diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp | 1424 |
1 files changed, 1424 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp new file mode 100644 index 000000000000..f1f075257020 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp @@ -0,0 +1,1424 @@ +//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass performs a simple dominator tree walk that eliminates trivially +// redundant instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/EarlyCSE.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/ScopedHashTable.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/GuardUtils.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/DebugCounter.h" +#include "llvm/Support/RecyclingAllocator.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/GuardUtils.h" +#include <cassert> +#include <deque> +#include <memory> +#include <utility> + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "early-cse" + +STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); +STATISTIC(NumCSE, "Number of instructions CSE'd"); +STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); +STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); +STATISTIC(NumCSECall, "Number of call instructions CSE'd"); +STATISTIC(NumDSE, "Number of trivial dead stores removed"); + +DEBUG_COUNTER(CSECounter, "early-cse", + "Controls which instructions are removed"); + +static cl::opt<unsigned> EarlyCSEMssaOptCap( + "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, + cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " + "for faster compile. Caps the MemorySSA clobbering calls.")); + +static cl::opt<bool> EarlyCSEDebugHash( + "earlycse-debug-hash", cl::init(false), cl::Hidden, + cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " + "function is well-behaved w.r.t. its isEqual predicate")); + +//===----------------------------------------------------------------------===// +// SimpleValue +//===----------------------------------------------------------------------===// + +namespace { + +/// Struct representing the available values in the scoped hash table. +struct SimpleValue { + Instruction *Inst; + + SimpleValue(Instruction *I) : Inst(I) { + assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); + } + + bool isSentinel() const { + return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || + Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); + } + + static bool canHandle(Instruction *Inst) { + // This can only handle non-void readnone functions. + if (CallInst *CI = dyn_cast<CallInst>(Inst)) + return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); + return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || + isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || + isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || + isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || + isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); + } +}; + +} // end anonymous namespace + +namespace llvm { + +template <> struct DenseMapInfo<SimpleValue> { + static inline SimpleValue getEmptyKey() { + return DenseMapInfo<Instruction *>::getEmptyKey(); + } + + static inline SimpleValue getTombstoneKey() { + return DenseMapInfo<Instruction *>::getTombstoneKey(); + } + + static unsigned getHashValue(SimpleValue Val); + static bool isEqual(SimpleValue LHS, SimpleValue RHS); +}; + +} // end namespace llvm + +/// Match a 'select' including an optional 'not's of the condition. +static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, + Value *&B, + SelectPatternFlavor &Flavor) { + // Return false if V is not even a select. + if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) + return false; + + // Look through a 'not' of the condition operand by swapping A/B. + Value *CondNot; + if (match(Cond, m_Not(m_Value(CondNot)))) { + Cond = CondNot; + std::swap(A, B); + } + + // Set flavor if we find a match, or set it to unknown otherwise; in + // either case, return true to indicate that this is a select we can + // process. + if (auto *CmpI = dyn_cast<ICmpInst>(Cond)) + Flavor = matchDecomposedSelectPattern(CmpI, A, B, A, B).Flavor; + else + Flavor = SPF_UNKNOWN; + + return true; +} + +static unsigned getHashValueImpl(SimpleValue Val) { + Instruction *Inst = Val.Inst; + // Hash in all of the operands as pointers. + if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { + Value *LHS = BinOp->getOperand(0); + Value *RHS = BinOp->getOperand(1); + if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) + std::swap(LHS, RHS); + + return hash_combine(BinOp->getOpcode(), LHS, RHS); + } + + if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { + // Compares can be commuted by swapping the comparands and + // updating the predicate. Choose the form that has the + // comparands in sorted order, or in the case of a tie, the + // one with the lower predicate. + Value *LHS = CI->getOperand(0); + Value *RHS = CI->getOperand(1); + CmpInst::Predicate Pred = CI->getPredicate(); + CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); + if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { + std::swap(LHS, RHS); + Pred = SwappedPred; + } + return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); + } + + // Hash general selects to allow matching commuted true/false operands. + SelectPatternFlavor SPF; + Value *Cond, *A, *B; + if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { + // Hash min/max/abs (cmp + select) to allow for commuted operands. + // Min/max may also have non-canonical compare predicate (eg, the compare for + // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the + // compare. + // TODO: We should also detect FP min/max. + if (SPF == SPF_SMIN || SPF == SPF_SMAX || + SPF == SPF_UMIN || SPF == SPF_UMAX) { + if (A > B) + std::swap(A, B); + return hash_combine(Inst->getOpcode(), SPF, A, B); + } + if (SPF == SPF_ABS || SPF == SPF_NABS) { + // ABS/NABS always puts the input in A and its negation in B. + return hash_combine(Inst->getOpcode(), SPF, A, B); + } + + // Hash