diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/NaryReassociate.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Scalar/NaryReassociate.cpp | 547 |
1 files changed, 547 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/NaryReassociate.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/NaryReassociate.cpp new file mode 100644 index 000000000000..94436b55752a --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/NaryReassociate.cpp @@ -0,0 +1,547 @@ +//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass reassociates n-ary add expressions and eliminates the redundancy +// exposed by the reassociation. +// +// A motivating example: +// +// void foo(int a, int b) { +// bar(a + b); +// bar((a + 2) + b); +// } +// +// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify +// the above code to +// +// int t = a + b; +// bar(t); +// bar(t + 2); +// +// However, the Reassociate pass is unable to do that because it processes each +// instruction individually and believes (a + 2) + b is the best form according +// to its rank system. +// +// To address this limitation, NaryReassociate reassociates an expression in a +// form that reuses existing instructions. As a result, NaryReassociate can +// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that +// (a + b) is computed before. +// +// NaryReassociate works as follows. For every instruction in the form of (a + +// b) + c, it checks whether a + c or b + c is already computed by a dominating +// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + +// c) + a and removes the redundancy accordingly. To efficiently look up whether +// an expression is computed before, we store each instruction seen and its SCEV +// into an SCEV-to-instruction map. +// +// Although the algorithm pattern-matches only ternary additions, it +// automatically handles many >3-ary expressions by walking through the function +// in the depth-first order. For example, given +// +// (a + c) + d +// ((a + b) + c) + d +// +// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites +// ((a + c) + b) + d into ((a + c) + d) + b. +// +// Finally, the above dominator-based algorithm may need to be run multiple +// iterations before emitting optimal code. One source of this need is that we +// only split an operand when it is used only once. The above algorithm can +// eliminate an instruction and decrease the usage count of its operands. As a +// result, an instruction that previously had multiple uses may become a +// single-use instruction and thus eligible for split consideration. For +// example, +// +// ac = a + c +// ab = a + b +// abc = ab + c +// ab2 = ab + b +// ab2c = ab2 + c +// +// In the first iteration, we cannot reassociate abc to ac+b because ab is used +// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a +// result, ab2 becomes dead and ab will be used only once in the second +// iteration. +// +// Limitations and TODO items: +// +// 1) We only considers n-ary adds and muls for now. This should be extended +// and generalized. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/NaryReassociate.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Transforms/Scalar.h" +#include <cassert> +#include <cstdint> + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "nary-reassociate" + +namespace { + +class NaryReassociateLegacyPass : public FunctionPass { +public: + static char ID; + + NaryReassociateLegacyPass() : FunctionPass(ID) { + initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool doInitialization(Module &M) override { + return false; + } + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<ScalarEvolutionWrapperPass>(); + AU.addPreserved<TargetLibraryInfoWrapperPass>(); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.setPreservesCFG(); + } + +private: + NaryReassociatePass Impl; +}; + +} // end anonymous namespace + +char NaryReassociateLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate", + "Nary reassociation", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate", + "Nary reassociation", false, false) + +FunctionPass *llvm::createNaryReassociatePass() { + return new NaryReassociateLegacyPass(); +} + +bool NaryReassociateLegacyPass::runOnFunction(Function &F) { + if (skipFunction(F)) + return false; + + auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + + return Impl.runImpl(F, AC, DT, SE, TLI, TTI); +} + +PreservedAnalyses NaryReassociatePass::run(Function &F, + FunctionAnalysisManager &AM) { + auto *AC = &AM.getResult<AssumptionAnalysis>(F); + auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); + auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); + auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); + auto *TTI = &AM.getResult<TargetIRAnalysis>(F); + + if (!runImpl(F, AC, DT, SE, TLI, TTI)) + return PreservedAnalyses::all(); + + PreservedAnalyses PA; + PA.preserveSet<CFGAnalyses>(); + PA.preserve<ScalarEvolutionAnalysis>(); + return PA; +} + +bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_, + DominatorTree *DT_, ScalarEvolution *SE_, + TargetLibraryInfo *TLI_, + TargetTransformInfo *TTI_) { + AC = AC_; + DT = DT_; + SE = SE_; + TLI = TLI_; + TTI = TTI_; + DL = &F.getParent()->getDataLayout(); + + bool Changed = false, ChangedInThisIteration; + do { + ChangedInThisIteration = doOneIteration(F); + Changed |= ChangedInThisIteration; + } while (ChangedInThisIteration); + return Changed; +} + +// Whitelist the instruction types NaryReassociate handles for now. +static bool