diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp | 1044 |
1 files changed, 0 insertions, 1044 deletions
diff --git a/contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp b/contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp deleted file mode 100644 index 5eb95003f5d8..000000000000 --- a/contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp +++ /dev/null @@ -1,1044 +0,0 @@ -//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Loops should be simplified before this analysis. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/SCCIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include <cassert> -#include <cstdint> -#include <iterator> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "branch-prob" - -static cl::opt<bool> PrintBranchProb( - "print-bpi", cl::init(false), cl::Hidden, - cl::desc("Print the branch probability info.")); - -cl::opt<std::string> PrintBranchProbFuncName( - "print-bpi-func-name", cl::Hidden, - cl::desc("The option to specify the name of the function " - "whose branch probability info is printed.")); - -INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", - "Branch Probability Analysis", false, true) -INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", - "Branch Probability Analysis", false, true) - -char BranchProbabilityInfoWrapperPass::ID = 0; - -// Weights are for internal use only. They are used by heuristics to help to -// estimate edges' probability. Example: -// -// Using "Loop Branch Heuristics" we predict weights of edges for the -// block BB2. -// ... -// | -// V -// BB1<-+ -// | | -// | | (Weight = 124) -// V | -// BB2--+ -// | -// | (Weight = 4) -// V -// BB3 -// -// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 -// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 -static const uint32_t LBH_TAKEN_WEIGHT = 124; -static const uint32_t LBH_NONTAKEN_WEIGHT = 4; -// Unlikely edges within a loop are half as likely as other edges -static const uint32_t LBH_UNLIKELY_WEIGHT = 62; - -/// Unreachable-terminating branch taken probability. -/// -/// This is the probability for a branch being taken to a block that terminates -/// (eventually) in unreachable. These are predicted as unlikely as possible. -/// All reachable probability will equally share the remaining part. -static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); - -/// Weight for a branch taken going into a cold block. -/// -/// This is the weight for a branch taken toward a block marked -/// cold. A block is marked cold if it's postdominated by a -/// block containing a call to a cold function. Cold functions -/// are those marked with attribute 'cold'. -static const uint32_t CC_TAKEN_WEIGHT = 4; - -/// Weight for a branch not-taken into a cold block. -/// -/// This is the weight for a branch not taken toward a block marked -/// cold. -static const uint32_t CC_NONTAKEN_WEIGHT = 64; - -static const uint32_t PH_TAKEN_WEIGHT = 20; -static const uint32_t PH_NONTAKEN_WEIGHT = 12; - -static const uint32_t ZH_TAKEN_WEIGHT = 20; -static const uint32_t ZH_NONTAKEN_WEIGHT = 12; - -static const uint32_t FPH_TAKEN_WEIGHT = 20; -static const uint32_t FPH_NONTAKEN_WEIGHT = 12; - -/// Invoke-terminating normal branch taken weight -/// -/// This is the weight for branching to the normal destination of an invoke -/// instruction. We expect this to happen most of the time. Set the weight to an -/// absurdly high value so that nested loops subsume it. -static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1; - -/// Invoke-terminating normal branch not-taken weight. -/// -/// This is the weight for branching to the unwind destination of an invoke -/// instruction. This is essentially never taken. -static const uint32_t IH_NONTAKEN_WEIGHT = 1; - -/// Add \p BB to PostDominatedByUnreachable set if applicable. -void -BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) { - const Instruction *TI = BB->getTerminator(); - if (TI->getNumSuccessors() == 0) { - if (isa<UnreachableInst>(TI) || - // If this block is terminated by a call to - // @llvm.experimental.deoptimize then treat it like an unreachable since - // the @llvm.experimental.deoptimize call is expected to practically - // never execute. - BB->getTerminatingDeoptimizeCall()) - PostDominatedByUnreachable.insert(BB); - return; - } - - // If the terminator is an InvokeInst, check only the normal destination block - // as the unwind edge of InvokeInst is also very unlikely taken. - if (auto *II = dyn_cast<InvokeInst>(TI)) { - if (PostDominatedByUnreachable.count(II->getNormalDest())) - PostDominatedByUnreachable.insert(BB); - return; - } - - for (auto *I : successors(BB)) - // If any of successor is not post dominated then BB is also not. - if (!PostDominatedByUnreachable.count(I)) - return; - - PostDominatedByUnreachable.insert(BB); -} - -/// Add \p BB to PostDominatedByColdCall set if applicable. -void -BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) { - assert(!PostDominatedByColdCall.count(BB)); - const Instruction *TI = BB->getTerminator(); - if (TI->getNumSuccessors() == 0) - return; - - // If all of successor are post dominated then BB is also done. - if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) { - return PostDominatedByColdCall.count(SuccBB); - })) { - PostDominatedByColdCall.insert(BB); - return; - } - - // If the terminator is an InvokeInst, check only the normal destination - // block as the unwind edge of InvokeInst is also very unlikely taken. - if (auto *II = dyn_cast<InvokeInst>(TI)) - if (PostDominatedByColdCall.count(II->getNormalDest())) { - PostDominatedByColdCall.insert(BB); - return; - } - - // Otherwise, if the block itself contains a cold function, add it to the - // set of blocks post-dominated by a cold call. - for (auto &I : *BB) - if (const CallInst *CI = dyn_cast<CallInst>(&I)) - if (CI->hasFnAttr(Attribute::Cold)) { - PostDominatedByColdCall.insert(BB); - return; - } -} - -/// Calculate edge weights for successors lead to unreachable. -/// -/// Predict that a successor which leads necessarily to an -/// unreachable-terminated block as extremely unlikely. -bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) { - const Instruction *TI = BB->getTerminator(); - (void) TI; - assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); - assert(!isa<InvokeInst>(TI) && - "Invokes should have already been handled by calcInvokeHeuristics"); - - SmallVector<unsigned, 4> UnreachableEdges; - SmallVector<unsigned, 4> ReachableEdges; - - for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) - if (PostDominatedByUnreachable.count(*I)) - UnreachableEdges.push_back(I.getSuccessorIndex()); - else - ReachableEdges.push_back(I.getSuccessorIndex()); - - // Skip probabilities if all were reachable. - if (UnreachableEdges.empty()) - return false; - - if (ReachableEdges.empty()) { - BranchProbability Prob(1, UnreachableEdges.size()); - for (unsigned SuccIdx : UnreachableEdges) - setEdgeProbability(BB, SuccIdx, Prob); - return true; - } - - auto UnreachableProb = UR_TAKEN_PROB; - auto ReachableProb = - (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) / - ReachableEdges.size(); - - for (unsigned SuccIdx : UnreachableEdges) - setEdgeProbability(BB, SuccIdx, UnreachableProb); - for (unsigned SuccIdx : ReachableEdges) - setEdgeProbability(BB, SuccIdx, ReachableProb); - - return true; -} - -// Propagate existing explicit probabilities from either profile data or -// 'expect' intrinsic processing. Examine metadata against unreachable -// heuristic. The probability of the edge coming to unreachable block is -// set to min of metadata and unreachable heuristic. -bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { - const Instruction *TI = BB->getTerminator(); - assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); - if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI))) - return false; - - MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); - if (!WeightsNode) - return false; - - // Check that the number of successors is manageable. - assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); - - // Ensure there are weights for all of the successors. Note that the first - // operand to the metadata node is a name, not a weight. - if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) - return false; - - // Build up the final weights that will be used in a temporary buffer. - // Compute the sum of all weights to later decide whether they need to - // be scaled to fit in 32 bits. - uint64_t WeightSum = 0; - SmallVector<uint32_t, 2> Weights; - SmallVector<unsigned, 2> UnreachableIdxs; - SmallVector<unsigned, 2> ReachableIdxs; - Weights.reserve(TI->getNumSuccessors()); - for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) { - ConstantInt *Weight = - mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i)); - if (!Weight) - return false; - assert(Weight->getValue().getActiveBits() <= 32 && - "Too many bits for uint32_t"); - Weights.push_back(Weight->getZExtValue()); - WeightSum += Weights.back(); - if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1))) - UnreachableIdxs.push_back(i - 1); - else - ReachableIdxs.push_back(i - 1); - } - assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); - - // If the sum of weights does not fit in 32 bits, scale every weight down - // accordingly. - uint64_t ScalingFactor = - (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; - - if (ScalingFactor > 1) { - WeightSum = 0; - for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { - Weights[i] /= ScalingFactor; - WeightSum += Weights[i]; - } - } - assert(WeightSum <= UINT32_MAX && - "Expected weights to scale down to 32 bits"); - - if (WeightSum == 0 || ReachableIdxs.size() == 0) { - for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) - Weights[i] = 1; - WeightSum = TI->getNumSuccessors(); - } - - // Set the probability. - SmallVector<BranchProbability, 2> BP; - for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) - BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) }); - - // Examine the metadata against unreachable heuristic. - // If the unreachable heuristic is more strong then we use it for this edge. - if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) { - auto ToDistribute = BranchProbability::getZero(); - auto UnreachableProb = UR_TAKEN_PROB; - for (auto i : UnreachableIdxs) - if (UnreachableProb < BP[i]) { - ToDistribute += BP[i] - UnreachableProb; - BP[i] = UnreachableProb; - } - - // If we modified the probability of some edges then we must distribute - // the difference between reachable blocks. - if (ToDistribute > BranchProbability::getZero()) { - BranchProbability PerEdge = ToDistribute / ReachableIdxs.size(); - for (auto i : ReachableIdxs) - BP[i] += PerEdge; - } - } - - for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) - setEdgeProbability(BB, i, BP[i]); - - return true; -} - -/// Calculate edge weights for edges leading to cold blocks. -/// -/// A cold block is one post-dominated by a block with a call to a -/// cold function. Those edges are unlikely to be taken, so we give -/// them relatively low weight. -/// -/// Return true if we could compute the weights for cold edges. -/// Return false, otherwise. -bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) { - const Instruction *TI = BB->getTerminator(); - (void) TI; - assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); - assert(!isa<InvokeInst>(TI) && - "Invokes should have already been handled by calcInvokeHeuristics"); - - // Determine which successors are post-dominated by a cold block. - SmallVector<unsigned, 4> ColdEdges; - SmallVector<unsigned, 4> NormalEdges; - for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) - if (PostDominatedByColdCall.count(*I)) - ColdEdges.push_back(I.getSuccessorIndex()); - else - NormalEdges.push_back(I.getSuccessorIndex()); - - // Skip probabilities if no cold edges. - if (ColdEdges.empty()) - return false; - - if (NormalEdges.empty()) { - BranchProbability Prob(1, ColdEdges.size()); - for (unsigned SuccIdx : ColdEdges) - setEdgeProbability(BB, SuccIdx, Prob); - return true; - } - - auto ColdProb = BranchProbability::getBranchProbability( - CC_TAKEN_WEIGHT, - (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size())); - auto NormalProb = BranchProbability::getBranchProbability( - CC_NONTAKEN_WEIGHT, - (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size())); - - for (unsigned SuccIdx : ColdEdges) - setEdgeProbability(BB, SuccIdx, ColdProb); - for (unsigned SuccIdx : NormalEdges) - setEdgeProbability(BB, SuccIdx, NormalProb); - - return true; -} - -// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison -// between two pointer or pointer and NULL will fail. -bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { - const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); - if (!BI || !BI->isConditional()) - return false; - - Value *Cond = BI->getCondition(); - ICmpInst *CI = dyn_cast<ICmpInst>(Cond); - if (!CI || !CI->isEquality()) - return false; - - Value *LHS = CI->getOperand(0); - - if (!LHS->getType()->isPointerTy()) - return false; - - assert(CI->getOperand(1)->getType()->isPointerTy()); - - // p != 0 -> isProb = true - // p == 0 -> isProb = false - // p != q -> isProb = true - // p == q -> isProb = false; - unsigned TakenIdx = 0, NonTakenIdx = 1; - bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE; - if (!isProb) - std::swap(TakenIdx, NonTakenIdx); - - BranchProbability TakenProb(PH_TAKEN_WEIGHT, - PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); - setEdgeProbability(BB, TakenIdx, TakenProb); - setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); - return true; -} - -static int getSCCNum(const BasicBlock *BB, - const BranchProbabilityInfo::SccInfo &SccI) { - auto SccIt = SccI.SccNums.find(BB); - if (SccIt == SccI.SccNums.end()) - return -1; - return SccIt->second; -} - -// Consider any block that is an entry point to the SCC as a header. -static bool isSCCHeader(const BasicBlock *BB, int SccNum, - BranchProbabilityInfo::SccInfo &SccI) { - assert(getSCCNum(BB, SccI) == SccNum); - - // Lazily compute the set of headers for a given SCC and cache the results - // in the SccHeaderMap. - if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum)) - SccI.SccHeaders.resize(SccNum + 1); - auto &HeaderMap = SccI.SccHeaders[SccNum]; - bool