general selects to allow matching commuted true/false operands. + + // If we do not have a compare as the condition, just hash in the condition. + CmpInst::Predicate Pred; + Value *X, *Y; + if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) + return hash_combine(Inst->getOpcode(), Cond, A, B); + + // Similar to cmp normalization (above) - canonicalize the predicate value: + // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A + if (CmpInst::getInversePredicate(Pred) < Pred) { + Pred = CmpInst::getInversePredicate(Pred); + std::swap(A, B); + } + return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); + } + + if (CastInst *CI = dyn_cast<CastInst>(Inst)) + return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); + + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) + return hash_combine(EVI->getOpcode(), EVI->getOperand(0), + hash_combine_range(EVI->idx_begin(), EVI->idx_end())); + + if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) + return hash_combine(IVI->getOpcode(), IVI->getOperand(0), + IVI->getOperand(1), + hash_combine_range(IVI->idx_begin(), IVI->idx_end())); + + assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || + isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || + isa<ShuffleVectorInst>(Inst)) && + "Invalid/unknown instruction"); + + // Mix in the opcode. + return hash_combine( + Inst->getOpcode(), + hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); +} + +unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { +#ifndef NDEBUG + // If -earlycse-debug-hash was specified, return a constant -- this + // will force all hashing to collide, so we'll exhaustively search + // the table for a match, and the assertion in isEqual will fire if + // there's a bug causing equal keys to hash differently. + if (EarlyCSEDebugHash) + return 0; +#endif + return getHashValueImpl(Val); +} + +static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { + Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; + + if (LHS.isSentinel() || RHS.isSentinel()) + return LHSI == RHSI; + + if (LHSI->getOpcode() != RHSI->getOpcode()) + return false; + if (LHSI->isIdenticalToWhenDefined(RHSI)) + return true; + + // If we're not strictly identical, we still might be a commutable instruction + if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { + if (!LHSBinOp->isCommutative()) + return false; + + assert(isa<BinaryOperator>(RHSI) && + "same opcode, but different instruction type?"); + BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); + + // Commuted equality + return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && + LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); + } + if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { + assert(isa<CmpInst>(RHSI) && + "same opcode, but different instruction type?"); + CmpInst *RHSCmp = cast<CmpInst>(RHSI); + // Commuted equality + return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && + LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && + LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); + } + + // Min/max/abs can occur with commuted operands, non-canonical predicates, + // and/or non-canonical operands. + // Selects can be non-trivially equivalent via inverted conditions and swaps. + SelectPatternFlavor LSPF, RSPF; + Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; + if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && + matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { + if (LSPF == RSPF) { + // TODO: We should also detect FP min/max. + if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || + LSPF == SPF_UMIN || LSPF == SPF_UMAX) + return ((LHSA == RHSA && LHSB == RHSB) || + (LHSA == RHSB && LHSB == RHSA)); + + if (LSPF == SPF_ABS || LSPF == SPF_NABS) { + // Abs results are placed in a defined order by matchSelectPattern. + return LHSA == RHSA && LHSB == RHSB; + } + + // select Cond, A, B <--> select not(Cond), B, A + if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) + return true; + } + + // If the true/false operands are swapped and the conditions are compares + // with inverted predicates, the selects are equal: + // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A + // + // This also handles patterns with a double-negation in the sense of not + + // inverse, because we looked through a 'not' in the matching function and + // swapped A/B: + // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A + // + // This intentionally does NOT handle patterns with a double-negation in + // the sense of not + not, because doing so could result in values + // comparing + // as equal that hash differently in the min/max/abs cases like: + // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y + // ^ hashes as min ^ would not hash as min + // In the context of the EarlyCSE pass, however, such cases never reach + // this code, as we simplify the double-negation before hashing the second + // select (and so still succeed at CSEing them). + if (LHSA == RHSB && LHSB == RHSA) { + CmpInst::Predicate PredL, PredR; + Value *X, *Y; + if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && + match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && + CmpInst::getInversePredicate(PredL) == PredR) + return true; + } + } + + return false; +} + +bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { + // These comparisons are nontrivial, so assert that equality implies + // hash equality (DenseMap demands this as an invariant). + bool Result = isEqualImpl(LHS, RHS); + assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || + getHashValueImpl(LHS) == getHashValueImpl(RHS)); + return Result; +} + +//===----------------------------------------------------------------------===// +// CallValue +//===----------------------------------------------------------------------===// + +namespace { + +/// Struct representing the available call values in the scoped hash +/// table. +struct CallValue { + Instruction *Inst; + + CallValue(Instruction *I) : Inst(I) { + assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); + } + + bool isSentinel() const { + return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || + Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); + } + + static bool canHandle(Instruction *Inst) { + // Don't value number anything that returns void. + if (Inst->getType()->isVoidTy()) + return false; + + CallInst *CI = dyn_cast<CallInst>(Inst); + if (!CI || !CI->onlyReadsMemory()) + return false; + return true; + } +}; + +} // end anonymous namespace + +namespace llvm { + +template <> struct DenseMapInfo<CallValue> { + static inline CallValue getEmptyKey() { + return DenseMapInfo<Instruction *>::getEmptyKey(); + } + + static inline CallValue getTombstoneKey() { + return DenseMapInfo<Instruction *>::getTombstoneKey(); + } + + static unsigned getHashValue(CallValue Val); + static bool isEqual(CallValue LHS, CallValue RHS); +}; + +} // end namespace llvm + +unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { + Instruction *Inst = Val.Inst; + // Hash all of the operands as pointers and mix in the opcode. + return hash_combine( + Inst->getOpcode(), + hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); +} + +bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { + Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; + if (LHS.isSentinel() || RHS.isSentinel()) + return LHSI == RHSI; + return LHSI->isIdenticalTo(RHSI); +} + +//===----------------------------------------------------------------------===// +// EarlyCSE implementation +//===----------------------------------------------------------------------===// + +namespace { + +/// A simple and fast domtree-based CSE pass. +/// +/// This pass does a simple depth-first walk over the dominator tree, +/// eliminating trivially redundant instructions and using instsimplify to +/// canonicalize things as it goes. It is intended to be fast and catch obvious +/// cases so that instcombine and other passes are more effective. It is +/// expected that a later pass of GVN will catch the interesting/hard cases. +class EarlyCSE { +public: + const TargetLibraryInfo &TLI; + const TargetTransformInfo &TTI; + DominatorTree &DT; + AssumptionCache &AC; + const SimplifyQuery SQ; + MemorySSA *MSSA; + std::unique_ptr<MemorySSAUpdater> MSSAUpdater; + + using AllocatorTy = + RecyclingAllocator<BumpPtrAllocator, + ScopedHashTableVal<SimpleValue, Value *>>; + using ScopedHTType = + ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, + AllocatorTy>; + + /// A scoped hash table of the current values of all of our simple + /// scalar expressions. + /// + /// As we walk down the domtree, we look to see if instructions are in this: + /// if so, we replace them with what we find, otherwise we insert them so + /// that dominated values can succeed in their lookup. + ScopedHTType AvailableValues; + + /// A scoped hash table of the current values of previously encountered + /// memory locations. + /// + /// This allows us to get efficient access to dominating loads or stores when + /// we have a fully redundant load. In addition to the most recent load, we + /// keep track of a generation count of the read, which is compared against + /// the current generation count. The current generation count is incremented + /// after every possibly writing memory operation, which ensures that we only + /// CSE loads with other loads that have no intervening store. Ordering + /// events (such as fences or atomic instructions) increment the generation + /// count as well; essentially, we model these as writes to all possible + /// locations. Note that atomic and/or volatile loads and stores can be + /// present the table; it is the responsibility of the consumer to inspect + /// the atomicity/volatility if needed. + struct LoadValue { + Instruction *DefInst = nullptr; + unsigned Generation = 0; + int MatchingId = -1; + bool IsAtomic = false; + + LoadValue() = default; + LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, + bool IsAtomic) + : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), + IsAtomic(IsAtomic) {} + }; + + using LoadMapAllocator = + RecyclingAllocator<BumpPtrAllocator, + ScopedHashTableVal<Value *, LoadValue>>; + using LoadHTType = + ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, + LoadMapAllocator>; + + LoadHTType AvailableLoads; + + // A scoped hash table mapping memory locations (represented as typed + // addresses) to generation numbers at which that memory location became + // (henceforth indefinitely) invariant. + using InvariantMapAllocator = + RecyclingAllocator<BumpPtrAllocator, + ScopedHashTableVal<MemoryLocation, unsigned>>; + using InvariantHTType = + ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, + InvariantMapAllocator>; + InvariantHTType AvailableInvariants; + + /// A scoped hash table of the current values of read-only call + /// values. + /// + /// It uses the same generation count as loads. + using CallHTType = + ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; + CallHTType AvailableCalls; + + /// This is the current generation of the memory value. + unsigned CurrentGeneration = 0; + + /// Set up the EarlyCSE runner for a particular function. + EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, + const TargetTransformInfo &TTI, DominatorTree &DT, + AssumptionCache &AC, MemorySSA *MSSA) + : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), + MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} + + bool run(); + +private: + unsigned ClobberCounter = 0; + // Almost a POD, but needs to call the constructors for the scoped hash + // tables so that a new scope gets pushed on. These are RAII so that the + // scope gets popped when the NodeScope is destroyed. + class NodeScope { + public: + NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, + InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) + : Scope(AvailableValues), LoadScope(AvailableLoads), + InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} + NodeScope(const