summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp1424
1 files changed, 1424 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
new file mode 100644
index 000000000000..f1f075257020
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -0,0 +1,1424 @@
+//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs a simple dominator tree walk that eliminates trivially
+// redundant instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/EarlyCSE.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopedHashTable.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/GuardUtils.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DebugCounter.h"
+#include "llvm/Support/RecyclingAllocator.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/GuardUtils.h"
+#include <cassert>
+#include <deque>
+#include <memory>
+#include <utility>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "early-cse"
+
+STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
+STATISTIC(NumCSE, "Number of instructions CSE'd");
+STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
+STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
+STATISTIC(NumCSECall, "Number of call instructions CSE'd");
+STATISTIC(NumDSE, "Number of trivial dead stores removed");
+
+DEBUG_COUNTER(CSECounter, "early-cse",
+ "Controls which instructions are removed");
+
+static cl::opt<unsigned> EarlyCSEMssaOptCap(
+ "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
+ cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
+ "for faster compile. Caps the MemorySSA clobbering calls."));
+
+static cl::opt<bool> EarlyCSEDebugHash(
+ "earlycse-debug-hash", cl::init(false), cl::Hidden,
+ cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
+ "function is well-behaved w.r.t. its isEqual predicate"));
+
+//===----------------------------------------------------------------------===//
+// SimpleValue
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// Struct representing the available values in the scoped hash table.
+struct SimpleValue {
+ Instruction *Inst;
+
+ SimpleValue(Instruction *I) : Inst(I) {
+ assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
+ }
+
+ bool isSentinel() const {
+ return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
+ Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
+
+ static bool canHandle(Instruction *Inst) {
+ // This can only handle non-void readnone functions.
+ if (CallInst *CI = dyn_cast<CallInst>(Inst))
+ return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
+ return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
+ isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
+ isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
+ isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
+ isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
+ }
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+template <> struct DenseMapInfo<SimpleValue> {
+ static inline SimpleValue getEmptyKey() {
+ return DenseMapInfo<Instruction *>::getEmptyKey();
+ }
+
+ static inline SimpleValue getTombstoneKey() {
+ return DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
+
+ static unsigned getHashValue(SimpleValue Val);
+ static bool isEqual(SimpleValue LHS, SimpleValue RHS);
+};
+
+} // end namespace llvm
+
+/// Match a 'select' including an optional 'not's of the condition.
+static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
+ Value *&B,
+ SelectPatternFlavor &Flavor) {
+ // Return false if V is not even a select.
+ if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
+ return false;
+
+ // Look through a 'not' of the condition operand by swapping A/B.
+ Value *CondNot;
+ if (match(Cond, m_Not(m_Value(CondNot)))) {
+ Cond = CondNot;
+ std::swap(A, B);
+ }
+
+ // Set flavor if we find a match, or set it to unknown otherwise; in
+ // either case, return true to indicate that this is a select we can
+ // process.
+ if (auto *CmpI = dyn_cast<ICmpInst>(Cond))
+ Flavor = matchDecomposedSelectPattern(CmpI, A, B, A, B).Flavor;
+ else
+ Flavor = SPF_UNKNOWN;
+
+ return true;
+}
+
+static unsigned getHashValueImpl(SimpleValue Val) {
+ Instruction *Inst = Val.Inst;
+ // Hash in all of the operands as pointers.
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
+ Value *LHS = BinOp->getOperand(0);
+ Value *RHS = BinOp->getOperand(1);
+ if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
+ std::swap(LHS, RHS);
+
+ return hash_combine(BinOp->getOpcode(), LHS, RHS);
+ }
+
+ if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
+ // Compares can be commuted by swapping the comparands and
+ // updating the predicate. Choose the form that has the
+ // comparands in sorted order, or in the case of a tie, the
+ // one with the lower predicate.
+ Value *LHS = CI->getOperand(0);
+ Value *RHS = CI->getOperand(1);
+ CmpInst::Predicate Pred = CI->getPredicate();
+ CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
+ if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
+ std::swap(LHS, RHS);
+ Pred = SwappedPred;
+ }
+ return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
+ }
+
+ // Hash general selects to allow matching commuted true/false operands.
+ SelectPatternFlavor SPF;
+ Value *Cond, *A, *B;
+ if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
+ // Hash min/max/abs (cmp + select) to allow for commuted operands.
+ // Min/max may also have non-canonical compare predicate (eg, the compare for
+ // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
+ // compare.
+ // TODO: We should also detect FP min/max.
+ if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
+ SPF == SPF_UMIN || SPF == SPF_UMAX) {
+ if (A > B)
+ std::swap(A, B);
+ return hash_combine(Inst->getOpcode(), SPF, A, B);
+ }
+ if (SPF == SPF_ABS || SPF == SPF_NABS) {
+ // ABS/NABS always puts the input in A and its negation in B.
+ return hash_combine(Inst->getOpcode(), SPF, A, B);
+ }
+
+ // Hash general selects to allow matching commuted true/false operands.
+
+ // If we do not have a compare as the condition, just hash in the condition.