Inserted; - BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt; - std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false)); - if (Inserted) { - bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)), - [&](const BasicBlock *Pred) { - return getSCCNum(Pred, SccI) != SccNum; - }); - HeaderMapIt->second = IsHeader; - return IsHeader; - } else - return HeaderMapIt->second; -} - -// Compute the unlikely successors to the block BB in the loop L, specifically -// those that are unlikely because this is a loop, and add them to the -// UnlikelyBlocks set. -static void -computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, - SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { - // Sometimes in a loop we have a branch whose condition is made false by - // taking it. This is typically something like - // int n = 0; - // while (...) { - // if (++n >= MAX) { - // n = 0; - // } - // } - // In this sort of situation taking the branch means that at the very least it - // won't be taken again in the next iteration of the loop, so we should - // consider it less likely than a typical branch. - // - // We detect this by looking back through the graph of PHI nodes that sets the - // value that the condition depends on, and seeing if we can reach a successor - // block which can be determined to make the condition false. - // - // FIXME: We currently consider unlikely blocks to be half as likely as other - // blocks, but if we consider the example above the likelyhood is actually - // 1/MAX. We could therefore be more precise in how unlikely we consider - // blocks to be, but it would require more careful examination of the form - // of the comparison expression. - const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); - if (!BI || !BI->isConditional()) - return; - - // Check if the branch is based on an instruction compared with a constant - CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); - if (!CI || !isa<Instruction>(CI->getOperand(0)) || - !isa<Constant>(CI->getOperand(1))) - return; - - // Either the instruction must be a PHI, or a chain of operations involving - // constants that ends in a PHI which we can then collapse into a single value - // if the PHI value is known. - Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); - PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); - Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); - // Collect the instructions until we hit a PHI - SmallVector<BinaryOperator *, 1> InstChain; - while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && - isa<Constant>(CmpLHS->getOperand(1))) { - // Stop if the chain extends outside of the loop - if (!L->contains(CmpLHS)) - return; - InstChain.push_back(cast<BinaryOperator>(CmpLHS)); - CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); - if (CmpLHS) - CmpPHI = dyn_cast<PHINode>(CmpLHS); - } - if (!CmpPHI || !L->contains(CmpPHI)) - return; - - // Trace the phi node to find all values that come from successors of BB - SmallPtrSet<PHINode*, 8> VisitedInsts; - SmallVector<PHINode*, 8> WorkList; - WorkList.push_back(CmpPHI); - VisitedInsts.insert(CmpPHI); - while (!WorkList.empty()) { - PHINode *P = WorkList.back(); - WorkList.pop_back(); - for (BasicBlock *B : P->blocks()) { - // Skip blocks that aren't part of the loop - if (!L->contains(B)) - continue; - Value *V = P->getIncomingValueForBlock(B); - // If the source is a PHI add it to the work list if we haven't - // already visited it. - if (PHINode *PN = dyn_cast<PHINode>(V)) { - if (VisitedInsts.insert(PN).second) - WorkList.push_back(PN); - continue; - } - // If this incoming value is a constant and B is a successor of BB, then - // we can constant-evaluate the compare to see if it makes the branch be - // taken or not. - Constant *CmpLHSConst = dyn_cast<Constant>(V); - if (!CmpLHSConst || - std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB)) - continue; - // First collapse InstChain - for (Instruction *I : llvm::reverse(InstChain)) { - CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst, - cast<Constant>(I->getOperand(1)), true); - if (!CmpLHSConst) - break; - } - if (!CmpLHSConst) - continue; - // Now constant-evaluate the compare - Constant *Result = ConstantExpr::getCompare(CI->getPredicate(), - CmpLHSConst, CmpConst, true); - // If the result means we don't branch to the block then that block is - // unlikely. - if (Result && - ((Result->isZeroValue() && B == BI->getSuccessor(0)) || - (Result->isOneValue() && B == BI->getSuccessor(1)))) - UnlikelyBlocks.insert(B); - } - } -} - -// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges -// as taken, exiting edges as not-taken. -bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB, - const LoopInfo &LI, - SccInfo &SccI) { - int