_DEF for the input that is used to generate the upper + // bits of the result register since its not based on any of the inputs. + unsigned ImplicitDefReg = createResultReg(VR128X); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); + + // Place RHSReg is the passthru of the masked movss/sd operation and put + // LHS in the input. The mask input comes from the compare. + unsigned MovOpcode = + (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; + unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill, + CmpReg, true, ImplicitDefReg, true, + LHSReg, LHSIsKill); + + ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); + + } else if (Subtarget->hasAVX()) { + const TargetRegisterClass *VR128 = &X86::VR128RegClass; + + // If we have AVX, create 1 blendv instead of 3 logic instructions. + // Blendv was introduced with SSE 4.1, but the 2 register form implicitly + // uses XMM0 as the selection register. That may need just as many + // instructions as the AND/ANDN/OR sequence due to register moves, so + // don't bother. + unsigned CmpOpcode = + (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; + unsigned BlendOpcode = + (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; + + unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill, + CmpRHSReg, CmpRHSIsKill, CC); + unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill, + LHSReg, LHSIsKill, CmpReg, true); + ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); + } else { + // Choose the SSE instruction sequence based on data type (float or double). + static const uint16_t OpcTable[2][4] = { + { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, + { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } + }; + + const uint16_t *Opc = nullptr; + switch (RetVT.SimpleTy) { + default: return false; + case MVT::f32: Opc = &OpcTable[0][0]; break; + case MVT::f64: Opc = &OpcTable[1][0]; break; + } + + const TargetRegisterClass *VR128 = &X86::VR128RegClass; + unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, + CmpRHSReg, CmpRHSIsKill, CC); + unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false, + LHSReg, LHSIsKill); + unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true, + RHSReg, RHSIsKill); + unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true, + AndReg, /*IsKill=*/true); + ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); + } + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { + // These are pseudo CMOV instructions and will be later expanded into control- + // flow. + unsigned Opc; + switch (RetVT.SimpleTy) { + default: return false; + case MVT::i8: Opc = X86::CMOV_GR8; break; + case MVT::i16: Opc = X86::CMOV_GR16; break; + case MVT::i32: Opc = X86::CMOV_GR32; break; + case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X + : X86::CMOV_FR32; break; + case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X + : X86::CMOV_FR64; break; + } + + const Value *Cond = I->getOperand(0); + X86::CondCode CC = X86::COND_NE; + + // Optimize conditions coming from a compare if both instructions are in the + // same basic block (values defined in other basic blocks may not have + // initialized registers). + const auto *CI = dyn_cast<CmpInst>(Cond); + if (CI && (CI->getParent() == I->getParent())) { + bool NeedSwap; + std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); + if (CC > X86::LAST_VALID_COND) + return false; + + const Value *CmpLHS = CI->getOperand(0); + const Value *CmpRHS = CI->getOperand(1); + + if (NeedSwap) + std::swap(CmpLHS, CmpRHS); + + EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); + if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) + return false; + } else { + unsigned CondReg = getRegForValue(Cond); + if (CondReg == 0) + return false; + bool CondIsKill = hasTrivialKill(Cond); + + // In case OpReg is a K register, COPY to a GPR + if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { + unsigned KCondReg = CondReg; + CondReg = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), CondReg) + .addReg(KCondReg, getKillRegState(CondIsKill)); + CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, + X86::sub_8bit); + } + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) + .addReg(CondReg, getKillRegState(CondIsKill)) + .addImm(1); + } + + const Value *LHS = I->getOperand(1); + const Value *RHS = I->getOperand(2); + + unsigned LHSReg = getRegForValue(LHS); + bool LHSIsKill = hasTrivialKill(LHS); + + unsigned RHSReg = getRegForValue(RHS); + bool RHSIsKill = hasTrivialKill(RHS); + + if (!LHSReg || !RHSReg) + return false; + + const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + + unsigned ResultReg = + fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectSelect(const Instruction *I) { + MVT RetVT; + if (!isTypeLegal(I->getType(), RetVT)) + return false; + + // Check if we can fold the select. + if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + const Value *Opnd = nullptr; + switch (Predicate) { + default: break; + case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; + case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; + } + // No need for a select anymore - this is an unconditional move. + if (Opnd) { + unsigned OpReg = getRegForValue(Opnd); + if (OpReg == 0) + return false; + bool OpIsKill = hasTrivialKill(Opnd); + const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg) + .addReg(OpReg, getKillRegState(OpIsKill)); + updateValueMap(I, ResultReg); + return true; + } + } + + // First try to use real conditional move instructions. + if (X86FastEmitCMoveSelect(RetVT, I)) + return true; + + // Try to use a sequence of SSE instructions to simulate a conditional move. + if (X86FastEmitSSESelect(RetVT, I)) + return true; + + // Fall-back to pseudo conditional move instructions, which will be later + // converted to control-flow. + if (X86FastEmitPseudoSelect(RetVT, I)) + return true; + + return false; +} + +// Common code for X86SelectSIToFP and X86SelectUIToFP. +bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { + // The target-independent selection algorithm in FastISel already knows how + // to select a SINT_TO_FP if the target is SSE but not AVX. + // Early exit if the subtarget doesn't have AVX. + // Unsigned conversion requires avx512. + bool HasAVX512 = Subtarget->hasAVX512(); + if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) + return false; + + // TODO: We could sign extend narrower types. + MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); + if (SrcVT != MVT::i32 && SrcVT != MVT::i64) + return false; + + // Select integer to float/double conversion. + unsigned OpReg = getRegForValue(I->getOperand(0)); + if (OpReg == 0) + return false; + + unsigned Opcode; + + static const uint16_t SCvtOpc[2][2][2] = { + { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, + { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, + { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, + { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, + }; + static const uint16_t UCvtOpc[2][2] = { + { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, + { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, + }; + bool Is64Bit = SrcVT == MVT::i64; + + if (I->getType()->isDoubleTy()) { + // s/uitofp int -> double + Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; + } else if (I->getType()->isFloatTy()) { + // s/uitofp int -> float + Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; + } else + return false; + + MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); + const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); + unsigned ImplicitDefReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); + unsigned ResultReg = + fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false); + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectSIToFP(const Instruction *I) { + return X86SelectIntToFP(I, /*IsSigned*/true); +} + +bool X86FastISel::X86SelectUIToFP(const Instruction *I) { + return X86SelectIntToFP(I, /*IsSigned*/false); +} + +// Helper method used by X86SelectFPExt and X86SelectFPTrunc. +bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, + unsigned TargetOpc, + const TargetRegisterClass *RC) { + assert((I->getOpcode() == Instruction::FPExt || + I->getOpcode() == Instruction::FPTrunc) && + "Instruction must be an FPExt or FPTrunc!"); + bool HasAVX = Subtarget->hasAVX(); + + unsigned OpReg = getRegForValue(I->getOperand(0)); + if (OpReg == 0) + return false; + + unsigned ImplicitDefReg; + if (HasAVX) { + ImplicitDefReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); + + } + + unsigned ResultReg = createResultReg(RC); + MachineInstrBuilder MIB; + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), + ResultReg); + + if (HasAVX) + MIB.addReg(ImplicitDefReg); + + MIB.addReg(OpReg); + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectFPExt(const Instruction *I) { + if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && + I->getOperand(0)->getType()->isFloatTy()) { + bool HasAVX512 = Subtarget->hasAVX512(); + // fpext from float to double. + unsigned Opc = + HasAVX512 ? X86::VCVTSS2SDZrr + : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; + return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); + } + + return false; +} + +bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { + if (X86ScalarSSEf64 && I->getType()->isFloatTy() && + I->getOperand(0)->getType()->isDoubleTy()) { + bool HasAVX512 = Subtarget->hasAVX512(); + // fptrunc from double to float. + unsigned Opc = + HasAVX512 ? X86::VCVTSD2SSZrr + : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; + return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); + } + + return false; +} + +bool X86FastISel::X86SelectTrunc(const Instruction *I) { + EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(DL, I->getType()); + + // This code only handles truncation to byte. + if (DstVT != MVT::i8 && DstVT != MVT::i1) + return false; + if (!TLI.isTypeLegal(SrcVT)) + return false; + + unsigned InputReg = getRegForValue(I->getOperand(0)); + if (!InputReg) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + if (SrcVT == MVT::i8) { + // Truncate from i8 to i1; no code needed. + updateValueMap(I, InputReg); + return true; + } + + // Issue an extract_subreg. + unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8, + InputReg, false, + X86::sub_8bit); + if (!ResultReg) + return false; + + updateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::IsMemcpySmall(uint64_t Len) { + return Len <= (Subtarget->is64Bit() ? 32 : 16); +} + +bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, + X86AddressMode SrcAM, uint64_t Len) { + + // Make sure we don't bloat code by inlining very large memcpy's. + if (!IsMemcpySmall(Len)) + return false; + + bool i64Legal = Subtarget->is64Bit(); + + // We don't care about alignment here since we just emit integer accesses. + while (Len) { + MVT VT; + if (Len >= 8 && i64Legal) + VT = MVT::i64; + else if (Len >= 4) + VT = MVT::i32; + else if (Len >= 2) + VT = MVT::i16; + else + VT = MVT::i8; + + unsigned Reg; + bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); + RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); + assert(RV && "Failed to emit load or store??"); + + unsigned Size = VT.getSizeInBits()/8; + Len -= Size; + DestAM.Disp += Size; + SrcAM.Disp += Size; + } + + return true; +} + +bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { + // FIXME: Handle more intrinsics. + switch (II->getIntrinsicID()) { + default: return false; + case Intrinsic::convert_from_fp16: + case Intrinsic::convert_to_fp16: { + if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) + return false; + + const Value *Op = II->getArgOperand(0); + unsigned InputReg = getRegForValue(Op); + if (InputReg == 0) + return false; + + // F16C only allows converting from float to half and from half to float. + bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; + if (IsFloatToHalf) { + if (!Op->getType()->isFloatTy()) + return false; + } else { + if (!II->getType()->isFloatTy()) + return false; + } + + unsigned ResultReg = 0; + const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); + if (IsFloatToHalf) { + // 'InputReg' is implicitly promoted from register class FR32 to + // register class VR128 by method 'constrainOperandRegClass' which is + // directly called by 'fastEmitInst_ri'. + // Instruction VCVTPS2PHrr takes an extra immediate operand which is + // used to provide rounding control: use MXCSR.RC, encoded as 0b100. + // It's consistent with the other FP instructions, which are usually + // controlled by MXCSR. + InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4); + + // Move the lower 32-bits of ResultReg to another register of class GR32. + ResultReg = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(X86::VMOVPDI2DIrr), ResultReg) + .addReg(InputReg, RegState::Kill); + + // The result value is in the lower 16-bits of ResultReg. + unsigned RegIdx = X86::sub_16bit; + ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx); + } else { + assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); + // Explicitly sign-extend the input to 