+ CmpInst::Predicate Pred;
+ Value *X, *Y;
+ if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
+ return hash_combine(Inst->getOpcode(), Cond, A, B);
+
+ // Similar to cmp normalization (above) - canonicalize the predicate value:
+ // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
+ if (CmpInst::getInversePredicate(Pred) < Pred) {
+ Pred = CmpInst::getInversePredicate(Pred);
+ std::swap(A, B);
+ }
+ return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
+ }
+
+ if (CastInst *CI = dyn_cast<CastInst>(Inst))
+ return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
+
+ if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
+ return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
+ hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
+
+ if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
+ return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
+ IVI->getOperand(1),
+ hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
+
+ assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
+ isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
+ isa<ShuffleVectorInst>(Inst)) &&
+ "Invalid/unknown instruction");
+
+ // Mix in the opcode.
+ return hash_combine(
+ Inst->getOpcode(),
+ hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
+}
+
+unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
+#ifndef NDEBUG
+ // If -earlycse-debug-hash was specified, return a constant -- this
+ // will force all hashing to collide, so we'll exhaustively search
+ // the table for a match, and the assertion in isEqual will fire if
+ // there's a bug causing equal keys to hash differently.
+ if (EarlyCSEDebugHash)
+ return 0;
+#endif
+ return getHashValueImpl(Val);
+}
+
+static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
+ Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
+
+ if (LHS.isSentinel() || RHS.isSentinel())
+ return LHSI == RHSI;
+
+ if (LHSI->getOpcode() != RHSI->getOpcode())
+ return false;
+ if (LHSI->isIdenticalToWhenDefined(RHSI))
+ return true;
+
+ // If we're not strictly identical, we still might be a commutable instruction
+ if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
+ if (!LHSBinOp->isCommutative())
+ return false;
+
+ assert(isa<BinaryOperator>(RHSI) &&
+ "same opcode, but different instruction type?");
+ BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
+
+ // Commuted equality
+ return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
+ LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
+ }
+ if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
+ assert(isa<CmpInst>(RHSI) &&
+ "same opcode, but different instruction type?");
+ CmpInst *RHSCmp = cast<CmpInst>(RHSI);
+ // Commuted equality
+ return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
+ LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
+ LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
+ }
+
+ // Min/max/abs can occur with commuted operands, non-canonical predicates,
+ // and/or non-canonical operands.
+ // Selects can be non-trivially equivalent via inverted conditions and swaps.
+ SelectPatternFlavor LSPF, RSPF;
+ Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
+ if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
+ matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
+ if (LSPF == RSPF) {
+ // TODO: We should also detect FP min/max.
+ if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
+ LSPF == SPF_UMIN || LSPF == SPF_UMAX)
+ return ((LHSA == RHSA && LHSB == RHSB) ||
+ (LHSA == RHSB && LHSB == RHSA));
+
+ if (LSPF == SPF_ABS || LSPF == SPF_NABS) {
+ // Abs results are placed in a defined order by matchSelectPattern.
+ return LHSA == RHSA && LHSB == RHSB;
+ }
+
+ // select Cond, A, B <--> select not(Cond), B, A
+ if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
+ return true;
+ }
+
+ // If the true/false operands are swapped and the conditions are compares
+ // with inverted predicates, the selects are equal:
+ // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
+ //
+ // This also handles patterns with a double-negation in the sense of not +
+ // inverse, because we looked through a 'not' in the matching function and
+ // swapped A/B:
+ // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
+ //
+ // This intentionally does NOT handle patterns with a double-negation in
+ // the sense of not + not, because doing so could result in values
+ // comparing
+ // as equal that hash differently in the min/max/abs cases like:
+ // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
+ // ^ hashes as min ^ would not hash as min
+ // In the context of the EarlyCSE pass, however, such cases never reach
+ // this code, as we simplify the double-negation before hashing the second
+ // select (and so still succeed at CSEing them).
+ if (LHSA == RHSB && LHSB == RHSA) {
+ CmpInst::Predicate PredL, PredR;
+ Value *X, *Y;
+ if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
+ match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
+ CmpInst::getInversePredicate(PredL) == PredR)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
+ // These comparisons are nontrivial, so assert that equality implies
+ // hash equality (DenseMap demands this as an invariant).
+ bool Result = isEqualImpl(LHS, RHS);
+ assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
+ getHashValueImpl(LHS) == getHashValueImpl(RHS));
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// CallValue
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// Struct representing the available call values in the scoped hash
+/// table.
+struct CallValue {
+ Instruction *Inst;
+
+ CallValue(Instruction *I) : Inst(I) {
+ assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
+ }
+
+ bool isSentinel() const {
+ return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
+ Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
+
+ static bool canHandle(Instruction *Inst) {
+ // Don't value number anything that returns void.
+ if (Inst->getType()->isVoidTy())
+ return false;
+
+ CallInst *CI = dyn_cast<CallInst>(Inst);
+ if (!CI || !CI->onlyReadsMemory())
+ return false;
+ return true;
+ }
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+template <> struct DenseMapInfo<CallValue> {
+ static inline CallValue getEmptyKey() {
+ return DenseMapInfo<Instruction *>::getEmptyKey();
+ }
+
+ static inline CallValue getTombstoneKey() {
+ return DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
+
+ static unsigned getHashValue(CallValue Val);
+ static bool isEqual(CallValue LHS, CallValue RHS);
+};
+
+} // end namespace llvm
+
+unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
+ Instruction *Inst = Val.Inst;
+ // Hash all of the operands as pointers and mix in the opcode.