NodeScope &) = delete; + NodeScope &operator=(const NodeScope &) = delete; + + private: + ScopedHTType::ScopeTy Scope; + LoadHTType::ScopeTy LoadScope; + InvariantHTType::ScopeTy InvariantScope; + CallHTType::ScopeTy CallScope; + }; + + // Contains all the needed information to create a stack for doing a depth + // first traversal of the tree. This includes scopes for values, loads, and + // calls as well as the generation. There is a child iterator so that the + // children do not need to be store separately. + class StackNode { + public: + StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, + InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, + unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, + DomTreeNode::iterator end) + : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), + EndIter(end), + Scopes(AvailableValues, AvailableLoads, AvailableInvariants, + AvailableCalls) + {} + StackNode(const StackNode &) = delete; + StackNode &operator=(const StackNode &) = delete; + + // Accessors. + unsigned currentGeneration() { return CurrentGeneration; } + unsigned childGeneration() { return ChildGeneration; } + void childGeneration(unsigned generation) { ChildGeneration = generation; } + DomTreeNode *node() { return Node; } + DomTreeNode::iterator childIter() { return ChildIter; } + + DomTreeNode *nextChild() { + DomTreeNode *child = *ChildIter; + ++ChildIter; + return child; + } + + DomTreeNode::iterator end() { return EndIter; } + bool isProcessed() { return Processed; } + void process() { Processed = true; } + + private: + unsigned CurrentGeneration; + unsigned ChildGeneration; + DomTreeNode *Node; + DomTreeNode::iterator ChildIter; + DomTreeNode::iterator EndIter; + NodeScope Scopes; + bool Processed = false; + }; + + /// Wrapper class to handle memory instructions, including loads, + /// stores and intrinsic loads and stores defined by the target. + class ParseMemoryInst { + public: + ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) + : Inst(Inst) { + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) + if (TTI.getTgtMemIntrinsic(II, Info)) + IsTargetMemInst = true; + } + + bool isLoad() const { + if (IsTargetMemInst) return Info.ReadMem; + return isa<LoadInst>(Inst); + } + + bool isStore() const { + if (IsTargetMemInst) return Info.WriteMem; + return isa<StoreInst>(Inst); + } + + bool isAtomic() const { + if (IsTargetMemInst) + return Info.Ordering != AtomicOrdering::NotAtomic; + return Inst->isAtomic(); + } + + bool isUnordered() const { + if (IsTargetMemInst) + return Info.isUnordered(); + + if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { + return LI->isUnordered(); + } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + return SI->isUnordered(); + } + // Conservative answer + return !Inst->isAtomic(); + } + + bool isVolatile() const { + if (IsTargetMemInst) + return Info.IsVolatile; + + if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { + return LI->isVolatile(); + } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + return SI->isVolatile(); + } + // Conservative answer + return true; + } + + bool isInvariantLoad() const { + if (auto *LI = dyn_cast<LoadInst>(Inst)) + return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; + return false; + } + + bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { + return (getPointerOperand() == Inst.getPointerOperand() && + getMatchingId() == Inst.getMatchingId()); + } + + bool isValid() const { return getPointerOperand() != nullptr; } + + // For regular (non-intrinsic) loads/stores, this is set to -1. For + // intrinsic loads/stores, the id is retrieved from the corresponding + // field in the MemIntrinsicInfo structure. That field contains + // non-negative values only. + int getMatchingId() const { + if (IsTargetMemInst) return Info.MatchingId; + return -1; + } + + Value *getPointerOperand() const { + if (IsTargetMemInst) return Info.PtrVal; + return getLoadStorePointerOperand(Inst); + } + + bool mayReadFromMemory() const { + if (IsTargetMemInst) return Info.ReadMem; + return Inst->mayReadFromMemory(); + } + + bool mayWriteToMemory() const { + if (IsTargetMemInst) return Info.WriteMem; + return Inst->mayWriteToMemory(); + } + + private: + bool IsTargetMemInst = false; + MemIntrinsicInfo Info; + Instruction *Inst; + }; + + bool processNode(DomTreeNode *Node); + + bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, + const BasicBlock *BB, const BasicBlock *Pred); + + Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { + if (auto *LI = dyn_cast<LoadInst>(Inst)) + return LI; + if (auto *SI = dyn_cast<StoreInst>(Inst)) + return SI->getValueOperand(); + assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); + return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), + ExpectedType); + } + + /// Return true if the instruction is known to only operate on memory + /// provably invariant in the given "generation". + bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); + + bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, + Instruction *EarlierInst, Instruction *LaterInst); + + void removeMSSA(Instruction *Inst) { + if (!MSSA) + return; + if (VerifyMemorySSA) + MSSA->verifyMemorySSA(); + // Removing a store here can leave MemorySSA in an unoptimized state by + // creating MemoryPhis that have identical arguments and by creating + // MemoryUses whose defining access is not an actual clobber. The phi case + // is handled by MemorySSA when passing OptimizePhis = true to + // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated + // by MemorySSA's getClobberingMemoryAccess. + MSSAUpdater->removeMemoryAccess(Inst, true); + } +}; + +} // end anonymous namespace + +/// Determine if the memory referenced by LaterInst is from the same heap +/// version as EarlierInst. +/// This is currently called in two scenarios: +/// +/// load p +/// ... +/// load p +/// +/// and +/// +/// x = load p +/// ... +/// store x, p +/// +/// in both cases we want to verify that there are no possible writes