diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/GlobalsModRef.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/GlobalsModRef.cpp | 1014 | 
1 files changed, 1014 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/GlobalsModRef.cpp b/contrib/llvm/lib/Analysis/GlobalsModRef.cpp new file mode 100644 index 000000000000..2c503609d96b --- /dev/null +++ b/contrib/llvm/lib/Analysis/GlobalsModRef.cpp @@ -0,0 +1,1014 @@ +//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This simple pass provides alias and mod/ref information for global values +// that do not have their address taken, and keeps track of whether functions +// read or write memory (are "pure").  For this simple (but very common) case, +// we can provide pretty accurate and useful information. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +using namespace llvm; + +#define DEBUG_TYPE "globalsmodref-aa" + +STATISTIC(NumNonAddrTakenGlobalVars, +          "Number of global vars without address taken"); +STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); +STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); +STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); +STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); + +// An option to enable unsafe alias results from the GlobalsModRef analysis. +// When enabled, GlobalsModRef will provide no-alias results which in extremely +// rare cases may not be conservatively correct. In particular, in the face of +// transforms which cause assymetry between how effective GetUnderlyingObject +// is for two pointers, it may produce incorrect results. +// +// These unsafe results have been returned by GMR for many years without +// causing significant issues in the wild and so we provide a mechanism to +// re-enable them for users of LLVM that have a particular performance +// sensitivity and no known issues. The option also makes it easy to evaluate +// the performance impact of these results. +static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( +    "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); + +/// The mod/ref information collected for a particular function. +/// +/// We collect information about mod/ref behavior of a function here, both in +/// general and as pertains to specific globals. We only have this detailed +/// information when we know *something* useful about the behavior. If we +/// saturate to fully general mod/ref, we remove the info for the function. +class GlobalsAAResult::FunctionInfo { +  typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; + +  /// Build a wrapper struct that has 8-byte alignment. All heap allocations +  /// should provide this much alignment at least, but this makes it clear we +  /// specifically rely on this amount of alignment. +  struct alignas(8) AlignedMap { +    AlignedMap() {} +    AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} +    GlobalInfoMapType Map; +  }; + +  /// Pointer traits for our aligned map. +  struct AlignedMapPointerTraits { +    static inline void *getAsVoidPointer(AlignedMap *P) { return P; } +    static inline AlignedMap *getFromVoidPointer(void *P) { +      return (AlignedMap *)P; +    } +    enum { NumLowBitsAvailable = 3 }; +    static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), +                  "AlignedMap insufficiently aligned to have enough low bits."); +  }; + +  /// The bit that flags that this function may read any global. This is +  /// chosen to mix together with ModRefInfo bits. +  /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! +  /// It overlaps with ModRefInfo::Must bit! +  /// FunctionInfo.getModRefInfo() masks out everything except ModRef so +  /// this remains correct, but the Must info is lost. +  enum { MayReadAnyGlobal = 4 }; + +  /// Checks to document the invariants of the bit packing here. +  static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) == +                    0, +                "ModRef and the MayReadAnyGlobal flag bits overlap."); +  static_assert(((MayReadAnyGlobal | +                  static_cast<int>(ModRefInfo::MustModRef)) >> +                 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, +                "Insufficient low bits to store our flag and ModRef info."); + +public: +  FunctionInfo() : Info() {} +  ~FunctionInfo() { +    delete Info.getPointer(); +  } +  // Spell out the copy ond move constructors and assignment operators to get +  // deep copy semantics and correct move semantics in the face of the +  // pointer-int pair. +  FunctionInfo(const FunctionInfo &Arg) +      : Info(nullptr, Arg.Info.getInt()) { +    if (const auto *ArgPtr = Arg.Info.getPointer()) +      Info.setPointer(new AlignedMap(*ArgPtr)); +  } +  FunctionInfo(FunctionInfo &&Arg) +      : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { +    Arg.Info.setPointerAndInt(nullptr, 0); +  } +  FunctionInfo &operator=(const FunctionInfo &RHS) { +    delete Info.getPointer(); +    Info.setPointerAndInt(nullptr, RHS.Info.getInt()); +    if (const auto *RHSPtr = RHS.Info.getPointer()) +      Info.setPointer(new AlignedMap(*RHSPtr)); +    return *this; +  } +  FunctionInfo &operator=(FunctionInfo &&RHS) { +    delete Info.getPointer(); +    Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); +    RHS.Info.setPointerAndInt(nullptr, 0); +    return *this; +  } + +  /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return +  /// the corresponding ModRefInfo. It must align in functionality with +  /// clearMust(). +  ModRefInfo globalClearMayReadAnyGlobal(int I) const { +    return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) | +                      static_cast<int>(ModRefInfo::NoModRef)); +  } + +  /// Returns the \c ModRefInfo info for this function. +  ModRefInfo getModRefInfo() const { +    return globalClearMayReadAnyGlobal(Info.getInt()); +  } + +  /// Adds new \c ModRefInfo for this function to its state. +  void addModRefInfo(ModRefInfo NewMRI) { +    Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI))); +  } + +  /// Returns whether this function may read any global variable, and we don't +  /// know which global. +  bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } + +  /// Sets this function as potentially reading from any global. +  void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } + +  /// Returns the \c ModRefInfo info for this function w.r.t. a particular +  /// global, which may be more precise than the general information above. +  ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { +    ModRefInfo GlobalMRI = +        mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; +    if (AlignedMap *P = Info.getPointer()) { +      auto I = P->Map.find(&GV); +      if (I != P->Map.end()) +        GlobalMRI = unionModRef(GlobalMRI, I->second); +    } +    return GlobalMRI; +  } + +  /// Add mod/ref info from another function into ours, saturating towards +  /// ModRef. +  void addFunctionInfo(const FunctionInfo &FI) { +    addModRefInfo(FI.getModRefInfo()); + +    if (FI.mayReadAnyGlobal()) +      setMayReadAnyGlobal(); + +    if (AlignedMap *P = FI.Info.getPointer()) +      for (const auto &G : P->Map) +        addModRefInfoForGlobal(*G.first, G.second); +  } + +  void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { +    AlignedMap *P = Info.getPointer(); +    if (!P) { +      P = new AlignedMap(); +      Info.setPointer(P); +    } +    auto &GlobalMRI = P->Map[&GV]; +    GlobalMRI = unionModRef(GlobalMRI, NewMRI); +  } + +  /// Clear a global's ModRef info. Should be used when a global is being +  /// deleted. +  void eraseModRefInfoForGlobal(const GlobalValue &GV) { +    if (AlignedMap *P = Info.getPointer()) +      P->Map.erase(&GV); +  } + +private: +  /// All of the information is encoded into a single pointer, with a three bit +  /// integer in the low three bits. The high bit provides a flag for when this +  /// function may read any global. The low two bits are the ModRefInfo. And +  /// the pointer, when non-null, points to a map from GlobalValue to +  /// ModRefInfo specific to that GlobalValue. +  PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; +}; + +void GlobalsAAResult::DeletionCallbackHandle::deleted() { +  Value *V = getValPtr(); +  if (auto *F = dyn_cast<Function>(V)) +    GAR->FunctionInfos.erase(F); + +  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { +    if (GAR->NonAddressTakenGlobals.erase(GV)) { +      // This global might be an indirect global.  