+ return hash_combine(
+ Inst->getOpcode(),
+ hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
+}
+
+bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
+ Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
+ if (LHS.isSentinel() || RHS.isSentinel())
+ return LHSI == RHSI;
+ return LHSI->isIdenticalTo(RHSI);
+}
+
+//===----------------------------------------------------------------------===//
+// EarlyCSE implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// A simple and fast domtree-based CSE pass.
+///
+/// This pass does a simple depth-first walk over the dominator tree,
+/// eliminating trivially redundant instructions and using instsimplify to
+/// canonicalize things as it goes. It is intended to be fast and catch obvious
+/// cases so that instcombine and other passes are more effective. It is
+/// expected that a later pass of GVN will catch the interesting/hard cases.
+class EarlyCSE {
+public:
+ const TargetLibraryInfo &TLI;
+ const TargetTransformInfo &TTI;
+ DominatorTree &DT;
+ AssumptionCache &AC;
+ const SimplifyQuery SQ;
+ MemorySSA *MSSA;
+ std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
+
+ using AllocatorTy =
+ RecyclingAllocator<BumpPtrAllocator,
+ ScopedHashTableVal<SimpleValue, Value *>>;
+ using ScopedHTType =
+ ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
+ AllocatorTy>;
+
+ /// A scoped hash table of the current values of all of our simple
+ /// scalar expressions.
+ ///
+ /// As we walk down the domtree, we look to see if instructions are in this:
+ /// if so, we replace them with what we find, otherwise we insert them so
+ /// that dominated values can succeed in their lookup.
+ ScopedHTType AvailableValues;
+
+ /// A scoped hash table of the current values of previously encountered
+ /// memory locations.
+ ///
+ /// This allows us to get efficient access to dominating loads or stores when
+ /// we have a fully redundant load. In addition to the most recent load, we
+ /// keep track of a generation count of the read, which is compared against
+ /// the current generation count. The current generation count is incremented
+ /// after every possibly writing memory operation, which ensures that we only
+ /// CSE loads with other loads that have no intervening store. Ordering
+ /// events (such as fences or atomic instructions) increment the generation
+ /// count as well; essentially, we model these as writes to all possible
+ /// locations. Note that atomic and/or volatile loads and stores can be
+ /// present the table; it is the responsibility of the consumer to inspect
+ /// the atomicity/volatility if needed.
+ struct LoadValue {
+ Instruction *DefInst = nullptr;
+ unsigned Generation = 0;
+ int MatchingId = -1;
+ bool IsAtomic = false;
+
+ LoadValue() = default;
+ LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
+ bool IsAtomic)
+ : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
+ IsAtomic(IsAtomic) {}
+ };
+
+ using LoadMapAllocator =
+ RecyclingAllocator<BumpPtrAllocator,
+ ScopedHashTableVal<Value *, LoadValue>>;
+ using LoadHTType =
+ ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
+ LoadMapAllocator>;
+
+ LoadHTType AvailableLoads;
+
+ // A scoped hash table mapping memory locations (represented as typed
+ // addresses) to generation numbers at which that memory location became
+ // (henceforth indefinitely) invariant.
+ using InvariantMapAllocator =
+ RecyclingAllocator<BumpPtrAllocator,
+ ScopedHashTableVal<MemoryLocation, unsigned>>;
+ using InvariantHTType =
+ ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
+ InvariantMapAllocator>;
+ InvariantHTType AvailableInvariants;
+
+ /// A scoped hash table of the current values of read-only call
+ /// values.
+ ///
+ /// It uses the same generation count as loads.
+ using CallHTType =
+ ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
+ CallHTType AvailableCalls;
+
+ /// This is the current generation of the memory value.
+ unsigned CurrentGeneration = 0;
+
+ /// Set up the EarlyCSE runner for a particular function.
+ EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
+ const TargetTransformInfo &TTI, DominatorTree &DT,
+ AssumptionCache &AC, MemorySSA *MSSA)
+ : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
+ MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
+
+ bool run();
+
+private:
+ unsigned ClobberCounter = 0;
+ // Almost a POD, but needs to call the constructors for the scoped hash
+ // tables so that a new scope gets pushed on. These are RAII so that the
+ // scope gets popped when the NodeScope is destroyed.
+ class NodeScope {
+ public:
+ NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
+ InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
+ : Scope(AvailableValues), LoadScope(AvailableLoads),
+ InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
+ NodeScope(const NodeScope &) = delete;
+ NodeScope &operator=(const NodeScope &) = delete;
+
+ private:
+ ScopedHTType::ScopeTy Scope;
+ LoadHTType::ScopeTy LoadScope;
+ InvariantHTType::ScopeTy InvariantScope;
+ CallHTType::ScopeTy CallScope;
+ };
+
+ // Contains all the needed information to create a stack for doing a depth
+ // first traversal of the tree. This includes scopes for values, loads, and
+ // calls as well as the generation. There is a child iterator so that the
+ // children do not need to be store separately.
+ class StackNode {
+ public:
+ StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
+ InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
+ unsigned cg, DomTreeNode *n, DomTreeNode::iterator child,
+ DomTreeNode::iterator end)
+ : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
+ EndIter(end),
+ Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
+ AvailableCalls)
+ {}
+ StackNode(const StackNode &) = delete;
+ StackNode &operator=(const StackNode &) = delete;
+
+ // Accessors.