to the +/// memory referenced by p between the earlier and later instruction. +bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, + unsigned LaterGeneration, + Instruction *EarlierInst, + Instruction *LaterInst) { + // Check the simple memory generation tracking first. + if (EarlierGeneration == LaterGeneration) + return true; + + if (!MSSA) + return false; + + // If MemorySSA has determined that one of EarlierInst or LaterInst does not + // read/write memory, then we can safely return true here. + // FIXME: We could be more aggressive when checking doesNotAccessMemory(), + // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass + // by also checking the MemorySSA MemoryAccess on the instruction. Initial + // experiments suggest this isn't worthwhile, at least for C/C++ code compiled + // with the default optimization pipeline. + auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); + if (!EarlierMA) + return true; + auto *LaterMA = MSSA->getMemoryAccess(LaterInst); + if (!LaterMA) + return true; + + // Since we know LaterDef dominates LaterInst and EarlierInst dominates + // LaterInst, if LaterDef dominates EarlierInst then it can't occur between + // EarlierInst and LaterInst and neither can any other write that potentially + // clobbers LaterInst. + MemoryAccess *LaterDef; + if (ClobberCounter < EarlyCSEMssaOptCap) { + LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); + ClobberCounter++; + } else + LaterDef = LaterMA->getDefiningAccess(); + + return MSSA->dominates(LaterDef, EarlierMA); +} + +bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { + // A location loaded from with an invariant_load is assumed to *never* change + // within the visible scope of the compilation. + if (auto *LI = dyn_cast<LoadInst>(I)) + if (LI->getMetadata(LLVMContext::MD_invariant_load)) + return true; + + auto MemLocOpt = MemoryLocation::getOrNone(I); + if (!MemLocOpt) + // "target" intrinsic forms of loads aren't currently known to + // MemoryLocation::get. TODO + return false; + MemoryLocation MemLoc = *MemLocOpt; + if (!AvailableInvariants.count(MemLoc)) + return false; + + // Is the generation at which this became invariant older than the + // current one? + return AvailableInvariants.lookup(MemLoc) <= GenAt; +} + +bool EarlyCSE::handleBranchCondition(Instruction *CondInst, + const BranchInst *BI, const BasicBlock *BB, + const BasicBlock *Pred) { + assert(BI->isConditional() && "Should be a conditional branch!"); + assert(BI->getCondition() == CondInst && "Wrong condition?"); + assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); + auto *TorF = (BI->getSuccessor(0) == BB) + ? ConstantInt::getTrue(BB->getContext()) + : ConstantInt::getFalse(BB->getContext()); + auto MatchBinOp = [](Instruction *I, unsigned Opcode) { + if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) + return BOp->getOpcode() == Opcode; + return false; + }; + // If the condition is AND operation, we can propagate its operands into the + // true branch. If it is OR operation, we can propagate them into the false + // branch. + unsigned PropagateOpcode = + (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; + + bool MadeChanges = false; + SmallVector<Instruction *, 4> WorkList; + SmallPtrSet<Instruction *, 4> Visited; + WorkList.push_back(CondInst); + while (!WorkList.empty()) { + Instruction *Curr = WorkList.pop_back_val(); + + AvailableValues.insert(Curr, TorF); + LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" + << Curr->getName() << "' as " << *TorF << " in " + << BB->getName() << "\n"); + if (!DebugCounter::shouldExecute(CSECounter)) { + LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); + } else { + // Replace all dominated uses with the known value. + if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, + BasicBlockEdge(Pred, BB))) { + NumCSECVP += Count; + MadeChanges = true; + } + } + + if (MatchBinOp(Curr, PropagateOpcode)) + for (auto &Op : cast<BinaryOperator>(Curr)->operands()) + if (Instruction *OPI = dyn_cast<Instruction>(Op)) + if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) + WorkList.push_back(OPI); + } + + return MadeChanges; +} + +bool EarlyCSE::processNode(DomTreeNode *Node) { + bool Changed = false; + BasicBlock *BB = Node->getBlock(); + + // If this block has a single predecessor, then the predecessor is the parent + // of the domtree node and all of the live out memory values are still current + // in this block. If this block has multiple predecessors, then they could + // have invalidated the live-out memory values of our parent value. For now, + // just be conservative and invalidate memory if this block has multiple + // predecessors. + if (!BB->getSinglePredecessor()) + ++CurrentGeneration; + + // If this node has a single predecessor which ends in a conditional branch, + // we can infer the value of the branch condition given that we took this + // path. We need the single predecessor to ensure there's not another path + // which reaches this block where the condition might hold a different + // value. Since we're adding this to the scoped hash table (like any other + // def), it will have been popped if we encounter a future merge block. + if (BasicBlock *Pred = BB->getSinglePredecessor()) { + auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); + if (BI && BI->isConditional()) { + auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); + if (CondInst && SimpleValue::canHandle(CondInst)) + Changed |= handleBranchCondition(CondInst, BI, BB, Pred); + } + } + + /// LastStore - Keep track of the last non-volatile store that we saw... for + /// as long as there in no instruction that reads memory. If we see a store + /// to the same location, we delete the dead store. This zaps trivial dead + /// stores which can occur in bitfield code among other things. + Instruction *LastStore = nullptr; + + // See if any instructions in the block can be eliminated. If so, do it. If + // not, add them to AvailableValues. + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { + Instruction *Inst = &*I++; + + // Dead instructions should just be removed. + if (isInstructionTriviallyDead(Inst, &TLI)) { + LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); + if (!DebugCounter::shouldExecute(CSECounter)) { + LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); + continue; + } + if (!salvageDebugInfo(*Inst)) + replaceDbgUsesWithUndef(Inst); + removeMSSA(Inst); + Inst->eraseFromParent(); + Changed = true; + ++NumSimplify; + continue; + } + + // Skip assume intrinsics, they don't really have side effects (although + // they're marked as such to ensure preservation of control dependencies), + // and this pass will not bother with its removal. However, we should mark + // its condition as true for all dominated blocks. + if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { + auto *CondI = + dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0)); + if (CondI && SimpleValue::canHandle(CondI)) { + LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst + << '\n'); + AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); + } else + LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); + continue; + } + + // Skip sideeffect intrinsics, for the same reason as assume intrinsics. + if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) { + LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); + continue; + } + + // We can skip all invariant.start intrinsics since they only read memory, + // and we can forward values across it. For invariant starts without + // invariant ends, we can use the fact that the invariantness never ends to + // start a scope in the current generaton which is true for all future + // generations. Also, we dont need to consume the last store since the + // semantics of invariant.start allow us to perform DSE of the last + // store, if there was a store following invariant.start. Consider: + // + // store 30, i8* p + // invariant.start(p) + // store 40, i8* p + // We can DSE the store to 30, since the store 40 to invariant location p + // causes undefined behaviour. + if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) { + // If there are any uses, the scope might end. + if (!Inst->use_empty()) + continue; + auto *CI = cast<CallInst>(Inst); + MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI); + // Don't start a scope if we already have a better one pushed + if (!AvailableInvariants.count(MemLoc)) + AvailableInvariants.insert(MemLoc, CurrentGeneration); + continue; + } + + if (isGuard(Inst)) { + if (auto *CondI = + dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { + if (SimpleValue::canHandle(CondI)) { + // Do we already know the actual value of this condition? + if (auto *KnownCond = AvailableValues.lookup(CondI)) { + // Is the condition known to be true? + if (isa<ConstantInt>(KnownCond) && + cast<ConstantInt>(KnownCond)->isOne()) { + LLVM_DEBUG(dbgs() + << "EarlyCSE removing guard: " << *Inst << '\n'); + removeMSSA(Inst); + Inst->eraseFromParent(); + Changed = true; + continue; + } else + // Use the known value if it wasn't true. + cast<CallInst>(Inst)->setArgOperand(0, KnownCond); + } + // The condition we're on guarding here is true for all dominated + // locations. + AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); + } + } + + // Guard intrinsics read all memory, but don't write any memory. + // Accordingly, don't update the generation but consume the last store (to + // avoid an incorrect DSE). + LastStore = nullptr; + continue; + } + + // If the instruction can be simplified (e.g. X+0 = X) then replace it with + // its simpler value. + if (Value *V = SimplifyInstruction(Inst, SQ)) { + LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V + << '\n'); + if (!DebugCounter::shouldExecute(CSECounter)) { + LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); + } else { + bool Killed = false; + if (!Inst->use_empty()) { + Inst->replaceAllUsesWith(V); + Changed = true; + } + if (isInstructionTriviallyDead(Inst, &TLI)) { + removeMSSA(Inst); + Inst->eraseFromParent(); + Changed = true; + Killed = true; + } + if (Changed) + ++NumSimplify; + if (Killed) + continue; + } + } + + // If this is a simple instruction that we can value number, process it. + if (SimpleValue::canHandle(Inst)) { + // See if the instruction has an available value. If so, use it. + if (Value *V = AvailableValues.lookup(Inst)) { + LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V + << '\n'); + if (!DebugCounter::shouldExecute(CSECounter)) { + LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); + continue; + } + if (auto *I = dyn_cast<Instruction>(V)) + I->andIRFlags(Inst); + Inst->replaceAllUsesWith(V); + removeMSSA(Inst); + Inst->eraseFromParent(); + Changed = true; + ++NumCSE; + continue; + } + + // Otherwise, just remember that this value is available. + AvailableValues.insert(Inst, Inst); + continue; + } + + ParseMemoryInst MemInst(Inst, TTI); + // If this is a non-volatile load, process it. + if (MemInst.isValid() && MemInst.isLoad()) { + // (conservatively) we can't peak past the ordering implied by this + // operation, but we can add this load to our set of available values + if (MemInst.isVolatile() || !MemInst.isUnordered()) { + LastStore = nullptr; + ++CurrentGeneration; + } + + if (MemInst.isInvariantLoad()) { + // If we pass an invariant load, we know that memory location is + // indefinitely constant from the moment of first dereferenceability. + // We conservatively treat the invariant_load as that moment. If we + // pass a invariant load after already establishing a scope, don't + // restart it since we want to preserve the earliest point seen. + auto MemLoc = MemoryLocation::get(Inst); + if (!AvailableInvariants.count(MemLoc)) + AvailableInvariants.insert(MemLoc, CurrentGeneration); + } + + // If we have an available version of this load, and if it is the right + // generation or the load is known to be from an invariant location, + // replace this instruction. + // + // If either