SccNum; - Loop *L = LI.getLoopFor(BB); - if (!L) { - SccNum = getSCCNum(BB, SccI); - if (SccNum < 0) - return false; - } - - SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks; - if (L) - computeUnlikelySuccessors(BB, L, UnlikelyBlocks); - - SmallVector<unsigned, 8> BackEdges; - SmallVector<unsigned, 8> ExitingEdges; - SmallVector<unsigned, 8> InEdges; // Edges from header to the loop. - SmallVector<unsigned, 8> UnlikelyEdges; - - for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { - // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch - // irreducible loops. - if (L) { - if (UnlikelyBlocks.count(*I) != 0) - UnlikelyEdges.push_back(I.getSuccessorIndex()); - else if (!L->contains(*I)) - ExitingEdges.push_back(I.getSuccessorIndex()); - else if (L->getHeader() == *I) - BackEdges.push_back(I.getSuccessorIndex()); - else - InEdges.push_back(I.getSuccessorIndex()); - } else { - if (getSCCNum(*I, SccI) != SccNum) - ExitingEdges.push_back(I.getSuccessorIndex()); - else if (isSCCHeader(*I, SccNum, SccI)) - BackEdges.push_back(I.getSuccessorIndex()); - else - InEdges.push_back(I.getSuccessorIndex()); - } - } - - if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty()) - return false; - - // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and - // normalize them so that they sum up to one. - unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + - (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + - (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) + - (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT); - - if (uint32_t numBackEdges = BackEdges.size()) { - BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); - auto Prob = TakenProb / numBackEdges; - for (unsigned SuccIdx : BackEdges) - setEdgeProbability(BB, SuccIdx, Prob); - } - - if (uint32_t numInEdges = InEdges.size()) { - BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); - auto Prob = TakenProb / numInEdges; - for (unsigned SuccIdx : InEdges) - setEdgeProbability(BB, SuccIdx, Prob); - } - - if (uint32_t numExitingEdges = ExitingEdges.size()) { - BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT, - Denom); - auto Prob = NotTakenProb / numExitingEdges; - for (unsigned SuccIdx : ExitingEdges) - setEdgeProbability(BB, SuccIdx, Prob); - } - - if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) { - BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT, - Denom); - auto Prob = UnlikelyProb / numUnlikelyEdges; - for (unsigned SuccIdx : UnlikelyEdges) - setEdgeProbability(BB, SuccIdx, Prob); - } - - return true; -} - -bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, - const TargetLibraryInfo *TLI) { - const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); - if (!BI || !BI->isConditional()) - return false; - - Value *Cond = BI->getCondition(); - ICmpInst *CI = dyn_cast<ICmpInst>(Cond); - if (!CI) - return false; - - auto GetConstantInt = [](Value *V) { - if (auto *I = dyn_cast<BitCastInst>(V)) - return dyn_cast<ConstantInt>(I->getOperand(0)); - return dyn_cast<ConstantInt>(V); - }; - - Value *RHS = CI->getOperand(1); - ConstantInt *CV = GetConstantInt(RHS); - if (!CV) - return false; - - // If the LHS is the result of AND'ing a value with a single bit bitmask, - // we don't have information about probabilities. - if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) - if (LHS->getOpcode() == Instruction::And) - if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) - if (AndRHS->getValue().isPowerOf2()) - return false; - - // Check if the LHS is the return value of a library function - LibFunc Func = NumLibFuncs; - if (TLI) - if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) - if (Function *CalledFn = Call->getCalledFunction()) - TLI->getLibFunc(*CalledFn, Func); - - bool isProb; - if (Func == LibFunc_strcasecmp || - Func == LibFunc_strcmp || - Func == LibFunc_strncasecmp || - Func == LibFunc_strncmp || - Func == LibFunc_memcmp) { - // strcmp and similar functions return zero, negative, or positive, if the - // first string is equal, less, or greater than the second. We consider it - // likely that the strings are not equal, so a comparison with zero is - // probably false, but also a comparison with any other number is also - // probably false given that what exactly is returned for nonzero values is - // not specified. Any kind of comparison other than equality we know - // nothing about. - switch (CI->getPredicate()) { - case CmpInst::ICMP_EQ: - isProb = false; - break; - case CmpInst::ICMP_NE: - isProb = true; - break; - default: - return false; - } - } else if (CV->isZero()) { - switch (CI->getPredicate()) { - case CmpInst::ICMP_EQ: - // X == 0 -> Unlikely - isProb = false; - break; - case CmpInst::ICMP_NE: - // X != 0 -> Likely - isProb = true; - break; - case