+ unsigned currentGeneration() { return CurrentGeneration; }
+ unsigned childGeneration() { return ChildGeneration; }
+ void childGeneration(unsigned generation) { ChildGeneration = generation; }
+ DomTreeNode *node() { return Node; }
+ DomTreeNode::iterator childIter() { return ChildIter; }
+
+ DomTreeNode *nextChild() {
+ DomTreeNode *child = *ChildIter;
+ ++ChildIter;
+ return child;
+ }
+
+ DomTreeNode::iterator end() { return EndIter; }
+ bool isProcessed() { return Processed; }
+ void process() { Processed = true; }
+
+ private:
+ unsigned CurrentGeneration;
+ unsigned ChildGeneration;
+ DomTreeNode *Node;
+ DomTreeNode::iterator ChildIter;
+ DomTreeNode::iterator EndIter;
+ NodeScope Scopes;
+ bool Processed = false;
+ };
+
+ /// Wrapper class to handle memory instructions, including loads,
+ /// stores and intrinsic loads and stores defined by the target.
+ class ParseMemoryInst {
+ public:
+ ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
+ : Inst(Inst) {
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
+ if (TTI.getTgtMemIntrinsic(II, Info))
+ IsTargetMemInst = true;
+ }
+
+ bool isLoad() const {
+ if (IsTargetMemInst) return Info.ReadMem;
+ return isa<LoadInst>(Inst);
+ }
+
+ bool isStore() const {
+ if (IsTargetMemInst) return Info.WriteMem;
+ return isa<StoreInst>(Inst);
+ }
+
+ bool isAtomic() const {
+ if (IsTargetMemInst)
+ return Info.Ordering != AtomicOrdering::NotAtomic;
+ return Inst->isAtomic();
+ }
+
+ bool isUnordered() const {
+ if (IsTargetMemInst)
+ return Info.isUnordered();
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ return LI->isUnordered();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ return SI->isUnordered();
+ }
+ // Conservative answer
+ return !Inst->isAtomic();
+ }
+
+ bool isVolatile() const {
+ if (IsTargetMemInst)
+ return Info.IsVolatile;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ return LI->isVolatile();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ return SI->isVolatile();
+ }
+ // Conservative answer
+ return true;
+ }
+
+ bool isInvariantLoad() const {
+ if (auto *LI = dyn_cast<LoadInst>(Inst))
+ return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
+ return false;
+ }
+
+ bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
+ return (getPointerOperand() == Inst.getPointerOperand() &&
+ getMatchingId() == Inst.getMatchingId());
+ }
+
+ bool isValid() const { return getPointerOperand() != nullptr; }
+
+ // For regular (non-intrinsic) loads/stores, this is set to -1. For
+ // intrinsic loads/stores, the id is retrieved from the corresponding
+ // field in the MemIntrinsicInfo structure. That field contains
+ // non-negative values only.
+ int getMatchingId() const {
+ if (IsTargetMemInst) return Info.MatchingId;
+ return -1;
+ }
+
+ Value *getPointerOperand() const {
+ if (IsTargetMemInst) return Info.PtrVal;
+ return getLoadStorePointerOperand(Inst);
+ }
+
+ bool mayReadFromMemory() const {
+ if (IsTargetMemInst) return Info.ReadMem;
+ return Inst->mayReadFromMemory();
+ }
+
+ bool mayWriteToMemory() const {
+ if (IsTargetMemInst) return Info.WriteMem;
+ return Inst->mayWriteToMemory();
+ }
+
+ private:
+ bool IsTargetMemInst = false;
+ MemIntrinsicInfo Info;
+ Instruction *Inst;
+ };
+
+ bool processNode(DomTreeNode *Node);
+
+ bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
+ const BasicBlock *BB, const BasicBlock *Pred);
+
+ Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
+ if (auto *LI = dyn_cast<LoadInst>(Inst))
+ return LI;
+ if (auto *SI = dyn_cast<StoreInst>(Inst))
+ return SI->getValueOperand();
+ assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
+ return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
+ ExpectedType);
+ }
+
+ /// Return true if the instruction is known to only operate on memory
+ /// provably invariant in the given "generation".
+ bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
+
+ bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
+ Instruction *EarlierInst, Instruction *LaterInst);
+
+ void removeMSSA(Instruction *Inst) {
+ if (!MSSA)
+ return;
+ if (VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+ // Removing a store here can leave MemorySSA in an unoptimized state by
+ // creating MemoryPhis that have identical arguments and by creating
+ // MemoryUses whose defining access is not an actual clobber. The phi case
+ // is handled by MemorySSA when passing OptimizePhis = true to
+ // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated
+ // by MemorySSA's getClobberingMemoryAccess.
+ MSSAUpdater->removeMemoryAccess(Inst, true);
+ }
+};
+
+} // end anonymous namespace
+
+/// Determine if the memory referenced by LaterInst is from the same heap
+/// version as EarlierInst.
+/// This is currently called in two scenarios:
+///
+/// load p
+/// ...
+/// load p
+///
+/// and
+///
+/// x = load p
+/// ...
+/// store x, p
+///
+/// in both cases we want to verify that there are no possible writes to the
+/// memory referenced by p between the earlier and later instruction.
+bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
+ unsigned LaterGeneration,
+ Instruction *EarlierInst,
+ Instruction *LaterInst) {
+ // Check the simple memory generation tracking first.
+ if (EarlierGeneration == LaterGeneration)
+ return true;
+
+ if (!MSSA)
+ return false;
+
+ // If MemorySSA has determined that one of EarlierInst or LaterInst does not
+ // read/write memory, then we can safely return true here.
+ // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
+ // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
+ // by also checking the MemorySSA MemoryAccess on the instruction. Initial
+ // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
+ // with the default optimization pipeline.
+ auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
+ if (!EarlierMA)
+ return true;
+ auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
+ if (!LaterMA)
+ return true;
+
+ // Since we know LaterDef dominates LaterInst and EarlierInst dominates
+ // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
+ // EarlierInst and LaterInst and neither can any other write that potentially
+ // clobbers LaterInst.
+ MemoryAccess *LaterDef;
+ if (ClobberCounter < EarlyCSEMssaOptCap) {
+ LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
+ ClobberCounter++;
+ } else
+ LaterDef = LaterMA->getDefiningAccess();
+
+ return MSSA->dominates(LaterDef, EarlierMA);
+}
+
+bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
+ // A location loaded from with an invariant_load is assumed to *never* change
+ // within the visible scope of the compilation.
+ if (auto *LI = dyn_cast<LoadInst>(I))
+ if (LI->getMetadata(LLVMContext::MD_invariant_load))
+ return true;
+
+ auto MemLocOpt = MemoryLocation::getOrNone(I);
+ if (!MemLocOpt)
+ // "target" intrinsic forms of loads aren't currently known to
+ // MemoryLocation::get. TODO
+ return false;
+ MemoryLocation MemLoc = *MemLocOpt;
+ if (!AvailableInvariants.count(MemLoc))
+ return false;
+
+ // Is the generation at which this became invariant older than the
+ // current one?
+ return AvailableInvariants.lookup(MemLoc) <= GenAt;
+}
+
+bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
+ const BranchInst *BI, const BasicBlock *BB,
+ const BasicBlock *Pred) {
+ assert(BI->isConditional() && "Should be a conditional branch!");
+ assert(BI->getCondition() == CondInst && "Wrong condition?");
+ assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
+ auto *TorF = (BI->getSuccessor(0) == BB)
+ ? ConstantInt::getTrue(BB->getContext())
+ : ConstantInt::getFalse(BB->getContext());
+ auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
+ if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
+ return BOp->getOpcode() == Opcode;
+ return false;
+ };
+ // If the condition is AND operation, we can propagate its operands into the
+ // true branch. If it is OR operation, we can propagate them into the false
+ // branch.
+ unsigned PropagateOpcode =
+ (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
+
+ bool MadeChanges = false;
+ SmallVector<Instruction *, 4> WorkList;
+ SmallPtrSet<Instruction *, 4> Visited;
+ WorkList.push_back(CondInst);
+ while (!WorkList.empty()) {
+ Instruction *Curr = WorkList.pop_back_val();
+
+ AvailableValues.insert(Curr, TorF);
+ LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
+ << Curr->getName() << "' as " << *TorF << " in "
+ << BB->getName() << "\n");
+ if (!DebugCounter::shouldExecute(CSECounter)) {
+ LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
+ } else {
+ // Replace all dominated uses with the known value.
+ if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
+ BasicBlockEdge(Pred, BB))) {
+ NumCSECVP += Count;
+ MadeChanges = true;
+ }
+ }
+
+ if (MatchBinOp(Curr, PropagateOpcode))
+ for (auto &Op : cast<BinaryOperator>(Curr)->operands())
+ if (Instruction *OPI = dyn_cast<Instruction>(Op))
+ if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
+ WorkList.push_back(OPI);
+ }
+
+ return MadeChanges;
+}
+
+bool EarlyCSE::processNode(DomTreeNode *Node) {
+ bool Changed = false;
+ BasicBlock *BB = Node->getBlock();
+
+ // If this block has a single predecessor, then the predecessor is the parent
+ // of the domtree node and all of the live out memory values are still current
+ // in this block. If this block has multiple predecessors, then they could
+ // have invalidated the live-out memory values of our parent value. For now,
+ // just be conservative and invalidate memory if this block has multiple
+ // predecessors.
+ if (!BB->getSinglePredecessor())
+ ++CurrentGeneration;
+
+ // If this node has a single predecessor which ends in a conditional branch,
+ // we can infer the value of the branch condition given that we took this
+ // path. We need the single predecessor to ensure there's not another path
+ // which reaches this block where the condition might hold a different
+ // value. Since we're adding this to the scoped hash table (like any other
+ // def), it will have been popped if we encounter a future merge block.
+ if (BasicBlock *Pred = BB->getSinglePredecessor()) {
+ auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
+ if (BI && BI->isConditional()) {
+ auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
+ if (CondInst && SimpleValue::canHandle(CondInst))
+ Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
+ }
+ }
+
+ /// LastStore - Keep track of the last non-volatile store that we saw... for
+ /// as long as there in no instruction that reads memory. If we see a store
+ /// to the same location, we delete the dead store. This zaps trivial dead
+ /// stores which can occur in bitfield code among other things.
+ Instruction *LastStore = nullptr;
+
+ // See if any instructions in the block can be eliminated. If so, do it. If
+ // not, add them to AvailableValues.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
+ Instruction *Inst = &*I++;
+
+ // Dead instructions should just be removed.