the dominating load or the current load are invariant, then + // we can assume the current load loads the same value as the dominating + // load. + LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); + if (InVal.DefInst != nullptr && + InVal.MatchingId == MemInst.getMatchingId() && + // We don't yet handle removing loads with ordering of any kind. + !MemInst.isVolatile() && MemInst.isUnordered() && + // We can't replace an atomic load with one which isn't also atomic. + InVal.IsAtomic >= MemInst.isAtomic() && + (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || + isSameMemGeneration(InVal.Generation, CurrentGeneration, + InVal.DefInst, Inst))) { + Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); + if (Op != nullptr) { + LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst + << " to: " << *InVal.DefInst << '\n'); + if (!DebugCounter::shouldExecute(CSECounter)) { + LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); + continue; + } + if (!Inst->use_empty()) + Inst->replaceAllUsesWith(Op); + removeMSSA(Inst); + Inst->eraseFromParent(); + Changed = true; + ++NumCSELoad; + continue; + } + } + + // Otherwise, remember that we have this instruction. + AvailableLoads.insert( + MemInst.getPointerOperand(), + LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), + MemInst.isAtomic())); + LastStore = nullptr; + continue; + } + + // If this instruction may read from memory or throw (and potentially read + // from memory in the exception handler), forget LastStore. Load/store + // intrinsics will indicate both a read and a write to memory. The target + // may override this (e.g. so that a store intrinsic does not read from + // memory, and thus will be treated the same as a regular store for + // commoning purposes). + if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && + !(MemInst.isValid() && !MemInst.mayReadFromMemory())) + LastStore = nullptr; + + // If this is a read-only call, process it. + if (CallValue::canHandle(Inst)) { + // If we have an available version of this call, and if it is the right + // generation, replace this instruction. + std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); + if (InVal.first != nullptr && + isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, + Inst)) { + LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst + << " to: " << *InVal.first << '\n'); + if (!DebugCounter::shouldExecute(CSECounter)) { + LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); + continue; + } + if (!Inst->use_empty()) + Inst->replaceAllUsesWith(InVal.first); + removeMSSA(Inst); + Inst->eraseFromParent(); + Changed = true; + ++NumCSECall; + continue; + } + + // Otherwise, remember that we have this instruction. + AvailableCalls.insert( + Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); + continue; + } + + // A release fence requires that all stores complete before it, but does + // not prevent the reordering of following loads 'before' the fence. As a + // result, we don't need to consider it as writing to memory and don't need + // to advance the generation. We do need to prevent DSE across the fence, + // but that's handled above. + if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) + if (FI->getOrdering() == AtomicOrdering::Release) { + assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); + continue; + } + + // write back DSE - If we write back the same value we just loaded from + // the same location and haven't passed any intervening writes or ordering + // operations, we can remove the write. The primary benefit is in allowing + // the available load table to remain valid and value forward past where + // the store originally was. + if (MemInst.isValid() && MemInst.isStore()) { + LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); + if (InVal.DefInst && + InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && + InVal.MatchingId == MemInst.getMatchingId() && + // We don't yet handle removing stores with ordering of any kind. + !MemInst.isVolatile() && MemInst.isUnordered() && + (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || + isSameMemGeneration(InVal.Generation, CurrentGeneration, + InVal.DefInst, Inst))) { + // It is okay to have a LastStore to a different pointer here if MemorySSA + // tells us that the load and store are from the same memory generation. + // In that case, LastStore should keep its present value since we're + // removing the current store. + assert((!LastStore || + ParseMemoryInst(LastStore, TTI).getPointerOperand() == + MemInst.getPointerOperand() || + MSSA) && + "can't have an intervening store if not using MemorySSA!"); + LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); + if (!DebugCounter::shouldExecute(CSECounter)) { + LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); + continue; + } + removeMSSA(Inst); + Inst->eraseFromParent(); + Changed = true; + ++NumDSE; + // We can avoid incrementing the generation count since we were able + // to eliminate this store. + continue; + } + } + + // Okay, this isn't something we can CSE at all. Check to see if it is + // something that could modify memory. If so, our available memory values + // cannot be used so bump the generation count. + if (Inst->mayWriteToMemory()) { + ++CurrentGeneration; + + if (MemInst.isValid() && MemInst.isStore()) { + // We do a trivial form of DSE if there are two stores to the same + // location with no intervening loads. Delete the earlier store. + // At the moment, we don't remove ordered stores, but do remove + // unordered atomic stores. There's no special requirement (for + // unordered atomics) about removing atomic stores only in favor of + // other atomic stores since we were going to execute the non-atomic + // one anyway and the atomic one might never have become visible. + if (LastStore) { + ParseMemoryInst LastStoreMemInst(LastStore, TTI); + assert(LastStoreMemInst.isUnordered() && + !LastStoreMemInst.isVolatile() && + "Violated invariant"); + if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { + LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore + << " due to: " << *Inst << '\n'); + if (!DebugCounter::shouldExecute(CSECounter)) { + LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); + } else { + removeMSSA(LastStore); + LastStore->eraseFromParent(); + Changed = true; + ++NumDSE; + LastStore = nullptr; + } + } + // fallthrough - we can exploit information about this store + } + + // Okay, we just invalidated anything we knew about loaded values. Try + // to salvage *something* by remembering that the stored value is a live + // version of the pointer. It is safe to forward from volatile stores + // to non-volatile loads, so we don't have to check for volatility of + // the store. + AvailableLoads.insert( + MemInst.getPointerOperand(), + LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), + MemInst.isAtomic())); + + // Remember that this was the last unordered store we saw for DSE. We + // don't yet handle DSE on ordered or volatile stores since we don't + // have a good way to model the ordering requirement for following + // passes once the store is removed. We could insert a fence, but + // since fences are slightly stronger than stores in their ordering, + // it's not clear this is a profitable transform. Another option would + // be to merge the ordering with that of the post dominating store. + if (MemInst.isUnordered() && !MemInst.isVolatile()) + LastStore = Inst; + else + LastStore = nullptr; + } + } + } + + return Changed; +} + +bool EarlyCSE::run() { + // Note, deque is being used here because there is significant performance + // gains over vector when the container becomes very large due to the + // specific access patterns. For more information see the mailing list + // discussion on this: + // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html + std::deque<StackNode *> nodesToProcess; + + bool Changed = false; + + // Process the root node. + nodesToProcess.push_back(new StackNode( + AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, + CurrentGeneration, DT.getRootNode(), + DT.getRootNode()->begin(), DT.getRootNode()->end())); + + assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); + + // Process the stack. + while (!nodesToProcess.empty()) { + // Grab the first item off the stack. Set the current generation, remove + // the node from the stack, and process it. + StackNode *NodeToProcess = nodesToProcess.back(); + + // Initialize class members. + CurrentGeneration = NodeToProcess->currentGeneration(); + + // Check if the node needs to be processed. + if (!NodeToProcess->isProcessed()) { + // Process the node. + Changed |= processNode(NodeToProcess->node()); + NodeToProcess->childGeneration(CurrentGeneration); + NodeToProcess->process(); + } else if (NodeToProcess->childIter() != NodeToProcess->end()) { + // Push the next child onto the stack. + DomTreeNode *child = NodeToProcess->nextChild(); + nodesToProcess.push_back( + new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, + AvailableCalls, NodeToProcess->childGeneration(), + child, child->begin(), child->end())); + } else { + // It has been processed, and there are no more children to process, + // so delete it and pop it off the stack. + delete NodeToProcess; + nodesToProcess.pop_back(); + } + } // while (!nodes...) + + return Changed; +} + +PreservedAnalyses EarlyCSEPass::run(Function &F, + FunctionAnalysisManager &AM) { + auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); + auto &TTI = AM.getResult<TargetIRAnalysis>(F); + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + auto &AC = AM.getResult<AssumptionAnalysis>(F); + auto *MSSA = + UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; + + EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); + + if (!CSE.run()) + return PreservedAnalyses::all(); + + PreservedAnalyses PA; + PA.preserveSet<CFGAnalyses>(); + PA.preserve<GlobalsAA>(); + if (UseMemorySSA) + PA.preserve<MemorySSAAnalysis>(); + return PA; +} + +namespace { + +/// A simple and fast domtree-based CSE pass. +/// +/// This pass does a simple depth-first walk over the dominator tree, +/// eliminating trivially redundant instructions and using instsimplify to +/// canonicalize things as it goes. It is intended to be fast and catch obvious +/// cases so that instcombine and other passes are more effective. It is +/// expected that a later pass of GVN will catch the interesting/hard cases. +template<bool UseMemorySSA> +class EarlyCSELegacyCommonPass : public FunctionPass { +public: + static char ID; + + EarlyCSELegacyCommonPass() : FunctionPass(ID) { + if (UseMemorySSA) + initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); + else + initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override { + if (skipFunction(F)) + return false; + + auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + auto *MSSA = + UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; + + EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); + + return CSE.run(); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + if (UseMemorySSA) { + AU.addRequired<MemorySSAWrapperPass>(); + AU.addPreserved<MemorySSAWrapperPass>(); + } + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.setPreservesCFG(); + } +}; + +} // end anonymous namespace + +using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; + +template<> +char EarlyCSELegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, + false) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) + +using EarlyCSEMemSSALegacyPass = + EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; + +template<> +char EarlyCSEMemSSALegacyPass::ID = 0; + +FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { + if (UseMemorySSA) + return new EarlyCSEMemSSALegacyPass(); + else + return new EarlyCSELegacyPass(); +} + +INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", + "Early CSE w/ MemorySSA", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", + "Early CSE w/ MemorySSA", false, false) |
