diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/DemandedBits.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/DemandedBits.cpp | 402 | 
1 files changed, 402 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/DemandedBits.cpp b/contrib/llvm/lib/Analysis/DemandedBits.cpp new file mode 100644 index 000000000000..926b28d6094a --- /dev/null +++ b/contrib/llvm/lib/Analysis/DemandedBits.cpp @@ -0,0 +1,402 @@ +//===---- DemandedBits.cpp - Determine demanded bits ----------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass implements a demanded bits analysis. A demanded bit is one that +// contributes to a result; bits that are not demanded can be either zero or +// one without affecting control or data flow. For example in this sequence: +// +//   %1 = add i32 %x, %y +//   %2 = trunc i32 %1 to i16 +// +// Only the lowest 16 bits of %1 are demanded; the rest are removed by the +// trunc. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/DemandedBits.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +#define DEBUG_TYPE "demanded-bits" + +char DemandedBitsWrapperPass::ID = 0; +INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits", +                      "Demanded bits analysis", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits", +                    "Demanded bits analysis", false, false) + +DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) { +  initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesCFG(); +  AU.addRequired<AssumptionCacheTracker>(); +  AU.addRequired<DominatorTreeWrapperPass>(); +  AU.setPreservesAll(); +} + +void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const { +  DB->print(OS); +} + +static bool isAlwaysLive(Instruction *I) { +  return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || +      I->isEHPad() || I->mayHaveSideEffects(); +} + +void DemandedBits::determineLiveOperandBits( +    const Instruction *UserI, const Instruction *I, unsigned OperandNo, +    const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) { +  unsigned BitWidth = AB.getBitWidth(); + +  // We're called once per operand, but for some instructions, we need to +  // compute known bits of both operands in order to determine the live bits of +  // either (when both operands are instructions themselves). We don't, +  // however, want to do this twice, so we cache the result in APInts that live +  // in the caller. For the two-relevant-operands case, both operand values are +  // provided here. +  auto ComputeKnownBits = +      [&](unsigned BitWidth, const Value *V1, const Value *V2) { +        const DataLayout &DL = I->getModule()->getDataLayout(); +        Known = KnownBits(BitWidth); +        computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); + +        if (V2) { +          Known2 = KnownBits(BitWidth); +          computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); +        } +      }; + +  switch (UserI->getOpcode()) { +  default: break; +  case Instruction::Call: +  case Instruction::Invoke: +    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) +      switch (II->getIntrinsicID()) { +      default: break; +      case Intrinsic::bswap: +        // The alive bits of the input are the swapped alive bits of +        // the output. +        AB = AOut.byteSwap(); +        break; +      case Intrinsic::bitreverse: +        // The alive bits of the input are the reversed alive bits of +        // the output. +        AB = AOut.reverseBits(); +        break; +      case Intrinsic::ctlz: +        if (OperandNo == 0) { +          // We need some output bits, so we need all bits of the +          // input to the left of, and including, the leftmost bit +          // known to be one. +          ComputeKnownBits(BitWidth, I, nullptr); +          AB = APInt::getHighBitsSet(BitWidth, +                 std::min(BitWidth, Known.countMaxLeadingZeros()+1)); +        } +        break; +      case Intrinsic::cttz: +        if (OperandNo == 0) { +          // We need some output bits, so we need all bits of the +          // input to the right of, and including, the rightmost bit +          // known to be one. +          ComputeKnownBits(BitWidth, I, nullptr); +          AB = APInt::getLowBitsSet(BitWidth, +                 std::min(BitWidth, Known.countMaxTrailingZeros()+1)); +        } +        break; +      } +    break; +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Mul: +    // Find the highest live output bit. We don't need any more input +    // bits than that (adds, and thus subtracts, ripple only to the +    // left). +    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); +    break; +  case Instruction::Shl: +    if (OperandNo == 0) +      if (ConstantInt *CI = +            dyn_cast<ConstantInt>(UserI->getOperand(1))) { +        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); +        AB = AOut.lshr(ShiftAmt); + +        // If the shift is nuw/nsw, then the high bits are not dead +        // (because we've promised that they *must* be zero). +        const ShlOperator *S = cast<ShlOperator>(UserI); +        if (S->hasNoSignedWrap()) +          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); +        else if (S->hasNoUnsignedWrap()) +          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); +      } +    break; +  case Instruction::LShr: +    if (OperandNo == 0) +      if (ConstantInt *CI = +            dyn_cast<ConstantInt>(UserI->getOperand(1))) { +        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); +        AB = AOut.shl(ShiftAmt); + +        // If the shift is exact, then the low bits are not dead +        // (they must be zero). +        if (cast<LShrOperator>(UserI)->isExact()) +          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); +      } +    break; +  case Instruction::AShr: +    if (OperandNo == 0) +      if (ConstantInt *CI = +            dyn_cast<ConstantInt>(UserI->getOperand(1))) { +        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); +        AB = AOut.shl(ShiftAmt); +        // Because the high input bit is replicated into the +        // high-order bits of the result, if we need any of those +        // bits, then we must keep the highest input bit. +        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) +            .getBoolValue()) +          AB.setSignBit(); + +        // If the shift is exact, then the low bits are not dead +        // (they must be zero). +        if (cast<AShrOperator>(UserI)->isExact()) +          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); +      } +    break; +  case Instruction::And: +    AB = AOut; + +    // For bits that are known zero, the corresponding bits in the +    // other operand are dead (unless they're both zero, in which +    // case they can't both be dead, so just mark the LHS bits as +    // dead). +    if (OperandNo == 0) { +      ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); +      AB &= ~Known2.Zero; +    } else { +      if (!isa<Instruction>(UserI->getOperand(0))) +        ComputeKnownBits(BitWidth, UserI->getOperand(0), I); +      AB &= ~(Known.Zero & ~Known2.Zero); +    } +    break; +  case Instruction::Or: +    AB = AOut; + +    // For bits that are known one, the corresponding bits in the +    // other operand are dead (unless they're both one, in which +    // case they can't both be dead, so just mark the LHS bits as +    // dead). +    if (OperandNo == 0) { +      ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); +      AB &= ~Known2.One; +    } else { +      if (!isa<Instruction>(UserI->getOperand(0))) +        ComputeKnownBits(BitWidth, UserI->getOperand(0), I); +      AB &= ~(Known.One & ~Known2.One); +    } +    break; +  case Instruction::Xor: +  case Instruction::PHI: +    AB = AOut; +    break; +  case Instruction::Trunc: +    AB = AOut.zext(BitWidth); +    break; +  case Instruction::ZExt: +    AB = AOut.trunc(BitWidth); +    break; +  case Instruction::SExt: +    AB = AOut.trunc(BitWidth); +    // Because the high input bit is replicated into the +    // high-order bits of the result, if we need any of those +    // bits, then we must keep the highest input bit. +    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), +                                      AOut.getBitWidth() - BitWidth)) +        .getBoolValue()) +      AB.setSignBit(); +    break; +  case Instruction::Select: +    if (OperandNo != 0) +      AB = AOut; +    break; +  } +} + +bool DemandedBitsWrapperPass::runOnFunction(Function &F) { +  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); +  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  DB.emplace(F, AC, DT); +  return false; +} + +void DemandedBitsWrapperPass::releaseMemory() { +  DB.reset(); +} + +void DemandedBits::performAnalysis() { +  if (Analyzed) +    // Analysis already completed for this function. +    return; +  Analyzed = true; +   +  Visited.clear(); +  AliveBits.clear(); + +  SmallVector<Instruction*, 128> Worklist; + +  // Collect the set of "root" instructions that are known live. +  for (Instruction &I : instructions(F)) { +    if (!isAlwaysLive(&I)) +      