diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp | 1825 |
1 files changed, 1825 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp new file mode 100644 index 000000000000..e561494f19cf --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp @@ -0,0 +1,1825 @@ +//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass implements an idiom recognizer that transforms simple loops into a +// non-loop form. In cases that this kicks in, it can be a significant +// performance win. +// +// If compiling for code size we avoid idiom recognition if the resulting +// code could be larger than the code for the original loop. One way this could +// happen is if the loop is not removable after idiom recognition due to the +// presence of non-idiom instructions. The initial implementation of the +// heuristics applies to idioms in multi-block loops. +// +//===----------------------------------------------------------------------===// +// +// TODO List: +// +// Future loop memory idioms to recognize: +// memcmp, memmove, strlen, etc. +// Future floating point idioms to recognize in -ffast-math mode: +// fpowi +// Future integer operation idioms to recognize: +// ctpop +// +// Beware that isel's default lowering for ctpop is highly inefficient for +// i64 and larger types when i64 is legal and the value has few bits set. It +// would be good to enhance isel to emit a loop for ctpop in this case. +// +// This could recognize common matrix multiplies and dot product idioms and +// replace them with calls to BLAS (if linked in??). +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BuildLibCalls.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "loop-idiom" + +STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); +STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); + +static cl::opt<bool> UseLIRCodeSizeHeurs( + "use-lir-code-size-heurs", + cl::desc("Use loop idiom recognition code size heuristics when compiling" + "with -Os/-Oz"), + cl::init(true), cl::Hidden); + +namespace { + +class LoopIdiomRecognize { + Loop *CurLoop = nullptr; + AliasAnalysis *AA; + DominatorTree *DT; + LoopInfo *LI; + ScalarEvolution *SE; + TargetLibraryInfo *TLI; + const TargetTransformInfo *TTI; + const DataLayout *DL; + OptimizationRemarkEmitter &ORE; + bool ApplyCodeSizeHeuristics; + +public: + explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, + LoopInfo *LI, ScalarEvolution *SE, + TargetLibraryInfo *TLI, + const TargetTransformInfo *TTI, + const DataLayout *DL, + OptimizationRemarkEmitter &ORE) + : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {} + + bool runOnLoop(Loop *L); + +private: + using StoreList = SmallVector<StoreInst *, 8>; + using StoreListMap = MapVector<Value *, StoreList>; + + StoreListMap StoreRefsForMemset; + StoreListMap StoreRefsForMemsetPattern; + StoreList StoreRefsForMemcpy; + bool HasMemset; + bool HasMemsetPattern; + bool HasMemcpy; + + /// Return code for isLegalStore() + enum LegalStoreKind { + None = 0, + Memset, + MemsetPattern, + Memcpy, + UnorderedAtomicMemcpy, + DontUse // Dummy retval never to be used. Allows catching errors in retval + // handling. + }; + + /// \name Countable Loop Idiom Handling + /// @{ + + bool runOnCountableLoop(); + bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, + SmallVectorImpl<BasicBlock *> &ExitBlocks); + + void collectStores(BasicBlock *BB); + LegalStoreKind isLegalStore(StoreInst *SI); + enum class ForMemset { No, Yes }; + bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, + ForMemset For); + bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); + + bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, + unsigned StoreAlignment, Value *StoredVal, + Instruction *TheStore, + SmallPtrSetImpl<Instruction *> &Stores, + const SCEVAddRecExpr *Ev, const SCEV *BECount, + bool NegStride, bool IsLoopMemset = false); + bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); + bool avoidLIRForMultiBlockLoop(bool IsMemset = false, + bool IsLoopMemset = false); + + /// @} + /// \name Noncountable Loop Idiom Handling + /// @{ + + bool runOnNoncountableLoop(); + + bool recognizePopcount(); + void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, + PHINode *CntPhi, Value *Var); + bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz + void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, + Instruction *CntInst, PHINode *CntPhi, + Value *Var, Instruction *DefX, + const DebugLoc &DL, bool ZeroCheck, + bool IsCntPhiUsedOutsideLoop); + + /// @} +}; + +class LoopIdiomRecognizeLegacyPass : public LoopPass { +public: + static char ID; + + explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { + initializeLoopIdiomRecognizeLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L)) + return false; + + AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + TargetLibraryInfo *TLI = + &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + const TargetTransformInfo *TTI = + &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( + *L->getHeader()->getParent()); + const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); + + // For the old PM, we can't use OptimizationRemarkEmitter as an analysis + // pass. Function analyses need to be preserved across loop transformations + // but ORE cannot be preserved (see comment before the pass definition). + OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); + + LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE); + return LIR.runOnLoop(L); + } + + /// This transformation requires natural loop information & requires that + /// loop preheaders be inserted into the CFG. + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + getLoopAnalysisUsage(AU); + } +}; + +} // end anonymous namespace + +char LoopIdiomRecognizeLegacyPass::ID = 0; + +PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, + LoopStandardAnalysisResults &AR, + LPMUpdater &) { + const auto *DL = &L.getHeader()->getModule()->getDataLayout(); + + const auto &FAM = + AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); + Function *F = L.getHeader()->getParent(); + + auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); + // FIXME: This should probably be optional rather than required. + if (!ORE) + report_fatal_error( + "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached " + "at a higher level"); + + LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL, + *ORE); + if (!LIR.runOnLoop(&L)) + return PreservedAnalyses::all(); + + return getLoopPassPreservedAnalyses(); +} + +INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", + "Recognize loop idioms", false, false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", + "Recognize loop idioms", false, false) + +Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } + +static void deleteDeadInstruction(Instruction *I) { + I->replaceAllUsesWith(UndefValue::get(I->getType())); + I->eraseFromParent(); +} + +//===----------------------------------------------------------------------===// +// +// Implementation of LoopIdiomRecognize +// +//===----------------------------------------------------------------------===// + +bool LoopIdiomRecognize::runOnLoop(Loop *L) { + CurLoop = L; + // If the loop could not be converted to canonical form, it must have an + // indirectbr in it, just give up. + if (!L->getLoopPreheader()) + return false; + + // Disable loop idiom recognition if the function's name is a common idiom. + StringRef Name = L->getHeader()->getParent()->getName(); + if (Name == "memset" || Name == "memcpy") + return