diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp | 1206 |
1 files changed, 1206 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp new file mode 100644 index 000000000000..7614599653c4 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp @@ -0,0 +1,1206 @@ +//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass hoists expressions from branches to a common dominator. It uses +// GVN (global value numbering) to discover expressions computing the same +// values. The primary goals of code-hoisting are: +// 1. To reduce the code size. +// 2. In some cases reduce critical path (by exposing more ILP). +// +// The algorithm factors out the reachability of values such that multiple +// queries to find reachability of values are fast. This is based on finding the +// ANTIC points in the CFG which do not change during hoisting. The ANTIC points +// are basically the dominance-frontiers in the inverse graph. So we introduce a +// data structure (CHI nodes) to keep track of values flowing out of a basic +// block. We only do this for values with multiple occurrences in the function +// as they are the potential hoistable candidates. This approach allows us to +// hoist instructions to a basic block with more than two successors, as well as +// deal with infinite loops in a trivial way. +// +// Limitations: This pass does not hoist fully redundant expressions because +// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before +// and after gvn-pre because gvn-pre creates opportunities for more instructions +// to be hoisted. +// +// Hoisting may affect the performance in some cases. To mitigate that, hoisting +// is disabled in the following cases. +// 1. Scalars across calls. +// 2. geps when corresponding load/store cannot be hoisted. +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/IteratedDominanceFrontier.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/PostDominators.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Scalar/GVN.h" +#include <algorithm> +#include <cassert> +#include <iterator> +#include <memory> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "gvn-hoist" + +STATISTIC(NumHoisted, "Number of instructions hoisted"); +STATISTIC(NumRemoved, "Number of instructions removed"); +STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); +STATISTIC(NumLoadsRemoved, "Number of loads removed"); +STATISTIC(NumStoresHoisted, "Number of stores hoisted"); +STATISTIC(NumStoresRemoved, "Number of stores removed"); +STATISTIC(NumCallsHoisted, "Number of calls hoisted"); +STATISTIC(NumCallsRemoved, "Number of calls removed"); + +static cl::opt<int> + MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), + cl::desc("Max number of instructions to hoist " + "(default unlimited = -1)")); + +static cl::opt<int> MaxNumberOfBBSInPath( + "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), + cl::desc("Max number of basic blocks on the path between " + "hoisting locations (default = 4, unlimited = -1)")); + +static cl::opt<int> MaxDepthInBB( + "gvn-hoist-max-depth", cl::Hidden, cl::init(100), + cl::desc("Hoist instructions from the beginning of the BB up to the " + "maximum specified depth (default = 100, unlimited = -1)")); + +static cl::opt<int> + MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), + cl::desc("Maximum length of dependent chains to hoist " + "(default = 10, unlimited = -1)")); + +namespace llvm { + +using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; +using SmallVecInsn = SmallVector<Instruction *, 4>; +using SmallVecImplInsn = SmallVectorImpl<Instruction *>; + +// Each element of a hoisting list contains the basic block where to hoist and +// a list of instructions to be hoisted. +using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; + +using HoistingPointList = SmallVector<HoistingPointInfo, 4>; + +// A map from a pair of VNs to all the instructions with those VNs. +using VNType = std::pair<unsigned, unsigned>; + +using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; + +// CHI keeps information about values flowing out of a basic block. It is +// similar to PHI but in the inverse graph, and used for outgoing values on each +// edge. For conciseness, it is computed only for instructions with multiple +// occurrences in the CFG because they are the only hoistable candidates. +// A (CHI[{V, B, I1}, {V, C, I2}] +// / \ +// / \ +// B(I1) C (I2) +// The Value number for both I1 and I2 is V, the CHI node will save the +// instruction as well as the edge where the value is flowing to. +struct CHIArg { + VNType VN; + + // Edge destination (shows the direction of flow), may not be where the I is. + BasicBlock *Dest; + + // The instruction (VN) which uses the values flowing out of CHI. + Instruction *I; + + bool operator==(const CHIArg &A) { return VN == A.VN; } + bool operator!=(const CHIArg &A) { return !