32-bit. + InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg, + /*Kill=*/false); + + // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. + InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, + InputReg, /*Kill=*/true); + + InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true); + + // The result value is in the lower 32-bits of ResultReg. + // Emit an explicit copy from register class VR128 to register class FR32. + ResultReg = createResultReg(&X86::FR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg) + .addReg(InputReg, RegState::Kill); + } + + updateValueMap(II, ResultReg); + return true; + } + case Intrinsic::frameaddress: { + MachineFunction *MF = FuncInfo.MF; + if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) + return false; + + Type *RetTy = II->getCalledFunction()->getReturnType(); + + MVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + unsigned Opc; + const TargetRegisterClass *RC = nullptr; + + switch (VT.SimpleTy) { + default: llvm_unreachable("Invalid result type for frameaddress."); + case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; + case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; + } + + // This needs to be set before we call getPtrSizedFrameRegister, otherwise + // we get the wrong frame register. + MachineFrameInfo &MFI = MF->getFrameInfo(); + MFI.setFrameAddressIsTaken(true); + + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); + assert(((FrameReg == X86::RBP && VT == MVT::i64) || + (FrameReg == X86::EBP && VT == MVT::i32)) && + "Invalid Frame Register!"); + + // Always make a copy of the frame register to a vreg first, so that we + // never directly reference the frame register (the TwoAddressInstruction- + // Pass doesn't like that). + unsigned SrcReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); + + // Now recursively load from the frame address. + // movq (%rbp), %rax + // movq (%rax), %rax + // movq (%rax), %rax + // ... + unsigned DestReg; + unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); + while (Depth--) { + DestReg = createResultReg(RC); + addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), DestReg), SrcReg); + SrcReg = DestReg; + } + + updateValueMap(II, SrcReg); + return true; + } + case Intrinsic::memcpy: { + const MemCpyInst *MCI = cast<MemCpyInst>(II); + // Don't handle volatile or variable length memcpys. + if (MCI->isVolatile()) + return false; + + if (isa<ConstantInt>(MCI->getLength())) { + // Small memcpy's are common enough that we want to do them + // without a call if possible. + uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); + if (IsMemcpySmall(Len)) { + X86AddressMode DestAM, SrcAM; + if (!X86SelectAddress(MCI->getRawDest(), DestAM) || + !X86SelectAddress(MCI->getRawSource(), SrcAM)) + return false; + TryEmitSmallMemcpy(DestAM, SrcAM, Len); + return true; + } + } + + unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; + if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) + return false; + + if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) + return false; + + return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1); + } + case Intrinsic::memset: { + const MemSetInst *MSI = cast<MemSetInst>(II); + + if (MSI->isVolatile()) + return false; + + unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; + if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) + return false; + + if (MSI->getDestAddressSpace() > 255) + return false; + + return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); + } + case Intrinsic::stackprotector: { + // Emit code to store the stack guard onto the stack. + EVT PtrTy = TLI.getPointerTy(DL); + + const Value *Op1 = II->getArgOperand(0); // The guard's value. + const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); + + MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); + + // Grab the frame index. + X86AddressMode AM; + if (!X86SelectAddress(Slot, AM)) return false; + if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; + return true; + } + case Intrinsic::dbg_declare: { + const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); + X86AddressMode AM; + assert(DI->getAddress() && "Null address should be checked earlier!"); + if (!X86SelectAddress(DI->getAddress(), AM)) + return false; + const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); + // FIXME may need to add RegState::Debug to any registers produced, + // although ESP/EBP should be the only ones at the moment. + assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && + "Expected inlined-at fields to agree"); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) + .addImm(0) + .addMetadata(DI->getVariable()) + .addMetadata(DI->getExpression()); + return true; + } + case Intrinsic::trap: { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); + return true; + } + case Intrinsic::sqrt: { + if (!Subtarget->hasSSE1()) + return false; + + Type *RetTy = II->getCalledFunction()->getReturnType(); + + MVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT + // is not generated by FastISel yet. + // FIXME: Update this code once tablegen can handle it. + static const uint16_t SqrtOpc[3][2] = { + { X86::SQRTSSr, X86::SQRTSDr }, + { X86::VSQRTSSr, X86::VSQRTSDr }, + { X86::VSQRTSSZr, X86::VSQRTSDZr }, + }; + unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : + Subtarget->hasAVX() ? 1 : + 0; + unsigned Opc; + switch (VT.SimpleTy) { + default: return false; + case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; + case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; + } + + const Value *SrcVal = II->getArgOperand(0); + unsigned SrcReg = getRegForValue(SrcVal); + + if (SrcReg == 0) + return false; + + const TargetRegisterClass *RC = TLI.getRegClassFor(VT); + unsigned ImplicitDefReg = 0; + if (AVXLevel > 0) { + ImplicitDefReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); + } + + unsigned ResultReg = createResultReg(RC); + MachineInstrBuilder MIB; + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), + ResultReg); + + if (ImplicitDefReg) + MIB.addReg(ImplicitDefReg); + + MIB.addReg(SrcReg); + + updateValueMap(II, ResultReg); + return true; + } + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::usub_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::umul_with_overflow: { + // This implements the basic lowering of the xalu with overflow intrinsics + // into add/sub/mul followed by either seto or setb. + const Function *Callee = II->getCalledFunction(); + auto *Ty = cast<StructType>(Callee->getReturnType()); + Type *RetTy = Ty->getTypeAtIndex(0U); + assert(Ty->getTypeAtIndex(1)->isIntegerTy() && + Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && + "Overflow value expected to be an i1"); + + MVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + if (VT < MVT::i8 || VT > MVT::i64) + return false; + + const Value *LHS = II->getArgOperand(0); + const Value *RHS = II->getArgOperand(1); + + // Canonicalize immediate to the RHS. + if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && + isCommutativeIntrinsic(II)) + std::swap(LHS, RHS); + + unsigned BaseOpc, CondCode; + switch (II->getIntrinsicID()) { + default: llvm_unreachable("Unexpected intrinsic!"); + case Intrinsic::sadd_with_overflow: + BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; + case Intrinsic::uadd_with_overflow: + BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; + case Intrinsic::ssub_with_overflow: + BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; + case Intrinsic::usub_with_overflow: + BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; + case Intrinsic::smul_with_overflow: + BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; + case Intrinsic::umul_with_overflow: + BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; + } + + unsigned LHSReg = getRegForValue(LHS); + if (LHSReg == 0) + return false; + bool LHSIsKill = hasTrivialKill(LHS); + + unsigned ResultReg = 0; + // Check if we have an immediate version. + if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { + static const uint16_t Opc[2][4] = { + { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, + { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } + }; + + if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && + CondCode == X86::COND_O) { + // We can use INC/DEC. + ResultReg = createResultReg(TLI.getRegClassFor(VT)); + bool IsDec = BaseOpc == ISD::SUB; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) + .addReg(LHSReg, getKillRegState(LHSIsKill)); + } else + ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, + CI->getZExtValue()); + } + + unsigned RHSReg; + bool RHSIsKill; + if (!ResultReg) { + RHSReg = getRegForValue(RHS); + if (RHSReg == 0) + return false; + RHSIsKill = hasTrivialKill(RHS); + ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, + RHSIsKill); + } + + // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit + // it manually. + if (BaseOpc == X86ISD::UMUL && !ResultReg) { + static const uint16_t MULOpc[] = + { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; + static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; + // First copy the first operand into RAX, which is an implicit input to + // the X86::MUL*r instruction. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) + .addReg(LHSReg, getKillRegState(LHSIsKill)); + ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], + TLI.getRegClassFor(VT), RHSReg, RHSIsKill); + } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { + static const uint16_t MULOpc[] = + { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; + if (VT == MVT::i8) { + // Copy the first operand into AL, which is an implicit input to the + // X86::IMUL8r instruction. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), X86::AL) + .addReg(LHSReg, getKillRegState(LHSIsKill)); + ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, + RHSIsKill); + } else + ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], + TLI.getRegClassFor(VT), LHSReg, LHSIsKill, + RHSReg, RHSIsKill); + } + + if (!ResultReg) + return false; + + // Assign to a GPR since the overflow return value is lowered to a SETcc. + unsigned ResultReg2 = createResultReg(&X86::GR8RegClass); + assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), + ResultReg2).addImm(CondCode); + + updateValueMap(II, ResultReg, 2); + return true; + } + case Intrinsic::x86_sse_cvttss2si: + case Intrinsic::x86_sse_cvttss2si64: + case Intrinsic::x86_sse2_cvttsd2si: + case Intrinsic::x86_sse2_cvttsd2si64: { + bool IsInputDouble; + switch (II->getIntrinsicID()) { + default: llvm_unreachable("Unexpected intrinsic."); + case Intrinsic::x86_sse_cvttss2si: + case Intrinsic::x86_sse_cvttss2si64: + if (!Subtarget->hasSSE1()) + return false; + IsInputDouble = false; + break; + case Intrinsic::x86_sse2_cvttsd2si: + case Intrinsic::x86_sse2_cvttsd2si64: + if (!Subtarget->hasSSE2()) + return false; + IsInputDouble = true; + break; + } + + Type *RetTy = II->getCalledFunction()->getReturnType(); + MVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + static const uint16_t CvtOpc[3][2][2] = { + { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, + { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, + { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, + { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, + { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, + { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, + }; + unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : + Subtarget->hasAVX() ? 1 : + 0; + unsigned Opc; + switch (VT.SimpleTy) { + default: llvm_unreachable("Unexpected result type."); + case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; + case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; + } + + // Check if we can fold insertelement instructions into the convert. + const Value *Op = II->getArgOperand(0); + while (auto *IE = dyn_cast<InsertElementInst>(Op)) { + const Value *Index = IE->getOperand(2); + if (!isa<ConstantInt>(Index)) + break; + unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); + + if (Idx == 0) { + Op = IE->getOperand(1); + break; + } + Op = IE->getOperand(0); + } + + unsigned Reg = getRegForValue(Op); + if (Reg == 0) + return false; + + unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) + .addReg(Reg); + + updateValueMap(II, ResultReg); + return true; + } + } +} + +bool X86FastISel::fastLowerArguments() { + if (!FuncInfo.CanLowerReturn) + return false; + + const Function *F = FuncInfo.Fn; + if (F->isVarArg()) + return false; + + CallingConv::ID CC = F->getCallingConv(); + if (CC != CallingConv::C) + return false; + + if (Subtarget->isCallingConvWin64(CC)) + return false; + + if (!Subtarget->is64Bit()) + return false; + + if (Subtarget->useSoftFloat()) + return false; + + // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. + unsigned GPRCnt = 0; + unsigned FPRCnt = 0; + for (auto const &Arg : F->args()) { + if (Arg.hasAttribute(Attribute::ByVal) || + Arg.hasAttribute(Attribute::InReg) || + Arg.hasAttribute(Attribute::StructRet) || + Arg.hasAttribute(Attribute::SwiftSelf) || + Arg.hasAttribute(Attribute::SwiftError) || + Arg.hasAttribute(Attribute::Nest)) + return false; + + Type *ArgTy = Arg.getType(); + if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) + return false; + + EVT ArgVT = TLI.getValueType(DL, ArgTy); + if (!ArgVT.isSimple()) return false; + switch (ArgVT.getSimpleVT().SimpleTy) { + default: return false; + case MVT::i32: + case MVT::i64: + ++GPRCnt; + break; + case MVT::f32: + case MVT::f64: + if (!Subtarget->hasSSE1()) + return false; + ++FPRCnt; + break; + } + + if (GPRCnt > 6) + return false; + + if (FPRCnt > 8) + return false; + } + + static const MCPhysReg GPR32ArgRegs[] = { + X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D + }; + static const MCPhysReg GPR64ArgRegs[] = { + X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 + }; + static const MCPhysReg XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + + unsigned GPRIdx = 0; + unsigned FPRIdx = 0; + for (auto const &Arg : F->args()) { + MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); + const TargetRegisterClass *RC = TLI.getRegClassFor(VT); + unsigned SrcReg; + switch (VT.SimpleTy) { + default: llvm_unreachable("Unexpected value type."); + case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; + case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; + case MVT::f32: LLVM_FALLTHROUGH; + case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; + } + unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); + // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. + // Without this, EmitLiveInCopies may eliminate the livein if its only + // use is a bitcast (which isn't turned into an instruction). + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg) + .addReg(DstReg, getKillRegState(true)); + updateValueMap(&Arg, ResultReg); + } + return true; +} + +static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, + CallingConv::ID CC, + ImmutableCallSite *CS) { + if (Subtarget->is64Bit()) + return 0; + if (Subtarget->getTargetTriple().isOSMSVCRT()) + return 0; + if (CC == CallingConv::Fast || CC == CallingConv::GHC || + CC == CallingConv::HiPE) + return 0; + + if (CS) + if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) || + CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) + return 0; + + return 4; +} + +bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { + auto &OutVals = CLI.OutVals; + auto &OutFlags = CLI.OutFlags; + auto &OutRegs = CLI.OutRegs; + auto &Ins = CLI.Ins; + auto &InRegs = CLI.InRegs; + CallingConv::ID CC = CLI.CallConv; + bool &IsTailCall = CLI.IsTailCall; + bool IsVarArg = CLI.IsVarArg; + const Value *Callee = CLI.Callee; + MCSymbol *Symbol = CLI.Symbol; + + bool Is64Bit = Subtarget->is64Bit(); + bool IsWin64 = Subtarget->isCallingConvWin64(CC); + + const CallInst *CI = + CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr; + const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr; + + // Call / invoke instructions with NoCfCheck attribute require special + // handling. + const auto *II = + CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr; + if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck())) + return false; + + // Functions with no_caller_saved_registers that need special handling. + if ((CI && CI->hasFnAttr("no_caller_saved_registers")) || + (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers"))) + return false; + + // Functions using retpoline for indirect calls need to use SDISel. + if (Subtarget->useRetpolineIndirectCalls()) + return false; + + // Handle only C, fastcc, and webkit_js calling conventions for now. + switch (CC) { + default: return false; + case CallingConv::C: + case CallingConv::Fast: + case CallingConv::WebKit_JS: + case CallingConv::Swift: + case CallingConv::X86_FastCall: + case CallingConv::X86_StdCall: + case CallingConv::X86_ThisCall: + case CallingConv::Win64: + case CallingConv::X86_64_SysV: + break; + } + + // Allow SelectionDAG isel to handle tail calls. + if (IsTailCall) + return false; + + // fastcc with -tailcallopt is intended to provide a guaranteed + // tail call optimization. Fastisel doesn't know how to do that. + if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) + return false; + + // Don't know how to handle Win64 varargs yet. Nothing special needed for + // x86-32. Special handling for x86-64 is implemented. + if (IsVarArg && IsWin64) + return false; + + // Don't know about inalloca yet. + if (CLI.CS && CLI.CS->hasInAllocaArgument()) + return false; + + for (auto Flag : CLI.OutFlags) + if (Flag.isSwiftError()) + return false; + + SmallVector<MVT, 16> OutVTs; + SmallVector<unsigned, 16> ArgRegs; + + // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra + // instruction. This is safe because it is common to all FastISel supported + // calling conventions on x86. + for (int i = 0, e = OutVals.size(); i != e; ++i) { + Value *&Val = OutVals[i]; + ISD::ArgFlagsTy Flags = OutFlags[i]; + if (auto *CI = dyn_cast<ConstantInt>(Val)) { + if (CI->getBitWidth() < 32) { + if (Flags.isSExt()) + Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); + else + Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); + } + } + + // Passing bools around ends up doing a trunc to i1 and passing it. + // Codegen this as an argument + "and 1". + MVT VT; + auto *TI = dyn_cast<TruncInst>(Val); + unsigned ResultReg; + if (TI && TI->getType()->isIntegerTy(1) && CLI.CS && + (TI->getParent() == CLI.CS->getInstruction()->getParent()) && + TI->hasOneUse()) { + Value *PrevVal = TI->getOperand(0); + ResultReg = getRegForValue(PrevVal); + + if (!ResultReg) + return false; + + if (!isTypeLegal(PrevVal->getType(), VT)) + return false; + + ResultReg = + fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); + } else { + if (!isTypeLegal(Val->getType(), VT)) + return false; + ResultReg = getRegForValue(Val); + } + + if (!ResultReg) + return false; + + ArgRegs.push_back(ResultReg); + OutVTs.push_back(VT); + } + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); + + // Allocate shadow area for Win64 + if (IsWin64) + CCInfo.AllocateStack(32, 8); + + CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); + + // Issue CALLSEQ_START + unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) + .addImm(NumBytes).addImm(0).addImm(0); + + // Walk the register/memloc assignments, inserting copies/loads. + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign const &VA = ArgLocs[i]; + const Value *ArgVal = OutVals[VA.getValNo()]; + MVT ArgVT = OutVTs[VA.getValNo()]; + + if (ArgVT == MVT::x86mmx) + return false; + + unsigned ArgReg = ArgRegs[VA.getValNo()]; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + case CCValAssign::Full: break; + case CCValAssign::SExt: { + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); + + if (ArgVT == MVT::i1) + return false; + + bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); + assert(Emitted && "Failed to emit a