false; + + // Determine if code size heuristics need to be applied. + ApplyCodeSizeHeuristics = + L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; + + HasMemset = TLI->has(LibFunc_memset); + HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); + HasMemcpy = TLI->has(LibFunc_memcpy); + + if (HasMemset || HasMemsetPattern || HasMemcpy) + if (SE->hasLoopInvariantBackedgeTakenCount(L)) + return runOnCountableLoop(); + + return runOnNoncountableLoop(); +} + +bool LoopIdiomRecognize::runOnCountableLoop() { + const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); + assert(!isa<SCEVCouldNotCompute>(BECount) && + "runOnCountableLoop() called on a loop without a predictable" + "backedge-taken count"); + + // If this loop executes exactly one time, then it should be peeled, not + // optimized by this pass. + if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) + if (BECst->getAPInt() == 0) + return false; + + SmallVector<BasicBlock *, 8> ExitBlocks; + CurLoop->getUniqueExitBlocks(ExitBlocks); + + LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" + << CurLoop->getHeader()->getParent()->getName() + << "] Countable Loop %" << CurLoop->getHeader()->getName() + << "\n"); + + bool MadeChange = false; + + // The following transforms hoist stores/memsets into the loop pre-header. + // Give up if the loop has instructions may throw. + SimpleLoopSafetyInfo SafetyInfo; + SafetyInfo.computeLoopSafetyInfo(CurLoop); + if (SafetyInfo.anyBlockMayThrow()) + return MadeChange; + + // Scan all the blocks in the loop that are not in subloops. + for (auto *BB : CurLoop->getBlocks()) { + // Ignore blocks in subloops. + if (LI->getLoopFor(BB) != CurLoop) + continue; + + MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); + } + return MadeChange; +} + +static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { + const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); + return ConstStride->getAPInt(); +} + +/// getMemSetPatternValue - If a strided store of the specified value is safe to +/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should +/// be passed in. Otherwise, return null. +/// +/// Note that we don't ever attempt to use memset_pattern8 or 4, because these +/// just replicate their input array and then pass on to memset_pattern16. +static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { + // FIXME: This could check for UndefValue because it can be merged into any + // other valid pattern. + + // If the value isn't a constant, we can't promote it to being in a constant + // array. We could theoretically do a store to an alloca or something, but + // that doesn't seem worthwhile. + Constant *C = dyn_cast<Constant>(V); + if (!C) + return nullptr; + + // Only handle simple values that are a power of two bytes in size. + uint64_t Size = DL->getTypeSizeInBits(V->getType()); + if (Size == 0 || (Size & 7) || (Size & (Size - 1))) + return nullptr; + + // Don't care enough about darwin/ppc to implement this. + if (DL->isBigEndian()) + return nullptr; + + // Convert to size in bytes. + Size /= 8; + + // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see + // if the top and bottom are the same (e.g. for vectors and large integers). + if (Size > 16) + return nullptr; + + // If the constant is exactly 16 bytes, just use it. + if (Size == 16) + return C; + + // Otherwise, we'll use an array of the constants. + unsigned ArraySize = 16 / Size; + ArrayType *AT = ArrayType::get(V->getType(), ArraySize); + return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); +} + +LoopIdiomRecognize::LegalStoreKind +LoopIdiomRecognize::isLegalStore(StoreInst *SI) { + // Don't touch volatile stores. + if (SI->isVolatile()) + return LegalStoreKind::None; + // We only want simple or unordered-atomic stores. + if (!SI->isUnordered()) + return LegalStoreKind::None; + + // Don't convert stores of non-integral pointer types to memsets (which stores + // integers). + if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) + return LegalStoreKind::None; + + // Avoid merging nontemporal stores. + if (SI->getMetadata(LLVMContext::MD_nontemporal)) + return LegalStoreKind::None; + + Value *StoredVal = SI->getValueOperand(); + Value *StorePtr = SI->getPointerOperand(); + + // Reject stores that are so large that they overflow an unsigned. + uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); + if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) + return LegalStoreKind::None; + + // See if the pointer expression is an AddRec like {base,+,1} on the current + // loop, which indicates a strided store. If we have something else, it's a + // random store we can't handle. + const SCEVAddRecExpr *StoreEv = + dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); + if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) + return LegalStoreKind::None; + + // Check to see if we have a constant stride. + if (!isa<SCEVConstant>(StoreEv->getOperand(1))) + return LegalStoreKind::None; + + // See if the store can be turned into a memset. + + // If the stored value is a byte-wise value (like i32 -1), then it may be + // turned into a memset of i8 -1, assuming that all the consecutive bytes + // are stored. A store of i32 0x01020304 can never be turned into a memset, + // but it can be turned into memset_pattern if the target supports it. + Value *SplatValue = isBytewiseValue(StoredVal, *DL); + Constant *PatternValue = nullptr; + + // Note: memset and memset_pattern on unordered-atomic is yet not supported + bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); + + // If we're allowed to form a memset, and the stored value would be + // acceptable for memset, use it. + if (!UnorderedAtomic && HasMemset && SplatValue && + // Verify that the stored value is loop invariant. If not, we can't + // promote the memset. + CurLoop->isLoopInvariant(SplatValue)) { + // It looks like we can use SplatValue. + return LegalStoreKind::Memset; + } else if (!UnorderedAtomic && HasMemsetPattern && + // Don't create memset_pattern16s with address spaces. + StorePtr->getType()->getPointerAddressSpace() == 0 && + (PatternValue = getMemSetPatternValue(StoredVal, DL))) { + // It looks like we can use PatternValue! + return LegalStoreKind::MemsetPattern; + } + + // Otherwise, see if the store can be turned into a memcpy. + if (HasMemcpy) { + // Check to see if the stride matches the size of the store. If so, then we + // know that every byte is touched in the loop. + APInt Stride = getStoreStride(StoreEv); + unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); + if (StoreSize != Stride && StoreSize != -Stride) + return LegalStoreKind::None; + + // The store must be feeding a non-volatile load. + LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); + + // Only allow non-volatile loads + if (!LI || LI->isVolatile()) + return LegalStoreKind::None; + // Only allow simple or unordered-atomic loads + if (!LI->isUnordered()) + return LegalStoreKind::None; + + // See if the pointer expression is an AddRec like {base,+,1} on the current + // loop, which indicates a strided load. If we have something else, it's a + // random load we can't handle. + const SCEVAddRecExpr *LoadEv = + dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); + if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) + return LegalStoreKind::None; + + // The store and load must share the same stride. + if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) + return LegalStoreKind::None; + + // Success. This store