(*this == A); } +}; + +using CHIIt = SmallVectorImpl<CHIArg>::iterator; +using CHIArgs = iterator_range<CHIIt>; +using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; +using InValuesType = + DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; + +// An invalid value number Used when inserting a single value number into +// VNtoInsns. +enum : unsigned { InvalidVN = ~2U }; + +// Records all scalar instructions candidate for code hoisting. +class InsnInfo { + VNtoInsns VNtoScalars; + +public: + // Inserts I and its value number in VNtoScalars. + void insert(Instruction *I, GVN::ValueTable &VN) { + // Scalar instruction. + unsigned V = VN.lookupOrAdd(I); + VNtoScalars[{V, InvalidVN}].push_back(I); + } + + const VNtoInsns &getVNTable() const { return VNtoScalars; } +}; + +// Records all load instructions candidate for code hoisting. +class LoadInfo { + VNtoInsns VNtoLoads; + +public: + // Insert Load and the value number of its memory address in VNtoLoads. + void insert(LoadInst *Load, GVN::ValueTable &VN) { + if (Load->isSimple()) { + unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); + VNtoLoads[{V, InvalidVN}].push_back(Load); + } + } + + const VNtoInsns &getVNTable() const { return VNtoLoads; } +}; + +// Records all store instructions candidate for code hoisting. +class StoreInfo { + VNtoInsns VNtoStores; + +public: + // Insert the Store and a hash number of the store address and the stored + // value in VNtoStores. + void insert(StoreInst *Store, GVN::ValueTable &VN) { + if (!Store->isSimple()) + return; + // Hash the store address and the stored value. + Value *Ptr = Store->getPointerOperand(); + Value *Val = Store->getValueOperand(); + VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); + } + + const VNtoInsns &getVNTable() const { return VNtoStores; } +}; + +// Records all call instructions candidate for code hoisting. +class CallInfo { + VNtoInsns VNtoCallsScalars; + VNtoInsns VNtoCallsLoads; + VNtoInsns VNtoCallsStores; + +public: + // Insert Call and its value numbering in one of the VNtoCalls* containers. + void insert(CallInst *Call, GVN::ValueTable &VN) { + // A call that doesNotAccessMemory is handled as a Scalar, + // onlyReadsMemory will be handled as a Load instruction, + // all other calls will be handled as stores. + unsigned V = VN.lookupOrAdd(Call); + auto Entry = std::make_pair(V, InvalidVN); + + if (Call->doesNotAccessMemory()) + VNtoCallsScalars[Entry].push_back(Call); + else if (Call->onlyReadsMemory()) + VNtoCallsLoads[Entry].push_back(Call); + else + VNtoCallsStores[Entry].push_back(Call); + } + + const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } + const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } + const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } +}; + +static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { + static const unsigned KnownIDs[] = { + LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, + LLVMContext::MD_noalias, LLVMContext::MD_range, + LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, + LLVMContext::MD_invariant_group, LLVMContext::MD_access_group}; + combineMetadata(ReplInst, I, KnownIDs, true); +} + +// This pass hoists common computations across branches sharing common +// dominator. The primary goal is to reduce the code size, and in some +// cases reduce critical path (by exposing more ILP). +class GVNHoist { +public: + GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, + MemoryDependenceResults *MD, MemorySSA *MSSA) + : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), + MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} + + bool run(Function &F) { + NumFuncArgs = F.arg_size(); + VN.setDomTree(DT); + VN.setAliasAnalysis(AA); + VN.setMemDep(MD); + bool Res = false; + // Perform DFS Numbering of instructions. + unsigned BBI = 0; + for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { + DFSNumber[BB] = ++BBI; + unsigned I = 0; + for (auto &Inst : *BB) + DFSNumber[&Inst] = ++I; + } + + int ChainLength = 0; + + // FIXME: use lazy evaluation of VN to avoid the fix-point computation. + while (true) { + if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) + return Res; + + auto HoistStat = hoistExpressions(F); + if (HoistStat.first + HoistStat.second == 0) + return Res; + + if (HoistStat.second > 0) + // To address a limitation of the current GVN, we need to rerun the + // hoisting after we hoisted loads or stores in order to be able to + // hoist all scalars dependent on the hoisted ld/st. + VN.clear(); + + Res = true; + } + + return Res; + } + + // Copied from NewGVN.cpp + // This function provides global ranking of operations so that we can place + // them in a canonical order. Note that rank alone is not necessarily enough + // for a complete ordering, as constants all have the same rank. However, + // generally, we will simplify an operation with all constants so that it + // doesn't matter what order they appear in. + unsigned int rank(const Value *V) const { + // Prefer constants to undef to anything else + // Undef is a constant, have to check it first. + // Prefer smaller constants