diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp | 941 |
1 files changed, 941 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp new file mode 100644 index 000000000000..c821292400cd --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp @@ -0,0 +1,941 @@ +//===- InstCombineShifts.cpp ----------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitShl, visitLShr, and visitAShr functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +// Given pattern: +// (x shiftopcode Q) shiftopcode K +// we should rewrite it as +// x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) +// This is valid for any shift, but they must be identical. +static Instruction * +reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0, + const SimplifyQuery &SQ) { + // Look for: (x shiftopcode ShAmt0) shiftopcode ShAmt1 + Value *X, *ShAmt1, *ShAmt0; + Instruction *Sh1; + if (!match(Sh0, m_Shift(m_CombineAnd(m_Shift(m_Value(X), m_Value(ShAmt1)), + m_Instruction(Sh1)), + m_Value(ShAmt0)))) + return nullptr; + + // The shift opcodes must be identical. + Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); + if (ShiftOpcode != Sh1->getOpcode()) + return nullptr; + // Can we fold (ShAmt0+ShAmt1) ? + Value *NewShAmt = SimplifyBinOp(Instruction::BinaryOps::Add, ShAmt0, ShAmt1, + SQ.getWithInstruction(Sh0)); + if (!NewShAmt) + return nullptr; // Did not simplify. + // Is the new shift amount smaller than the bit width? + // FIXME: could also rely on ConstantRange. + unsigned BitWidth = X->getType()->getScalarSizeInBits(); + if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, + APInt(BitWidth, BitWidth)))) + return nullptr; + // All good, we can do this fold. + BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); + // If both of the original shifts had the same flag set, preserve the flag. + if (ShiftOpcode == Instruction::BinaryOps::Shl) { + NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && + Sh1->hasNoUnsignedWrap()); + NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && + Sh1->hasNoSignedWrap()); + } else { + NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); + } + return NewShift; +} + +Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + assert(Op0->getType() == Op1->getType()); + + // See if we can fold away this shift. + if (SimplifyDemandedInstructionBits(I)) + return &I; + + // Try to fold constant and into select arguments. + if (isa<Constant>(Op0)) + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (Instruction *R = FoldOpIntoSelect(I, SI)) + return R; + + if (Constant *CUI = dyn_cast<Constant>(Op1)) + if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) + return Res; + + if (Instruction *NewShift = + reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)) + return NewShift; + + // (C1 shift (A add C2)) -> (C1 shift C2) shift A) + // iff A and C2 are both positive. + Value *A; + Constant *C; + if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C)))) + if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) && + isKnownNonNegative(C, DL, 0, &AC, &I, &DT)) + return BinaryOperator::Create( + I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A); + + // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2. + // Because shifts by negative values (which could occur if A were negative) + // are undefined. + const APInt *B; + if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) { + // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't + // demand the sign bit (and many others) here?? + Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1), + Op1->getName()); + I.setOperand(1, Rem); + return &I; + } + + return nullptr; +} + +/// Return true if we can simplify two logical (either left or right) shifts +/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. +static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, + Instruction *InnerShift, InstCombiner &IC, + Instruction *CxtI) { + assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); + + // We need constant scalar or constant splat shifts. + const APInt *InnerShiftConst; + if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) + return false; + + // Two logical shifts in the same direction: + // shl (shl X, C1), C2 --> shl X, C1 + C2 + // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 + bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; + if (IsInnerShl == IsOuterShl) + return true; + + // Equal shift amounts in opposite directions become bitwise 'and': + // lshr (shl X, C), C --> and X, C' + // shl (lshr X, C), C --> and X, C' + if (*InnerShiftConst == OuterShAmt) + return true; + + // If the 2nd shift is bigger than the 1st, we can fold: + // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 + // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 + // but it isn't profitable unless we know the and'd out bits are already zero. + // Also, check that the inner shift is valid (less than the type width) or + // we'll crash trying to produce the bit mask for the 'and'. + unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); + if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { + unsigned InnerShAmt = InnerShiftConst->getZExtValue(); + unsigned MaskShift = + IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; + APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; + if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) + return true; + } + + return false; +} + +/// See if