+ if (isInstructionTriviallyDead(Inst, &TLI)) {
+ LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
+ if (!DebugCounter::shouldExecute(CSECounter)) {
+ LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
+ continue;
+ }
+ if (!salvageDebugInfo(*Inst))
+ replaceDbgUsesWithUndef(Inst);
+ removeMSSA(Inst);
+ Inst->eraseFromParent();
+ Changed = true;
+ ++NumSimplify;
+ continue;
+ }
+
+ // Skip assume intrinsics, they don't really have side effects (although
+ // they're marked as such to ensure preservation of control dependencies),
+ // and this pass will not bother with its removal. However, we should mark
+ // its condition as true for all dominated blocks.
+ if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
+ auto *CondI =
+ dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0));
+ if (CondI && SimpleValue::canHandle(CondI)) {
+ LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst
+ << '\n');
+ AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
+ } else
+ LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
+ continue;
+ }
+
+ // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
+ if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
+ LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n');
+ continue;
+ }
+
+ // We can skip all invariant.start intrinsics since they only read memory,
+ // and we can forward values across it. For invariant starts without
+ // invariant ends, we can use the fact that the invariantness never ends to
+ // start a scope in the current generaton which is true for all future
+ // generations. Also, we dont need to consume the last store since the
+ // semantics of invariant.start allow us to perform DSE of the last
+ // store, if there was a store following invariant.start. Consider:
+ //
+ // store 30, i8* p
+ // invariant.start(p)
+ // store 40, i8* p
+ // We can DSE the store to 30, since the store 40 to invariant location p
+ // causes undefined behaviour.
+ if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
+ // If there are any uses, the scope might end.
+ if (!Inst->use_empty())
+ continue;
+ auto *CI = cast<CallInst>(Inst);
+ MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI);
+ // Don't start a scope if we already have a better one pushed
+ if (!AvailableInvariants.count(MemLoc))
+ AvailableInvariants.insert(MemLoc, CurrentGeneration);
+ continue;
+ }
+
+ if (isGuard(Inst)) {
+ if (auto *CondI =
+ dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) {
+ if (SimpleValue::canHandle(CondI)) {
+ // Do we already know the actual value of this condition?
+ if (auto *KnownCond = AvailableValues.lookup(CondI)) {
+ // Is the condition known to be true?
+ if (isa<ConstantInt>(KnownCond) &&
+ cast<ConstantInt>(KnownCond)->isOne()) {
+ LLVM_DEBUG(dbgs()
+ << "EarlyCSE removing guard: " << *Inst << '\n');
+ removeMSSA(Inst);
+ Inst->eraseFromParent();
+ Changed = true;
+ continue;
+ } else
+ // Use the known value if it wasn't true.
+ cast<CallInst>(Inst)->setArgOperand(0, KnownCond);
+ }
+ // The condition we're on guarding here is true for all dominated
+ // locations.
+ AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
+ }
+ }
+
+ // Guard intrinsics read all memory, but don't write any memory.
+ // Accordingly, don't update the generation but consume the last store (to
+ // avoid an incorrect DSE).
+ LastStore = nullptr;
+ continue;
+ }
+
+ // If the instruction can be simplified (e.g. X+0 = X) then replace it with
+ // its simpler value.
+ if (Value *V = SimplifyInstruction(Inst, SQ)) {
+ LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V
+ << '\n');
+ if (!DebugCounter::shouldExecute(CSECounter)) {
+ LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
+ } else {
+ bool Killed = false;
+ if (!Inst->use_empty()) {
+ Inst->replaceAllUsesWith(V);
+ Changed = true;
+ }
+ if (isInstructionTriviallyDead(Inst, &TLI)) {
+ removeMSSA(Inst);
+ Inst->eraseFromParent();
+ Changed = true;
+ Killed = true;
+ }
+ if (Changed)
+ ++NumSimplify;
+ if (Killed)
+ continue;
+ }
+ }
+
+ // If this is a simple instruction that we can value number, process it.
+ if (SimpleValue::canHandle(Inst)) {
+ // See if the instruction has an available value. If so, use it.
+ if (Value *V = AvailableValues.lookup(Inst)) {
+ LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V
+ << '\n');
+ if (!DebugCounter::shouldExecute(CSECounter)) {
+ LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
+ continue;
+ }
+ if (auto *I = dyn_cast<Instruction>(V))
+ I->andIRFlags(Inst);
+ Inst->replaceAllUsesWith(V);
+ removeMSSA(Inst);
+ Inst->eraseFromParent();
+ Changed = true;
+ ++NumCSE;
+ continue;
+ }
+
+ // Otherwise, just remember that this value is available.
+ AvailableValues.insert(Inst, Inst);
+ continue;
+ }
+
+ ParseMemoryInst MemInst(Inst, TTI);
+ // If this is a non-volatile load, process it.
+ if (MemInst.isValid() && MemInst.isLoad()) {
+ // (conservatively) we can't peak past the ordering implied by this
+ // operation, but we can add this load to our set of available values
+ if (MemInst.isVolatile() || !MemInst.isUnordered()) {
+ LastStore = nullptr;
+ ++CurrentGeneration;
+ }
+
+ if (MemInst.isInvariantLoad()) {
+ // If we pass an invariant load, we know that memory location is
+ // indefinitely constant from the moment of first dereferenceability.
+ // We conservatively treat the invariant_load as that moment. If we
+ // pass a invariant load after already establishing a scope, don't
+ // restart it since we want to preserve the earliest point seen.