continue; + +    DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); +    // For integer-valued instructions, set up an initial empty set of alive +    // bits and add the instruction to the work list. For other instructions +    // add their operands to the work list (for integer values operands, mark +    // all bits as live). +    if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { +      if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second) +        Worklist.push_back(&I); + +      continue; +    } + +    // Non-integer-typed instructions... +    for (Use &OI : I.operands()) { +      if (Instruction *J = dyn_cast<Instruction>(OI)) { +        if (IntegerType *IT = dyn_cast<IntegerType>(J->getType())) +          AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth()); +        Worklist.push_back(J); +      } +    } +    // To save memory, we don't add I to the Visited set here. Instead, we +    // check isAlwaysLive on every instruction when searching for dead +    // instructions later (we need to check isAlwaysLive for the +    // integer-typed instructions anyway). +  } + +  // Propagate liveness backwards to operands. +  while (!Worklist.empty()) { +    Instruction *UserI = Worklist.pop_back_val(); + +    DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); +    APInt AOut; +    if (UserI->getType()->isIntegerTy()) { +      AOut = AliveBits[UserI]; +      DEBUG(dbgs() << " Alive Out: " << AOut); +    } +    DEBUG(dbgs() << "\n"); + +    if (!UserI->getType()->isIntegerTy()) +      Visited.insert(UserI); + +    KnownBits Known, Known2; +    // Compute the set of alive bits for each operand. These are anded into the +    // existing set, if any, and if that changes the set of alive bits, the +    // operand is added to the work-list. +    for (Use &OI : UserI->operands()) { +      if (Instruction *I = dyn_cast<Instruction>(OI)) { +        if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) { +          unsigned BitWidth = IT->getBitWidth(); +          APInt AB = APInt::getAllOnesValue(BitWidth); +          if (UserI->getType()->isIntegerTy() && !AOut && +              !isAlwaysLive(UserI)) { +            AB = APInt(BitWidth, 0); +          } else { +            // If all bits of the output are dead, then all bits of the input +            // Bits of each operand that are used to compute alive bits of the +            // output are alive, all others are dead. +            determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB, +                                     Known, Known2); +          } + +          // If we've added to the set of alive bits (or the operand has not +          // been previously visited), then re-queue the operand to be visited +          // again. +          APInt ABPrev(BitWidth, 0); +          auto ABI = AliveBits.find(I); +          if (ABI != AliveBits.end()) +            ABPrev = ABI->second; + +          APInt ABNew = AB | ABPrev; +          if (ABNew != ABPrev || ABI == AliveBits.end()) { +            AliveBits[I] = std::move(ABNew); +            Worklist.push_back(I); +          } +        } else if (!Visited.count(I)) { +          Worklist.push_back(I); +        } +      } +    } +  } +} + +APInt DemandedBits::getDemandedBits(Instruction *I) { +  performAnalysis(); +   +  const DataLayout &DL = I->getParent()->getModule()->getDataLayout(); +  auto Found = AliveBits.find(I); +  if (Found != AliveBits.end()) +    return Found->second; +  return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType())); +} + +bool DemandedBits::isInstructionDead(Instruction *I) { +  performAnalysis(); + +  return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && +    !isAlwaysLive(I); +} + +void DemandedBits::print(raw_ostream &OS) { +  performAnalysis(); +  for (auto &KV : AliveBits) { +    OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for " +       << *KV.first << "\n"; +  } +} + +FunctionPass *llvm::createDemandedBitsWrapperPass() { +  return new DemandedBitsWrapperPass(); +} + +AnalysisKey DemandedBitsAnalysis::Key; + +DemandedBits DemandedBitsAnalysis::run(Function &F, +                                             FunctionAnalysisManager &AM) { +  auto &AC = AM.getResult<AssumptionAnalysis>(F); +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  return DemandedBits(F, AC, DT); +} + +PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, +                                               FunctionAnalysisManager &AM) { +  AM.getResult<DemandedBitsAnalysis>(F).print(OS); +  return PreservedAnalyses::all(); +}  | 
