diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp | 1984 |
1 files changed, 1984 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp new file mode 100644 index 000000000000..ba15b023f2a3 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp @@ -0,0 +1,1984 @@ +//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the visit functions for add, fadd, sub, and fsub. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/AlignOf.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/KnownBits.h" +#include <cassert> +#include <utility> + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +namespace { + + /// Class representing coefficient of floating-point addend. + /// This class needs to be highly efficient, which is especially true for + /// the constructor. As of I write this comment, the cost of the default + /// constructor is merely 4-byte-store-zero (Assuming compiler is able to + /// perform write-merging). + /// + class FAddendCoef { + public: + // The constructor has to initialize a APFloat, which is unnecessary for + // most addends which have coefficient either 1 or -1. So, the constructor + // is expensive. In order to avoid the cost of the constructor, we should + // reuse some instances whenever possible. The pre-created instances + // FAddCombine::Add[0-5] embodies this idea. + FAddendCoef() = default; + ~FAddendCoef(); + + // If possible, don't define operator+/operator- etc because these + // operators inevitably call FAddendCoef's constructor which is not cheap. + void operator=(const FAddendCoef &A); + void operator+=(const FAddendCoef &A); + void operator*=(const FAddendCoef &S); + + void set(short C) { + assert(!insaneIntVal(C) && "Insane coefficient"); + IsFp = false; IntVal = C; + } + + void set(const APFloat& C); + + void negate(); + + bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } + Value *getValue(Type *) const; + + bool isOne() const { return isInt() && IntVal == 1; } + bool isTwo() const { return isInt() && IntVal == 2; } + bool isMinusOne() const { return isInt() && IntVal == -1; } + bool isMinusTwo() const { return isInt() && IntVal == -2; } + + private: + bool insaneIntVal(int V) { return V > 4 || V < -4; } + + APFloat *getFpValPtr() + { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } + + const APFloat *getFpValPtr() const + { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } + + const APFloat &getFpVal() const { + assert(IsFp && BufHasFpVal && "Incorret state"); + return *getFpValPtr(); + } + + APFloat &getFpVal() { + assert(IsFp && BufHasFpVal && "Incorret state"); + return *getFpValPtr(); + } + + bool isInt() const { return !IsFp; } + + // If the coefficient is represented by an integer, promote it to a + // floating point. + void convertToFpType(const fltSemantics &Sem); + + // Construct an APFloat from a signed integer. + // TODO: We should get rid of this function when APFloat can be constructed + // from an *SIGNED* integer. + APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); + + bool IsFp = false; + + // True iff FpValBuf contains an instance of APFloat. + bool BufHasFpVal = false; + + // The integer coefficient of an individual addend is either 1 or -1, + // and we try to simplify at most 4 addends from neighboring at most + // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt + // is overkill of this end. + short IntVal = 0; + + AlignedCharArrayUnion<APFloat> FpValBuf; + }; + + /// FAddend is used to represent floating-point addend. An addend is + /// represented as <C, V>, where the V is a symbolic value, and C is a + /// constant coefficient. A constant addend is represented as <C, 0>. + class FAddend { + public: + FAddend() = default; + + void operator+=(const FAddend &T) { + assert((Val == T.Val) && "Symbolic-values disagree"); + Coeff += T.Coeff; + } + + Value *getSymVal() const { return Val; } + const FAddendCoef &getCoef() const { return Coeff; } + + bool isConstant() const { return Val == nullptr; } + bool isZero() const { return Coeff.isZero(); } + + void set(short Coefficient, Value *V) { + Coeff.set(Coefficient); + Val = V; + } + void set(const APFloat &Coefficient, Value *V) { + Coeff.set(Coefficient); + Val = V; + } + void set(const ConstantFP *Coefficient, Value *V) { + Coeff.set(Coefficient->getValueAPF()); + Val = V; + } + + void negate() { Coeff.negate(); } + + /// Drill down the U-D chain one step to find the definition of V, and + /// try to break the definition into one or two addends. + static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); + + /// Similar to FAddend::drillDownOneStep() except that the value being + /// splitted is the addend itself. + unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; + + private: + void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } + + // This addend has the value of "Coeff * Val". + Value *Val = nullptr; + FAddendCoef Coeff; + }; + + /// FAddCombine is the class for optimizing an unsafe fadd/fsub along + /// with its neighboring at most two instructions. + /// + class FAddCombine { + public: + FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} + + Value *simplify(Instruction *FAdd); + + private: + using AddendVect = SmallVector<const FAddend *, 4>; + + Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); + + /// Convert given addend to a Value + Value *createAddendVal(const FAddend &A, bool& NeedNeg); + + /// Return the number of instructions needed to emit the N-ary addition. + unsigned calcInstrNumber(const AddendVect& Vect); + + Value *createFSub(Value *Opnd0, Value *Opnd1); + Value *createFAdd(Value *Opnd0, Value *Opnd1); + Value *createFMul(Value *Opnd0, Value *Opnd1); + Value *createFNeg(Value *V); + Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); + void createInstPostProc(Instruction *NewInst, bool NoNumber = false); + + // Debugging stuff are clustered here. + #ifndef NDEBUG + unsigned CreateInstrNum; + void initCreateInstNum() { CreateInstrNum = 0; } + void incCreateInstNum() { CreateInstrNum++; } + #else + void initCreateInstNum() {} + void incCreateInstNum() {} + #endif + + InstCombiner::BuilderTy &Builder; + Instruction *Instr = nullptr; + }; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// +// Implementation of +// {FAddendCoef, FAddend, FAddition, FAddCombine}. +// +//===----------------------------------------------------------------------===// +FAddendCoef::~FAddendCoef() { + if (BufHasFpVal) + getFpValPtr()->~APFloat(); +} + +void FAddendCoef::set(const APFloat& C) { + APFloat *P = getFpValPtr(); + + if (isInt()) { + // As the buffer is meanless byte stream, we cannot call + // APFloat::operator=(). + new(P) APFloat(C); + } else + *P = C; + + IsFp = BufHasFpVal = true; +} + +void FAddendCoef::convertToFpType(const fltSemantics &Sem) { + if (!isInt()) + return; + + APFloat *P = getFpValPtr(); + if (IntVal > 0) + new(P) APFloat(Sem, IntVal); + else { + new(P) APFloat(Sem, 0 - IntVal); + P->changeSign(); + } + IsFp = BufHasFpVal = true; +} + +APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { + if (Val >= 0) + return APFloat(Sem, Val); + + APFloat T(Sem, 0 - Val); + T.changeSign(); + + return T; +} + +void FAddendCoef::operator=(const FAddendCoef &That) { + if (That.isInt()) + set(That.IntVal); + else + set(That.getFpVal()); +} + +void FAddendCoef::operator+=(const FAddendCoef &That) { + enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; + if (isInt() == That.isInt()) { + if (isInt()) + IntVal += That.IntVal; + else + getFpVal().add(That.getFpVal(), RndMode); + return; + } + + if (isInt()) { + const APFloat &T = That.getFpVal(); + convertToFpType(T.getSemantics()); + getFpVal().add(T, RndMode); + return; + } + + APFloat &T = getFpVal(); + T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); +} + +void FAddendCoef::operator*=(const