to constantexprs + if (isa<ConstantExpr>(V)) + return 2; + if (isa<UndefValue>(V)) + return 1; + if (isa<Constant>(V)) + return 0; + else if (auto *A = dyn_cast<Argument>(V)) + return 3 + A->getArgNo(); + + // Need to shift the instruction DFS by number of arguments + 3 to account + // for the constant and argument ranking above. + auto Result = DFSNumber.lookup(V); + if (Result > 0) + return 4 + NumFuncArgs + Result; + // Unreachable or something else, just return a really large number. + return ~0; + } + +private: + GVN::ValueTable VN; + DominatorTree *DT; + PostDominatorTree *PDT; + AliasAnalysis *AA; + MemoryDependenceResults *MD; + MemorySSA *MSSA; + std::unique_ptr<MemorySSAUpdater> MSSAUpdater; + DenseMap<const Value *, unsigned> DFSNumber; + BBSideEffectsSet BBSideEffects; + DenseSet<const BasicBlock *> HoistBarrier; + SmallVector<BasicBlock *, 32> IDFBlocks; + unsigned NumFuncArgs; + const bool HoistingGeps = false; + + enum InsKind { Unknown, Scalar, Load, Store }; + + // Return true when there are exception handling in BB. + bool hasEH(const BasicBlock *BB) { + auto It = BBSideEffects.find(BB); + if (It != BBSideEffects.end()) + return It->second; + + if (BB->isEHPad() || BB->hasAddressTaken()) { + BBSideEffects[BB] = true; + return true; + } + + if (BB->getTerminator()->mayThrow()) { + BBSideEffects[BB] = true; + return true; + } + + BBSideEffects[BB] = false; + return false; + } + + // Return true when a successor of BB dominates A. + bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { + for (const BasicBlock *Succ : successors(BB)) + if (DT->dominates(Succ, A)) + return true; + + return false; + } + + // Return true when I1 appears before I2 in the instructions of BB. + bool firstInBB(const Instruction *I1, const Instruction *I2) { + assert(I1->getParent() == I2->getParent()); + unsigned I1DFS = DFSNumber.lookup(I1); + unsigned I2DFS = DFSNumber.lookup(I2); + assert(I1DFS && I2DFS); + return I1DFS < I2DFS; + } + + // Return true when there are memory uses of Def in BB. + bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, + const BasicBlock *BB) { + const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); + if (!Acc) + return false; + + Instruction *OldPt = Def->getMemoryInst(); + const BasicBlock *OldBB = OldPt->getParent(); + const BasicBlock *NewBB = NewPt->getParent(); + bool ReachedNewPt = false; + + for (const MemoryAccess &MA : *Acc) + if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { + Instruction *Insn = MU->getMemoryInst(); + + // Do not check whether MU aliases Def when MU occurs after OldPt. + if (BB == OldBB && firstInBB(OldPt, Insn)) + break; + + // Do not check whether MU aliases Def when MU occurs before NewPt. + if (BB == NewBB) { + if (!ReachedNewPt) { + if (firstInBB(Insn, NewPt)) + continue; + ReachedNewPt = true; + } + } + if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) + return true; + } + + return false; + } + + bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, + int &NBBsOnAllPaths) { + // Stop walk once the limit is reached. + if (NBBsOnAllPaths == 0) + return true; + + // Impossible to hoist with exceptions on the path. + if (hasEH(BB)) + return true; + + // No such instruction after HoistBarrier in a basic block was + // selected for hoisting so instructions selected within basic block with + // a hoist barrier can be hoisted. + if ((BB != SrcBB) && HoistBarrier.count(BB)) + return true; + + return false; + } + + // Return true when there are exception handling or loads of memory Def + // between Def and NewPt. This function is only called for stores: Def is + // the MemoryDef of the store to be hoisted. + + // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and + // return true when the counter NBBsOnAllPaths reaces 0, except when it is + // initialized to -1 which is unlimited. + bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, + int &NBBsOnAllPaths) { + const BasicBlock *NewBB = NewPt->getParent(); + const BasicBlock *OldBB = Def->getBlock(); + assert(DT->dominates(NewBB, OldBB) && "invalid path"); + assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && + "def does not dominate new hoisting point"); + + // Walk all basic blocks reachable in depth-first iteration on the inverse + // CFG from OldBB to NewBB. These blocks are all the blocks that may be + // executed between the execution of NewBB and OldBB. Hoisting an expression + // from OldBB into NewBB has to be safe on all execution paths. + for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { + const BasicBlock *BB = *I; + if (BB == NewBB) { + // Stop traversal when reaching HoistPt. + I.skipChildren(); + continue; + } + + if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) + return true; + + // Check that we do not move a store past loads. + if (hasMemoryUse(NewPt, Def, BB)) + return true; + + // -1 is unlimited number of blocks on all paths. + if (NBBsOnAllPaths != -1) + --NBBsOnAllPaths; + + ++I; + } + + return false; + } + + // Return