sext!"); (void)Emitted; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::ZExt: { + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); + + // Handle zero-extension from i1 to i8, which is common. + if (ArgVT == MVT::i1) { + // Set the high bits to zero. + ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false); + ArgVT = MVT::i8; + + if (ArgReg == 0) + return false; + } + + bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); + assert(Emitted && "Failed to emit a zext!"); (void)Emitted; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::AExt: { + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); + bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); + if (!Emitted) + Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); + if (!Emitted) + Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); + + assert(Emitted && "Failed to emit a aext!"); (void)Emitted; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::BCvt: { + ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, + /*TODO: Kill=*/false); + assert(ArgReg && "Failed to emit a bitcast!"); + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::VExt: + // VExt has not been implemented, so this should be impossible to reach + // for now. However, fallback to Selection DAG isel once implemented. + return false; + case CCValAssign::AExtUpper: + case CCValAssign::SExtUpper: + case CCValAssign::ZExtUpper: + case CCValAssign::FPExt: + llvm_unreachable("Unexpected loc info!"); + case CCValAssign::Indirect: + // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully + // support this. + return false; + } + + if (VA.isRegLoc()) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); + OutRegs.push_back(VA.getLocReg()); + } else { + assert(VA.isMemLoc()); + + // Don't emit stores for undef values. + if (isa<UndefValue>(ArgVal)) + continue; + + unsigned LocMemOffset = VA.getLocMemOffset(); + X86AddressMode AM; + AM.Base.Reg = RegInfo->getStackRegister(); + AM.Disp = LocMemOffset; + ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; + unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); + MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( + MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), + MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); + if (Flags.isByVal()) { + X86AddressMode SrcAM; + SrcAM.Base.Reg = ArgReg; + if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) + return false; + } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { + // If this is a really simple value, emit this with the Value* version + // of X86FastEmitStore. If it isn't simple, we don't want to do this, + // as it can cause us to reevaluate the argument. + if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) + return false; + } else { + bool ValIsKill = hasTrivialKill(ArgVal); + if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) + return false; + } + } + } + + // ELF / PIC requires GOT in the EBX register before function calls via PLT + // GOT pointer. + if (Subtarget->isPICStyleGOT()) { + unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); + } + + if (Is64Bit && IsVarArg && !IsWin64) { + // From AMD64 ABI document: + // For calls that may call functions that use varargs or stdargs + // (prototype-less calls or calls to functions containing ellipsis (...) in + // the declaration) %al is used as hidden argument to specify the number + // of SSE registers used. The contents of %al do not need to match exactly + // the number of registers, but must be an ubound on the number of SSE + // registers used and is in the range 0 - 8 inclusive. + + // Count the number of XMM registers allocated. + static const MCPhysReg XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); + assert((Subtarget->hasSSE1() || !NumXMMRegs) + && "SSE registers cannot be used when SSE is disabled"); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), + X86::AL).addImm(NumXMMRegs); + } + + // Materialize callee address in a register. FIXME: GV address can be + // handled with a CALLpcrel32 instead. + X86AddressMode CalleeAM; + if (!X86SelectCallAddress(Callee, CalleeAM)) + return false; + + unsigned CalleeOp = 0; + const GlobalValue *GV = nullptr; + if (CalleeAM.GV != nullptr) { + GV = CalleeAM.GV; + } else if (CalleeAM.Base.Reg != 0) { + CalleeOp = CalleeAM.Base.Reg; + } else + return false; + + // Issue the call. + MachineInstrBuilder MIB; + if (CalleeOp) { + // Register-indirect call. + unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) + .addReg(CalleeOp); + } else { + // Direct call. + assert(GV && "Not a direct call"); + // See if we need any target-specific flags on the GV operand. + unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); + + // This will be a direct call, or an indirect call through memory for + // NonLazyBind calls or dllimport calls. + bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || + OpFlags == X86II::MO_GOTPCREL || + OpFlags == X86II::MO_COFFSTUB; + unsigned CallOpc = NeedLoad + ? (Is64Bit ? X86::CALL64m : X86::CALL32m) + : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); + + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); + if (NeedLoad) + MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); + if (Symbol) + MIB.addSym(Symbol, OpFlags); + else + MIB.addGlobalAddress(GV, 0, OpFlags); + if (NeedLoad) + MIB.addReg(0); + } + + // Add a register mask operand representing the call-preserved registers. + // Proper defs for return values will be added by setPhysRegsDeadExcept(). + MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); + + // Add an implicit use GOT pointer in EBX. + if (Subtarget->isPICStyleGOT()) + MIB.addReg(X86::EBX, RegState::Implicit); + + if (Is64Bit && IsVarArg && !IsWin64) + MIB.addReg(X86::AL, RegState::Implicit); + + // Add implicit physical register uses to the call. + for (auto Reg : OutRegs) + MIB.addReg(Reg, RegState::Implicit); + + // Issue CALLSEQ_END + unsigned NumBytesForCalleeToPop = + X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, + TM.Options.GuaranteedTailCallOpt) + ? NumBytes // Callee pops everything. + : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS); + unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) + .addImm(NumBytes).addImm(NumBytesForCalleeToPop); + + // Now handle call return values. + SmallVector<CCValAssign, 16> RVLocs; + CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, + CLI.RetTy->getContext()); + CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); + + // Copy all of the result registers out of their specified physreg. + unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + EVT CopyVT = VA.getValVT(); + unsigned CopyReg = ResultReg + i; + unsigned SrcReg = VA.getLocReg(); + + // If this is x86-64, and we disabled SSE, we can't return FP values + if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && + ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { + report_fatal_error("SSE register return with SSE disabled"); + } + + // If we prefer to use the value in xmm registers, copy it out as f80 and + // use a truncate to move it from fp stack reg to xmm reg. + if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && + isScalarFPTypeInSSEReg(VA.getValVT())) { + CopyVT = MVT::f80; + CopyReg = createResultReg(&X86::RFP80RegClass); + } + + // Copy out the result. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); + InRegs.push_back(VA.getLocReg()); + + // Round the f80 to the right size, which also moves it to the appropriate + // xmm register. This is accomplished by storing the f80 value in memory + // and then loading it back. + if (CopyVT != VA.getValVT()) { + EVT ResVT = VA.getValVT(); + unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; + unsigned MemSize = ResVT.getSizeInBits()/8; + int FI = MFI.CreateStackObject(MemSize, MemSize, false); + addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc)), FI) + .addReg(CopyReg); + Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; + addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), ResultReg + i), FI); + } + } + + CLI.ResultReg = ResultReg; + CLI.NumResultRegs = RVLocs.size(); + CLI.Call = MIB; + + return true; +} + +bool +X86FastISel::fastSelectInstruction(const Instruction *I) { + switch (I->getOpcode()) { + default: break; + case Instruction::Load: + return X86SelectLoad(I); + case Instruction::Store: + return X86SelectStore(I); + case Instruction::Ret: + return X86SelectRet(I); + case Instruction::ICmp: + case Instruction::FCmp: + return X86SelectCmp(I); + case Instruction::ZExt: + return X86SelectZExt(I); + case Instruction::SExt: + return X86SelectSExt(I); + case Instruction::Br: + return X86SelectBranch(I); + case Instruction::LShr: + case Instruction::AShr: + case Instruction::Shl: + return X86SelectShift(I); + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + return X86SelectDivRem(I); + case Instruction::Select: + return X86SelectSelect(I); + case Instruction::Trunc: + return X86SelectTrunc(I); + case Instruction::FPExt: + return X86SelectFPExt(I); + case Instruction::FPTrunc: + return X86SelectFPTrunc(I); + case Instruction::SIToFP: + return X86SelectSIToFP(I); + case Instruction::UIToFP: + return X86SelectUIToFP(I); + case Instruction::IntToPtr: // Deliberate fall-through. + case Instruction::PtrToInt: { + EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(DL, I->getType()); + if (DstVT.bitsGT(SrcVT)) + return X86SelectZExt(I); + if (DstVT.bitsLT(SrcVT)) + return X86SelectTrunc(I); + unsigned Reg = getRegForValue(I->getOperand(0)); + if (Reg == 0) return false; + updateValueMap(I, Reg); + return true; + } + case Instruction::BitCast: { + // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. + if (!Subtarget->hasSSE2()) + return false; + + MVT SrcVT, DstVT; + if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || + !isTypeLegal(I->getType(), DstVT)) + return false; + + // Only allow vectors that use xmm/ymm/zmm. + if (!SrcVT.isVector() || !DstVT.isVector() || + SrcVT.getVectorElementType() == MVT::i1 || + DstVT.getVectorElementType() == MVT::i1) + return false; + + unsigned Reg = getRegForValue(I->getOperand(0)); + if (Reg == 0) + return false; + + // No instruction is needed for conversion. Reuse the register used by + // the fist operand. + updateValueMap(I, Reg); + return true; + } + } + + return false; +} + +unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { + if (VT > MVT::i64) + return 0; + + uint64_t Imm = CI->getZExtValue(); + if (Imm == 0) { + unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); + switch (VT.SimpleTy) { + default: llvm_unreachable("Unexpected value type"); + case MVT::i1: + case MVT::i8: + return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, + X86::sub_8bit); + case MVT::i16: + return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, + X86::sub_16bit); + case MVT::i32: + return SrcReg; + case MVT::i64: { + unsigned ResultReg = createResultReg(&X86::GR64RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) + .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); + return ResultReg; + } + } + } + + unsigned Opc = 0; + switch (VT.SimpleTy) { + default: llvm_unreachable("Unexpected value type"); + case MVT::i1: + VT = MVT::i8; + LLVM_FALLTHROUGH; + case MVT::i8: Opc = X86::MOV8ri; break; + case MVT::i16: Opc = X86::MOV16ri; break; + case MVT::i32: Opc = X86::MOV32ri; break; + case MVT::i64: { + if (isUInt<32>(Imm)) + Opc = X86::MOV32ri64; + else if (isInt<32>(Imm)) + Opc = X86::MOV64ri32; + else + Opc = X86::MOV64ri; + break; + } + } + return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); +} + +unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { + if (CFP->isNullValue()) + return fastMaterializeFloatZero(CFP); + + // Can't handle alternate code models yet. + CodeModel::Model CM = TM.getCodeModel(); + if (CM != CodeModel::Small && CM != CodeModel::Large) + return 0; + + // Get opcode and regclass of the output for the given load instruction. + unsigned Opc = 0; + bool HasAVX = Subtarget->hasAVX(); + bool HasAVX512 = Subtarget->hasAVX512(); + switch (VT.SimpleTy) { + default: return 0; + case MVT::f32: + if (X86ScalarSSEf32) + Opc = HasAVX512 ? X86::VMOVSSZrm_alt : + HasAVX ? X86::VMOVSSrm_alt : + X86::MOVSSrm_alt; + else + Opc = X86::LD_Fp32m; + break; + case MVT::f64: + if (X86ScalarSSEf64) + Opc = HasAVX512 ? X86::VMOVSDZrm_alt : + HasAVX ? X86::VMOVSDrm_alt : + X86::MOVSDrm_alt; + else + Opc = X86::LD_Fp64m; + break; + case MVT::f80: + // No f80 support yet. + return 0; + } + + // MachineConstantPool wants an explicit alignment. + unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); + if (Align == 0) { + // Alignment of vector types. FIXME! + Align = DL.getTypeAllocSize(CFP->getType()); + } + + // x86-32 PIC requires a PIC base register for constant pools. + unsigned PICBase = 0; + unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); + if (OpFlag == X86II::MO_PIC_BASE_OFFSET) + PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + else if (OpFlag == X86II::MO_GOTOFF) + PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) + PICBase = X86::RIP; + + // Create the load from the constant pool. + unsigned CPI = MCP.getConstantPoolIndex(CFP, Align); + unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); + + if (CM == CodeModel::Large) { + unsigned AddrReg = createResultReg(&X86::GR64RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), + AddrReg) + .addConstantPoolIndex(CPI, 0, OpFlag); + MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), ResultReg); + addDirectMem(MIB, AddrReg); + MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( + MachinePointerInfo::getConstantPool(*FuncInfo.MF), + MachineMemOperand::MOLoad, DL.getPointerSize(), Align); + MIB->addMemOperand(*FuncInfo.MF, MMO); + return ResultReg; + } + + addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), ResultReg), + CPI, PICBase, OpFlag); + return ResultReg; +} + +unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return 0; + + // Materialize addresses with LEA/MOV instructions. + X86AddressMode AM; + if (X86SelectAddress(GV, AM)) { + // If the expression is just a basereg, then we're done, otherwise we need + // to emit an LEA. + if (AM.BaseType == X86AddressMode::RegBase && + AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) + return AM.Base.Reg; + + unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); + if (TM.getRelocationModel() == Reloc::Static && + TLI.getPointerTy(DL) == MVT::i64) { + // The displacement code could be more than 32 bits away so we need to use + // an instruction with a 64 bit immediate + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), + ResultReg) + .addGlobalAddress(GV); + } else { + unsigned Opc = + TLI.getPointerTy(DL) == MVT::i32 + ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) + : X86::LEA64r; + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), ResultReg), AM); + } + return ResultReg; + } + return 0; +} + +unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { + EVT CEVT = TLI.getValueType(DL, C->getType(), true); + + // Only handle simple types. + if (!CEVT.isSimple()) + return 0; + MVT VT = CEVT.getSimpleVT(); + + if (const auto *CI = dyn_cast<ConstantInt>(C)) + return X86MaterializeInt(CI, VT); + else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) + return X86MaterializeFP(CFP, VT); + else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) + return X86MaterializeGV(GV, VT); + + return 0; +} + +unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { + // Fail on dynamic allocas. At this point, getRegForValue has already + // checked its CSE maps, so if we're here trying to handle a dynamic + // alloca, we're not going to succeed. X86SelectAddress has a + // check for dynamic allocas, because it's called directly from + // various places, but targetMaterializeAlloca also needs a check + // in order to avoid recursion between getRegForValue, + // X86SelectAddrss, and targetMaterializeAlloca. + if (!FuncInfo.StaticAllocaMap.count(C)) + return 0; + assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); + + X86AddressMode AM; + if (!X86SelectAddress(C, AM)) + return 0; + unsigned Opc = + TLI.getPointerTy(DL) == MVT::i32 + ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) + : X86::LEA64r; + const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); + unsigned ResultReg = createResultReg(RC); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), ResultReg), AM); + return ResultReg; +} + +unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { + MVT VT; + if (!isTypeLegal(CF->getType(), VT)) + return 0; + + // Get opcode and regclass for the given zero. + bool HasAVX512 = Subtarget->hasAVX512(); + unsigned Opc = 0; + switch (VT.SimpleTy) { + default: return 0; + case MVT::f32: + if (X86ScalarSSEf32) + Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; + else + Opc = X86::LD_Fp032; + break; + case MVT::f64: + if (X86ScalarSSEf64) + Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; + else + Opc = X86::LD_Fp064; + break; + case MVT::f80: + // No f80 support yet. + return 0; + } + + unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); + return ResultReg; +} + + +bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, + const LoadInst *LI) { + const Value *Ptr = LI->getPointerOperand(); + X86AddressMode AM; + if (!X86SelectAddress(Ptr, AM)) + return false; + + const X86InstrInfo &XII = (const X86InstrInfo &)TII; + + unsigned Size = DL.getTypeAllocSize(LI->getType()); + unsigned Alignment = LI->getAlignment(); + + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = DL.getABITypeAlignment(LI->getType()); + + SmallVector<MachineOperand, 8> AddrOps; + AM.getFullAddress(AddrOps); + + MachineInstr *Result = XII.foldMemoryOperandImpl( + *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment, + /*AllowCommute=*/true); + if (!Result) + return false; + + // The index register could be in the wrong register class. Unfortunately, + // foldMemoryOperandImpl could have commuted the instruction so its not enough + // to just look at OpNo + the offset to the index reg. We actually need to + // scan the instruction to find the index reg and see if its the correct reg + // class. + unsigned OperandNo = 0; + for (MachineInstr::mop_iterator I = Result->operands_begin(), + E = Result->operands_end(); I != E; ++I, ++OperandNo) { + MachineOperand &MO = *I; + if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) + continue; + // Found the index reg, now try to rewrite it. + unsigned IndexReg = constrainOperandRegClass(Result->getDesc(), + MO.getReg(), OperandNo); + if (IndexReg == MO.getReg()) + continue; + MO.setReg(IndexReg); + } + + Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); + Result->cloneInstrSymbols(*FuncInfo.MF, *MI); + MachineBasicBlock::iterator I(MI); + removeDeadCode(I, std::next(I)); + return true; +} + +unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + unsigned Op1, bool Op1IsKill, + unsigned Op2, bool Op2IsKill, + unsigned Op3, bool Op3IsKill) { + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + unsigned ResultReg = createResultReg(RC); + Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); + Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); + Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); + Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) + .addReg(Op0, getKillRegState(Op0IsKill)) + .addReg(Op1, getKillRegState(Op1IsKill)) + .addReg(Op2, getKillRegState(Op2IsKill)) + .addReg(Op3, getKillRegState(Op3IsKill)); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) + .addReg(Op0, getKillRegState(Op0IsKill)) + .addReg(Op1, getKillRegState(Op1IsKill)) + .addReg(Op2, getKillRegState(Op2IsKill)) + .addReg(Op3, getKillRegState(Op3IsKill)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + + +namespace llvm { + FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) { + return new X86FastISel(funcInfo, libInfo); + } +} |
