diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp | 705 |
1 files changed, 705 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp new file mode 100644 index 000000000000..7f75598b0655 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp @@ -0,0 +1,705 @@ +//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass that performs some optimizations with LEA +// instructions in order to improve performance and code size. +// Currently, it does two things: +// 1) If there are two LEA instructions calculating addresses which only differ +// by displacement inside a basic block, one of them is removed. +// 2) Address calculations in load and store instructions are replaced by +// existing LEA def registers where possible. +// +//===----------------------------------------------------------------------===// + +#include "MCTargetDesc/X86BaseInfo.h" +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <iterator> + +using namespace llvm; + +#define DEBUG_TYPE "x86-optimize-LEAs" + +static cl::opt<bool> + DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, + cl::desc("X86: Disable LEA optimizations."), + cl::init(false)); + +STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); +STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); + +/// Returns true if two machine operands are identical and they are not +/// physical registers. +static inline bool isIdenticalOp(const MachineOperand &MO1, + const MachineOperand &MO2); + +/// Returns true if two address displacement operands are of the same +/// type and use the same symbol/index/address regardless of the offset. +static bool isSimilarDispOp(const MachineOperand &MO1, + const MachineOperand &MO2); + +/// Returns true if the instruction is LEA. +static inline bool isLEA(const MachineInstr &MI); + +namespace { + +/// A key based on instruction's memory operands. +class MemOpKey { +public: + MemOpKey(const MachineOperand *Base, const MachineOperand *Scale, + const MachineOperand *Index, const MachineOperand *Segment, + const MachineOperand *Disp) + : Disp(Disp) { + Operands[0] = Base; + Operands[1] = Scale; + Operands[2] = Index; + Operands[3] = Segment; + } + + bool operator==(const MemOpKey &Other) const { + // Addresses' bases, scales, indices and segments must be identical. + for (int i = 0; i < 4; ++i) + if (!isIdenticalOp(*Operands[i], *Other.Operands[i])) + return false; + + // Addresses' displacements don't have to be exactly the same. It only + // matters that they use the same symbol/index/address. Immediates' or + // offsets' differences will be taken care of during instruction + // substitution. + return isSimilarDispOp(*Disp, *Other.Disp); + } + + // Address' base, scale, index and segment operands. + const MachineOperand *Operands[4]; + + // Address' displacement operand. + const MachineOperand *Disp; +}; + +} // end anonymous namespace + +/// Provide DenseMapInfo for MemOpKey. +namespace llvm { + +template <> struct DenseMapInfo<MemOpKey> { + using PtrInfo = DenseMapInfo<const MachineOperand *>; + + static inline MemOpKey getEmptyKey() { + return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), + PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), + PtrInfo::getEmptyKey()); + } + + static inline MemOpKey getTombstoneKey() { + return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), + PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), + PtrInfo::getTombstoneKey()); + } + + static unsigned getHashValue(const MemOpKey &Val) { + // Checking any field of MemOpKey is enough to determine if the key is + // empty or tombstone. + assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key"); + assert(Val.Disp != PtrInfo::getTombstoneKey() && + "Cannot hash the tombstone key"); + + hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1], + *Val.Operands[2], *Val.Operands[3]); + + // If the address displacement is an immediate, it should not affect the + // hash so that memory operands which differ only be immediate displacement + // would have the same hash. If the address displacement is something else, + // we should reflect symbol/index/address in the hash. + switch (Val.Disp->getType()) { + case MachineOperand::MO_Immediate: + break; + case MachineOperand::MO_ConstantPoolIndex: + case MachineOperand::MO_JumpTableIndex: + Hash = hash_combine(Hash, Val.Disp->getIndex()); + break; + case MachineOperand::MO_ExternalSymbol: + Hash = hash_combine(Hash, Val.Disp->getSymbolName()); + break; + case MachineOperand::MO_GlobalAddress: + Hash = hash_combine(Hash, Val.Disp->getGlobal()); + break; + case MachineOperand::MO_BlockAddress: + Hash = hash_combine(Hash, Val.Disp->getBlockAddress()); + break; + case MachineOperand::MO_MCSymbol: + Hash = hash_combine(Hash, Val.Disp->getMCSymbol()); + break; + case