true when there are exception handling between HoistPt and BB. + // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and + // return true when the counter NBBsOnAllPaths reaches 0, except when it is + // initialized to -1 which is unlimited. + bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, + int &NBBsOnAllPaths) { + assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); + + // Walk all basic blocks reachable in depth-first iteration on + // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the + // blocks that may be executed between the execution of NewHoistPt and + // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe + // on all execution paths. + for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { + const BasicBlock *BB = *I; + if (BB == HoistPt) { + // Stop traversal when reaching NewHoistPt. + I.skipChildren(); + continue; + } + + if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) + return true; + + // -1 is unlimited number of blocks on all paths. + if (NBBsOnAllPaths != -1) + --NBBsOnAllPaths; + + ++I; + } + + return false; + } + + // Return true when it is safe to hoist a memory load or store U from OldPt + // to NewPt. + bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, + MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { + // In place hoisting is safe. + if (NewPt == OldPt) + return true; + + const BasicBlock *NewBB = NewPt->getParent(); + const BasicBlock *OldBB = OldPt->getParent(); + const BasicBlock *UBB = U->getBlock(); + + // Check for dependences on the Memory SSA. + MemoryAccess *D = U->getDefiningAccess(); + BasicBlock *DBB = D->getBlock(); + if (DT->properlyDominates(NewBB, DBB)) + // Cannot move the load or store to NewBB above its definition in DBB. + return false; + + if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) + if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) + if (!firstInBB(UD->getMemoryInst(), NewPt)) + // Cannot move the load or store to NewPt above its definition in D. + return false; + + // Check for unsafe hoistings due to side effects. + if (K == InsKind::Store) { + if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths)) + return false; + } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) + return false; + + if (UBB == NewBB) { + if (DT->properlyDominates(DBB, NewBB)) + return true; + assert(UBB == DBB); + assert(MSSA->locallyDominates(D, U)); + } + + // No side effects: it is safe to hoist. + return true; + } + + // Return true when it is safe to hoist scalar instructions from all blocks in + // WL to HoistBB. + bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, + int &NBBsOnAllPaths) { + return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); + } + + // In the inverse CFG, the dominance frontier of basic block (BB) is the + // point where ANTIC needs to be computed for instructions which are going + // to be hoisted. Since this point does not change during gvn-hoist, + // we compute it only once (on demand). + // The ides is inspired from: + // "Partial Redundancy Elimination in SSA Form" + // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW + // They use similar idea in the forward graph to find fully redundant and + // partially redundant expressions, here it is used in the inverse graph to + // find fully anticipable instructions at merge point (post-dominator in + // the inverse CFG). + // Returns the edge via which an instruction in BB will get the values from. + + // Returns true when the values are flowing out to each edge. + bool valueAnticipable(CHIArgs C, Instruction *TI) const { + if (TI->getNumSuccessors() > (unsigned)size(C)) + return false; // Not enough args in this CHI. + + for (auto CHI : C) { + BasicBlock *Dest = CHI.Dest; + // Find if all the edges have values flowing out of BB. + bool Found = llvm::any_of( + successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; }); + if (!Found) + return false; + } + return true; + } + + // Check if it is safe to hoist values tracked by CHI in the range + // [Begin, End) and accumulate them in Safe. + void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, + SmallVectorImpl<CHIArg> &Safe) { + int NumBBsOnAllPaths = MaxNumberOfBBSInPath; + for (auto CHI : C) { + Instruction *Insn = CHI.I; + if (!Insn) // No instruction was inserted in this CHI. + continue; + if (K == InsKind::Scalar) { + if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) + Safe.push_back(CHI); + } else { + MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn); + if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths)) + Safe.push_back(CHI); + } + } + } + + using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; + + // Push all the VNs corresponding to BB into RenameStack. + void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, + RenameStackType &RenameStack) { + auto it1 = ValueBBs.find(BB); + if (it1 != ValueBBs.end()) { + // Iterate in reverse order to keep lower ranked values on the