FAddendCoef &That) { + if (That.isOne()) + return; + + if (That.isMinusOne()) { + negate(); + return; + } + + if (isInt() && That.isInt()) { + int Res = IntVal * (int)That.IntVal; + assert(!insaneIntVal(Res) && "Insane int value"); + IntVal = Res; + return; + } + + const fltSemantics &Semantic = + isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); + + if (isInt()) + convertToFpType(Semantic); + APFloat &F0 = getFpVal(); + + if (That.isInt()) + F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), + APFloat::rmNearestTiesToEven); + else + F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); +} + +void FAddendCoef::negate() { + if (isInt()) + IntVal = 0 - IntVal; + else + getFpVal().changeSign(); +} + +Value *FAddendCoef::getValue(Type *Ty) const { + return isInt() ? + ConstantFP::get(Ty, float(IntVal)) : + ConstantFP::get(Ty->getContext(), getFpVal()); +} + +// The definition of <Val> Addends +// ========================================= +// A + B <1, A>, <1,B> +// A - B <1, A>, <1,B> +// 0 - B <-1, B> +// C * A, <C, A> +// A + C <1, A> <C, NULL> +// 0 +/- 0 <0, NULL> (corner case) +// +// Legend: A and B are not constant, C is constant +unsigned FAddend::drillValueDownOneStep + (Value *Val, FAddend &Addend0, FAddend &Addend1) { + Instruction *I = nullptr; + if (!Val || !(I = dyn_cast<Instruction>(Val))) + return 0; + + unsigned Opcode = I->getOpcode(); + + if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { + ConstantFP *C0, *C1; + Value *Opnd0 = I->getOperand(0); + Value *Opnd1 = I->getOperand(1); + if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) + Opnd0 = nullptr; + + if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) + Opnd1 = nullptr; + + if (Opnd0) { + if (!C0) + Addend0.set(1, Opnd0); + else + Addend0.set(C0, nullptr); + } + + if (Opnd1) { + FAddend &Addend = Opnd0 ? Addend1 : Addend0; + if (!C1) + Addend.set(1, Opnd1); + else + Addend.set(C1, nullptr); + if (Opcode == Instruction::FSub) + Addend.negate(); + } + + if (Opnd0 || Opnd1) + return Opnd0 && Opnd1 ? 2 : 1; + + // Both operands are zero. Weird! + Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); + return 1; + } + + if (I->getOpcode() == Instruction::FMul) { + Value *V0 = I->getOperand(0); + Value *V1 = I->getOperand(1); + if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { + Addend0.set(C, V1); + return 1; + } + + if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { + Addend0.set(C, V0); + return 1; + } + } + + return 0; +} + +// Try to break *this* addend into two addends. e.g. Suppose this addend is +// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, +// i.e. <2.3, X> and <2.3, Y>. +unsigned FAddend::drillAddendDownOneStep + (FAddend &Addend0, FAddend &Addend1) const { + if (isConstant()) + return 0; + + unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); + if (!BreakNum || Coeff.isOne()) + return BreakNum; + + Addend0.Scale(Coeff); + + if (BreakNum == 2) + Addend1.Scale(Coeff); + + return BreakNum; +} + +Value *FAddCombine::simplify(Instruction *I) { + assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && + "Expected 'reassoc'+'nsz' instruction"); + + // Currently we are not able to handle vector type. + if (I->getType()->isVectorTy()) + return nullptr; + + assert((I->getOpcode() == Instruction::FAdd || + I->getOpcode() == Instruction::FSub) && "Expect add/sub"); + + // Save the instruction before calling other member-functions. + Instr = I; + + FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; + + unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); + + // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. + unsigned Opnd0_ExpNum = 0; + unsigned Opnd1_ExpNum = 0; + + if (!Opnd0.isConstant()) + Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); + + // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. + if (OpndNum == 2 && !Opnd1.isConstant()) + Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); + + // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 + if (Opnd0_ExpNum && Opnd1_ExpNum) { + AddendVect AllOpnds; + AllOpnds.push_back(&Opnd0_0); + AllOpnds.push_back(&Opnd1_0); + if (Opnd0_ExpNum == 2) + AllOpnds.push_back(&Opnd0_1); + if (Opnd1_ExpNum == 2) + AllOpnds.push_back(&Opnd1_1); + + // Compute instruction quota. We should save at least one instruction. + unsigned InstQuota = 0; + + Value *V0 = I->getOperand(0); + Value *V1 = I->getOperand(1); + InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && + (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; + + if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) + return R; + } + + if (OpndNum != 2) { + // The input instruction is : "I=0.0 +/- V". If the "V" were able to be + // splitted into two addends, say "V = X - Y", the instruction would have + // been optimized into "I = Y - X" in the previous steps. + // + const FAddendCoef &CE = Opnd0.getCoef(); + return CE.isOne() ? Opnd0.getSymVal() : nullptr; + } + + // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] + if (Opnd1_ExpNum) { + AddendVect AllOpnds; + AllOpnds.push_back(&Opnd0); + AllOpnds.push_back(&Opnd1_0); + if (Opnd1_ExpNum == 2) + AllOpnds.push_back(&Opnd1_1); + + if (Value *R = simplifyFAdd(AllOpnds, 1)) + return R; + } + + // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] + if (Opnd0_ExpNum) { + AddendVect AllOpnds; + AllOpnds.push_back(&Opnd1); + AllOpnds.push_back(&Opnd0_0); + if (Opnd0_ExpNum == 2) + AllOpnds.push_back(&Opnd0_1); + + if (Value *R = simplifyFAdd(AllOpnds, 1)) + return R; + } + + return nullptr; +} + +Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { + unsigned AddendNum = Addends.size(); + assert(AddendNum <= 4 && "Too many addends"); + + // For saving intermediate results; + unsigned NextTmpIdx = 0; + FAddend TmpResult[3]; + + // Points to the constant addend of the resulting simplified expression. + // If the resulting expr has constant-addend, this constant-addend is + // desirable to reside at the top of the resulting expression tree. Placing + // constant close to supper-expr(s) will potentially reveal some optimization + // opportunities in super-expr(s). + const FAddend *ConstAdd = nullptr; + + // Simplified addends are placed <SimpVect>. + AddendVect SimpVect; + + // The outer loop works on one symbolic-value at a time. Suppose the input + // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... + // The symbolic-values will be processed in this order: x, y, z. + for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { + + const FAddend *ThisAddend = Addends[SymIdx]; + if (!ThisAddend) { + // This addend was processed before. + continue; + } + + Value *Val = ThisAddend->getSymVal(); + unsigned StartIdx = SimpVect.size(); + SimpVect.push_back(ThisAddend); + + // The inner loop collects addends sharing same symbolic-value, and these + // addends will be later on folded into a single addend. Following above + // example, if the symbolic value "y" is being processed, the inner loop + // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will + // be later on folded into "<b1+b2, y>". + for (unsigned SameSymIdx = SymIdx + 1; + SameSymIdx < AddendNum; SameSymIdx++) { + const FAddend *T = Addends[SameSymIdx]; + if (T && T->getSymVal() == Val) { + // Set null such that next iteration of the outer loop will not process + // this addend again. + Addends[SameSymIdx] = nullptr; + SimpVect.push_back(T); + } + } + + // If multiple addends share same symbolic value, fold them together. + if (StartIdx + 1 != SimpVect.size()) { + FAddend &R = TmpResult[NextTmpIdx ++]; + R = *SimpVect[StartIdx]; + for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) + R += *SimpVect[Idx]; + + // Pop all addends being folded and push the resulting folded addend. + SimpVect.resize(StartIdx); + if (Val) { + if (!R.isZero()) { + SimpVect.push_back(&R); + } + } else { + // Don't push constant addend at this time. It will be the last element + // of <SimpVect>. + ConstAdd = &R; + } + } + } + + assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && + "out-of-bound access"); + + if (ConstAdd) + SimpVect.push_back(ConstAdd); + + Value *Result; + if (!SimpVect.empty()) + Result = createNaryFAdd(SimpVect, InstrQuota); + else { + // The addition is folded to 0.0. + Result = ConstantFP::get(Instr->getType(), 0.0); + } + + return Result; +} + +Value *FAddCombine::createNaryFAdd + (const AddendVect &Opnds, unsigned InstrQuota) { + assert(!Opnds.empty() && "Expect at least one addend"); + + // Step 1: Check if the # of instructions needed exceeds the quota. + + unsigned InstrNeeded = calcInstrNumber(Opnds); + if (InstrNeeded > InstrQuota) + return nullptr; + + initCreateInstNum(); + + // step 2: Emit the N-ary addition. + // Note that at most three instructions are involved in Fadd-InstCombine: the + // addition in question, and at most two neighboring instructions. + // The resulting optimized addition should have at least one less instruction + // than the original addition expression tree. This implies that the resulting + // N-ary addition has at most two instructions, and we don't need to worry + // about tree-height when constructing the N-ary addition. + + Value *LastVal = nullptr; + bool LastValNeedNeg = false; + + // Iterate the addends, creating fadd/fsub using adjacent two addends. + for (const FAddend *Opnd : Opnds) { + bool NeedNeg; + Value *V = createAddendVal(*Opnd, NeedNeg); + if (!LastVal) { + LastVal = V; + LastValNeedNeg = NeedNeg; + continue; + } + + if (LastValNeedNeg == NeedNeg) { + LastVal = createFAdd(LastVal, V); + continue; + } + + if (LastValNeedNeg) + LastVal = createFSub(V, LastVal); + else + LastVal = createFSub(LastVal, V); + + LastValNeedNeg = false; + } + + if (LastValNeedNeg) { + LastVal = createFNeg(LastVal); + } + +#ifndef NDEBUG + assert(CreateInstrNum == InstrNeeded && + "Inconsistent in instruction numbers"); +#endif + + return LastVal; +} + +Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { + Value *V = Builder.CreateFSub(Opnd0, Opnd1); + if (Instruction *I = dyn_cast<Instruction>(V)) + createInstPostProc(I); + return V; +} + +Value *FAddCombine::createFNeg(Value *V) { + Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); + Value *NewV = createFSub(Zero, V); + if (Instruction *I = dyn_cast<Instruction>(NewV)) + createInstPostProc(I, true); // fneg's don't receive instruction numbers. + return NewV; +} + +Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { + Value *V = Builder.CreateFAdd(Opnd0, Opnd1); + if (Instruction *I = dyn_cast<Instruction>(V)) + createInstPostProc(I); + return V; +} + +Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { + Value *V = Builder.CreateFMul(Opnd0, Opnd1); + if (Instruction *I = dyn_cast<Instruction>(V)) + createInstPostProc(I); + return V; +} + +void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { + NewInstr->setDebugLoc(Instr->getDebugLoc()); + + // Keep track of the number of instruction created. + if (!NoNumber) + incCreateInstNum(); + + // Propagate fast-math flags + NewInstr->setFastMathFlags(Instr->getFastMathFlags()); +} + +// Return the number of instruction needed to emit the N-ary addition. +// NOTE: Keep this function in sync with createAddendVal(). +unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { + unsigned OpndNum = Opnds.size(); + unsigned InstrNeeded = OpndNum - 1; + + // The number of addends in the form of "(-1)*x". + unsigned NegOpndNum = 0; + + // Adjust the number of instructions needed to emit the N-ary add. + for (const FAddend *Opnd : Opnds) { + if (Opnd->isConstant()) + continue; + + // The constant check above is really for a few special constant + // coefficients. + if (isa<UndefValue>(Opnd->getSymVal())) + continue; + + const FAddendCoef &CE = Opnd->getCoef(); + if (CE.isMinusOne() || CE.isMinusTwo()) + NegOpndNum++; + + // Let the addend be "c * x". If "c == +/-1", the value of the addend + // is immediately available; otherwise, it needs exactly one instruction + // to evaluate the value. + if (!CE.isMinusOne() && !CE.isOne()) + InstrNeeded++; + } + if (NegOpndNum == OpndNum) + InstrNeeded++; + return InstrNeeded; +} + +// Input Addend Value NeedNeg(output) +// ================================================================ +// Constant C C false +// <+/-1, V> V coefficient is -1 +// <2/-2, V> "fadd V, V" coefficient is -2 +// <C, V> "fmul V, C" false +// +// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. +Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { + const FAddendCoef &Coeff = Opnd.getCoef(); + + if (Opnd.isConstant()) { + NeedNeg = false; + return Coeff.getValue(Instr->getType()); + } + + Value *OpndVal = Opnd.getSymVal(); + + if (Coeff.isMinusOne() || Coeff.isOne()) { + NeedNeg = Coeff.isMinusOne(); + return OpndVal; + } + + if (Coeff.isTwo() || Coeff.isMinusTwo()) { + NeedNeg = Coeff.isMinusTwo(); + return createFAdd(OpndVal, OpndVal); + } + + NeedNeg = false; + return createFMul(OpndVal, Coeff.getValue(Instr->getType())); +} + +// Checks if any operand is negative and we can convert add to sub. +// This function checks for following negative patterns +// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) +// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) +// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even +static Value *checkForNegativeOperand(BinaryOperator &I, + InstCombiner::BuilderTy &Builder) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + + // This function creates 2 instructions to replace ADD, we need at least one + // of LHS or RHS to have one use to ensure benefit in transform. + if (!LHS->hasOneUse() && !RHS->hasOneUse()) + return nullptr; + + Value *X = nullptr, *Y = nullptr, *Z = nullptr; + const APInt *C1 = nullptr, *C2 = nullptr; + + // if ONE is on other side, swap + if (match(RHS, m_Add(m_Value(X), m_One()))) + std::swap(LHS, RHS); + + if (match(LHS, m_Add(m_Value(X), m_One()))) { + // if XOR on other side, swap + if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) + std::swap(X, RHS); + + if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { + // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) + // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) + if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { + Value *NewAnd = Builder.CreateAnd(Z, *C1); + return Builder.CreateSub(RHS, NewAnd, "sub"); + } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { + // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) + // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) + Value *NewOr = Builder.CreateOr(Z, ~(*C1)); + return Builder.CreateSub(RHS, NewOr, "sub"); + } + } + } + + // Restore LHS and RHS + LHS = I.getOperand(0); + RHS = I.getOperand(1); + + // if XOR is on other side, swap + if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) + std::swap(LHS, RHS); + + // C2 is ODD + // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) + // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) + if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) + if (C1->countTrailingZeros() == 0) + if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { + Value *NewOr = Builder.CreateOr(Z, ~(*C2)); + return Builder.CreateSub(RHS, NewOr, "sub"); + } + return nullptr; +} + +/// Wrapping flags may allow combining constants separated by an extend. +static Instruction *foldNoWrapAdd(BinaryOperator &Add, + InstCombiner::BuilderTy &Builder) { + Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); + Type *Ty = Add.getType(); + Constant *Op1C; + if (!match(Op1, m_Constant(Op1C))) + return nullptr; + + // Try this match first because it results in an add in the narrow type. + // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) + Value *X; + const APInt *C1, *C2; + if (match(Op1, m_APInt(C1)) && + match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && + C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { + Constant *NewC = + ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); + return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); + } + + // More general combining of constants in the wide type. + // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) + Constant *NarrowC; + if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { + Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); + Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); + Value *WideX = Builder.CreateSExt(X, Ty); + return BinaryOperator::CreateAdd(WideX, NewC); + } + // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) + if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { + Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); + Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); + Value *WideX = Builder.CreateZExt(X, Ty); + return BinaryOperator::CreateAdd(WideX, NewC); + } + + return nullptr; +} + +Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { + Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); + Constant *Op1C; + if (!match(Op1, m_Constant(Op1C))) + return nullptr; + + if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) + return NV; + + Value *X; + Constant *Op00C; + + // add (sub C1, X), C2 --> sub (add C1, C2), X + if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) + return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); + + Value *Y; + + // add (sub X, Y), -1 --> add (not Y), X + if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && + match(Op1, m_AllOnes())) + return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); + + // zext(bool) + C -> bool ? C + 1 : C + if (match(Op0, m_ZExt(m_Value(X))) && + X->getType()->getScalarSizeInBits() == 1) + return SelectInst::Create(X, AddOne(Op1C), Op1); + + // ~X + C --> (C-1) - X + if (match(Op0, m_Not(m_Value(X)))) + return BinaryOperator::CreateSub(SubOne(Op1C), X); + + const APInt *C; + if (!match(Op1, m_APInt(C))) + return nullptr; + + // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) + const APInt *C2; + if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) + return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); + + if (C->isSignMask()) { + // If wrapping is not allowed, then the addition must set the sign bit: + // X + (signmask) --> X | signmask + if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) + return BinaryOperator::CreateOr(Op0, Op1); + + // If wrapping is allowed, then the addition flips the sign bit of LHS: + // X + (signmask) --> X ^ signmask + return BinaryOperator::CreateXor(Op0, Op1); + } + + // Is this add the last step in a convoluted sext? + // add(zext(xor i16 X, -32768), -32768) --> sext X + Type *Ty = Add.getType(); + if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && + C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) + return CastInst::Create(Instruction::SExt, X, Ty); + + if (C->isOneValue() && Op0->hasOneUse()) { + // add (sext i1 X), 1 --> zext (not X) + // TODO: The smallest IR representation is (select X, 0, 1), and that would + // not require the one-use check. But we need to remove a transform in + // visitSelect and make sure that IR value tracking for select is equal or + // better than for these ops. + if (match(Op0, m_SExt(m_Value(X))) && + X->getType()->getScalarSizeInBits() == 1) + return new ZExtInst(Builder.CreateNot(X), Ty); + + // Shifts and add used to flip and mask off the low bit: + // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 + const APInt *C3; + if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && + C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { + Value *NotX = Builder.CreateNot(X); + return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); + } + } + + return nullptr; +} + +// Matches multiplication expression Op * C where C is a constant. Returns the +// constant value in C and the other operand in Op. Returns true if such a +// match is found. +static bool MatchMul(Value *E, Value *&Op, APInt &C) { + const APInt *AI; + if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { + C = *AI; + return true; + } + if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { + C = APInt(AI->getBitWidth(), 1); + C <<= *AI; + return true; + } + return false; +} + +// Matches remainder expression Op % C where C is a constant. Returns the +// constant value in C and the other operand in Op. Returns the signedness of +// the remainder operation in IsSigned. Returns true if such a match is +// found. +static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { + const APInt *AI; + IsSigned = false; + if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { + IsSigned = true; + C = *AI; + return true; + } + if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { + C = *AI; + return true; + } + if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { + C = *AI + 1; + return true; + } + return false; +} + +// Matches division expression Op / C with the given signedness as indicated +// by IsSigned, where C is a constant. Returns the constant value in C and the +// other operand in Op. Returns true if such a match is found. +static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { + const APInt *AI; + if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { + C = *AI; + return true; + } + if (!IsSigned) { + if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { + C = *AI; + return true; + } + if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { + C = APInt(AI->getBitWidth(), 1); + C <<= *AI; + return true; + } + } + return false; +} + +// Returns whether C0 * C1 with the given signedness overflows. +static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { + bool overflow; + if (IsSigned) + (void)C0.smul_ov(C1, overflow); + else + (void)C0.umul_ov(C1, overflow); + return overflow; +} + +// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) +// does not overflow. +Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + Value *X, *MulOpV; + APInt C0, MulOpC; + bool IsSigned; + // Match I = X % C0 + MulOpV * C0 + if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || + (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && + C0 == MulOpC) { + Value *RemOpV; + APInt C1; + bool Rem2IsSigned; + // Match MulOpC = RemOpV % C1 + if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && + IsSigned == Rem2IsSigned) { + Value *DivOpV; + APInt DivOpC; + // Match RemOpV = X / C0 + if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && + C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { + Value *NewDivisor = + ConstantInt::get(X->getType()->getContext(), C0 * C1); + return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") + : Builder.CreateURem(X, NewDivisor, "urem"); + } + } + } + + return nullptr; +} + +/// Fold +/// (1 << NBits) - 1 +/// Into: +/// ~(-(1 << NBits)) +/// Because a 'not' is better for bit-tracking analysis and other transforms +/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. +static Instruction *canonicalizeLowbitMask(BinaryOperator &I, + InstCombiner::BuilderTy &Builder) { + Value *NBits; + if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) + return nullptr; + + Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); + Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); + // Be wary of constant folding. + if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { + // Always NSW. But NUW propagates from `add`. + BOp->setHasNoSignedWrap(); + BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); + } + + return BinaryOperator::CreateNot(NotMask, I.getName()); +} + +static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { + assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); + Type *Ty = I.getType(); + auto getUAddSat = [&]() { + return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); + }; + + // add (umin X, ~Y), Y --> uaddsat X, Y + Value *X, *Y; + if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), + m_Deferred(Y)))) + return CallInst::Create(getUAddSat(), { X, Y }); + + // add (umin X, ~C), C --> uaddsat X, C + const APInt *C, *NotC; + if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && + *C == ~*NotC) + return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); + + return nullptr; +} + +Instruction *InstCombiner::visitAdd(BinaryOperator &I) { + if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), + I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + if (SimplifyAssociativeOrCommutative(I)) + return &I; + + if (Instruction *X = foldVectorBinop(I)) + return X; + + // (A*B)+(A*C) -> A*(B+C) etc + if (Value *V = SimplifyUsingDistributiveLaws(I)) + return replaceInstUsesWith(I, V); + + if (Instruction *X = foldAddWithConstant(I)) + return X; + + if (Instruction *X = foldNoWrapAdd(I, Builder)) + return X; + + // FIXME: This should be moved into the above helper function to allow these + // transforms for general constant or constant splat vectors. + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + Type *Ty = I.getType(); + if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { + Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; + if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { + unsigned TySizeBits = Ty->getScalarSizeInBits(); + const APInt &RHSVal = CI->getValue(); + unsigned ExtendAmt = 0; + // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. + // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. + if (XorRHS->getValue() == -RHSVal) { + if (RHSVal.isPowerOf2()) + ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; + else if (XorRHS->getValue().isPowerOf2()) + ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; + } + + if (ExtendAmt) { + APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); + if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) + ExtendAmt = 0; + } + + if (ExtendAmt) { + Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); + Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); + return BinaryOperator::CreateAShr(NewShl, ShAmt); + } + + // If this is a xor that was canonicalized from a sub, turn it back into + // a sub and fuse this add with it. + if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { + KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); + if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) + return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), + XorLHS); + } + // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, + // transform them into (X + (signmask ^ C)) + if (XorRHS->getValue().isSignMask()) + return BinaryOperator::CreateAdd(XorLHS, + ConstantExpr::getXor(XorRHS, CI)); + } + } + + if (Ty->isIntOrIntVectorTy(1)) + return BinaryOperator::CreateXor(LHS, RHS); + + // X + X --> X << 1 + if (LHS == RHS) { + auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); + Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); + Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); + return Shl; + } + + Value *A, *B; + if (match(LHS, m_Neg(m_Value(A)))) { + // -A + -B --> -(A + B) + if (match(RHS, m_Neg(m_Value(B)))) + return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); + + // -A + B --> B - A + return BinaryOperator::CreateSub(RHS, A); + } + + // Canonicalize sext to zext for better value tracking potential. + // add A, sext(B) --> sub A, zext(B) + if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) && + B->getType()->isIntOrIntVectorTy(1)) + return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty)); + + // A + -B --> A - B + if (match(RHS, m_Neg(m_Value(B)))) + return BinaryOperator::CreateSub(LHS, B); + + if (Value *V = checkForNegativeOperand(I, Builder)) + return replaceInstUsesWith(I, V); + + // (A + 1) + ~B --> A - B + // ~B + (A + 1) --> A - B + // (~B + A) + 1 --> A - B + // (A + ~B) + 1 --> A - B + if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || + match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) + return BinaryOperator::CreateSub(A, B); + + // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) + if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); + + // A+B --> A|B iff A and B have no bits set in common. + if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) + return BinaryOperator::CreateOr(LHS, RHS); + + // FIXME: We already did a check for ConstantInt RHS above this. + // FIXME: Is this pattern covered by another fold? No regression tests fail on + // removal. + if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { + // (X & FF00) + xx00 -> (X+xx00) & FF00 + Value *X; + ConstantInt *C2; + if (LHS->hasOneUse() && + match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && + CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { + // See if all bits from the first bit set in the Add RHS up are included + // in the mask. First, get the rightmost bit. + const APInt &AddRHSV = CRHS->getValue(); + + // Form a mask of all bits from the lowest bit added through the top. + APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); + + // See if the and mask includes all of these bits. + APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); + + if (AddRHSHighBits == AddRHSHighBitsAnd) { + // Okay, the xform is safe. Insert the new add pronto. + Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); + return BinaryOperator::CreateAnd(NewAdd, C2); + } + } + } + + // add (select X 0 (sub n A)) A --> select X A n + { + SelectInst *SI = dyn_cast<SelectInst>(LHS); + Value *A = RHS; + if (!SI) { + SI = dyn_cast<SelectInst>(RHS); + A = LHS; + } + if (SI && SI->hasOneUse()) { + Value *TV = SI->getTrueValue(); + Value *FV = SI->getFalseValue(); + Value *N; + + // Can we fold the add into the argument of the select? + // We check both true and false select arguments for a matching subtract. + if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) + // Fold the add into the true select value. + return SelectInst::Create(SI->getCondition(), N, A); + + if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) + // Fold the add into the false select value. + return SelectInst::Create(SI->getCondition(), A, N); + } + } + + if (Instruction *Ext = narrowMathIfNoOverflow(I)) + return Ext; + + // (add (xor A, B) (and A, B)) --> (or A, B) + // (add (and A, B) (xor A, B)) --> (or A, B) + if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), + m_c_And(m_Deferred(A), m_Deferred(B))))) + return BinaryOperator::CreateOr(A, B); + + // (add (or A, B) (and A, B)) --> (add A, B) + // (add (and A, B) (or A, B)) --> (add A, B) + if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), + m_c_And(m_Deferred(A), m_Deferred(B))))) { + I.setOperand(0, A); + I.setOperand(1, B); + return &I; + } + + // TODO(jingyue): Consider willNotOverflowSignedAdd and + // willNotOverflowUnsignedAdd to reduce the number of invocations of + // computeKnownBits. + bool Changed = false; + if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { + Changed = true; + I.setHasNoSignedWrap(true); + } + if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { + Changed = true; + I.setHasNoUnsignedWrap(true); + } + + if (Instruction *V = canonicalizeLowbitMask(I, Builder)) + return V; + + if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) + return SatAdd; + + return Changed ? &I : nullptr; +} + +/// Factor a common operand out of fadd/fsub of fmul/fdiv. +static Instruction *factorizeFAddFSub(BinaryOperator &I, + InstCombiner::BuilderTy &Builder) { + assert((I.getOpcode() == Instruction::FAdd || + I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); + assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && + "FP factorization requires FMF"); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + Value *X, *Y, *Z; + bool IsFMul; + if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) && + match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) || + (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) && + match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z)))))) + IsFMul = true; + else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) && + match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z))))) + IsFMul = false; + else + return nullptr; + + // (X * Z) + (Y * Z) --> (X + Y) * Z + // (X * Z) - (Y * Z) --> (X - Y) * Z + // (X / Z) + (Y / Z) --> (X + Y) / Z + // (X / Z) - (Y / Z) --> (X - Y) / Z + bool IsFAdd = I.getOpcode() == Instruction::FAdd; + Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) + : Builder.CreateFSubFMF(X, Y, &I); + + // Bail out if we just created a denormal constant. + // TODO: This is copied from a previous implementation. Is it necessary? + const APFloat *C; + if (match(XY, m_APFloat(C)) && !C->isNormal()) + return nullptr; + + return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) + : BinaryOperator::CreateFDivFMF(XY, Z, &I); +} + +Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { + if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), + I.getFastMathFlags(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + if (SimplifyAssociativeOrCommutative(I)) + return &I; + + if (Instruction *X = foldVectorBinop(I)) + return X; + + if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) + return FoldedFAdd; + + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + Value *X; + // (-X) + Y --> Y - X + if (match(LHS, m_FNeg(m_Value(X)))) + return BinaryOperator::CreateFSubFMF(RHS, X, &I); + // Y + (-X) --> Y - X + if (match(RHS, m_FNeg(m_Value(X)))) + return BinaryOperator::CreateFSubFMF(LHS, X, &I); + + // Check for (fadd double (sitofp x), y), see if we can merge this into an + // integer add followed by a promotion. + if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { + Value *LHSIntVal = LHSConv->getOperand(0); + Type *FPType = LHSConv->getType(); + + // TODO: This check is overly conservative. In many cases known bits + // analysis can tell us that the result of the addition has less significant + // bits than the integer type can hold. + auto IsValidPromotion = [](Type *FTy, Type *ITy) { + Type *FScalarTy = FTy->getScalarType(); + Type *IScalarTy = ITy->getScalarType(); + + // Do we have enough bits in the significand to represent the result of + // the integer addition? + unsigned MaxRepresentableBits = + APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); + return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; + }; + + // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) + // ... if the constant fits in the integer value. This is useful for things + // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer + // requires a constant pool load, and generally allows the add to be better + // instcombined. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) + if (IsValidPromotion(FPType, LHSIntVal->getType())) { + Constant *CI = + ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); + if (LHSConv->hasOneUse() && + ConstantExpr::getSIToFP(CI, I.getType()) == CFP && + willNotOverflowSignedAdd(LHSIntVal, CI, I)) { + // Insert the new integer add. + Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); + return new SIToFPInst(NewAdd, I.getType()); + } + } + + // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) + if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { + Value *RHSIntVal = RHSConv->getOperand(0); + // It's enough to check LHS types only because we require int types to + // be the same for this transform. + if (IsValidPromotion(FPType, LHSIntVal->getType())) { + // Only do this if x/y have the same type, if at least one of them has a + // single use (so we don't increase the number of int->fp conversions), + // and if the integer add will not overflow. + if (LHSIntVal->getType() == RHSIntVal->getType() && + (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && + willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { + // Insert the new integer add. + Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); + return new SIToFPInst(NewAdd, I.getType()); + } + } + } + } + + // Handle specials cases for FAdd with selects feeding the operation + if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) + return replaceInstUsesWith(I, V); + + if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { + if (Instruction *F = factorizeFAddFSub(I, Builder)) + return F; + if (Value *V = FAddCombine(Builder).simplify(&I)) + return replaceInstUsesWith(I, V); + } + + return nullptr; +} + +/// Optimize pointer differences into the same array into a size. Consider: +/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer +/// operands to the ptrtoint instructions for the LHS/RHS of the subtract. +Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, + Type *Ty) { + // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize + // this. + bool Swapped = false; + GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; + + // For now we require one side to be the base pointer "A" or a constant + // GEP derived from it. + if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { + // (gep X, ...) - X + if (LHSGEP->getOperand(0) == RHS) { + GEP1 = LHSGEP; + Swapped = false; + } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { + // (gep X, ...) - (gep X, ...) + if (LHSGEP->getOperand(0)->stripPointerCasts() == + RHSGEP->getOperand(0)->stripPointerCasts()) { + GEP2 = RHSGEP; + GEP1 = LHSGEP; + Swapped = false; + } + } + } + + if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { + // X - (gep X, ...) + if (RHSGEP->getOperand(0) == LHS) { + GEP1 = RHSGEP; + Swapped = true; + } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { + // (gep X, ...) - (gep X, ...) + if (RHSGEP->getOperand(0)->stripPointerCasts() == + LHSGEP->getOperand(0)->stripPointerCasts()) { + GEP2 = LHSGEP; + GEP1 = RHSGEP; + Swapped = true; + } + } + } + + if (!GEP1) + // No GEP found. + return nullptr; + + if (GEP2) { + // (gep X, ...) - (gep X, ...) + // + // Avoid duplicating the arithmetic if there are more than one non-constant + // indices between the two GEPs and either GEP has a non-constant index and + // multiple users. If zero non-constant index, the result is a constant and + // there is no duplication. If one non-constant index, the result is an add + // or sub with a constant, which is no larger than the original code, and + // there's no duplicated arithmetic, even if either GEP has multiple + // users. If more than one non-constant indices combined, as long as the GEP + // with at least one non-constant index doesn't have multiple users, there + // is no duplication. + unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); + unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); + if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && + ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || + (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { + return nullptr; + } + } + + // Emit the offset of the GEP and an intptr_t. + Value *Result = EmitGEPOffset(GEP1); + + // If we had a constant expression GEP on the other side offsetting the + // pointer, subtract it from the offset we have. + if (GEP2) { + Value *Offset = EmitGEPOffset(GEP2); + Result = Builder.CreateSub(Result, Offset); + } + + // If we have p - gep(p, ...) then we have to negate the result. + if (Swapped) + Result = Builder.CreateNeg(Result, "diff.neg"); + + return Builder.CreateIntCast(Result, Ty, true); +} + +Instruction *InstCombiner::visitSub(BinaryOperator &I) { + if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), + I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + if (Instruction *X = foldVectorBinop(I)) + return X; + + // (A*B)-(A*C) -> A*(B-C) etc + if (Value *V = SimplifyUsingDistributiveLaws(I)) + return replaceInstUsesWith(I, V); + + // If this is a 'B = x-(-A)', change to B = x+A. + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + if (Value *V = dyn_castNegVal(Op1)) { + BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); + + if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { + assert(BO->getOpcode() == Instruction::Sub && + "Expected a subtraction operator!"); + if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) + Res->setHasNoSignedWrap(true); + } else { + if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) + Res->setHasNoSignedWrap(true); + } + + return Res; + } + + if (I.getType()->isIntOrIntVectorTy(1)) + return BinaryOperator::CreateXor(Op0, Op1); + + // Replace (-1 - A) with (~A). + if (match(Op0, m_AllOnes())) + return BinaryOperator::CreateNot(Op1); + + // (~X) - (~Y) --> Y - X + Value *X, *Y; + if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) + return BinaryOperator::CreateSub(Y, X); + + // (X + -1) - Y --> ~Y + X + if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) + return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); + + // Y - (X + 1) --> ~X + Y + if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One())))) + return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0); + + // Y - ~X --> (X + 1) + Y + if (match(Op1, m_OneUse(m_Not(m_Value(X))))) { + return BinaryOperator::CreateAdd( + Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X); + } + + if (Constant *C = dyn_cast<Constant>(Op0)) { + bool IsNegate = match(C, m_ZeroInt()); + Value *X; + if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { + // 0 - (zext bool) --> sext bool + // C - (zext bool) --> bool ? C - 1 : C + if (IsNegate) + return CastInst::CreateSExtOrBitCast(X, I.getType()); + return SelectInst::Create(X, SubOne(C), C); + } + if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { + // 0 - (sext bool) --> zext bool + // C - (sext bool) --> bool ? C + 1 : C + if (IsNegate) + return CastInst::CreateZExtOrBitCast(X, I.getType()); + return SelectInst::Create(X, AddOne(C), C); + } + + // C - ~X == X + (1+C) + if (match(Op1, m_Not(m_Value(X)))) + return BinaryOperator::CreateAdd(X, AddOne(C)); + + // Try to fold constant sub into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (Instruction *R = FoldOpIntoSelect(I, SI)) + return R; + + // Try to fold constant sub into PHI values. + if (PHINode *PN = dyn_cast<PHINode>(Op1)) + if (Instruction *R = foldOpIntoPhi(I, PN)) + return R; + + Constant *C2; + + // C-(C2-X) --> X+(C-C2) + if (match(Op1, m_Sub(m_Constant(C2), m_Value(X)))) + return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); + + // C-(X+C2) --> (C-C2)-X + if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) + return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); + } + + const APInt *Op0C; + if (match(Op0, m_APInt(Op0C))) { + unsigned BitWidth = I.getType()->getScalarSizeInBits(); + + // -(X >>u 31) -> (X >>s 31) + // -(X >>s 31) -> (X >>u 31) + if (Op0C->isNullValue()) { + Value *X; + const APInt *ShAmt; + if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && + *ShAmt == BitWidth - 1) { + Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); + return BinaryOperator::CreateAShr(X, ShAmtOp); + } + if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) && + *ShAmt == BitWidth - 1) { + Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); + return BinaryOperator::CreateLShr(X, ShAmtOp); + } + + if (Op1->hasOneUse()) { + Value *LHS, *RHS; + SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor; + if (SPF == SPF_ABS || SPF == SPF_NABS) { + // This is a negate of an ABS/NABS pattern. Just swap the operands + // of the select. + SelectInst *SI = cast<SelectInst>(Op1); + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + SI->setTrueValue(FalseVal); + SI->setFalseValue(TrueVal); + // Don't swap prof metadata, we didn't change the branch behavior. + return replaceInstUsesWith(I, SI); + } + } + } + + // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known + // zero. + if (Op0C->isMask()) { + KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); + if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) + return BinaryOperator::CreateXor(Op1, Op0); + } + } + + { + Value *Y; + // X-(X+Y) == -Y X-(Y+X) == -Y + if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) + return BinaryOperator::CreateNeg(Y); + + // (X-Y)-X == -Y + if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) + return BinaryOperator::CreateNeg(Y); + } + + // (sub (or A, B), (xor A, B)) --> (and A, B) + { + Value *A, *B; + if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && + match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) + return BinaryOperator::CreateAnd(A, B); + } + + { + Value *Y; + // ((X | Y) - X) --> (~X & Y) + if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) + return BinaryOperator::CreateAnd( + Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); + } + + if (Op1->hasOneUse()) { + Value *X = nullptr, *Y = nullptr, *Z = nullptr; + Constant *C = nullptr; + + // (X - (Y - Z)) --> (X + (Z - Y)). + if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) + return BinaryOperator::CreateAdd(Op0, + Builder.CreateSub(Z, Y, Op1->getName())); + + // (X - (X & Y)) --> (X & ~Y) + if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) + return BinaryOperator::CreateAnd(Op0, + Builder.CreateNot(Y, Y->getName() + ".not")); + + // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. + // TODO: This could be extended to match arbitrary vector constants. + const APInt *DivC; + if (match(Op0, m_Zero()) && match(Op1, m_SDiv(m_Value(X), m_APInt(DivC))) && + !DivC->isMinSignedValue() && *DivC != 1) { + Constant *NegDivC = ConstantInt::get(I.getType(), -(*DivC)); + Instruction *BO = BinaryOperator::CreateSDiv(X, NegDivC); + BO->setIsExact(cast<BinaryOperator>(Op1)->isExact()); + return BO; + } + + // 0 - (X << Y) -> (-X << Y) when X is freely negatable. + if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) + if (Value *XNeg = dyn_castNegVal(X)) + return BinaryOperator::CreateShl(XNeg, Y); + + // Subtracting -1/0 is the same as adding 1/0: + // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) + // 'nuw' is dropped in favor of the canonical form. + if (match(Op1, m_SExt(m_Value(Y))) && + Y->getType()->getScalarSizeInBits() == 1) { + Value *Zext = Builder.CreateZExt(Y, I.getType()); + BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); + Add->setHasNoSignedWrap(I.hasNoSignedWrap()); + return Add; + } + + // X - A*-B -> X + A*B + // X - -A*B -> X + A*B + Value *A, *B; + if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) + return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); + + // X - A*C -> X + A*-C + // No need to handle commuted multiply because multiply handling will + // ensure constant will be move to the right hand side. + if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) { + Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C)); + return BinaryOperator::CreateAdd(Op0, NewMul); + } + } + + { + // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A + // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A + // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O) + // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O) + // So long as O here is freely invertible, this will be neutral or a win. + Value *LHS, *RHS, *A; + Value *NotA = Op0, *MinMax = Op1; + SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; + if (!SelectPatternResult::isMinOrMax(SPF)) { + NotA = Op1; + MinMax = Op0; + SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; + } + if (SelectPatternResult::isMinOrMax(SPF) && + match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) { + if (NotA == LHS) + std::swap(LHS, RHS); + // LHS is now O above and expected to have at least 2 uses (the min/max) + // NotA is epected to have 2 uses from the min/max and 1 from the sub. + if (IsFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && + !NotA->hasNUsesOrMore(4)) { + // Note: We don't generate the inverse max/min, just create the not of + // it and let other folds do the rest. + Value *Not = Builder.CreateNot(MinMax); + if (NotA == Op0) + return BinaryOperator::CreateSub(Not, A); + else + return BinaryOperator::CreateSub(A, Not); + } + } + } + + // Optimize pointer differences into the same array into a size. Consider: + // &A[10] - &A[0]: we should compile this to "10". + Value *LHSOp, *RHSOp; + if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && + match(Op1, m_PtrToInt(m_Value(RHSOp)))) + if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) + return replaceInstUsesWith(I, Res); + + // trunc(p)-trunc(q) -> trunc(p-q) + if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && + match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) + if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) + return replaceInstUsesWith(I, Res); + + // Canonicalize a shifty way to code absolute value to the common pattern. + // There are 2 potential commuted variants. + // We're relying on the fact that we only do this transform when the shift has + // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase + // instructions). + Value *A; + const APInt *ShAmt; + Type *Ty = I.getType(); + if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && + Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && + match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { + // B = ashr i32 A, 31 ; smear the sign bit + // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) + // --> (A < 0) ? -A : A + Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); + // Copy the nuw/nsw flags from the sub to the negate. + Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), + I.hasNoSignedWrap()); + return SelectInst::Create(Cmp, Neg, A); + } + + if (Instruction *Ext = narrowMathIfNoOverflow(I)) + return Ext; + + bool Changed = false; + if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { + Changed = true; + I.setHasNoSignedWrap(true); + } + if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { + Changed = true; + I.setHasNoUnsignedWrap(true); + } + + return Changed ? &I : nullptr; +} + +/// This eliminates floating-point negation in either 'fneg(X)' or +/// 'fsub(-0.0, X)' form by combining into a constant operand. +static Instruction *foldFNegIntoConstant(Instruction &I) { + Value *X; + Constant *C; + + // Fold negation into constant operand. This is limited with one-use because + // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv. + // -(X * C) --> X * (-C) + // FIXME: It's arguable whether these should be m_OneUse or not. The current + // belief is that the FNeg allows for better reassociation opportunities. + if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C)))))) + return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); + // -(X / C) --> X / (-C) + if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C)))))) + return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); + // -(C / X) --> (-C) / X + if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X)))))) + return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); + + return nullptr; +} + +Instruction *InstCombiner::visitFNeg(UnaryOperator &I) { + Value *Op = I.getOperand(0); + + if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + if (Instruction *X = foldFNegIntoConstant(I)) + return X; + + Value *X, *Y; + + // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) + if (I.hasNoSignedZeros() && + match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) + return BinaryOperator::CreateFSubFMF(Y, X, &I); + + return nullptr; +} + +Instruction *InstCombiner::visitFSub(BinaryOperator &I) { + if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), + I.getFastMathFlags(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + if (Instruction *X = foldVectorBinop(I)) + return X; + + // Subtraction from -0.0 is the canonical form of fneg. + // fsub nsz 0, X ==> fsub nsz -0.0, X + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP())) + return BinaryOperator::CreateFNegFMF(Op1, &I); + + if (Instruction *X = foldFNegIntoConstant(I)) + return X; + + Value *X, *Y; + Constant *C; + + // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) + // Canonicalize to fadd to make analysis easier. + // This can also help codegen because fadd is commutative. + // Note that if this fsub was really an fneg, the fadd with -0.0 will get + // killed later. We still limit that particular transform with 'hasOneUse' + // because an fneg is assumed better/cheaper than a generic fsub. + if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { + if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { + Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); + return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); + } + } + + if (isa<Constant>(Op0)) + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (Instruction *NV = FoldOpIntoSelect(I, SI)) + return NV; + + // X - C --> X + (-C) + // But don't transform constant expressions because there's an inverse fold + // for X + (-Y) --> X - Y. + if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1)) + return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); + + // X - (-Y) --> X + Y + if (match(Op1, m_FNeg(m_Value(Y)))) + return BinaryOperator::CreateFAddFMF(Op0, Y, &I); + + // Similar to above, but look through a cast of the negated value: + // X - (fptrunc(-Y)) --> X + fptrunc(Y) + Type *Ty = I.getType(); + if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) + return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); + + // X - (fpext(-Y)) --> X + fpext(Y) + if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) + return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); + + // Handle special cases for FSub with selects feeding the operation + if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) + return replaceInstUsesWith(I, V); + + if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { + // (Y - X) - Y --> -X + if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) + return BinaryOperator::CreateFNegFMF(X, &I); + + // Y - (X + Y) --> -X + // Y - (Y + X) --> -X + if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) + return BinaryOperator::CreateFNegFMF(X, &I); + + // (X * C) - X --> X * (C - 1.0) + if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { + Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); + return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); + } + // X - (X * C) --> X * (1.0 - C) + if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { + Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); + return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); + } + + if (Instruction *F = factorizeFAddFSub(I, Builder)) + return F; + + // TODO: This performs reassociative folds for FP ops. Some fraction of the + // functionality has been subsumed by simple pattern matching here and in + // InstSimplify. We should let a dedicated reassociation pass handle more + // complex pattern matching and remove this from InstCombine. + if (Value *V = FAddCombine(Builder).simplify(&I)) + return replaceInstUsesWith(I, V); + } + + return nullptr; +} |