isPotentiallyNaryReassociable(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::GetElementPtr: + case Instruction::Mul: + return true; + default: + return false; + } +} + +bool NaryReassociatePass::doOneIteration(Function &F) { + bool Changed = false; + SeenExprs.clear(); + // Process the basic blocks in a depth first traversal of the dominator + // tree. This order ensures that all bases of a candidate are in Candidates + // when we process it. + for (const auto Node : depth_first(DT)) { + BasicBlock *BB = Node->getBlock(); + for (auto I = BB->begin(); I != BB->end(); ++I) { + if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) { + const SCEV *OldSCEV = SE->getSCEV(&*I); + if (Instruction *NewI = tryReassociate(&*I)) { + Changed = true; + SE->forgetValue(&*I); + I->replaceAllUsesWith(NewI); + WeakVH NewIExist = NewI; + // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that + // entry will be replaced with nullptr if deleted. + RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI); + if (!NewIExist) { + // Rare occation where the new instruction (NewI) have been removed, + // probably due to parts of the input code was dead from the + // beginning, reset the iterator and start over from the beginning + I = BB->begin(); + continue; + } + I = NewI->getIterator(); + } + // Add the rewritten instruction to SeenExprs; the original instruction + // is deleted. + const SCEV *NewSCEV = SE->getSCEV(&*I); + SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I)); + // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I) + // is equivalent to I. However, ScalarEvolution::getSCEV may + // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose + // we reassociate + // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4 + // to + // NewI = &a[sext(i)] + sext(j). + // + // ScalarEvolution computes + // getSCEV(I) = a + 4 * sext(i + j) + // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j) + // which are different SCEVs. + // + // To alleviate this issue of ScalarEvolution not always capturing + // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can + // map both SCEV before and after tryReassociate(I) to I. + // + // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll. + if (NewSCEV != OldSCEV) + SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I)); + } + } + } + return Changed; +} + +Instruction *NaryReassociatePass::tryReassociate(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::Mul: + return tryReassociateBinaryOp(cast<BinaryOperator>(I)); + case Instruction::GetElementPtr: + return tryReassociateGEP(cast<GetElementPtrInst>(I)); + default: + llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable"); + } +} + +static bool isGEPFoldable(GetElementPtrInst *GEP, + const TargetTransformInfo *TTI) { + SmallVector<const Value*, 4> Indices; + for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) + Indices.push_back(*I); + return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), + Indices) == TargetTransformInfo::TCC_Free; +} + +Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) { + // Not worth reassociating GEP if it is foldable. + if (isGEPFoldable(GEP, TTI)) + return nullptr; + + gep_type_iterator GTI = gep_type_begin(*GEP); + for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { + if (GTI.isSequential()) { + if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, + GTI.getIndexedType())) { + return NewGEP; + } + } + } + return nullptr; +} + +bool NaryReassociatePass::requiresSignExtension(Value *Index, + GetElementPtrInst *GEP) { + unsigned PointerSizeInBits = + DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace()); + return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits; +} + +GetElementPtrInst * +NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, + unsigned I, Type *IndexedType) { + Value *IndexToSplit = GEP->getOperand(I + 1); + if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) { + IndexToSplit = SExt->getOperand(0); + } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) { + // zext can be treated as sext if the source is non-negative. + if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT)) + IndexToSplit = ZExt->getOperand(0); + } + + if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) { + // If the I-th index needs sext and the underlying add is not equipped with + // nsw, we cannot split the add because + // sext(LHS + RHS) != sext(LHS) + sext(RHS). + if (requiresSignExtension(IndexToSplit, GEP) && + computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) != + OverflowResult::NeverOverflows) + return nullptr; + + Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1); + // IndexToSplit = LHS + RHS. + if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType)) + return NewGEP; + // Symmetrically, try IndexToSplit = RHS + LHS. + if (LHS != RHS) { + if (auto *NewGEP = + tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType)) + return NewGEP; + } + } + return nullptr; +} + +GetElementPtrInst * +NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, + unsigned I, Value *LHS, + Value *RHS, Type *IndexedType) { + // Look for GEP's closest dominator that has the same SCEV as GEP except that + // the I-th index is replaced with LHS. + SmallVector<const SCEV *, 4> IndexExprs; + for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) + IndexExprs.push_back(SE->getSCEV(*Index)); + // Replace the I-th index with LHS. + IndexExprs[I] = SE->getSCEV(LHS); + if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) && + DL->getTypeSizeInBits(LHS->getType()) < + DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) { + // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to + // zext if the source operand is proved non-negative. We should do that + // consistently so that CandidateExpr more likely appears before. See + // @reassociate_gep_assume for an example of this canonicalization. + IndexExprs[I] = + SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType()); + } + const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), + IndexExprs); + + Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP); + if (Candidate == nullptr) + return nullptr; + + IRBuilder<> Builder(GEP); + // Candidate does not necessarily have the same pointer type as GEP. Use + // bitcast or pointer cast to make sure they have the same type, so that the + // later RAUW doesn't complain. + Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType()); + assert(Candidate->getType() == GEP->getType()); + + // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType) + uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType); + Type *ElementType = GEP->getResultElementType(); + uint64_t ElementSize = DL->getTypeAllocSize(ElementType); + // Another less rare case: because I is not necessarily the last index of the + // GEP, the size of the type at the I-th index (IndexedSize) is not + // necessarily divisible by ElementSize. For example, + // + // #pragma pack(1) + // struct S { + // int a[3]; + // int64 b[8]; + // }; + // #pragma pack() + // + // sizeof(S) = 100 is indivisible by sizeof(int64) = 8. + // + // TODO: bail out on this case for now. We could emit uglygep. + if (IndexedSize % ElementSize != 0) + return nullptr; + + // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0]))); + Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); + if (RHS->getType() != IntPtrTy) + RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy); + if (IndexedSize != ElementSize) { + RHS = Builder.CreateMul( + RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize)); + } + GetElementPtrInst *NewGEP = cast<GetElementPtrInst>( + Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS)); + NewGEP->setIsInBounds(GEP->isInBounds()); + NewGEP->takeName(GEP); + return NewGEP; +} + +Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) { + Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); + // There is no need to reassociate 0. + if (SE->getSCEV(I)->isZero()) + return nullptr; + if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I)) + return NewI; + if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I)) + return NewI; + return nullptr; +} + +Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS, + BinaryOperator *I) { + Value *A = nullptr, *B = nullptr; + // To be conservative, we reassociate I only when it is the only user of (A op + // B). + if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) { + // I = (A op B) op RHS + // = (A op RHS) op B or (B op RHS) op A + const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B); + const SCEV *RHSExpr = SE->getSCEV(RHS); + if (BExpr != RHSExpr) { + if (auto *NewI = + tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I)) + return NewI; + } + if (AExpr != RHSExpr) { + if (auto *NewI = + tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I)) + return NewI; + } + } + return nullptr; +} + +Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr, + Value *RHS, + BinaryOperator *I) { + // Look for the closest dominator LHS of I that computes LHSExpr, and replace + // I with LHS op RHS. + auto *LHS = findClosestMatchingDominator(LHSExpr, I); + if (LHS == nullptr) + return nullptr; + + Instruction *NewI = nullptr; + switch (I->getOpcode()) { + case Instruction::Add: + NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I); + break; + case Instruction::Mul: + NewI = BinaryOperator::CreateMul(LHS, RHS, "", I); + break; + default: + llvm_unreachable("Unexpected instruction."); + } + NewI->takeName(I); + return NewI; +} + +bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V, + Value *&Op1, Value *&Op2) { + switch (I->getOpcode()) { + case Instruction::Add: + return match(V, m_Add(m_Value(Op1), m_Value(Op2))); + case Instruction::Mul: + return match(V, m_Mul(m_Value(Op1), m_Value(Op2))); + default: + llvm_unreachable("Unexpected instruction."); + } + return false; +} + +const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I, + const SCEV *LHS, + const SCEV *RHS) { + switch (I->getOpcode()) { + case Instruction::Add: + return SE->getAddExpr(LHS, RHS); + case Instruction::Mul: + return SE->getMulExpr(LHS, RHS); + default: + llvm_unreachable("Unexpected instruction."); + } + return nullptr; +} + +Instruction * +NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr, + Instruction *Dominatee) { + auto Pos = SeenExprs.find(CandidateExpr); + if (Pos == SeenExprs.end()) + return nullptr; + + auto &Candidates = Pos->second; + // Because we process the basic blocks in pre-order of the dominator tree, a + // candidate that doesn't dominate the current instruction won't dominate any + // future instruction either. Therefore, we pop it out of the stack. This + // optimization makes the algorithm O(n). + while (!Candidates.empty()) { + // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's + // removed + // during rewriting. + if (Value *Candidate = Candidates.back()) { + Instruction *CandidateInstruction = cast<Instruction>(Candidate); + if (DT->dominates(CandidateInstruction, Dominatee)) + return CandidateInstruction; + } + Candidates.pop_back(); + } + return nullptr; +} |