MachineOperand::MO_MachineBasicBlock: + Hash = hash_combine(Hash, Val.Disp->getMBB()); + break; + default: + llvm_unreachable("Invalid address displacement operand"); + } + + return (unsigned)Hash; + } + + static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) { + // Checking any field of MemOpKey is enough to determine if the key is + // empty or tombstone. + if (RHS.Disp == PtrInfo::getEmptyKey()) + return LHS.Disp == PtrInfo::getEmptyKey(); + if (RHS.Disp == PtrInfo::getTombstoneKey()) + return LHS.Disp == PtrInfo::getTombstoneKey(); + return LHS == RHS; + } +}; + +} // end namespace llvm + +/// Returns a hash table key based on memory operands of \p MI. The +/// number of the first memory operand of \p MI is specified through \p N. +static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) { + assert((isLEA(MI) || MI.mayLoadOrStore()) && + "The instruction must be a LEA, a load or a store"); + return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), + &MI.getOperand(N + X86::AddrScaleAmt), + &MI.getOperand(N + X86::AddrIndexReg), + &MI.getOperand(N + X86::AddrSegmentReg), + &MI.getOperand(N + X86::AddrDisp)); +} + +static inline bool isIdenticalOp(const MachineOperand &MO1, + const MachineOperand &MO2) { + return MO1.isIdenticalTo(MO2) && + (!MO1.isReg() || + !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); +} + +#ifndef NDEBUG +static bool isValidDispOp(const MachineOperand &MO) { + return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() || + MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB(); +} +#endif + +static bool isSimilarDispOp(const MachineOperand &MO1, + const MachineOperand &MO2) { + assert(isValidDispOp(MO1) && isValidDispOp(MO2) && + "Address displacement operand is not valid"); + return (MO1.isImm() && MO2.isImm()) || + (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) || + (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) || + (MO1.isSymbol() && MO2.isSymbol() && + MO1.getSymbolName() == MO2.getSymbolName()) || + (MO1.isGlobal() && MO2.isGlobal() && + MO1.getGlobal() == MO2.getGlobal()) || + (MO1.isBlockAddress() && MO2.isBlockAddress() && + MO1.getBlockAddress() == MO2.getBlockAddress()) || + (MO1.isMCSymbol() && MO2.isMCSymbol() && + MO1.getMCSymbol() == MO2.getMCSymbol()) || + (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB()); +} + +static inline bool isLEA(const MachineInstr &MI) { + unsigned Opcode = MI.getOpcode(); + return Opcode == X86::LEA16r || Opcode == X86::LEA32r || + Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; +} + +namespace { + +class OptimizeLEAPass : public MachineFunctionPass { +public: + OptimizeLEAPass() : MachineFunctionPass(ID) {} + + StringRef getPassName() const override { return "X86 LEA Optimize"; } + + /// Loop over all of the basic blocks, replacing address + /// calculations in load and store instructions, if it's already + /// been calculated by LEA. Also, remove redundant LEAs. + bool runOnMachineFunction(MachineFunction &MF) override; + +private: + using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>; + + /// Returns a distance between two instructions inside one basic block. + /// Negative result means, that instructions occur in reverse order. + int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); + + /// Choose the best \p LEA instruction from the \p List to replace + /// address calculation in \p MI instruction. Return the address displacement + /// and the distance between \p MI and the chosen \p BestLEA in + /// \p AddrDispShift and \p Dist. + bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, + const MachineInstr &MI, MachineInstr *&BestLEA, + int64_t &AddrDispShift, int &Dist); + + /// Returns the difference between addresses' displacements of \p MI1 + /// and \p MI2. The numbers of the first memory operands for the instructions + /// are specified through \p N1 and \p N2. + int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1, + const MachineInstr &MI2, unsigned N2) const; + + /// Returns true if the \p Last LEA instruction can be replaced by the + /// \p First. The difference between displacements of the addresses calculated + /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper + /// replacement of the \p Last LEA's uses with the \p First's def register. + bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, + int64_t &AddrDispShift) const; + + /// Find all LEA instructions in the basic block. Also, assign position + /// numbers to all instructions in the basic block to speed up calculation of + /// distance between them. + void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs); + + /// Removes redundant address calculations. + bool removeRedundantAddrCalc(MemOpMap &LEAs); + + /// Replace debug value MI with a new debug