can be converted into a memcpy. + UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); + return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy + : LegalStoreKind::Memcpy; + } + // This store can't be transformed into a memset/memcpy. + return LegalStoreKind::None; +} + +void LoopIdiomRecognize::collectStores(BasicBlock *BB) { + StoreRefsForMemset.clear(); + StoreRefsForMemsetPattern.clear(); + StoreRefsForMemcpy.clear(); + for (Instruction &I : *BB) { + StoreInst *SI = dyn_cast<StoreInst>(&I); + if (!SI) + continue; + + // Make sure this is a strided store with a constant stride. + switch (isLegalStore(SI)) { + case LegalStoreKind::None: + // Nothing to do + break; + case LegalStoreKind::Memset: { + // Find the base pointer. + Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); + StoreRefsForMemset[Ptr].push_back(SI); + } break; + case LegalStoreKind::MemsetPattern: { + // Find the base pointer. + Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); + StoreRefsForMemsetPattern[Ptr].push_back(SI); + } break; + case LegalStoreKind::Memcpy: + case LegalStoreKind::UnorderedAtomicMemcpy: + StoreRefsForMemcpy.push_back(SI); + break; + default: + assert(false && "unhandled return value"); + break; + } + } +} + +/// runOnLoopBlock - Process the specified block, which lives in a counted loop +/// with the specified backedge count. This block is known to be in the current +/// loop and not in any subloops. +bool LoopIdiomRecognize::runOnLoopBlock( + BasicBlock *BB, const SCEV *BECount, + SmallVectorImpl<BasicBlock *> &ExitBlocks) { + // We can only promote stores in this block if they are unconditionally + // executed in the loop. For a block to be unconditionally executed, it has + // to dominate all the exit blocks of the loop. Verify this now. + for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) + if (!DT->dominates(BB, ExitBlocks[i])) + return false; + + bool MadeChange = false; + // Look for store instructions, which may be optimized to memset/memcpy. + collectStores(BB); + + // Look for a single store or sets of stores with a common base, which can be + // optimized into a memset (memset_pattern). The latter most commonly happens + // with structs and handunrolled loops. + for (auto &SL : StoreRefsForMemset) + MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); + + for (auto &SL : StoreRefsForMemsetPattern) + MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); + + // Optimize the store into a memcpy, if it feeds an similarly strided load. + for (auto &SI : StoreRefsForMemcpy) + MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); + + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { + Instruction *Inst = &*I++; + // Look for memset instructions, which may be optimized to a larger memset. + if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { + WeakTrackingVH InstPtr(&*I); + if (!processLoopMemSet(MSI, BECount)) + continue; + MadeChange = true; + + // If processing the memset invalidated our iterator, start over from the + // top of the block. + if (!InstPtr) + I = BB->begin(); + continue; + } + } + + return MadeChange; +} + +/// See if this store(s) can be promoted to a memset. +bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, + const SCEV *BECount, ForMemset For) { + // Try to find consecutive stores that can be transformed into memsets. + SetVector<StoreInst *> Heads, Tails; + SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; + + // Do a quadratic search on all of the given stores and find + // all of the pairs of stores that follow each other. + SmallVector<unsigned, 16> IndexQueue; + for (unsigned i = 0, e = SL.size(); i < e; ++i) { + assert(SL[i]->isSimple() && "Expected only non-volatile stores."); + + Value *FirstStoredVal = SL[i]->getValueOperand(); + Value *FirstStorePtr = SL[i]->getPointerOperand(); + const SCEVAddRecExpr *FirstStoreEv = + cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); + APInt FirstStride = getStoreStride(FirstStoreEv); + unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); + + // See if we can optimize just this store in isolation. + if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { + Heads.insert(SL[i]); + continue; + } + + Value *FirstSplatValue = nullptr; + Constant *FirstPatternValue = nullptr; + + if (For == ForMemset::Yes) + FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); + else + FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); + + assert((FirstSplatValue || FirstPatternValue) && + "Expected either splat value or pattern value."); + + IndexQueue.clear(); + // If a store has multiple consecutive store candidates, search Stores + // array according to the sequence: from i+1 to e, then from i-1 to 0. + // This is because usually pairing with immediate succeeding or preceding + // candidate create the best chance to find memset opportunity. + unsigned j = 0; + for (j = i + 1; j < e; ++j) + IndexQueue.push_back(j); + for (j = i; j > 0; --j) + IndexQueue.push_back(j - 1); + + for (auto &k : IndexQueue) { + assert(SL[k]->isSimple() && "Expected only non-volatile stores."); + Value *SecondStorePtr = SL[k]->getPointerOperand(); + const SCEVAddRecExpr *SecondStoreEv = + cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); + APInt SecondStride = getStoreStride(SecondStoreEv); + + if (FirstStride != SecondStride) + continue; + + Value *SecondStoredVal = SL[k]->getValueOperand(); + Value *SecondSplatValue = nullptr; + Constant *SecondPatternValue = nullptr; + + if (For == ForMemset::Yes) + SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); + else + SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); + + assert((SecondSplatValue || SecondPatternValue) && + "Expected either splat value or pattern value."); + + if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { + if (For == ForMemset::Yes) { + if (isa<UndefValue>(FirstSplatValue)) + FirstSplatValue = SecondSplatValue; + if (FirstSplatValue != SecondSplatValue) + continue; + } else { + if (isa<UndefValue>(FirstPatternValue)) + FirstPatternValue = SecondPatternValue; + if (FirstPatternValue != SecondPatternValue) + continue; + } + Tails.insert(SL[k]); + Heads.insert(SL[i]); + ConsecutiveChain[SL[i]] = SL[k]; + break; + } + } + } + + // We may run into multiple chains that merge into a single chain. We mark the + // stores that we transformed so that we don't visit the same store twice. + SmallPtrSet<Value *, 16> TransformedStores; + bool Changed = false; + + // For stores that start but don't end a link in the chain: + for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); + it != e; ++it) { + if (Tails.count(*it)) + continue; + + // We found a store instr that starts a chain. Now follow the chain and try + // to transform it. + SmallPtrSet<Instruction *, 8> AdjacentStores; + StoreInst *I = *it; + + StoreInst *HeadStore = I; + unsigned StoreSize = 0; + + // Collect the chain into a list. + while (Tails.count(I) || Heads.count(I)) { + if (TransformedStores.count(I)) + break; + AdjacentStores.insert(I); + + StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); + // Move to the next value in the chain. + I = ConsecutiveChain[I]; + } + + Value *StoredVal = HeadStore->getValueOperand(); + Value *StorePtr = HeadStore->getPointerOperand(); + const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); + APInt Stride = getStoreStride(StoreEv); + + // Check to see if the stride matches the size of the stores. If so, then + // we know that every byte is touched in the loop. + if (StoreSize != Stride && StoreSize != -Stride) + continue; + + bool NegStride = StoreSize == -Stride; + + if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), + StoredVal, HeadStore, AdjacentStores, StoreEv, + BECount, NegStride)) { + TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); + Changed = true; + } + } + + return Changed; +} + +/// processLoopMemSet - See if this memset can be promoted to a large memset. +bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, + const SCEV *BECount) { + // We can only handle non-volatile memsets with a constant size. + if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) + return false; + + // If we're not allowed to hack on memset, we fail. + if (!HasMemset) + return false; + + Value *Pointer = MSI->getDest(); + + // See if the pointer expression is an AddRec like {base,+,1} on the current + // loop, which indicates a strided store. If we have something else, it's a + // random store we can't handle. + const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); + if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) + return false; + + // Reject memsets that are so large that they overflow an unsigned. + uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); + if ((SizeInBytes >> 32) != 0) + return false; + + // Check to see if the stride matches the size of the memset. If so, then we + // know that every byte is touched in the loop. + const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); + if (!ConstStride) + return false; + + APInt Stride = ConstStride->getAPInt(); + if (SizeInBytes != Stride && SizeInBytes != -Stride) + return false; + + // Verify that the memset value is loop invariant. If not, we can't promote + // the memset. + Value *SplatValue = MSI->getValue(); + if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) + return false; + + SmallPtrSet<Instruction *, 1> MSIs; + MSIs.insert(MSI); + bool NegStride = SizeInBytes == -Stride; + return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, + MSI->getDestAlignment(), SplatValue, MSI, MSIs, + Ev, BECount, NegStride, /*IsLoopMemset=*/true); +} + +/// mayLoopAccessLocation - Return true if the specified loop might access the +/// specified pointer location, which is a loop-strided access. The 'Access' +/// argument specifies what the verboten forms of access are (read or write). +static bool +mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, + const SCEV *BECount, unsigned StoreSize, + AliasAnalysis &AA, + SmallPtrSetImpl<Instruction *> &IgnoredStores) { + // Get the location that may be stored across the loop. Since the access is + // strided positively through memory, we say that the modified location starts + // at the pointer and has infinite size. + LocationSize AccessSize = LocationSize::unknown(); + + // If the loop iterates a fixed number of times, we can refine the access size + // to be exactly the size of the memset, which is (BECount+1)*StoreSize + if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) + AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * + StoreSize); + + // TODO: For this to be really effective, we have to dive into the pointer + // operand in the store. Store to &A[i] of 100 will always return may alias + // with store of &A[100], we need to StoreLoc to be "A" with size of 100, + // which will then no-alias a store to &A[100]. + MemoryLocation StoreLoc(Ptr, AccessSize); + + for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; + ++BI) + for (Instruction &I : **BI) + if (IgnoredStores.count(&I) == 0 && + isModOrRefSet( + intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) + return true; + + return false; +} + +// If we have a negative stride, Start refers to the end of the memory location +// we're trying to memset. Therefore, we need to recompute the base pointer, +// which is just Start - BECount*Size. +static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, + Type *IntPtr, unsigned StoreSize, + ScalarEvolution *SE) { + const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); + if (StoreSize != 1) + Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), + SCEV::FlagNUW); + return SE->getMinusSCEV(Start, Index); +} + +/// Compute the number of bytes as a SCEV from the backedge taken count. +/// +/// This also maps the SCEV into the provided type and tries to handle the +/// computation in a way that will fold cleanly. +static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, + unsigned StoreSize, Loop *CurLoop, + const DataLayout *DL, ScalarEvolution *SE) { + const SCEV *NumBytesS; + // The # stored bytes is (BECount+1)*Size. Expand the trip count out to + // pointer size if it isn't already. + // + // If we're going to need to zero extend the BE count, check if we can add + // one to it prior to zero extending without overflow. Provided this is safe, + // it allows better simplification of the +1. + if (DL->getTypeSizeInBits(BECount->getType()) < + DL->getTypeSizeInBits(IntPtr) && + SE->isLoopEntryGuardedByCond( + CurLoop, ICmpInst::ICMP_NE, BECount, + SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { + NumBytesS = SE->getZeroExtendExpr( + SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), + IntPtr); + } else { + NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), + SE->getOne(IntPtr), SCEV::FlagNUW); + } + + // And scale it based on the store size. + if (StoreSize != 1) { + NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), + SCEV::FlagNUW); + } + return NumBytesS; +} + +/// processLoopStridedStore - We see a strided store of some value. If we can +/// transform this into a memset or memset_pattern in the loop preheader, do so. +bool LoopIdiomRecognize::processLoopStridedStore( + Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, + Value *StoredVal, Instruction *TheStore, + SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, + const SCEV *BECount, bool NegStride, bool IsLoopMemset) { + Value *SplatValue = isBytewiseValue(StoredVal, *DL); + Constant *PatternValue = nullptr; + + if (!SplatValue) + PatternValue = getMemSetPatternValue(StoredVal, DL); + + assert((SplatValue || PatternValue) && + "Expected either splat value or pattern value."); + + // The trip count of the loop and the base pointer of the addrec SCEV is + // guaranteed to be loop invariant, which means that it should dominate the + // header. This allows us to insert code for it in the preheader. + unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); + BasicBlock *Preheader = CurLoop->getLoopPreheader(); + IRBuilder<> Builder(Preheader->getTerminator()); + SCEVExpander Expander(*SE, *DL, "loop-idiom"); + + Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); + Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); + + const SCEV *Start = Ev->getStart(); + // Handle negative strided loops. + if (NegStride) + Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); + + // TODO: ideally we should still be able to generate memset if SCEV expander + // is taught to generate the dependencies at the latest point. + if (!isSafeToExpand(Start, *SE)) + return false; + + // Okay, we have a strided store "p[i]" of a splattable value. We can turn + // this into a memset in the loop preheader now if we want. However, this + // would be unsafe to do if there is anything else in the loop that may read + // or write to the aliased location. Check for any overlap by generating the + // base pointer and checking the region. + Value *BasePtr = + Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); + if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, + StoreSize, *AA, Stores)) { + Expander.clear(); + // If we generated new code for the base pointer, clean up. + RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); + return false; + } + + if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) + return false; + + // Okay, everything looks good, insert the memset. + + const SCEV *NumBytesS = + getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); + + // TODO: ideally we should still be able to generate memset if SCEV expander + // is taught to generate the dependencies at the latest point. + if (!isSafeToExpand(NumBytesS, *SE)) + return false; + + Value *NumBytes = + Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); + + CallInst *NewCall; + if (SplatValue) { + NewCall = + Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); + } else { + // Everything is emitted in default address space + Type *Int8PtrTy = DestInt8PtrTy; + + Module *M = TheStore->getModule(); + StringRef FuncName = "memset_pattern16"; + FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), + Int8PtrTy, Int8PtrTy, IntPtr); + inferLibFuncAttributes(M, FuncName, *TLI); + + // Otherwise we should form a memset_pattern16. PatternValue is known to be + // an constant array of 16-bytes. Plop the value into a mergable global. + GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, + GlobalValue::PrivateLinkage, + PatternValue, ".memset_pattern"); + GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. + GV->setAlignment(16); + Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); + NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); + } + + LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" + << " from store to: " << *Ev << " at: " << *TheStore + << "\n"); + NewCall->setDebugLoc(TheStore->getDebugLoc()); + + ORE.emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", + NewCall->getDebugLoc(), Preheader) + << "Transformed loop-strided store into a call to " + << ore::NV("NewFunction", NewCall->getCalledFunction()) + << "() function"; + }); + + // Okay, the memset has been formed. Zap the original store and anything that + // feeds into it. + for (auto *I : Stores) + deleteDeadInstruction(I); + ++NumMemSet; + return true; +} + +/// If the stored value is a strided load in the same loop with the same stride +/// this may be transformable into a memcpy. This kicks in for stuff like +/// for (i) A[i] = B[i]; +bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, + const SCEV *BECount) { + assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); + + Value *StorePtr = SI->getPointerOperand(); + const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); + APInt Stride = getStoreStride(StoreEv); + unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); + bool NegStride = StoreSize == -Stride; + + // The store must be feeding a non-volatile load. + LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); + assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); + + // See if the pointer expression is an AddRec like {base,+,1} on the current + // loop, which indicates a strided load. If we have something else, it's a + // random load we can't handle. + const SCEVAddRecExpr *LoadEv = + cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); + + // The trip count of the loop and the base pointer of the addrec SCEV is + // guaranteed to be loop invariant, which means that it should dominate the + // header. This allows us to insert code for it in the preheader. + BasicBlock *Preheader = CurLoop->getLoopPreheader(); + IRBuilder<> Builder(Preheader->getTerminator()); + SCEVExpander Expander(*SE, *DL, "loop-idiom"); + + const SCEV *StrStart = StoreEv->getStart(); + unsigned StrAS = SI->getPointerAddressSpace(); + Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); + + // Handle negative strided loops. + if (NegStride) + StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); + + // Okay, we have a strided store "p[i]" of a loaded value. We can turn + // this into a memcpy in the loop preheader now if we want. However, this + // would be unsafe to do if there is anything else in the loop that may read + // or write the memory region we're storing to. This includes the load that + // feeds the stores. Check for an alias by generating the base address and + // checking everything. + Value *StoreBasePtr = Expander.expandCodeFor( + StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); + + SmallPtrSet<Instruction *, 1> Stores; + Stores.insert(SI); + if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, + StoreSize, *AA, Stores)) { + Expander.clear(); + // If we generated new code for the base pointer, clean up. + RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); + return false; + } + + const SCEV *LdStart = LoadEv->getStart(); + unsigned LdAS = LI->getPointerAddressSpace(); + + // Handle negative strided loops. + if (NegStride) + LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); + + // For a memcpy, we have to make sure that the input array is not being + // mutated by the loop. + Value *LoadBasePtr = Expander.expandCodeFor( + LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); + + if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, + StoreSize, *AA, Stores)) { + Expander.clear(); + // If we generated new code for the base pointer, clean up. + RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); + RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); + return false; + } + + if (avoidLIRForMultiBlockLoop()) + return false; + + // Okay, everything is safe, we can transform this! + + const SCEV *NumBytesS = + getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); + + Value *NumBytes = + Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); + + CallInst *NewCall = nullptr; + // Check whether to generate an unordered atomic memcpy: + // If the load or store are atomic, then they must necessarily be unordered + // by previous checks. + if (!SI->isAtomic() && !LI->isAtomic()) + NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), + LoadBasePtr, LI->getAlignment(), NumBytes); + else { + // We cannot allow unaligned ops for unordered load/store, so reject + // anything where the alignment isn't at least the element size. + unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); + if (Align < StoreSize) + return false; + + // If the element.atomic memcpy is not lowered into explicit + // loads/stores later, then it will be lowered into an element-size + // specific lib call. If the lib call doesn't exist for our store size, then + // we shouldn't generate the memcpy. + if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) + return false; + + // Create the call. + // Note that unordered atomic loads/stores are *required* by the spec to + // have an alignment but non-atomic loads/stores may not. + NewCall = Builder.CreateElementUnorderedAtomicMemCpy( + StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), + NumBytes, StoreSize); + } + NewCall->setDebugLoc(SI->getDebugLoc()); + + LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" + << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" + << " from store ptr=" << *StoreEv << " at: " << *SI + << "\n"); + + ORE.emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", + NewCall->getDebugLoc(), Preheader) + << "Formed a call to " + << ore::NV("NewFunction", NewCall->getCalledFunction()) + << "() function"; + }); + + // Okay, the memcpy has been formed. Zap the