+ auto MemLoc = MemoryLocation::get(Inst);
+ if (!AvailableInvariants.count(MemLoc))
+ AvailableInvariants.insert(MemLoc, CurrentGeneration);
+ }
+
+ // If we have an available version of this load, and if it is the right
+ // generation or the load is known to be from an invariant location,
+ // replace this instruction.
+ //
+ // If either the dominating load or the current load are invariant, then
+ // we can assume the current load loads the same value as the dominating
+ // load.
+ LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
+ if (InVal.DefInst != nullptr &&
+ InVal.MatchingId == MemInst.getMatchingId() &&
+ // We don't yet handle removing loads with ordering of any kind.
+ !MemInst.isVolatile() && MemInst.isUnordered() &&
+ // We can't replace an atomic load with one which isn't also atomic.
+ InVal.IsAtomic >= MemInst.isAtomic() &&
+ (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
+ isSameMemGeneration(InVal.Generation, CurrentGeneration,
+ InVal.DefInst, Inst))) {
+ Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType());
+ if (Op != nullptr) {
+ LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
+ << " to: " << *InVal.DefInst << '\n');
+ if (!DebugCounter::shouldExecute(CSECounter)) {
+ LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
+ continue;
+ }
+ if (!Inst->use_empty())
+ Inst->replaceAllUsesWith(Op);
+ removeMSSA(Inst);
+ Inst->eraseFromParent();
+ Changed = true;
+ ++NumCSELoad;
+ continue;
+ }
+ }
+
+ // Otherwise, remember that we have this instruction.
+ AvailableLoads.insert(
+ MemInst.getPointerOperand(),
+ LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
+ MemInst.isAtomic()));
+ LastStore = nullptr;
+ continue;
+ }
+
+ // If this instruction may read from memory or throw (and potentially read
+ // from memory in the exception handler), forget LastStore. Load/store
+ // intrinsics will indicate both a read and a write to memory. The target
+ // may override this (e.g. so that a store intrinsic does not read from
+ // memory, and thus will be treated the same as a regular store for
+ // commoning purposes).
+ if ((Inst->mayReadFromMemory() || Inst->mayThrow()) &&
+ !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
+ LastStore = nullptr;
+
+ // If this is a read-only call, process it.
+ if (CallValue::canHandle(Inst)) {
+ // If we have an available version of this call, and if it is the right
+ // generation, replace this instruction.
+ std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst);
+ if (InVal.first != nullptr &&
+ isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
+ Inst)) {
+ LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
+ << " to: " << *InVal.first << '\n');
+ if (!DebugCounter::shouldExecute(CSECounter)) {
+ LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
+ continue;
+ }
+ if (!Inst->use_empty())
+ Inst->replaceAllUsesWith(InVal.first);
+ removeMSSA(Inst);
+ Inst->eraseFromParent();
+ Changed = true;
+ ++NumCSECall;
+ continue;
+ }
+
+ // Otherwise, remember that we have this instruction.
+ AvailableCalls.insert(
+ Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration));
+ continue;
+ }
+
+ // A release fence requires that all stores complete before it, but does
+ // not prevent the reordering of following loads 'before' the fence. As a
+ // result, we don't need to consider it as writing to memory and don't need
+ // to advance the generation. We do need to prevent DSE across the fence,
+ // but that's handled above.
+ if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
+ if (FI->getOrdering() == AtomicOrdering::Release) {
+ assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
+ continue;
+ }
+
+ // write back DSE - If we write back the same value we just loaded from
+ // the same location and haven't passed any intervening writes or ordering
+ // operations, we can remove the write. The primary benefit is in allowing
+ // the available load table to remain valid and value forward past where
+ // the store originally was.
+ if (MemInst.isValid() && MemInst.isStore()) {
+ LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
+ if (InVal.DefInst &&
+ InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) &&
+ InVal.MatchingId == MemInst.getMatchingId() &&
+ // We don't yet handle removing stores with ordering of any kind.
+ !MemInst.isVolatile() && MemInst.isUnordered() &&
+ (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
+ isSameMemGeneration(InVal.Generation, CurrentGeneration,
+ InVal.DefInst, Inst))) {
+ // It is okay to have a LastStore to a different pointer here if MemorySSA
+ // tells us that the load and store are from the same memory generation.
+ // In that case, LastStore should keep its present value since we're
+ // removing the current store.
+ assert((!LastStore ||
+ ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
+ MemInst.getPointerOperand() ||
+ MSSA) &&
+ "can't have an intervening store if not using MemorySSA!");
+ LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
+ if (!DebugCounter::shouldExecute(CSECounter)) {
+ LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
+ continue;
+ }
+ removeMSSA(Inst);
+ Inst->eraseFromParent();
+ Changed = true;
+ ++NumDSE;
+ // We can avoid incrementing the generation count since we were able
+ // to eliminate this store.
+ continue;
+ }
+ }
+
+ // Okay, this isn't something we can CSE at all. Check to see if it is
+ // something that could modify memory. If so, our available memory values
+ // cannot be used so bump the generation count.
+ if (Inst->mayWriteToMemory()) {
+ ++CurrentGeneration;
+
+ if (MemInst.isValid() && MemInst.isStore()) {
+ // We do a trivial form of DSE if there are two stores to the same
+ // location with no intervening loads. Delete the earlier store.
+ // At the moment, we don't remove ordered stores, but do remove
+ // unordered atomic stores. There's no special requirement (for
+ // unordered atomics) about removing atomic stores only in favor of
+ // other atomic stores since we were going to execute the non-atomic
+ // one anyway and the atomic one might never have become visible.