If so, remove it and +      // remove any AllocRelatedValues for it. +      if (GAR->IndirectGlobals.erase(GV)) { +        // Remove any entries in AllocsForIndirectGlobals for this global. +        for (auto I = GAR->AllocsForIndirectGlobals.begin(), +                  E = GAR->AllocsForIndirectGlobals.end(); +             I != E; ++I) +          if (I->second == GV) +            GAR->AllocsForIndirectGlobals.erase(I); +      } + +      // Scan the function info we have collected and remove this global +      // from all of them. +      for (auto &FIPair : GAR->FunctionInfos) +        FIPair.second.eraseModRefInfoForGlobal(*GV); +    } +  } + +  // If this is an allocation related to an indirect global, remove it. +  GAR->AllocsForIndirectGlobals.erase(V); + +  // And clear out the handle. +  setValPtr(nullptr); +  GAR->Handles.erase(I); +  // This object is now destroyed! +} + +FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { +  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; + +  if (FunctionInfo *FI = getFunctionInfo(F)) { +    if (!isModOrRefSet(FI->getModRefInfo())) +      Min = FMRB_DoesNotAccessMemory; +    else if (!isModSet(FI->getModRefInfo())) +      Min = FMRB_OnlyReadsMemory; +  } + +  return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); +} + +FunctionModRefBehavior +GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { +  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; + +  if (!CS.hasOperandBundles()) +    if (const Function *F = CS.getCalledFunction()) +      if (FunctionInfo *FI = getFunctionInfo(F)) { +        if (!isModOrRefSet(FI->getModRefInfo())) +          Min = FMRB_DoesNotAccessMemory; +        else if (!isModSet(FI->getModRefInfo())) +          Min = FMRB_OnlyReadsMemory; +      } + +  return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); +} + +/// Returns the function info for the function, or null if we don't have +/// anything useful to say about it. +GlobalsAAResult::FunctionInfo * +GlobalsAAResult::getFunctionInfo(const Function *F) { +  auto I = FunctionInfos.find(F); +  if (I != FunctionInfos.end()) +    return &I->second; +  return nullptr; +} + +/// AnalyzeGlobals - Scan through the users of all of the internal +/// GlobalValue's in the program.  If none of them have their "address taken" +/// (really, their address passed to something nontrivial), record this fact, +/// and record the functions that they are used directly in. +void GlobalsAAResult::AnalyzeGlobals(Module &M) { +  SmallPtrSet<Function *, 32> TrackedFunctions; +  for (Function &F : M) +    if (F.hasLocalLinkage()) +      if (!AnalyzeUsesOfPointer(&F)) { +        // Remember that we are tracking this global. +        NonAddressTakenGlobals.insert(&F); +        TrackedFunctions.insert(&F); +        Handles.emplace_front(*this, &F); +        Handles.front().I = Handles.begin(); +        ++NumNonAddrTakenFunctions; +      } + +  SmallPtrSet<Function *, 16> Readers, Writers; +  for (GlobalVariable &GV : M.globals()) +    if (GV.hasLocalLinkage()) { +      if (!AnalyzeUsesOfPointer(&GV, &Readers, +                                GV.isConstant() ? nullptr : &Writers)) { +        // Remember that we are tracking this global, and the mod/ref fns +        NonAddressTakenGlobals.insert(&GV); +        Handles.emplace_front(*this, &GV); +        Handles.front().I = Handles.begin(); + +        for (Function *Reader : Readers) { +          if (TrackedFunctions.insert(Reader).second) { +            Handles.emplace_front(*this, Reader); +            Handles.front().I = Handles.begin(); +          } +          FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); +        } + +        if (!GV.isConstant()) // No need to keep track of writers to constants +          for (Function *Writer : Writers) { +            if (TrackedFunctions.insert(Writer).second) { +              Handles.emplace_front(*this, Writer); +              Handles.front().I = Handles.begin(); +            } +            FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); +          } +        ++NumNonAddrTakenGlobalVars; + +        // If this global holds a pointer type, see if it is an indirect global. +        if (GV.getValueType()->isPointerTy() && +            AnalyzeIndirectGlobalMemory(&GV)) +          ++NumIndirectGlobalVars; +      } +      Readers.clear(); +      Writers.clear(); +    } +} + +/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. +/// If this is used by anything complex (i.e., the address escapes), return +/// true.  Also, while we are at it, keep track of those functions that read and +/// write to the value. +/// +/// If OkayStoreDest is non-null, stores into this global are allowed. +bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, +                                           SmallPtrSetImpl<Function *> *Readers, +                                           SmallPtrSetImpl<Function *> *Writers, +                                           GlobalValue *OkayStoreDest) { +  if (!V->getType()->isPointerTy()) +    return true; + +  for (Use &U : V->uses()) { +    User *I = U.getUser(); +    if (LoadInst *LI = dyn_cast<LoadInst>(I)) { +      if (Readers) +        Readers->insert(LI->getParent()->getParent()); +    