we can compute the specified value, but shifted logically to the left +/// or right by some number of bits. This should return true if the expression +/// can be computed for the same cost as the current expression tree. This is +/// used to eliminate extraneous shifting from things like: +/// %C = shl i128 %A, 64 +/// %D = shl i128 %B, 96 +/// %E = or i128 %C, %D +/// %F = lshr i128 %E, 64 +/// where the client will ask if E can be computed shifted right by 64-bits. If +/// this succeeds, getShiftedValue() will be called to produce the value. +static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, + InstCombiner &IC, Instruction *CxtI) { + // We can always evaluate constants shifted. + if (isa<Constant>(V)) + return true; + + Instruction *I = dyn_cast<Instruction>(V); + if (!I) return false; + + // If this is the opposite shift, we can directly reuse the input of the shift + // if the needed bits are already zero in the input. This allows us to reuse + // the value which means that we don't care if the shift has multiple uses. + // TODO: Handle opposite shift by exact value. + ConstantInt *CI = nullptr; + if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || + (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { + if (CI->getValue() == NumBits) { + // TODO: Check that the input bits are already zero with MaskedValueIsZero +#if 0 + // If this is a truncate of a logical shr, we can truncate it to a smaller + // lshr iff we know that the bits we would otherwise be shifting in are + // already zeros. + uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); + uint32_t BitWidth = Ty->getScalarSizeInBits(); + if (MaskedValueIsZero(I->getOperand(0), + APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && + CI->getLimitedValue(BitWidth) < BitWidth) { + return CanEvaluateTruncated(I->getOperand(0), Ty); + } +#endif + + } + } + + // We can't mutate something that has multiple uses: doing so would + // require duplicating the instruction in general, which isn't profitable. + if (!I->hasOneUse()) return false; + + switch (I->getOpcode()) { + default: return false; + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. + return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && + canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); + + case Instruction::Shl: + case Instruction::LShr: + return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); + + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(I); + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && + canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); + } + case Instruction::PHI: { + // We can change a phi if we can change all operands. Note that we never + // get into trouble with cyclic PHIs here because we only consider + // instructions with a single use. + PHINode *PN = cast<PHINode>(I); + for (Value *IncValue : PN->incoming_values()) + if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) + return false; + return true; + } + } +} + +/// Fold OuterShift (InnerShift X, C1), C2. +/// See canEvaluateShiftedShift() for the constraints on these instructions. +static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, + bool IsOuterShl, + InstCombiner::BuilderTy &Builder) { + bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; + Type *ShType = InnerShift->getType(); + unsigned TypeWidth = ShType->getScalarSizeInBits(); + + // We only accept shifts-by-a-constant in canEvaluateShifted(). + const APInt *C1; + match(InnerShift->getOperand(1), m_APInt(C1)); + unsigned InnerShAmt = C1->getZExtValue(); + + // Change the shift amount and clear the appropriate IR flags. + auto NewInnerShift = [&](unsigned ShAmt) { + InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); + if (IsInnerShl) { + InnerShift->setHasNoUnsignedWrap(false); + InnerShift->setHasNoSignedWrap(false); + } else { + InnerShift->setIsExact(false); + } + return InnerShift; + }; + + // Two logical shifts in the same direction: + // shl (shl X, C1), C2 --> shl X, C1 + C2 + // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 + if (IsInnerShl == IsOuterShl) { + // If this is an oversized composite shift, then unsigned shifts get 0. + if (InnerShAmt + OuterShAmt >= TypeWidth) + return Constant::getNullValue(ShType); + + return NewInnerShift(InnerShAmt + OuterShAmt); + } + + // Equal shift amounts in opposite directions become bitwise 'and': + // lshr (shl X, C), C --> and X, C' + // shl (lshr X, C), C --> and X, C' + if (InnerShAmt == OuterShAmt) { + APInt Mask = IsInnerShl + ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) + : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); + Value *And = Builder.CreateAnd(InnerShift->getOperand(0), + ConstantInt::get(ShType, Mask)); + if (auto *AndI = dyn_cast<Instruction>(And)) { + AndI->moveBefore(InnerShift); + AndI->takeName(InnerShift); + } + return And; + } + + assert(InnerShAmt > OuterShAmt && + "Unexpected opposite direction logical shift pair"); + + // In general, we would need an 'and' for this transform, but + // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. + // lshr (shl X, C1), C2 --> shl X, C1 - C2 + // shl (lshr X, C1), C2 --> lshr X, C1 - C2 + return NewInnerShift(InnerShAmt - OuterShAmt); +} + +/// When canEvaluateShifted() returns true for an expression, this function +/// inserts the new computation that produces the shifted value. +static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, + InstCombiner &IC, const DataLayout &DL) { + // We can always evaluate constants shifted. + if (Constant *C = dyn_cast<Constant>(V)) { + if (isLeftShift) + V = IC.Builder.CreateShl(C, NumBits); + else + V = IC.Builder.CreateLShr(C, NumBits); + // If we got a constantexpr back, try to simplify it with TD info. + if (auto *C = dyn_cast<Constant>(V)) + if (auto *FoldedC = + ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo())) + V = FoldedC; + return V; + } + + Instruction *I = cast<Instruction>(V); + IC.Worklist.Add(I); + + switch (I->getOpcode()) { + default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. + I->setOperand( + 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); + I->setOperand( + 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); + return I; + + case Instruction::Shl: + case Instruction::LShr: + return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, + IC.Builder); + + case Instruction::Select: + I->setOperand( + 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); + I->setOperand( + 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); + return I; + case Instruction::PHI: { + // We can change a phi if we can change all operands. Note that we never + // get into trouble with cyclic PHIs here because we only consider + // instructions with a single use. + PHINode *PN = cast<PHINode>(I); + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, + isLeftShift, IC, DL)); + return PN; + } + } +} + +// If this is a bitwise operator or add with a constant RHS we might be able +// to pull it through a shift. +static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, + BinaryOperator *BO) { + switch (BO->getOpcode()) { + default: + return false; // Do not perform transform! + case Instruction::Add: + return Shift.getOpcode() == Instruction::Shl; + case Instruction::Or: + case Instruction::Xor: + case Instruction::And: + return true; + } +} + +Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1, + BinaryOperator &I) { + bool isLeftShift = I.getOpcode() == Instruction::Shl; + + const APInt *Op1C; + if (!match(Op1, m_APInt(Op1C))) + return nullptr; + + // See if we can propagate this shift into the input, this covers the trivial + // cast of lshr(shl(x,c1),c2) as well as other more complex cases. + if (I.getOpcode() != Instruction::AShr && + canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) { + LLVM_DEBUG( + dbgs() << "ICE: GetShiftedValue propagating shift through expression" + " to eliminate shift:\n IN: " + << *Op0 << "\n SH: " << I << "\n"); + + return replaceInstUsesWith( + I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL)); + } + + // See if we can simplify any instructions used by the instruction whose sole + // purpose is to compute bits we don't care about. + unsigned TypeBits = Op0->getType()->getScalarSizeInBits(); + + assert(!Op1C->uge(TypeBits) && + "Shift over the type width should have been removed already"); + + if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) + return FoldedShift; + + // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) + if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { + Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); + // If 'shift2' is an ashr, we would have to get the sign bit into a funny + // place. Don't try to do this transformation in this case. Also, we + // require that the input operand is a shift-by-constant so that we have + // confidence that the shifts will get folded together. We could do this + // xform in more cases, but it is unlikely to be profitable. + if (TrOp && I.isLogicalShift() && TrOp->isShift() && + isa<ConstantInt>(TrOp->getOperand(1))) { + // Okay, we'll do this xform. Make the shift of shift. + Constant *ShAmt = + ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType()); + // (shift2 (shift1 & 0x00FF), c2) + Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName()); + + // For logical shifts, the truncation has the effect of making the high + // part of the register be zeros. Emulate this by inserting an AND to + // clear the top bits as needed. This 'and' will usually be zapped by + // other xforms later if dead. + unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); + unsigned DstSize = TI->getType()->getScalarSizeInBits(); + APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); + + // The mask we constructed says what the trunc would do if occurring + // between the shifts. We want to know the effect *after* the second + // shift. We know that it is a logical shift by a constant, so adjust the + // mask as appropriate. + if (I.getOpcode() == Instruction::Shl) + MaskV <<= Op1C->getZExtValue(); + else { + assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); + MaskV.lshrInPlace(Op1C->getZExtValue()); + } + + // shift1 & 0x00FF + Value *And = Builder.CreateAnd(NSh, + ConstantInt::get(I.getContext(), MaskV), + TI->getName()); + + // Return the value truncated to the interesting size. + return new TruncInst(And, I.getType()); + } + } + + if (Op0->hasOneUse()) { + if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { + // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) + Value *V1, *V2; + ConstantInt *CC; + switch (Op0BO->getOpcode()) { + default: break; + case Instruction::Add: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + // These operators