value instruction using register + /// VReg with an appropriate offset and DIExpression to incorporate the + /// address displacement AddrDispShift. Return new debug value instruction. + MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg, + int64_t AddrDispShift); + + /// Removes LEAs which calculate similar addresses. + bool removeRedundantLEAs(MemOpMap &LEAs); + + DenseMap<const MachineInstr *, unsigned> InstrPos; + + MachineRegisterInfo *MRI; + const X86InstrInfo *TII; + const X86RegisterInfo *TRI; + + static char ID; +}; + +} // end anonymous namespace + +char OptimizeLEAPass::ID = 0; + +FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } + +int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, + const MachineInstr &Last) { + // Both instructions must be in the same basic block and they must be + // presented in InstrPos. + assert(Last.getParent() == First.getParent() && + "Instructions are in different basic blocks"); + assert(InstrPos.find(&First) != InstrPos.end() && + InstrPos.find(&Last) != InstrPos.end() && + "Instructions' positions are undefined"); + + return InstrPos[&Last] - InstrPos[&First]; +} + +// Find the best LEA instruction in the List to replace address recalculation in +// MI. Such LEA must meet these requirements: +// 1) The address calculated by the LEA differs only by the displacement from +// the address used in MI. +// 2) The register class of the definition of the LEA is compatible with the +// register class of the address base register of MI. +// 3) Displacement of the new memory operand should fit in 1 byte if possible. +// 4) The LEA should be as close to MI as possible, and prior to it if +// possible. +bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, + const MachineInstr &MI, + MachineInstr *&BestLEA, + int64_t &AddrDispShift, int &Dist) { + const MachineFunction *MF = MI.getParent()->getParent(); + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + + X86II::getOperandBias(Desc); + + BestLEA = nullptr; + + // Loop over all LEA instructions. + for (auto DefMI : List) { + // Get new address displacement. + int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1); + + // Make sure address displacement fits 4 bytes. + if (!isInt<32>(AddrDispShiftTemp)) + continue; + + // Check that LEA def register can be used as MI address base. Some + // instructions can use a limited set of registers as address base, for + // example MOV8mr_NOREX. We could constrain the register class of the LEA + // def to suit MI, however since this case is very rare and hard to + // reproduce in a test it's just more reliable to skip the LEA. + if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != + MRI->getRegClass(DefMI->getOperand(0).getReg())) + continue; + + // Choose the closest LEA instruction from the list, prior to MI if + // possible. Note that we took into account resulting address displacement + // as well. Also note that the list is sorted by the order in which the LEAs + // occur, so the break condition is pretty simple. + int DistTemp = calcInstrDist(*DefMI, MI); + assert(DistTemp != 0 && + "The distance between two different instructions cannot be zero"); + if (DistTemp > 0 || BestLEA == nullptr) { + // Do not update return LEA, if the current one provides a displacement + // which fits in 1 byte, while the new candidate does not. + if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) && + isInt<8>(AddrDispShift)) + continue; + + BestLEA = DefMI; + AddrDispShift = AddrDispShiftTemp; + Dist = DistTemp; + } + + // FIXME: Maybe we should not always stop at the first LEA after MI. + if (DistTemp < 0) + break; + } + + return BestLEA != nullptr; +} + +// Get the difference between the addresses' displacements of the two +// instructions \p MI1 and \p MI2. The numbers of the first memory operands are +// passed through \p N1 and \p N2. +int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1, + const MachineInstr &MI2, + unsigned N2) const { + const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp); + const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp); + + assert(isSimilarDispOp(Op1, Op2) && + "Address displacement operands are not compatible"); + + // After the assert above we can be sure that both operands are of the same + // valid type and use the same symbol/index/address, thus displacement shift + // calculation is rather simple. + if (Op1.isJTI()) + return 0; + return Op1.isImm() ? Op1.getImm() - Op2.getImm() + : Op1.getOffset() - Op2.getOffset(); +} + +// Check that the Last LEA can be replaced by the First LEA. To be so, +// these requirements must be met: +// 1) Addresses calculated by LEAs differ only by displacement. +// 2) Def registers of LEAs belong to the same class. +// 3) All uses of the Last LEA def