top. + for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { + // Get the value of instruction I + LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); + RenameStack[VI.first].push_back(VI.second); + } + } + } + + void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, + RenameStackType &RenameStack) { + // For each *predecessor* (because Post-DOM) of BB check if it has a CHI + for (auto Pred : predecessors(BB)) { + auto P = CHIBBs.find(Pred); + if (P == CHIBBs.end()) { + continue; + } + LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); + // A CHI is found (BB -> Pred is an edge in the CFG) + // Pop the stack until Top(V) = Ve. + auto &VCHI = P->second; + for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { + CHIArg &C = *It; + if (!C.Dest) { + auto si = RenameStack.find(C.VN); + // The Basic Block where CHI is must dominate the value we want to + // track in a CHI. In the PDom walk, there can be values in the + // stack which are not control dependent e.g., nested loop. + if (si != RenameStack.end() && si->second.size() && + DT->properlyDominates(Pred, si->second.back()->getParent())) { + C.Dest = BB; // Assign the edge + C.I = si->second.pop_back_val(); // Assign the argument + LLVM_DEBUG(dbgs() + << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I + << ", VN: " << C.VN.first << ", " << C.VN.second); + } + // Move to next CHI of a different value + It = std::find_if(It, VCHI.end(), + [It](CHIArg &A) { return A != *It; }); + } else + ++It; + } + } + } + + // Walk the post-dominator tree top-down and use a stack for each value to + // store the last value you see. When you hit a CHI from a given edge, the + // value to use as the argument is at the top of the stack, add the value to + // CHI and pop. + void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { + auto Root = PDT->getNode(nullptr); + if (!Root) + return; + // Depth first walk on PDom tree to fill the CHIargs at each PDF. + RenameStackType RenameStack; + for (auto Node : depth_first(Root)) { + BasicBlock *BB = Node->getBlock(); + if (!BB) + continue; + + // Collect all values in BB and push to stack. + fillRenameStack(BB, ValueBBs, RenameStack); + + // Fill outgoing values in each CHI corresponding to BB. + fillChiArgs(BB, CHIBBs, RenameStack); + } + } + + // Walk all the CHI-nodes to find ones which have a empty-entry and remove + // them Then collect all the instructions which are safe to hoist and see if + // they form a list of anticipable values. OutValues contains CHIs + // corresponding to each basic block. + void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, + HoistingPointList &HPL) { + auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; + + // CHIArgs now have the outgoing values, so check for anticipability and + // accumulate hoistable candidates in HPL. + for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { + BasicBlock *BB = A.first; + SmallVectorImpl<CHIArg> &CHIs = A.second; + // Vector of PHIs contains PHIs for different instructions. + // Sort the args according to their VNs, such that identical + // instructions are together. + llvm::stable_sort(CHIs, cmpVN); + auto TI = BB->getTerminator(); + auto B = CHIs.begin(); + // [PreIt, PHIIt) form a range of CHIs which have identical VNs. + auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(), + [B](CHIArg &A) { return A != *B; }); + auto PrevIt = CHIs.begin(); + while (PrevIt != PHIIt) { + // Collect values which satisfy safety checks. + SmallVector<CHIArg, 2> Safe; + // We check for safety first because there might be multiple values in + // the same path, some of which are not safe to be hoisted, but overall + // each edge has at least one value which can be hoisted, making the + // value anticipable along that path. + checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); + + // List of safe values should be anticipable at TI. + if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { + HPL.push_back({BB, SmallVecInsn()}); + SmallVecInsn &V = HPL.back().second; + for (auto B : Safe) + V.push_back(B.I); + } + + // Check other VNs + PrevIt = PHIIt; + PHIIt = std::find_if(PrevIt, CHIs.end(), + [PrevIt](CHIArg &A) { return A != *PrevIt; }); + } + } + } + + // Compute insertion points for each values which can be fully anticipated at + // a dominator. HPL contains all such values. + void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, + InsKind K) { + // Sort VNs based on their rankings + std::vector<VNType> Ranks; + for (const auto &Entry : Map) { + Ranks.push_back(Entry.first); + } + + // TODO: Remove fully-redundant expressions. + // Get instruction from the Map, assume that all the Instructions + // with same VNs have same rank (this is an approximation). + llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { + return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); + }); + + // - Sort VNs according to their rank, and start with lowest ranked VN + // - Take a VN and for each instruction with same VN + // - Find