commute. + // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) + if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && + match(Op0BO->getOperand(1), m_Shr(m_Value(V1), + m_Specific(Op1)))) { + Value *YS = // (Y << C) + Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); + // (X + (Y << C)) + Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1, + Op0BO->getOperand(1)->getName()); + unsigned Op1Val = Op1C->getLimitedValue(TypeBits); + + APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); + Constant *Mask = ConstantInt::get(I.getContext(), Bits); + if (VectorType *VT = dyn_cast<VectorType>(X->getType())) + Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); + return BinaryOperator::CreateAnd(X, Mask); + } + + // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) + Value *Op0BOOp1 = Op0BO->getOperand(1); + if (isLeftShift && Op0BOOp1->hasOneUse() && + match(Op0BOOp1, + m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))), + m_ConstantInt(CC)))) { + Value *YS = // (Y << C) + Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); + // X & (CC << C) + Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), + V1->getName()+".mask"); + return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); + } + LLVM_FALLTHROUGH; + } + + case Instruction::Sub: { + // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) + if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && + match(Op0BO->getOperand(0), m_Shr(m_Value(V1), + m_Specific(Op1)))) { + Value *YS = // (Y << C) + Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); + // (X + (Y << C)) + Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS, + Op0BO->getOperand(0)->getName()); + unsigned Op1Val = Op1C->getLimitedValue(TypeBits); + + APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); + Constant *Mask = ConstantInt::get(I.getContext(), Bits); + if (VectorType *VT = dyn_cast<VectorType>(X->getType())) + Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); + return BinaryOperator::CreateAnd(X, Mask); + } + + // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) + if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && + match(Op0BO->getOperand(0), + m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))), + m_ConstantInt(CC))) && V2 == Op1) { + Value *YS = // (Y << C) + Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); + // X & (CC << C) + Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), + V1->getName()+".mask"); + + return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); + } + + break; + } + } + + + // If the operand is a bitwise operator with a constant RHS, and the + // shift is the only use, we can pull it out of the shift. + const APInt *Op0C; + if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { + if (canShiftBinOpWithConstantRHS(I, Op0BO)) { + Constant *NewRHS = ConstantExpr::get(I.getOpcode(), + cast<Constant>(Op0BO->getOperand(1)), Op1); + + Value *NewShift = + Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); + NewShift->takeName(Op0BO); + + return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, + NewRHS); + } + } + + // If the operand is a subtract with a constant LHS, and the shift + // is the only use, we can pull it out of the shift. + // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2)) + if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub && + match(Op0BO->getOperand(0), m_APInt(Op0C))) { + Constant *NewRHS = ConstantExpr::get(I.getOpcode(), + cast<Constant>(Op0BO->getOperand(0)), Op1); + + Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1); + NewShift->takeName(Op0BO); + + return BinaryOperator::CreateSub(NewRHS, NewShift); + } + } + + // If we have a select that conditionally executes some binary operator, + // see if we can pull it the select and operator through the shift. + // + // For example, turning: + // shl (select C, (add X, C1), X), C2 + // Into: + // Y = shl X, C2 + // select C, (add Y, C1 << C2), Y + Value *Cond; + BinaryOperator *TBO; + Value *FalseVal; + if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), + m_Value(FalseVal)))) { + const APInt *C; + if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && + match(TBO->getOperand(1), m_APInt(C)) && + canShiftBinOpWithConstantRHS(I, TBO)) { + Constant *NewRHS = ConstantExpr::get(I.getOpcode(), + cast<Constant>(TBO->getOperand(1)), Op1); + + Value *NewShift = + Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1); + Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, + NewRHS); + return SelectInst::Create(Cond, NewOp, NewShift); + } + } + + BinaryOperator *FBO; + Value *TrueVal; + if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), + m_OneUse(m_BinOp(FBO))))) { + const APInt *C; + if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && + match(FBO->getOperand(1), m_APInt(C)) && + canShiftBinOpWithConstantRHS(I, FBO)) { + Constant *NewRHS = ConstantExpr::get(I.getOpcode(), + cast<Constant>(FBO->getOperand(1)), Op1); + + Value *NewShift = + Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1); + Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, + NewRHS); + return SelectInst::Create(Cond, NewShift, NewOp); + } + } + } + + return nullptr; +} + +Instruction *InstCombiner::visitShl(BinaryOperator &I) { + if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), + I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + if (Instruction *X = foldVectorBinop(I)) + return X; + + if (Instruction *V = commonShiftTransforms(I)) + return V; + + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + Type *Ty = I.getType(); + unsigned BitWidth = Ty->getScalarSizeInBits(); + + const APInt *ShAmtAPInt; + if (match(Op1, m_APInt(ShAmtAPInt))) { + unsigned ShAmt = ShAmtAPInt->getZExtValue(); + unsigned BitWidth = Ty->getScalarSizeInBits(); + + // shl (zext X), ShAmt --> zext (shl X, ShAmt) + // This is only valid if X would have zeros shifted out. + Value *X; + if (match(Op0, m_ZExt(m_Value(X)))) { + unsigned SrcWidth = X->getType()->getScalarSizeInBits(); + if (ShAmt < SrcWidth && + MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I)) + return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty); + } + + // (X >> C) << C --> X & (-1 << C) + if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { + APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)); + return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); + } + + // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine) + // needs a few fixes for the rotate pattern recognition first. + const APInt *ShOp1; + if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) { + unsigned ShrAmt = ShOp1->getZExtValue(); + if (ShrAmt < ShAmt) { + // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1) + Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt); + auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); + NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); + NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); + return NewShl; + } + if (ShrAmt > ShAmt) { + // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2) + Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt); + auto *NewShr = BinaryOperator::Create( + cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); + NewShr->setIsExact(true); + return NewShr; + } + } + + if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) { + unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); + // Oversized shifts are simplified to zero in InstSimplify. + if (AmtSum < BitWidth) + // (X << C1) << C2 --> X << (C1 + C2) + return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); + } + + // If the shifted-out value is known-zero, then this is a NUW shift. + if (!I.hasNoUnsignedWrap() && + MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) { + I.setHasNoUnsignedWrap(); + return &I; + } + + // If the shifted-out value is all signbits, then this is a NSW shift. + if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) { + I.setHasNoSignedWrap(); + return &I; + } + } + + // Transform (x >> y) << y to x & (-1 << y) + // Valid for any type of right-shift. + Value *X; + if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { + Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); + Value *Mask = Builder.CreateShl(AllOnes, Op1); + return BinaryOperator::CreateAnd(Mask, X); + } + + Constant *C1; + if (match(Op1, m_Constant(C1))) { + Constant *C2; + Value *X; + // (C2 << X) << C1 --> (C2 << C1) << X + if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X))))) + return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X); + + // (X * C2) << C1 --> X * (C2 << C1) + if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) + return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); + } + + // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 + if (match(Op0, m_One()) && + match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) + return BinaryOperator::CreateLShr( + ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); + + return nullptr; +} + +Instruction *InstCombiner::visitLShr(BinaryOperator &I) { + if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + if (Instruction *X = foldVectorBinop(I)) + return X; + + if (Instruction *R = commonShiftTransforms(I)) + return R; + + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + Type *Ty = I.getType(); + const APInt *ShAmtAPInt; + if (match(Op1, m_APInt(ShAmtAPInt))) { + unsigned ShAmt = ShAmtAPInt->getZExtValue(); + unsigned BitWidth = Ty->getScalarSizeInBits(); + auto *II = dyn_cast<IntrinsicInst>(Op0); + if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt && + (II->getIntrinsicID() == Intrinsic::ctlz || + II->getIntrinsicID() == Intrinsic::cttz || + II->getIntrinsicID() == Intrinsic::ctpop)) { + // ctlz.i32(x)>>5 --> zext(x == 0) + // cttz.i32(x)>>5 --> zext(x == 0) + // ctpop.i32(x)>>5 --> zext(x == -1) + bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; + Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); + Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); + return new ZExtInst(Cmp, Ty); + } + + Value *X; + const APInt *ShOp1; + if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) { + if (ShOp1->ult(ShAmt)) { + unsigned ShlAmt = ShOp1->getZExtValue(); + Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); + if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { + // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1) + auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); + NewLShr->setIsExact(I.isExact()); + return NewLShr; + } + // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2) + Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); + APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); + return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); + } + if (ShOp1->ugt(ShAmt)) { + unsigned ShlAmt = ShOp1->getZExtValue(); + Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); + if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { + // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2) + auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); + NewShl->setHasNoUnsignedWrap(true); + return NewShl; + } + // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2) + Value *NewShl = Builder.CreateShl(X, ShiftDiff); + APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); + return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); + } + assert(*ShOp1 == ShAmt); + // (X << C) >>u C --> X & (-1 >>u C) + APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); + return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); + } + + if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && + (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { + assert(ShAmt < X->getType()->getScalarSizeInBits() && + "Big shift not simplified to zero?"); + // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN + Value *NewLShr = Builder.CreateLShr(X, ShAmt); + return new ZExtInst(NewLShr, Ty); + } + + if (match(Op0, m_SExt(m_Value(X))) && + (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { + // Are we moving the sign bit to the low bit and widening with high zeros? + unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); + if (ShAmt == BitWidth - 1) { + // lshr (sext i1 X to iN), N-1 --> zext X to iN + if (SrcTyBitWidth == 1) + return new ZExtInst(X, Ty); + + // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN + if (Op0->hasOneUse()) { + Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); + return new ZExtInst(NewLShr, Ty); + } + } + + // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN + if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) { + // The new shift amount can't be more than the narrow source type. + unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1); + Value *AShr = Builder.CreateAShr(X, NewShAmt); + return new ZExtInst(AShr, Ty); + } + } + + if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) { + unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); + // Oversized shifts are simplified to zero in InstSimplify. + if (AmtSum < BitWidth) + // (X >>u C1) >>u C2 --> X >>u (C1 + C2) + return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); + } + + // If the shifted-out value is known-zero, then this is an exact shift. + if (!I.isExact() && + MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { + I.setIsExact(); + return &I; + } + } + + // Transform (x << y) >> y to x & (-1 >> y) + Value *X; + if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { + Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); + Value *Mask = Builder.CreateLShr(AllOnes, Op1); + return BinaryOperator::CreateAnd(Mask, X); + } + + return nullptr; +} + +Instruction *InstCombiner::visitAShr(BinaryOperator &I) { + if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + if (Instruction *X = foldVectorBinop(I)) + return X; + + if (Instruction *R = commonShiftTransforms(I)) + return R; + + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + Type *Ty = I.getType(); + unsigned BitWidth = Ty->getScalarSizeInBits(); + const APInt *ShAmtAPInt; + if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { + unsigned ShAmt = ShAmtAPInt->getZExtValue(); + + // If the shift amount equals the difference in width of the destination + // and source scalar types: + // ashr (shl (zext X), C), C --> sext X + Value *X; + if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && + ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) + return new SExtInst(X, Ty); + + // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, + // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. + const APInt *ShOp1; + if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && + ShOp1->ult(BitWidth)) { + unsigned ShlAmt = ShOp1->getZExtValue(); + if (ShlAmt < ShAmt) { + // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) + Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); + auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); + NewAShr->setIsExact(I.isExact()); + return NewAShr; + } + if (ShlAmt > ShAmt) { + // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) + Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); + auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); + NewShl->setHasNoSignedWrap(true); + return NewShl; + } + } + + if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && + ShOp1->ult(BitWidth)) { + unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); + // Oversized arithmetic shifts replicate the sign bit. + AmtSum = std::min(AmtSum, BitWidth - 1); + // (X >>s C1) >>s C2 --> X >>s (C1 + C2) + return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); + } + + if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && + (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { + // ashr (sext X), C --> sext (ashr X, C') + Type *SrcTy = X->getType(); + ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); + Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); + return new SExtInst(NewSh, Ty); + } + + // If the shifted-out value is known-zero, then this is an exact shift. + if (!I.isExact() && + MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { + I.setIsExact(); + return &I; + } + } + + // See if we can turn a signed shr into an unsigned shr. + if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) + return BinaryOperator::CreateLShr(Op0, Op1); + + return nullptr; +} |