register are replaceable, thus the +// register is used only as address base. +bool OptimizeLEAPass::isReplaceable(const MachineInstr &First, + const MachineInstr &Last, + int64_t &AddrDispShift) const { + assert(isLEA(First) && isLEA(Last) && + "The function works only with LEA instructions"); + + // Make sure that LEA def registers belong to the same class. There may be + // instructions (like MOV8mr_NOREX) which allow a limited set of registers to + // be used as their operands, so we must be sure that replacing one LEA + // with another won't lead to putting a wrong register in the instruction. + if (MRI->getRegClass(First.getOperand(0).getReg()) != + MRI->getRegClass(Last.getOperand(0).getReg())) + return false; + + // Get new address displacement. + AddrDispShift = getAddrDispShift(Last, 1, First, 1); + + // Loop over all uses of the Last LEA to check that its def register is + // used only as address base for memory accesses. If so, it can be + // replaced, otherwise - no. + for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) { + MachineInstr &MI = *MO.getParent(); + + // Get the number of the first memory operand. + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); + + // If the use instruction has no memory operand - the LEA is not + // replaceable. + if (MemOpNo < 0) + return false; + + MemOpNo += X86II::getOperandBias(Desc); + + // If the address base of the use instruction is not the LEA def register - + // the LEA is not replaceable. + if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) + return false; + + // If the LEA def register is used as any other operand of the use + // instruction - the LEA is not replaceable. + for (unsigned i = 0; i < MI.getNumOperands(); i++) + if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && + isIdenticalOp(MI.getOperand(i), MO)) + return false; + + // Check that the new address displacement will fit 4 bytes. + if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && + !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + + AddrDispShift)) + return false; + } + + return true; +} + +void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) { + unsigned Pos = 0; + for (auto &MI : MBB) { + // Assign the position number to the instruction. Note that we are going to + // move some instructions during the optimization however there will never + // be a need to move two instructions before any selected instruction. So to + // avoid multiple positions' updates during moves we just increase position + // counter by two leaving a free space for instructions which will be moved. + InstrPos[&MI] = Pos += 2; + + if (isLEA(MI)) + LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI)); + } +} + +// Try to find load and store instructions which recalculate addresses already +// calculated by some LEA and replace their memory operands with its def +// register. +bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) { + bool Changed = false; + + assert(!LEAs.empty()); + MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent(); + + // Process all instructions in basic block. + for (auto I = MBB->begin(), E = MBB->end(); I != E;) { + MachineInstr &MI = *I++; + + // Instruction must be load or store. + if (!MI.mayLoadOrStore()) + continue; + + // Get the number of the first memory operand. + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); + + // If instruction has no memory operand - skip it. + if (MemOpNo < 0) + continue; + + MemOpNo += X86II::getOperandBias(Desc); + + // Do not call chooseBestLEA if there was no matching LEA + auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo)); + if (Insns == LEAs.end()) + continue; + + // Get the best LEA instruction to replace address calculation. + MachineInstr *DefMI; + int64_t AddrDispShift; + int Dist; + if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist)) + continue; + + // If LEA occurs before current instruction, we can freely replace + // the instruction. If LEA occurs after, we can lift LEA above the + // instruction and this way to be able to replace it. Since LEA and the + // instruction have similar memory operands (thus, the same def + // instructions for these operands), we can always do that, without + // worries of using registers before their defs. + if (Dist < 0) { + DefMI->removeFromParent(); + MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); + InstrPos[DefMI] = InstrPos[&MI] - 1; + + // Make sure the instructions' position numbers are sane. + assert(((InstrPos[DefMI] == 1 && + MachineBasicBlock::iterator(DefMI) == MBB->begin()) || + InstrPos[DefMI] > + InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) && + "Instruction positioning is broken"); + } + + // Since we can possibly extend register lifetime, clear kill