original store and anything that + // feeds into it. + deleteDeadInstruction(SI); + ++NumMemCpy; + return true; +} + +// When compiling for codesize we avoid idiom recognition for a multi-block loop +// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. +// +bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, + bool IsLoopMemset) { + if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { + if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { + LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() + << " : LIR " << (IsMemset ? "Memset" : "Memcpy") + << " avoided: multi-block top-level loop\n"); + return true; + } + } + + return false; +} + +bool LoopIdiomRecognize::runOnNoncountableLoop() { + LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" + << CurLoop->getHeader()->getParent()->getName() + << "] Noncountable Loop %" + << CurLoop->getHeader()->getName() << "\n"); + + return recognizePopcount() || recognizeAndInsertFFS(); +} + +/// Check if the given conditional branch is based on the comparison between +/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is +/// true), the control yields to the loop entry. If the branch matches the +/// behavior, the variable involved in the comparison is returned. This function +/// will be called to see if the precondition and postcondition of the loop are +/// in desirable form. +static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, + bool JmpOnZero = false) { + if (!BI || !BI->isConditional()) + return nullptr; + + ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); + if (!Cond) + return nullptr; + + ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); + if (!CmpZero || !CmpZero->isZero()) + return nullptr; + + BasicBlock *TrueSucc = BI->getSuccessor(0); + BasicBlock *FalseSucc = BI->getSuccessor(1); + if (JmpOnZero) + std::swap(TrueSucc, FalseSucc); + + ICmpInst::Predicate Pred = Cond->getPredicate(); + if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || + (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) + return Cond->getOperand(0); + + return nullptr; +} + +// Check if the recurrence variable `VarX` is in the right form to create +// the idiom. Returns the value coerced to a PHINode if so. +static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, + BasicBlock *LoopEntry) { + auto *PhiX = dyn_cast<PHINode>(VarX); + if (PhiX && PhiX->getParent() == LoopEntry && + (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) + return PhiX; + return nullptr; +} + +/// Return true iff the idiom is detected in the loop. +/// +/// Additionally: +/// 1) \p CntInst is set to the instruction counting the population bit. +/// 2) \p CntPhi is set to the corresponding phi node. +/// 3) \p Var is set to the value whose population bits are being counted. +/// +/// The core idiom we are trying to detect is: +/// \code +/// if (x0 != 0) +/// goto loop-exit // the precondition of the loop +/// cnt0 = init-val; +/// do { +/// x1 = phi (x0, x2); +/// cnt1 = phi(cnt0, cnt2); +/// +/// cnt2 = cnt1 + 1; +/// ... +/// x2 = x1 & (x1 - 1); +/// ... +/// } while(x != 0); +/// +/// loop-exit: +/// \endcode +static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, + Instruction *&CntInst, PHINode *&CntPhi, + Value *&Var) { + // step 1: Check to see if the look-back branch match this pattern: + // "if (a!=0) goto loop-entry". + BasicBlock *LoopEntry; + Instruction *DefX2, *CountInst; + Value *VarX1, *VarX0; + PHINode *PhiX, *CountPhi; + + DefX2 = CountInst = nullptr; + VarX1 = VarX0 = nullptr; + PhiX = CountPhi = nullptr; + LoopEntry = *(CurLoop->block_begin()); + + // step 1: Check if the loop-back branch is in desirable form. + { + if (Value *T = matchCondition( + dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) + DefX2 = dyn_cast<Instruction>(T); + else + return false; + } + + // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" + { + if (!DefX2 || DefX2->getOpcode() != Instruction::And) + return false; + + BinaryOperator *SubOneOp; + + if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) + VarX1 = DefX2->getOperand(1); + else { + VarX1 = DefX2->getOperand(0); + SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); + } + if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) + return false; + + ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); + if (!Dec || + !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || + (SubOneOp->getOpcode() == Instruction::Add && + Dec->isMinusOne()))) { + return false; + } + } + + // step 3: Check the recurrence of variable X + PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); + if (!PhiX) + return false; + + // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 + { + CountInst = nullptr; + for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), + IterE = LoopEntry->end(); + Iter != IterE; Iter++) { + Instruction *Inst = &*Iter; + if (Inst->getOpcode() != Instruction::Add) + continue; + + ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); + if (!Inc || !Inc->isOne()) + continue; + + PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); + if (!Phi) + continue; + + // Check if the result of the instruction is live of the loop. + bool LiveOutLoop = false; + for (User *U : Inst->users()) { + if ((cast<Instruction>(U))->getParent() != LoopEntry) { + LiveOutLoop = true; + break; + } + } + + if (LiveOutLoop) { + CountInst = Inst; + CountPhi = Phi; + break; + } + } + + if (!CountInst) + return false; + } + + // step 5: check if the precondition is in this form: + // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" + { + auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); + Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); + if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) + return false; + + CntInst = CountInst; + CntPhi = CountPhi; + Var = T; + } + + return true; +} + +/// Return true if the idiom is detected in the loop. +/// +/// Additionally: +/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) +/// or nullptr if there is no such. +/// 2) \p CntPhi is set to the corresponding phi node +/// or nullptr if there is no such. +/// 3) \p Var is set to the value whose CTLZ could be used. +/// 4) \p DefX is set to the instruction calculating Loop exit condition. +/// +/// The core idiom we are trying to detect is: +/// \code +/// if (x0 == 0) +/// goto loop-exit // the precondition of the loop +/// cnt0 = init-val; +/// do { +/// x = phi (x0, x.next); //PhiX +/// cnt = phi(cnt0, cnt.next); +/// +/// cnt.next = cnt + 1; +/// ... +/// x.next = x >> 1; // DefX +/// ... +/// } while(x.next != 0); +/// +/// loop-exit: +/// \endcode +static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, + Intrinsic::ID &IntrinID, Value *&InitX, + Instruction *&CntInst, PHINode *&CntPhi, + Instruction *&DefX) { + BasicBlock *LoopEntry; + Value *VarX = nullptr; + + DefX = nullptr; + CntInst = nullptr; + CntPhi = nullptr; + LoopEntry = *(CurLoop->block_begin()); + + // step 1: Check if the loop-back branch is in desirable form. + if (Value *T = matchCondition( + dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) + DefX = dyn_cast<Instruction>(T); + else + return false; + + // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" + if (!DefX || !DefX->isShift()) + return false; + IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : + Intrinsic::ctlz; + ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); + if (!Shft || !Shft->isOne()) + return false; + VarX = DefX->getOperand(0); + + // step 3: Check the