+ if (LastStore) {
+ ParseMemoryInst LastStoreMemInst(LastStore, TTI);
+ assert(LastStoreMemInst.isUnordered() &&
+ !LastStoreMemInst.isVolatile() &&
+ "Violated invariant");
+ if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
+ LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
+ << " due to: " << *Inst << '\n');
+ if (!DebugCounter::shouldExecute(CSECounter)) {
+ LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
+ } else {
+ removeMSSA(LastStore);
+ LastStore->eraseFromParent();
+ Changed = true;
+ ++NumDSE;
+ LastStore = nullptr;
+ }
+ }
+ // fallthrough - we can exploit information about this store
+ }
+
+ // Okay, we just invalidated anything we knew about loaded values. Try
+ // to salvage *something* by remembering that the stored value is a live
+ // version of the pointer. It is safe to forward from volatile stores
+ // to non-volatile loads, so we don't have to check for volatility of
+ // the store.
+ AvailableLoads.insert(
+ MemInst.getPointerOperand(),
+ LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
+ MemInst.isAtomic()));
+
+ // Remember that this was the last unordered store we saw for DSE. We
+ // don't yet handle DSE on ordered or volatile stores since we don't
+ // have a good way to model the ordering requirement for following
+ // passes once the store is removed. We could insert a fence, but
+ // since fences are slightly stronger than stores in their ordering,
+ // it's not clear this is a profitable transform. Another option would
+ // be to merge the ordering with that of the post dominating store.
+ if (MemInst.isUnordered() && !MemInst.isVolatile())
+ LastStore = Inst;
+ else
+ LastStore = nullptr;
+ }
+ }
+ }
+
+ return Changed;
+}
+
+bool EarlyCSE::run() {
+ // Note, deque is being used here because there is significant performance
+ // gains over vector when the container becomes very large due to the
+ // specific access patterns. For more information see the mailing list
+ // discussion on this:
+ // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
+ std::deque<StackNode *> nodesToProcess;
+
+ bool Changed = false;
+
+ // Process the root node.
+ nodesToProcess.push_back(new StackNode(
+ AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
+ CurrentGeneration, DT.getRootNode(),
+ DT.getRootNode()->begin(), DT.getRootNode()->end()));
+
+ assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
+
+ // Process the stack.
+ while (!nodesToProcess.empty()) {
+ // Grab the first item off the stack. Set the current generation, remove
+ // the node from the stack, and process it.
+ StackNode *NodeToProcess = nodesToProcess.back();
+
+ // Initialize class members.
+ CurrentGeneration = NodeToProcess->currentGeneration();
+
+ // Check if the node needs to be processed.
+ if (!NodeToProcess->isProcessed()) {
+ // Process the node.
+ Changed |= processNode(NodeToProcess->node());
+ NodeToProcess->childGeneration(CurrentGeneration);
+ NodeToProcess->process();
+ } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
+ // Push the next child onto the stack.
+ DomTreeNode *child = NodeToProcess->nextChild();
+ nodesToProcess.push_back(
+ new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
+ AvailableCalls, NodeToProcess->childGeneration(),
+ child, child->begin(), child->end()));
+ } else {
+ // It has been processed, and there are no more children to process,
+ // so delete it and pop it off the stack.
+ delete NodeToProcess;
+ nodesToProcess.pop_back();
+ }
+ } // while (!nodes...)
+
+ return Changed;
+}
+
+PreservedAnalyses EarlyCSEPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ auto &TTI = AM.getResult<TargetIRAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ auto *MSSA =
+ UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
+
+ EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
+
+ if (!CSE.run())
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ PA.preserve<GlobalsAA>();
+ if (UseMemorySSA)
+ PA.preserve<MemorySSAAnalysis>();
+ return PA;
+}
+
+namespace {
+
+/// A simple and fast domtree-based CSE pass.
+///
+/// This pass does a simple depth-first walk over the dominator tree,
+/// eliminating trivially redundant instructions and using instsimplify to
+/// canonicalize things as it goes. It is intended to be fast and catch obvious
+/// cases so that instcombine and other passes are more effective. It is
+/// expected that a later pass of GVN will catch the interesting/hard cases.
+template<bool UseMemorySSA>
+class EarlyCSELegacyCommonPass : public FunctionPass {
+public:
+ static char ID;
+
+ EarlyCSELegacyCommonPass() : FunctionPass(ID) {
+ if (UseMemorySSA)
+ initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
+ else
+ initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+
+ auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto *MSSA =
+ UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
+
+ EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
+
+ return CSE.run();
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ if (UseMemorySSA) {
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addPreserved<MemorySSAWrapperPass>();
+ }
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.setPreservesCFG();
+ }
+};
+
+} // end anonymous namespace
+
+using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
+
+template<>
+char EarlyCSELegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
+
+using EarlyCSEMemSSALegacyPass =
+ EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
+
+template<>
+char EarlyCSEMemSSALegacyPass::ID = 0;
+
+FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
+ if (UseMemorySSA)
+ return new EarlyCSEMemSSALegacyPass();
+ else
+ return new EarlyCSELegacyPass();
+}
+
+INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
+ "Early CSE w/ MemorySSA", false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
+ "Early CSE w/ MemorySSA", false, false)