CmpInst::ICMP_SLT: - // X < 0 -> Unlikely - isProb = false; - break; - case CmpInst::ICMP_SGT: - // X > 0 -> Likely - isProb = true; - break; - default: - return false; - } - } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) { - // InstCombine canonicalizes X <= 0 into X < 1. - // X <= 0 -> Unlikely - isProb = false; - } else if (CV->isMinusOne()) { - switch (CI->getPredicate()) { - case CmpInst::ICMP_EQ: - // X == -1 -> Unlikely - isProb = false; - break; - case CmpInst::ICMP_NE: - // X != -1 -> Likely - isProb = true; - break; - case CmpInst::ICMP_SGT: - // InstCombine canonicalizes X >= 0 into X > -1. - // X >= 0 -> Likely - isProb = true; - break; - default: - return false; - } - } else { - return false; - } - - unsigned TakenIdx = 0, NonTakenIdx = 1; - - if (!isProb) - std::swap(TakenIdx, NonTakenIdx); - - BranchProbability TakenProb(ZH_TAKEN_WEIGHT, - ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); - setEdgeProbability(BB, TakenIdx, TakenProb); - setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); - return true; -} - -bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { - const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); - if (!BI || !BI->isConditional()) - return false; - - Value *Cond = BI->getCondition(); - FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); - if (!FCmp) - return false; - - bool isProb; - if (FCmp->isEquality()) { - // f1 == f2 -> Unlikely - // f1 != f2 -> Likely - isProb = !FCmp->isTrueWhenEqual(); - } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { - // !isnan -> Likely - isProb = true; - } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { - // isnan -> Unlikely - isProb = false; - } else { - return false; - } - - unsigned TakenIdx = 0, NonTakenIdx = 1; - - if (!isProb) - std::swap(TakenIdx, NonTakenIdx); - - BranchProbability TakenProb(FPH_TAKEN_WEIGHT, - FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); - setEdgeProbability(BB, TakenIdx, TakenProb); - setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); - return true; -} - -bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) { - const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()); - if (!II) - return false; - - BranchProbability TakenProb(IH_TAKEN_WEIGHT, - IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT); - setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb); - setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl()); - return true; -} - -void BranchProbabilityInfo::releaseMemory() { - Probs.clear(); -} - -void BranchProbabilityInfo::print(raw_ostream &OS) const { - OS << "---- Branch Probabilities ----\n"; - // We print the probabilities from the last function the analysis ran over, - // or the function it is currently running over. - assert(LastF && "Cannot print prior to running over a function"); - for (const auto &BI : *LastF) { - for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE; - ++SI) { - printEdgeProbability(OS << " ", &BI, *SI); - } - } -} - -bool BranchProbabilityInfo:: -isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { - // Hot probability is at least 4/5 = 80% - // FIXME: Compare against a static "hot" BranchProbability. - return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); -} - -const BasicBlock * -BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const { - auto MaxProb = BranchProbability::getZero(); - const BasicBlock *MaxSucc = nullptr; - - for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { - const BasicBlock *Succ = *I; - auto Prob = getEdgeProbability(BB, Succ); - if (Prob > MaxProb) { - MaxProb = Prob; - MaxSucc = Succ; - } - } - - // Hot probability is at least 4/5 = 80% - if (MaxProb > BranchProbability(4, 5)) - return MaxSucc; - - return nullptr; -} - -/// Get the raw edge probability for the edge. If can't find it, return a -/// default probability 1/N where N is the number of successors. Here an edge is -/// specified using PredBlock and an -/// index to the successors. -BranchProbability -BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, - unsigned IndexInSuccessors) const { - auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); - - if (I != Probs.end()) - return I->second; - - return {1, static_cast<uint32_t>(succ_size(Src))}; -} - -BranchProbability -BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, - succ_const_iterator Dst) const { - return getEdgeProbability(Src, Dst.getSuccessorIndex()); -} - -/// Get the raw edge probability calculated for the block pair. This returns the -/// sum of all raw edge probabilities from Src to Dst. -BranchProbability -BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, - const BasicBlock *Dst) const { - auto Prob = BranchProbability::getZero(); - bool FoundProb = false; - for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) - if (*I == Dst) { - auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex())); - if (MapI != Probs.end()) { - FoundProb = true; - Prob += MapI->second; - } - } - uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src)); - return FoundProb ? Prob : BranchProbability(1, succ_num); -} - -/// Set the edge probability for a given edge specified by PredBlock and an -/// index to the successors. -void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src, - unsigned IndexInSuccessors, - BranchProbability Prob) { - Probs[std::make_pair(Src, IndexInSuccessors)] = Prob; - Handles.insert(BasicBlockCallbackVH(Src, this)); - LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " - << IndexInSuccessors << " successor probability to " << Prob - << "\n"); -} - -raw_ostream & -BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, - const BasicBlock *Src, - const BasicBlock *Dst) const { - const BranchProbability Prob = getEdgeProbability(Src, Dst); - OS << "edge " << Src->getName() << " -> " << Dst->getName() - << " probability is " << Prob - << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); - - return OS; -} - -void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { - for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) { - auto Key = I->first; - if (Key.first == BB) - Probs.erase(Key); - } -} - -void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI, - const TargetLibraryInfo *TLI) { - LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() - << " ----\n\n"); - LastF = &F; // Store the last function we ran on for printing. - assert(PostDominatedByUnreachable.empty()); - assert(PostDominatedByColdCall.empty()); - - // Record SCC numbers of blocks in the CFG to identify irreducible loops. - // FIXME: We could only calculate this if the CFG is known to be irreducible - // (perhaps cache this info in LoopInfo if we can easily calculate it there?). - int SccNum = 0; - SccInfo SccI; - for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); - ++It, ++SccNum) { - // Ignore single-block SCCs since they either aren't loops or LoopInfo will - // catch them. - const std::vector<const BasicBlock *> &Scc = *It; - if (Scc.size() == 1) - continue; - - LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); - for (auto *BB : Scc) { - LLVM_DEBUG(dbgs() << " " << BB->getName()); - SccI.SccNums[BB] = SccNum; - } - LLVM_DEBUG(dbgs() << "\n"); - } - - // Walk the basic blocks in post-order so that we can build up state about - // the successors of a block iteratively. - for (auto BB : post_order(&F.getEntryBlock())) { - LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() - << "\n"); - updatePostDominatedByUnreachable(BB); - updatePostDominatedByColdCall(BB); - // If there is no at least two successors, no sense to set probability. - if (BB->getTerminator()->getNumSuccessors() < 2) - continue; - if (calcMetadataWeights(BB)) - continue; - if (calcInvokeHeuristics(BB)) - continue; - if (calcUnreachableHeuristics(BB)) - continue; - if (calcColdCallHeuristics(BB)) - continue; - if (calcLoopBranchHeuristics(BB, LI, SccI)) - continue; - if (calcPointerHeuristics(BB)) - continue; - if (calcZeroHeuristics(BB, TLI)) - continue; - if (calcFloatingPointHeuristics(BB)) - continue; - } - - PostDominatedByUnreachable.clear(); - PostDominatedByColdCall.clear(); - - if (PrintBranchProb && - (PrintBranchProbFuncName.empty() || - F.getName().equals(PrintBranchProbFuncName))) { - print(dbgs()); - } -} - -void BranchProbabilityInfoWrapperPass::getAnalysisUsage( - AnalysisUsage &AU) const { - // We require DT so it's available when LI is available. The LI updating code - // asserts that DT is also present so if we don't make sure that we have DT - // here, that assert will trigger. - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<LoopInfoWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - AU.setPreservesAll(); -} - -bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { - const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - BPI.calculate(F, LI, &TLI); - return false; -} - -void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } - -void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, - const Module *) const { - BPI.print(OS); -} - -AnalysisKey BranchProbabilityAnalysis::Key; -BranchProbabilityInfo -BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { - BranchProbabilityInfo BPI; - BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F)); - return BPI; -} - -PreservedAnalyses -BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { - OS << "Printing analysis results of BPI for function " - << "'" << F.getName() << "':" - << "\n"; - AM.getResult<BranchProbabilityAnalysis>(F).print(OS); - return PreservedAnalyses::all(); -} |