recurrence of variable X + PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); + if (!PhiX) + return false; + + InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); + + // Make sure the initial value can't be negative otherwise the ashr in the + // loop might never reach zero which would make the loop infinite. + if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) + return false; + + // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 + // TODO: We can skip the step. If loop trip count is known (CTLZ), + // then all uses of "cnt.next" could be optimized to the trip count + // plus "cnt0". Currently it is not optimized. + // This step could be used to detect POPCNT instruction: + // cnt.next = cnt + (x.next & 1) + for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), + IterE = LoopEntry->end(); + Iter != IterE; Iter++) { + Instruction *Inst = &*Iter; + if (Inst->getOpcode() != Instruction::Add) + continue; + + ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); + if (!Inc || !Inc->isOne()) + continue; + + PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); + if (!Phi) + continue; + + CntInst = Inst; + CntPhi = Phi; + break; + } + if (!CntInst) + return false; + + return true; +} + +/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop +/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new +/// trip count returns true; otherwise, returns false. +bool LoopIdiomRecognize::recognizeAndInsertFFS() { + // Give up if the loop has multiple blocks or multiple backedges. + if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) + return false; + + Intrinsic::ID IntrinID; + Value *InitX; + Instruction *DefX = nullptr; + PHINode *CntPhi = nullptr; + Instruction *CntInst = nullptr; + // Help decide if transformation is profitable. For ShiftUntilZero idiom, + // this is always 6. + size_t IdiomCanonicalSize = 6; + + if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, + CntInst, CntPhi, DefX)) + return false; + + bool IsCntPhiUsedOutsideLoop = false; + for (User *U : CntPhi->users()) + if (!CurLoop->contains(cast<Instruction>(U))) { + IsCntPhiUsedOutsideLoop = true; + break; + } + bool IsCntInstUsedOutsideLoop = false; + for (User *U : CntInst->users()) + if (!CurLoop->contains(cast<Instruction>(U))) { + IsCntInstUsedOutsideLoop = true; + break; + } + // If both CntInst and CntPhi are used outside the loop the profitability + // is questionable. + if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) + return false; + + // For some CPUs result of CTLZ(X) intrinsic is undefined + // when X is 0. If we can not guarantee X != 0, we need to check this + // when expand. + bool ZeroCheck = false; + // It is safe to assume Preheader exist as it was checked in + // parent function RunOnLoop. + BasicBlock *PH = CurLoop->getLoopPreheader(); + + // If we are using the count instruction outside the loop, make sure we + // have a zero check as a precondition. Without the check the loop would run + // one iteration for before any check of the input value. This means 0 and 1 + // would have identical behavior in the original loop and thus + if (!IsCntPhiUsedOutsideLoop) { + auto *PreCondBB = PH->getSinglePredecessor(); + if (!PreCondBB) + return false; + auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); + if (!PreCondBI) + return false; + if (matchCondition(PreCondBI, PH) != InitX) + return false; + ZeroCheck = true; + } + + // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always + // profitable if we delete the loop. + + // the loop has only 6 instructions: + // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] + // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] + // %shr = ashr %n.addr.0, 1 + // %tobool = icmp eq %shr, 0 + // %inc = add nsw %i.0, 1 + // br i1 %tobool + + const Value *Args[] = + {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) + : ConstantInt::getFalse(InitX->getContext())}; + + // @llvm.dbg doesn't count as they have no semantic effect. + auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); + uint32_t HeaderSize = + std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); + + if (HeaderSize != IdiomCanonicalSize && + TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) > + TargetTransformInfo::TCC_Basic) + return false; + + transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, + DefX->getDebugLoc(), ZeroCheck, + IsCntPhiUsedOutsideLoop); + return true; +} + +/// Recognizes a population count idiom in a non-countable loop. +/// +/// If detected, transforms the relevant code to issue the popcount intrinsic +/// function call, and returns true; otherwise, returns false. +bool LoopIdiomRecognize::recognizePopcount() { + if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) + return false; + + // Counting population are usually conducted by few arithmetic instructions. + // Such instructions can be easily "absorbed" by vacant slots in a + // non-compact loop. Therefore, recognizing popcount idiom only makes sense + // in a compact loop. + + // Give up if the loop has multiple blocks or multiple backedges. + if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) + return false; + + BasicBlock *LoopBody = *(CurLoop->block_begin()); + if (LoopBody->size() >= 20) { + // The loop is too big, bail out. + return false; + } + + // It should have a preheader containing nothing but an unconditional branch. + BasicBlock *PH = CurLoop->getLoopPreheader(); + if (!PH || &PH->front() != PH->getTerminator()) + return false; + auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); + if (!EntryBI || EntryBI->isConditional()) + return false; + + // It should have a precondition block where the generated popcount intrinsic + // function can be inserted. + auto *PreCondBB = PH->getSinglePredecessor(); + if (!PreCondBB) + return false; + auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); + if (!PreCondBI || PreCondBI->isUnconditional()) + return false; + + Instruction *CntInst; + PHINode *CntPhi; + Value *Val; + if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) + return false; + + transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); + return true; +} + +static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, + const DebugLoc &DL) { + Value *Ops[] = {Val}; + Type *Tys[] = {Val->getType()}; + + Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); + Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); + CallInst *CI = IRBuilder.CreateCall(Func, Ops); + CI->setDebugLoc(DL); + + return CI; +} + +static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, + const DebugLoc &DL, bool ZeroCheck, + Intrinsic::ID IID) { + Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; + Type *Tys[] = {Val->getType()}; + + Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); + Function *Func = Intrinsic::getDeclaration(M, IID, Tys); + CallInst *CI = IRBuilder.CreateCall(Func, Ops); + CI->setDebugLoc(DL); + + return CI; +} + +/// Transform the following loop (Using CTLZ, CTTZ is similar): +/// loop: +/// CntPhi = PHI [Cnt0, CntInst] +/// PhiX = PHI [InitX, DefX] +/// CntInst = CntPhi + 1 +/// DefX = PhiX >> 1 +/// LOOP_BODY +/// Br: loop if (DefX != 0) +/// Use(CntPhi) or Use(CntInst) +/// +/// Into: +/// If CntPhi used outside the loop: +/// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) +/// Count = CountPrev + 1 +/// else +/// Count = BitWidth(InitX) - CTLZ(InitX) +/// loop: +/// CntPhi = PHI [Cnt0, CntInst] +/// PhiX = PHI [InitX, DefX] +/// PhiCount = PHI [Count, Dec] +/// CntInst = CntPhi + 1 +/// DefX = PhiX >> 1 +/// Dec = PhiCount - 1 +/// LOOP_BODY +/// Br: loop if (Dec != 0) +/// Use(CountPrev + Cnt0) // Use(CntPhi) +/// or +/// Use(Count + Cnt0) // Use(CntInst) +/// +/// If LOOP_BODY is empty the loop will be deleted. +/// If CntInst and DefX are not used in LOOP_BODY they will be removed. +void LoopIdiomRecognize::transformLoopToCountable( + Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, + PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, + bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { + BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); + + // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block + IRBuilder<> Builder(PreheaderBr); + Builder.SetCurrentDebugLocation(DL); + Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext; + + // Count = BitWidth - CTLZ(InitX); + // If there are uses of CntPhi create: + // CountPrev = BitWidth - CTLZ(InitX >> 1); + if (IsCntPhiUsedOutsideLoop) { + if (DefX->getOpcode() == Instruction::AShr) + InitXNext = + Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); + else if (DefX->getOpcode() == Instruction::LShr) + InitXNext = + Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); + else if (DefX->getOpcode() == Instruction::Shl) // cttz + InitXNext = + Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); + else + llvm_unreachable("Unexpected opcode!"); + } else + InitXNext = InitX; + FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); + Count = Builder.CreateSub( + ConstantInt::get(FFS->getType(), + FFS->getType()->getIntegerBitWidth()), + FFS); + if (IsCntPhiUsedOutsideLoop) { + CountPrev = Count; + Count = Builder.CreateAdd( + CountPrev, + ConstantInt::get(CountPrev->getType(), 1)); + } + + NewCount = Builder.CreateZExtOrTrunc( + IsCntPhiUsedOutsideLoop ? CountPrev : Count, + cast<IntegerType>(CntInst->getType())); + + // If the counter's initial value is not zero, insert Add Inst. + Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); + ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); + if (!InitConst || !InitConst->isZero()) + NewCount = Builder.CreateAdd(NewCount, CntInitVal); + + // Step 2: Insert new IV and loop condition: + // loop: + // ... + // PhiCount = PHI [Count, Dec] + // ... + // Dec = PhiCount - 1 + // ... + // Br: loop if (Dec != 0) + BasicBlock *Body = *(CurLoop->block_begin()); + auto *LbBr = cast<BranchInst>(Body->getTerminator()); + ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); + Type *Ty = Count->getType(); + + PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); + + Builder.SetInsertPoint(LbCond); + Instruction *TcDec = cast<Instruction>( + Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), + "tcdec", false, true)); + + TcPhi->addIncoming(Count, Preheader); + TcPhi->addIncoming(TcDec, Body); + + CmpInst::Predicate Pred = + (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; + LbCond->setPredicate(Pred); + LbCond->setOperand(0, TcDec); + LbCond->setOperand(1, ConstantInt::get(Ty, 0)); + + // Step 3: All the references to the original counter outside + // the loop are replaced with the NewCount + if (IsCntPhiUsedOutsideLoop) + CntPhi->replaceUsesOutsideBlock(NewCount, Body); + else + CntInst->replaceUsesOutsideBlock(NewCount, Body); + + // step 4: Forget the "non-computable" trip-count SCEV associated with the + // loop. The loop would otherwise not be deleted even if it becomes empty. + SE->forgetLoop(CurLoop); +} + +void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, + Instruction *CntInst, + PHINode *CntPhi, Value *Var) { + BasicBlock *PreHead = CurLoop->getLoopPreheader(); + auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); + const DebugLoc &DL = CntInst->getDebugLoc(); + + // Assuming before transformation, the loop is following: + // if (x) // the precondition + // do { cnt++; x &= x - 1; } while(x); + + // Step 1: Insert the ctpop instruction at the end of the precondition block + IRBuilder<> Builder(PreCondBr); + Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; + { + PopCnt = createPopcntIntrinsic(Builder, Var, DL); + NewCount = PopCntZext = + Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); + + if (NewCount != PopCnt) + (cast<Instruction>(NewCount))->setDebugLoc(DL); + + // TripCnt is exactly the number of iterations the loop has + TripCnt = NewCount; + + // If the population counter's initial value is not zero, insert Add Inst. + Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); + ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); + if (!InitConst || !InitConst->isZero()) { + NewCount = Builder.CreateAdd(NewCount, CntInitVal); + (cast<Instruction>(NewCount))->setDebugLoc(DL); + } + } + + // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to + // "if (NewCount == 0) loop-exit". Without this change, the intrinsic + // function would be partial dead code, and downstream passes will drag + // it back from the precondition block to the preheader. + { + ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); + + Value *Opnd0 = PopCntZext; + Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); + if (PreCond->getOperand(0) != Var) + std::swap(Opnd0, Opnd1); + + ICmpInst *NewPreCond = cast<ICmpInst>( + Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); + PreCondBr->setCondition(NewPreCond); + + RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); + } + + // Step 3: Note that the population count is exactly the trip count of the + // loop in question, which enable us to convert the loop from noncountable + // loop into a countable one. The benefit is twofold: + // + // - If the loop only counts population, the entire loop becomes dead after + // the transformation. It is a lot easier to prove a countable loop dead + // than to prove a noncountable one. (In some C dialects, an infinite loop + // isn't dead even if it computes nothing useful. In general, DCE needs + // to prove a noncountable loop finite before safely delete it.) + // + // - If the loop also performs something else, it remains alive. + // Since it is transformed to countable form, it can be aggressively + // optimized by some optimizations which are in general not applicable + // to a noncountable loop. + // + // After this step, this loop (conceptually) would look like following: + // newcnt = __builtin_ctpop(x); + // t = newcnt; + // if (x) + // do { cnt++; x &= x-1; t--) } while (t > 0); + BasicBlock *Body = *(CurLoop->block_begin()); + { + auto *LbBr = cast<BranchInst>(Body->getTerminator()); + ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); + Type *Ty = TripCnt->getType(); + + PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); + + Builder.SetInsertPoint(LbCond); + Instruction *TcDec = cast<Instruction>( + Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), + "tcdec", false, true)); + + TcPhi->addIncoming(TripCnt, PreHead); + TcPhi->addIncoming(TcDec, Body); + + CmpInst::Predicate Pred = + (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; + LbCond->setPredicate(Pred); + LbCond->setOperand(0, TcDec); + LbCond->setOperand(1, ConstantInt::get(Ty, 0)); + } + + // Step 4: All the references to the original population counter outside + // the loop are replaced with the NewCount -- the value returned from + // __builtin_ctpop(). + CntInst->replaceUsesOutsideBlock(NewCount, Body); + + // step 5: Forget the "non-computable" trip-count SCEV associated with the + // loop. The loop would otherwise not be deleted even if it becomes empty. + SE->forgetLoop(CurLoop); +} |