flags. + MRI->clearKillFlags(DefMI->getOperand(0).getReg()); + + ++NumSubstLEAs; + LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); + + // Change instruction operands. + MI.getOperand(MemOpNo + X86::AddrBaseReg) + .ChangeToRegister(DefMI->getOperand(0).getReg(), false); + MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); + MI.getOperand(MemOpNo + X86::AddrIndexReg) + .ChangeToRegister(X86::NoRegister, false); + MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); + MI.getOperand(MemOpNo + X86::AddrSegmentReg) + .ChangeToRegister(X86::NoRegister, false); + + LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); + + Changed = true; + } + + return Changed; +} + +MachineInstr *OptimizeLEAPass::replaceDebugValue(MachineInstr &MI, + unsigned VReg, + int64_t AddrDispShift) { + DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression()); + if (AddrDispShift != 0) + Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift); + + // Replace DBG_VALUE instruction with modified version. + MachineBasicBlock *MBB = MI.getParent(); + DebugLoc DL = MI.getDebugLoc(); + bool IsIndirect = MI.isIndirectDebugValue(); + const MDNode *Var = MI.getDebugVariable(); + if (IsIndirect) + assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); + return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE), + IsIndirect, VReg, Var, Expr); +} + +// Try to find similar LEAs in the list and replace one with another. +bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) { + bool Changed = false; + + // Loop over all entries in the table. + for (auto &E : LEAs) { + auto &List = E.second; + + // Loop over all LEA pairs. + auto I1 = List.begin(); + while (I1 != List.end()) { + MachineInstr &First = **I1; + auto I2 = std::next(I1); + while (I2 != List.end()) { + MachineInstr &Last = **I2; + int64_t AddrDispShift; + + // LEAs should be in occurrence order in the list, so we can freely + // replace later LEAs with earlier ones. + assert(calcInstrDist(First, Last) > 0 && + "LEAs must be in occurrence order in the list"); + + // Check that the Last LEA instruction can be replaced by the First. + if (!isReplaceable(First, Last, AddrDispShift)) { + ++I2; + continue; + } + + // Loop over all uses of the Last LEA and update their operands. Note + // that the correctness of this has already been checked in the + // isReplaceable function. + unsigned FirstVReg = First.getOperand(0).getReg(); + unsigned LastVReg = Last.getOperand(0).getReg(); + for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end(); + UI != UE;) { + MachineOperand &MO = *UI++; + MachineInstr &MI = *MO.getParent(); + + if (MI.isDebugValue()) { + // Replace DBG_VALUE instruction with modified version using the + // register from the replacing LEA and the address displacement + // between the LEA instructions. + replaceDebugValue(MI, FirstVReg, AddrDispShift); + continue; + } + + // Get the number of the first memory operand. + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = + X86II::getMemoryOperandNo(Desc.TSFlags) + + X86II::getOperandBias(Desc); + + // Update address base. + MO.setReg(FirstVReg); + + // Update address disp. + MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp); + if (Op.isImm()) + Op.setImm(Op.getImm() + AddrDispShift); + else if (!Op.isJTI()) + Op.setOffset(Op.getOffset() + AddrDispShift); + } + + // Since we can possibly extend register lifetime, clear kill flags. + MRI->clearKillFlags(FirstVReg); + + ++NumRedundantLEAs; + LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; + Last.dump();); + + // By this moment, all of the Last LEA's uses must be replaced. So we + // can freely remove it. + assert(MRI->use_empty(LastVReg) && + "The LEA's def register must have no uses"); + Last.eraseFromParent(); + + // Erase removed LEA from the list. + I2 = List.erase(I2); + + Changed = true; + } + ++I1; + } + } + + return Changed; +} + +bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { + bool Changed = false; + + if (DisableX86LEAOpt || skipFunction(MF.getFunction())) + return false; + + MRI = &MF.getRegInfo(); + TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); + TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); + + // Process all basic blocks. + for (auto &MBB : MF) { + MemOpMap LEAs; + InstrPos.clear(); + + // Find all LEA instructions in basic block. + findLEAs(MBB, LEAs); + + // If current basic block has no LEAs, move on to the next one. + if (LEAs.empty()) + continue; + + // Remove redundant LEA instructions. + Changed |= removeRedundantLEAs(LEAs); + + // Remove redundant address calculations. Do it only for -Os/-Oz since only + // a code size gain is expected from this part of the pass. + if (MF.getFunction().hasOptSize()) + Changed |= removeRedundantAddrCalc(LEAs); + } + + return Changed; +} |
