diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp | 318 |
1 files changed, 318 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp new file mode 100644 index 000000000000..50690953eef5 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp @@ -0,0 +1,318 @@ +//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the X86SelectionDAGInfo class. +// +//===----------------------------------------------------------------------===// + +#include "X86SelectionDAGInfo.h" +#include "X86ISelLowering.h" +#include "X86InstrInfo.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/IR/DerivedTypes.h" + +using namespace llvm; + +#define DEBUG_TYPE "x86-selectiondag-info" + +bool X86SelectionDAGInfo::isBaseRegConflictPossible( + SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const { + // We cannot use TRI->hasBasePointer() until *after* we select all basic + // blocks. Legalization may introduce new stack temporaries with large + // alignment requirements. Fall back to generic code if there are any + // dynamic stack adjustments (hopefully rare) and the base pointer would + // conflict if we had to use it. + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) + return false; + + const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>( + DAG.getSubtarget().getRegisterInfo()); + unsigned BaseReg = TRI->getBaseRegister(); + for (unsigned R : ClobberSet) + if (BaseReg == R) + return true; + return false; +} + +SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( + SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, + SDValue Size, unsigned Align, bool isVolatile, + MachinePointerInfo DstPtrInfo) const { + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + const X86Subtarget &Subtarget = + DAG.getMachineFunction().getSubtarget<X86Subtarget>(); + +#ifndef NDEBUG + // If the base register might conflict with our physical registers, bail out. + const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, + X86::ECX, X86::EAX, X86::EDI}; + assert(!isBaseRegConflictPossible(DAG, ClobberSet)); +#endif + + // If to a segment-relative address space, use the default lowering. + if (DstPtrInfo.getAddrSpace() >= 256) + return SDValue(); + + // If not DWORD aligned or size is more than the threshold, call the library. + // The libc version is likely to be faster for these cases. It can use the + // address value and run time information about the CPU. + if ((Align & 3) != 0 || !ConstantSize || + ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) { + // Check to see if there is a specialized entry-point for memory zeroing. + ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val); + + if (const char *bzeroName = (ValC && ValC->isNullValue()) + ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO) + : nullptr) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); + Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Node = Dst; + Entry.Ty = IntPtrTy; + Args.push_back(Entry); + Entry.Node = Size; + Args.push_back(Entry); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl) + .setChain(Chain) + .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), + DAG.getExternalSymbol(bzeroName, IntPtr), + std::move(Args)) + .setDiscardResult(); + + std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); + return CallResult.second; + } + + // Otherwise have the target-independent code call memset. + return SDValue(); + } + + uint64_t SizeVal = ConstantSize->getZExtValue(); + SDValue InFlag; + EVT AVT; + SDValue Count; + ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val); + unsigned BytesLeft = 0; + if (ValC) { + unsigned ValReg; + uint64_t Val = ValC->getZExtValue() & 255; + + // If the value is a constant, then we can potentially use larger sets. + switch (Align & 3) { + case 2: // WORD aligned + AVT = MVT::i16; + ValReg = X86::AX; + Val = (Val << 8) | Val; + break; + case 0: // DWORD aligned + AVT = MVT::i32; + ValReg = X86::EAX; + Val = (Val << 8) | Val; + Val = (Val << 16) | Val; + if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned + AVT = MVT::i64; + ValReg = X86::RAX; + Val = (Val << 32) | Val; + } + break; + default: // Byte aligned + AVT = MVT::i8; + ValReg = X86::AL; + Count = DAG.getIntPtrConstant(SizeVal, dl); + break; + } + + if (AVT.bitsGT(MVT::i8)) { + unsigned UBytes = AVT.getSizeInBits() / 8; + Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl); + BytesLeft = SizeVal % UBytes; + } + + Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT), + InFlag); + InFlag = Chain.getValue(1); + } else { + AVT = MVT::i8; + Count = DAG.getIntPtrConstant(SizeVal, dl); + Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag); + InFlag = Chain.getValue(1); + } + + bool Use64BitRegs = Subtarget.isTarget64BitLP64(); + Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX, + Count, InFlag); + InFlag = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI, + Dst, InFlag); + InFlag = Chain.getValue(1); + + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; + Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); + + if (BytesLeft) { + // Handle the last 1 - 7 bytes. + unsigned Offset = SizeVal - BytesLeft; + EVT AddrVT = Dst.getValueType(); + EVT SizeVT = Size.getValueType(); + + Chain = DAG.getMemset(Chain, dl, + DAG.getNode(ISD::ADD, dl, AddrVT, Dst, + DAG.getConstant(Offset, dl, AddrVT)), + Val, + DAG.getConstant(BytesLeft, dl, SizeVT), + Align, isVolatile, false, + DstPtrInfo.getWithOffset(Offset)); + } + + // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. + return Chain; +} + +/// Emit a single REP MOVS{B,W,D,Q} instruction. +static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, + const SDLoc &dl, SDValue Chain, SDValue Dst, + SDValue Src, SDValue Size, MVT AVT) { + const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); + const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; + const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; + const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI; + + SDValue InFlag; + Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag); + InFlag = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag); + InFlag = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag); + InFlag = Chain.getValue(1); + + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag}; + return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops); +} + +/// Emit a single REP MOVSB instruction for a particular constant size. +static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, + const SDLoc &dl, SDValue Chain, SDValue Dst, + SDValue Src, uint64_t Size) { + return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, + DAG.getIntPtrConstant(Size, dl), MVT::i8); +} + +/// Returns the best type to use with repmovs depending on alignment. +static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget, + uint64_t Align) { + assert((Align != 0) && "Align is normalized"); + assert(isPowerOf2_64(Align) && "Align is a power of 2"); + switch (Align) { + case 1: + return MVT::i8; + case 2: + return MVT::i16; + case 4: + return MVT::i32; + default: + return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; + } +} + +/// Returns a REP MOVS instruction, possibly with a few load/stores to implement +/// a constant size memory copy. In some cases where we know REP MOVS is +/// inefficient we return an empty SDValue so the calling code can either +/// generate a load/store sequence or call the runtime memcpy function. +static SDValue emitConstantSizeRepmov( + SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, + SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, + unsigned Align, bool isVolatile, bool AlwaysInline, + MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { + + /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very + /// efficient. + if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold()) + return SDValue(); + + /// If we have enhanced repmovs we use it. + if (Subtarget.hasERMSB()) + return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); + + assert(!Subtarget.hasERMSB() && "No efficient RepMovs"); + /// We assume runtime memcpy will do a better job for unaligned copies when + /// ERMS is not present. + if (!AlwaysInline && (Align & 3) != 0) + return SDValue(); + + const MVT BlockType = getOptimalRepmovsType(Subtarget, Align); + const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; + const uint64_t BlockCount = Size / BlockBytes; + const uint64_t BytesLeft = Size % BlockBytes; + SDValue RepMovs = + emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, + DAG.getIntPtrConstant(BlockCount, dl), BlockType); + + /// RepMov can process the whole length. + if (BytesLeft == 0) + return RepMovs; + + assert(BytesLeft && "We have leftover at this point"); + + /// In case we optimize for size we use repmovsb even if it's less efficient + /// so we can save the loads/stores of the leftover. + if (DAG.getMachineFunction().getFunction().hasMinSize()) + return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); + + // Handle the last 1 - 7 bytes. + SmallVector<SDValue, 4> Results; + Results.push_back(RepMovs); + unsigned Offset = Size - BytesLeft; + EVT DstVT = Dst.getValueType(); + EVT SrcVT = Src.getValueType(); + Results.push_back(DAG.getMemcpy( + Chain, dl, + DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)), + DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)), + DAG.getConstant(BytesLeft, dl, SizeVT), Align, isVolatile, + /*AlwaysInline*/ true, /*isTailCall*/ false, + DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset))); + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); +} + +SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( + SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, + SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline, + MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { + // If to a segment-relative address space, use the default lowering. + if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256) + return SDValue(); + + // If the base registers conflict with our physical registers, use the default + // lowering. + const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, + X86::ECX, X86::ESI, X86::EDI}; + if (isBaseRegConflictPossible(DAG, ClobberSet)) + return SDValue(); + + const X86Subtarget &Subtarget = + DAG.getMachineFunction().getSubtarget<X86Subtarget>(); + + /// Handle constant sizes, + if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size)) + return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src, + ConstantSize->getZExtValue(), + Size.getValueType(), Align, isVolatile, + AlwaysInline, DstPtrInfo, SrcPtrInfo); + + return SDValue(); +} |