the dominance frontier in the inverse graph (PDF) + // - Insert the chi-node at PDF + // - Remove the chi-nodes with missing entries + // - Remove values from CHI-nodes which do not truly flow out, e.g., + // modified along the path. + // - Collect the remaining values that are still anticipable + SmallVector<BasicBlock *, 2> IDFBlocks; + ReverseIDFCalculator IDFs(*PDT); + OutValuesType OutValue; + InValuesType InValue; + for (const auto &R : Ranks) { + const SmallVecInsn &V = Map.lookup(R); + if (V.size() < 2) + continue; + const VNType &VN = R; + SmallPtrSet<BasicBlock *, 2> VNBlocks; + for (auto &I : V) { + BasicBlock *BBI = I->getParent(); + if (!hasEH(BBI)) + VNBlocks.insert(BBI); + } + // Compute the Post Dominance Frontiers of each basic block + // The dominance frontier of a live block X in the reverse + // control graph is the set of blocks upon which X is control + // dependent. The following sequence computes the set of blocks + // which currently have dead terminators that are control + // dependence sources of a block which is in NewLiveBlocks. + IDFs.setDefiningBlocks(VNBlocks); + IDFBlocks.clear(); + IDFs.calculate(IDFBlocks); + + // Make a map of BB vs instructions to be hoisted. + for (unsigned i = 0; i < V.size(); ++i) { + InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); + } + // Insert empty CHI node for this VN. This is used to factor out + // basic blocks where the ANTIC can potentially change. + for (auto IDFB : IDFBlocks) { + for (unsigned i = 0; i < V.size(); ++i) { + CHIArg C = {VN, nullptr, nullptr}; + // Ignore spurious PDFs. + if (DT->properlyDominates(IDFB, V[i]->getParent())) { + OutValue[IDFB].push_back(C); + LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName() + << ", for Insn: " << *V[i]); + } + } + } + } + + // Insert CHI args at each PDF to iterate on factored graph of + // control dependence. + insertCHI(InValue, OutValue); + // Using the CHI args inserted at each PDF, find fully anticipable values. + findHoistableCandidates(OutValue, K, HPL); + } + + // Return true when all operands of Instr are available at insertion point + // HoistPt. When limiting the number of hoisted expressions, one could hoist + // a load without hoisting its access function. So before hoisting any + // expression, make sure that all its operands are available at insert point. + bool allOperandsAvailable(const Instruction *I, + const BasicBlock *HoistPt) const { + for (const Use &Op : I->operands()) + if (const auto *Inst = dyn_cast<Instruction>(&Op)) + if (!DT->dominates(Inst->getParent(), HoistPt)) + return false; + + return true; + } + + // Same as allOperandsAvailable with recursive check for GEP operands. + bool allGepOperandsAvailable(const Instruction *I, + const BasicBlock *HoistPt) const { + for (const Use &Op : I->operands()) + if (const auto *Inst = dyn_cast<Instruction>(&Op)) + if (!DT->dominates(Inst->getParent(), HoistPt)) { + if (const GetElementPtrInst *GepOp = + dyn_cast<GetElementPtrInst>(Inst)) { + if (!allGepOperandsAvailable(GepOp, HoistPt)) + return false; + // Gep is available if all operands of GepOp are available. + } else { + // Gep is not available if it has operands other than GEPs that are + // defined in blocks not dominating HoistPt. + return false; + } + } + return true; + } + + // Make all operands of the GEP available. + void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, + const SmallVecInsn &InstructionsToHoist, + Instruction *Gep) const { + assert(allGepOperandsAvailable(Gep, HoistPt) && + "GEP operands not available"); + + Instruction *ClonedGep = Gep->clone(); + for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) + if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { + // Check whether the operand is already available. + if (DT->dominates(Op->getParent(), HoistPt)) + continue; + + // As a GEP can refer to other GEPs, recursively make all the operands + // of this GEP available at HoistPt. + if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) + makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); + } + + // Copy Gep and replace its uses in Repl with ClonedGep. + ClonedGep->insertBefore(HoistPt->getTerminator()); + + // Conservatively discard any optimization hints, they may differ on the + // other paths. + ClonedGep->dropUnknownNonDebugMetadata(); + + // If we have optimization hints which agree with each other along different + // paths, preserve them. + for (const Instruction *OtherInst : InstructionsToHoist) { + const GetElementPtrInst *OtherGep; + if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) + OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); + else + OtherGep = cast<GetElementPtrInst>( + cast<StoreInst>(OtherInst)->getPointerOperand()); + ClonedGep->andIRFlags(OtherGep); + } + + // Replace uses of Gep with ClonedGep in Repl. + Repl->replaceUsesOfWith(Gep, ClonedGep); + } + + void updateAlignment(Instruction *I, Instruction *Repl) { + if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { + ReplacementLoad->setAlignment( + std::min(ReplacementLoad->getAlignment(), + cast<LoadInst>(I)->getAlignment())); + ++NumLoadsRemoved; + } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { + ReplacementStore->setAlignment( + std::min(ReplacementStore->getAlignment(), + cast<StoreInst>(I)->getAlignment())); + ++NumStoresRemoved; + } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { + ReplacementAlloca->setAlignment( + std::max(ReplacementAlloca->getAlignment(), + cast<AllocaInst>(I)->getAlignment())); + } else if (isa<CallInst>(Repl)) { + ++NumCallsRemoved; + } + } + + // Remove all the instructions in Candidates and replace their usage with Repl. + // Returns the number of instructions removed. + unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, + MemoryUseOrDef *NewMemAcc) { + unsigned NR = 0; + for (Instruction *I : Candidates) { + if (I != Repl) { + ++NR; + updateAlignment(I, Repl); + if (NewMemAcc) { + // Update the uses of the old MSSA access with NewMemAcc. + MemoryAccess *OldMA = MSSA->getMemoryAccess(I); + OldMA->replaceAllUsesWith(NewMemAcc); + MSSAUpdater->removeMemoryAccess(OldMA); + } + + Repl->andIRFlags(I); + combineKnownMetadata(Repl, I); + I->replaceAllUsesWith(Repl); + // Also invalidate the Alias Analysis cache. + MD->removeInstruction(I); + I->eraseFromParent(); + } + } + return NR; + } + + // Replace all Memory PHI usage with NewMemAcc. + void raMPHIuw(MemoryUseOrDef *NewMemAcc) { + SmallPtrSet<MemoryPhi *, 4> UsePhis; + for (User *U : NewMemAcc->users()) + if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) + UsePhis.insert(Phi); + + for (MemoryPhi *Phi : UsePhis) { + auto In = Phi->incoming_values(); + if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { + Phi->replaceAllUsesWith(NewMemAcc); + MSSAUpdater->removeMemoryAccess(Phi); + } + } + } + + // Remove all other instructions and replace them with Repl. + unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, + BasicBlock *DestBB, bool MoveAccess) { + MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); + if (MoveAccess && NewMemAcc) { + // The definition of this ld/st will not change: ld/st hoisting is + // legal when the ld/st is not moved past its current definition. + MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End); + } + + // Replace all other instructions with Repl with memory access NewMemAcc. + unsigned NR = rauw(Candidates, Repl, NewMemAcc); + + // Remove MemorySSA phi nodes with the same arguments. + if (NewMemAcc) + raMPHIuw(NewMemAcc); + return NR; + } + + // In the case Repl is a load or a store, we make all their GEPs + // available: GEPs are not hoisted by default to avoid the address + // computations to be hoisted without the associated load or store. + bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, + const SmallVecInsn &InstructionsToHoist) const { + // Check whether the GEP of a ld/st can be synthesized at HoistPt. + GetElementPtrInst *Gep = nullptr; + Instruction *Val = nullptr; + if (auto *Ld = dyn_cast<LoadInst>(Repl)) { + Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); + } else if (auto *St = dyn_cast<StoreInst>(Repl)) { + Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); + Val = dyn_cast<Instruction>(St->getValueOperand()); + // Check that the stored value is available. + if (Val) { + if (isa<GetElementPtrInst>(Val)) { + // Check whether we can compute the GEP at HoistPt. + if (!allGepOperandsAvailable(Val, HoistPt)) + return false; + } else if (!DT->dominates(Val->getParent(), HoistPt)) + return false; + } + } + + // Check whether we can compute the Gep at HoistPt. + if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) + return false; + + makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); + + if (Val && isa<GetElementPtrInst>(Val)) + makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); + + return true; + } + + std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { + unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; + for (const HoistingPointInfo &HP : HPL) { + // Find out whether we already have one of the instructions in HoistPt, + // in which case we do not have to move it. + BasicBlock *DestBB = HP.first; + const SmallVecInsn &InstructionsToHoist = HP.second; + Instruction *Repl = nullptr; + for (Instruction *I : InstructionsToHoist) + if (I->getParent() == DestBB) + // If there are two instructions in HoistPt to be hoisted in place: + // update Repl to be the first one, such that we can rename the uses + // of the second based on the first. + if (!Repl || firstInBB(I, Repl)) + Repl = I; + + // Keep track of whether we moved the instruction so we know whether we + // should move the MemoryAccess. + bool MoveAccess = true; + if (Repl) { + // Repl is already in HoistPt: it remains in place. + assert(allOperandsAvailable(Repl, DestBB) && + "instruction depends on operands that are not available"); + MoveAccess = false; + } else { + // When we do not find Repl in HoistPt, select the first in the list + // and move it to HoistPt. + Repl = InstructionsToHoist.front(); + + // We can move Repl in HoistPt only when all operands are available. + // The order in which hoistings are done may influence the availability + // of operands. + if (!allOperandsAvailable(Repl, DestBB)) { + // When HoistingGeps there is nothing more we can do to make the + // operands available: just continue. + if (HoistingGeps) + continue; + + // When not HoistingGeps we need to copy the GEPs. + if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) + continue; + } + + // Move the instruction at the end of HoistPt. + Instruction *Last = DestBB->getTerminator(); + MD->removeInstruction(Repl); + Repl->moveBefore(Last); + + DFSNumber[Repl] = DFSNumber[Last]++; + } + + NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); + + if (isa<LoadInst>(Repl)) + ++NL; + else if (isa<StoreInst>(Repl)) + ++NS; + else if (isa<CallInst>(Repl)) + ++NC; + else // Scalar + ++NI; + } + + NumHoisted += NL + NS + NC + NI; + NumRemoved += NR; + NumLoadsHoisted += NL; + NumStoresHoisted += NS; + NumCallsHoisted += NC; + return {NI, NL + NC + NS}; + } + + // Hoist all expressions. Returns Number of scalars hoisted + // and number of non-scalars hoisted. + std::pair<unsigned, unsigned> hoistExpressions(Function &F) { + InsnInfo II; + LoadInfo LI; + StoreInfo SI; + CallInfo CI; + for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { + int InstructionNb = 0; + for (Instruction &I1 : *BB) { + // If I1 cannot guarantee progress, subsequent instructions + // in BB cannot be hoisted anyways. + if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { + HoistBarrier.insert(BB); + break; + } + // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting + // deeper may increase the register pressure and compilation time. + if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) + break; + + // Do not value number terminator instructions. + if (I1.isTerminator()) + break; + + if (auto *Load = dyn_cast<LoadInst>(&I1)) + LI.insert(Load, VN); + else if (auto *Store = dyn_cast<StoreInst>(&I1)) + SI.insert(Store, VN); + else if (auto *Call = dyn_cast<CallInst>(&I1)) { + if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { + if (isa<DbgInfoIntrinsic>(Intr) || + Intr->getIntrinsicID() == Intrinsic::assume || + Intr->getIntrinsicID() == Intrinsic::sideeffect) + continue; + } + if (Call->mayHaveSideEffects()) + break; + + if (Call->isConvergent()) + break; + + CI.insert(Call, VN); + } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) + // Do not hoist scalars past calls that may write to memory because + // that could result in spills later. geps are handled separately. + // TODO: We can relax this for targets like AArch64 as they have more + // registers than X86. + II.insert(&I1, VN); + } + } + + HoistingPointList HPL; + computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); + computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); + computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); + computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); + computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); + computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); + return hoist(HPL); + } +}; + +class GVNHoistLegacyPass : public FunctionPass { +public: + static char ID; + + GVNHoistLegacyPass() : FunctionPass(ID) { + initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override { + if (skipFunction(F)) + return false; + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); + auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); + auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); + + GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); + return G.run(F); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<PostDominatorTreeWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<MemoryDependenceWrapperPass>(); + AU.addRequired<MemorySSAWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<MemorySSAWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + } +}; + +} // end namespace llvm + +PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { + DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); + PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); + AliasAnalysis &AA = AM.getResult<AAManager>(F); + MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); + MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); + GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); + if (!G.run(F)) + return PreservedAnalyses::all(); + + PreservedAnalyses PA; + PA.preserve<DominatorTreeAnalysis>(); + PA.preserve<MemorySSAAnalysis>(); + PA.preserve<GlobalsAA>(); + return PA; +} + +char GVNHoistLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", + "Early GVN Hoisting of Expressions", false, false) +INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", + "Early GVN Hoisting of Expressions", false, false) + +FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } |