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { +      if (V == SI->getOperand(1)) { +        if (Writers) +          Writers->insert(SI->getParent()->getParent()); +      } else if (SI->getOperand(1) != OkayStoreDest) { +        return true; // Storing the pointer +      } +    } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { +      if (AnalyzeUsesOfPointer(I, Readers, Writers)) +        return true; +    } else if (Operator::getOpcode(I) == Instruction::BitCast) { +      if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) +        return true; +    } else if (auto CS = CallSite(I)) { +      // Make sure that this is just the function being called, not that it is +      // passing into the function. +      if (CS.isDataOperand(&U)) { +        // Detect calls to free. +        if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) { +          if (Writers) +            Writers->insert(CS->getParent()->getParent()); +        } else { +          return true; // Argument of an unknown call. +        } +      } +    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { +      if (!isa<ConstantPointerNull>(ICI->getOperand(1))) +        return true; // Allow comparison against null. +    } else if (Constant *C = dyn_cast<Constant>(I)) { +      // Ignore constants which don't have any live uses. +      if (isa<GlobalValue>(C) || C->isConstantUsed()) +        return true; +    } else { +      return true; +    } +  } + +  return false; +} + +/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable +/// which holds a pointer type.  See if the global always points to non-aliased +/// heap memory: that is, all initializers of the globals are allocations, and +/// those allocations have no use other than initialization of the global. +/// Further, all loads out of GV must directly use the memory, not store the +/// pointer somewhere.  If this is true, we consider the memory pointed to by +/// GV to be owned by GV and can disambiguate other pointers from it. +bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { +  // Keep track of values related to the allocation of the memory, f.e. the +  // value produced by the malloc call and any casts. +  std::vector<Value *> AllocRelatedValues; + +  // If the initializer is a valid pointer, bail. +  if (Constant *C = GV->getInitializer()) +    if (!C->isNullValue()) +      return false; + +  // Walk the user list of the global.  If we find anything other than a direct +  // load or store, bail out. +  for (User *U : GV->users()) { +    if (LoadInst *LI = dyn_cast<LoadInst>(U)) { +      // The pointer loaded from the global can only be used in simple ways: +      // we allow addressing of it and loading storing to it.  We do *not* allow +      // storing the loaded pointer somewhere else or passing to a function. +      if (AnalyzeUsesOfPointer(LI)) +        return false; // Loaded pointer escapes. +      // TODO: Could try some IP mod/ref of the loaded pointer. +    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { +      // Storing the global itself. +      if (SI->getOperand(0) == GV) +        return false; + +      // If storing the null pointer, ignore it. +      if (isa<ConstantPointerNull>(SI->getOperand(0))) +        continue; + +      // Check the value being stored. +      Value *Ptr = GetUnderlyingObject(SI->getOperand(0), +                                       GV->getParent()->getDataLayout()); + +      if (!isAllocLikeFn(Ptr, &TLI)) +        return false; // Too hard to analyze. + +      // Analyze all uses of the allocation.  If any of them are used in a +      // non-simple way (e.g. stored to another global) bail out. +      if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, +                               GV)) +        return false; // Loaded pointer escapes. + +      // Remember that this allocation is related to the indirect global. +      AllocRelatedValues.push_back(Ptr); +    } else { +      // Something complex, bail out. +      return false; +    } +  } + +  // Okay, this is an indirect global.  Remember all of the allocations for +  // this global in AllocsForIndirectGlobals. +  while (!AllocRelatedValues.empty()) { +    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; +    Handles.emplace_front(*this, AllocRelatedValues.back()); +    Handles.front().I = Handles.begin(); +    AllocRelatedValues.pop_back(); +  } +  IndirectGlobals.insert(GV); +  Handles.emplace_front(*this, GV); +  Handles.front().I = Handles.begin(); +  return true; +} + +void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { +  // We do a bottom-up SCC traversal of the call graph.  In other words, we +  // visit all callees before callers (leaf-first). +  unsigned SCCID = 0; +  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { +    const std::vector<CallGraphNode *> &SCC = *I; +    assert(!SCC.empty() && "SCC with no functions?"); + +    for (auto *CGN : SCC) +      if (Function *F = CGN->getFunction()) +        FunctionToSCCMap[F] = SCCID; +    ++SCCID; +  } +} + +/// AnalyzeCallGraph - At this point, we know the functions where globals are +/// immediately stored to and read from.  Propagate this information up the call +/// graph to all callers and compute the mod/ref info for all memory for each +/// function. +void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { +  // We do a bottom-up SCC traversal of the call graph.  In other words, we +  // visit all callees before callers (leaf-first). +  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { +    const std::vector<CallGraphNode *> &SCC = *I; +    assert(!SCC.empty() && "SCC with no functions?"); + +    Function *F = SCC[0]->getFunction(); + +    if (!F || !F->isDefinitionExact()) { +      // Calls externally or not exact - can't say anything useful. Remove any +      // existing function records (may have been created when scanning +      // globals). +      for (auto *Node : SCC) +        FunctionInfos.erase(Node->getFunction()); +      continue; +    } + +    FunctionInfo &FI = FunctionInfos[F]; +    Handles.emplace_front(*this, F); +    Handles.front().I = Handles.begin(); +    bool KnowNothing = false; + +    // Collect the mod/ref properties due to called functions.  We only compute +    // one mod-ref set. +    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { +      if (!F) { +        KnowNothing = true; +        break; +      } + +      if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) { +        // Try to get mod/ref behaviour from function attributes. +        if (F->doesNotAccessMemory()) { +          // Can't do better than that! +        } else if (F->onlyReadsMemory()) { +          FI.addModRefInfo(ModRefInfo::Ref); +          if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) +            // This function might call back into the module and read a global - +            // consider every global as possibly being read by this function. +            FI.setMayReadAnyGlobal(); +        } else { +          FI.addModRefInfo(ModRefInfo::ModRef); +          // Can't say anything useful unless it's an intrinsic - they don't +          // read or write global variables of the kind considered here. +          KnowNothing = !F->isIntrinsic(); +        } +        continue; +      } + +      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); +           CI != E && !KnowNothing; ++CI) +        if (Function *Callee = CI->second->getFunction()) { +          if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { +            // Propagate function effect up. +            FI.addFunctionInfo(*CalleeFI); +          } else { +            // Can't say anything about it.  However, if it is inside our SCC, +            // then nothing needs to be done. +            CallGraphNode *CalleeNode = CG[Callee]; +            if (!is_contained(SCC, CalleeNode)) +              KnowNothing = true; +          } +        } else { +          KnowNothing = true; +        } +    } + +    // If we can't say anything useful about this SCC, remove all SCC functions +    // from the FunctionInfos map. +    if (KnowNothing) { +      for (auto *Node : SCC) +        FunctionInfos.erase(Node->getFunction()); +      continue; +    } + +    // Scan the function bodies for explicit loads or stores. +    for (auto *Node : SCC) { +      if (isModAndRefSet(FI.getModRefInfo())) +        break; // The mod/ref lattice saturates here. + +      // Don't prove any properties based on the implementation of an optnone +      // function. Function attributes were already used as a best approximation +      // above. +      if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone)) +        continue; + +      for (Instruction &I : instructions(Node->getFunction())) { +        if (isModAndRefSet(FI.getModRefInfo())) +          break; // The mod/ref lattice saturates here. + +        // We handle calls specially because the graph-relevant aspects are +        // handled above. +        if (auto CS = CallSite(&I)) { +          if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { +            // FIXME: It is completely unclear why this is necessary and not +            // handled by the above graph code. +            FI.addModRefInfo(ModRefInfo::ModRef); +          } else if (Function *Callee = CS.getCalledFunction()) { +            // The callgraph doesn't include intrinsic calls. +            if (Callee->isIntrinsic()) { +              if (isa<DbgInfoIntrinsic>(I)) +                // Don't let dbg intrinsics affect alias info. +                continue; + +              FunctionModRefBehavior Behaviour = +                  AAResultBase::getModRefBehavior(Callee); +              FI.addModRefInfo(createModRefInfo(Behaviour)); +            } +          } +          continue; +        } + +        // All non-call instructions we use the primary predicates for whether +        // thay read or write memory. +        if (I.mayReadFromMemory()) +          FI.addModRefInfo(ModRefInfo::Ref); +        if (I.mayWriteToMemory()) +          FI.addModRefInfo(ModRefInfo::Mod); +      } +    } + +    if (!isModSet(FI.getModRefInfo())) +      ++NumReadMemFunctions; +    if (!isModOrRefSet(FI.getModRefInfo())) +      ++NumNoMemFunctions; + +    // Finally, now that we know the full effect on this SCC, clone the +    // information to each function in the SCC. +    // FI is a reference into FunctionInfos, so copy it now so that it doesn't +    // get invalidated if DenseMap decides to re-hash. +    FunctionInfo CachedFI = FI; +    for (unsigned i = 1, e = SCC.size(); i != e; ++i) +      FunctionInfos[SCC[i]->getFunction()] = CachedFI; +  } +} + +// GV is a non-escaping global. V is a pointer address that has been loaded from. +// If we can prove that V must escape, we can conclude that a load from V cannot +// alias GV. +static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, +                                               const Value *V, +                                               int &Depth, +                                               const DataLayout &DL) { +  SmallPtrSet<const Value *, 8> Visited; +  SmallVector<const Value *, 8> Inputs; +  Visited.insert(V); +  Inputs.push_back(V); +  do { +    const Value *Input = Inputs.pop_back_val(); + +    if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || +        isa<InvokeInst>(Input)) +      // Arguments to functions or returns from functions are inherently +      // escaping, so we can immediately classify those as not aliasing any +      // non-addr-taken globals. +      // +      // (Transitive) loads from a global are also safe - if this aliased +      // another global, its address would escape, so no alias. +      continue; + +    // Recurse through a limited number of selects, loads and PHIs. This is an +    // arbitrary depth of 4, lower numbers could be used to fix compile time +    // issues if needed, but this is generally expected to be only be important +    // for small depths. +    if (++Depth > 4) +      return false; + +    if (auto *LI = dyn_cast<LoadInst>(Input)) { +      Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); +      continue; +    } +    if (auto *SI = dyn_cast<SelectInst>(Input)) { +      const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); +      const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); +      if (Visited.insert(LHS).second) +        Inputs.push_back(LHS); +      if (Visited.insert(RHS).second) +        Inputs.push_back(RHS); +      continue; +    } +    if (auto *PN = dyn_cast<PHINode>(Input)) { +      for (const Value *Op : PN->incoming_values()) { +        Op = GetUnderlyingObject(Op, DL); +        if (Visited.insert(Op).second) +          Inputs.push_back(Op); +      } +      continue; +    } + +    return false; +  } while (!Inputs.empty()); + +  // All inputs were known to be no-alias. +  return true; +} + +// There are particular cases where we can conclude no-alias between +// a non-addr-taken global and some other underlying object. Specifically, +// a non-addr-taken global is known to not be escaped from any function. It is +// also incorrect for a transformation to introduce an escape of a global in +// a way that is observable when it was not there previously. One function +// being transformed to introduce an escape which could possibly be observed +// (via loading from a global or the return value for example) within another +// function is never safe. If the observation is made through non-atomic +// operations on different threads, it is a data-race and UB. If the +// observation is well defined, by being observed the transformation would have +// changed program behavior by introducing the observed escape, making it an +// invalid transform. +// +// This property does require that transformations which *temporarily* escape +// a global that was not previously escaped, prior to restoring it, cannot rely +// on the results of GMR::alias. This seems a reasonable restriction, although +// currently there is no way to enforce it. There is also no realistic +// optimization pass that would make this mistake. The closest example is +// a transformation pass which does reg2mem of SSA values but stores them into +// global variables temporarily before restoring the global variable's value. +// This could be useful to expose "benign" races for example. However, it seems +// reasonable to require that a pass which introduces escapes of global +// variables in this way to either not trust AA results while the escape is +// active, or to be forced to operate as a module pass that cannot co-exist +// with an alias analysis such as GMR. +bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, +                                                 const Value *V) { +  // In order to know that the underlying object cannot alias the +  // non-addr-taken global, we must know that it would have to be an escape. +  // Thus if the underlying object is a function argument, a load from +  // a global, or the return of a function, it cannot alias. We can also +  // recurse through PHI nodes and select nodes provided all of their inputs +  // resolve to one of these known-escaping roots. +  SmallPtrSet<const Value *, 8> Visited; +  SmallVector<const Value *, 8> Inputs; +  Visited.insert(V); +  Inputs.push_back(V); +  int Depth = 0; +  do { +    const Value *Input = Inputs.pop_back_val(); + +    if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { +      // If one input is the very global we're querying against, then we can't +      // conclude no-alias. +      if (InputGV == GV) +        return false; + +      // Distinct GlobalVariables never alias, unless overriden or zero-sized. +      // FIXME: The condition can be refined, but be conservative for now. +      auto *GVar = dyn_cast<GlobalVariable>(GV); +      auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); +      if (GVar && InputGVar && +          !GVar->isDeclaration() && !InputGVar->isDeclaration() && +          !GVar->isInterposable() && !InputGVar->isInterposable()) { +        Type *GVType = GVar->getInitializer()->getType(); +        Type *InputGVType = InputGVar->getInitializer()->getType(); +        if (GVType->isSized() && InputGVType->isSized() && +            (DL.getTypeAllocSize(GVType) > 0) && +            (DL.getTypeAllocSize(InputGVType) > 0)) +          continue; +      } + +      // Conservatively return false, even though we could be smarter +      // (e.g. look through GlobalAliases). +      return false; +    } + +    if (isa<Argument>(Input) || isa<CallInst>(Input) || +        isa<InvokeInst>(Input)) { +      // Arguments to functions or returns from functions are inherently +      // escaping, so we can immediately classify those as not aliasing any +      // non-addr-taken globals. +      continue; +    } + +    // Recurse through a limited number of selects, loads and PHIs. This is an +    // arbitrary depth of 4, lower numbers could be used to fix compile time +    // issues if needed, but this is generally expected to be only be important +    // for small depths. +    if (++Depth > 4) +      return false; + +    if (auto *LI = dyn_cast<LoadInst>(Input)) { +      // A pointer loaded from a global would have been captured, and we know +      // that the global is non-escaping, so no alias. +      const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); +      if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) +        // The load does not alias with GV. +        continue; +      // Otherwise, a load could come from anywhere, so bail. +      return false; +    } +    if (auto *SI = dyn_cast<SelectInst>(Input)) { +      const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); +      const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); +      if (Visited.insert(LHS).second) +        Inputs.push_back(LHS); +      if (Visited.insert(RHS).second) +        Inputs.push_back(RHS); +      continue; +    } +    if (auto *PN = dyn_cast<PHINode>(Input)) { +      for (const Value *Op : PN->incoming_values()) { +        Op = GetUnderlyingObject(Op, DL); +        if (Visited.insert(Op).second) +          Inputs.push_back(Op); +      } +      continue; +    } + +    // FIXME: It would be good to handle other obvious no-alias cases here, but +    // it isn't clear how to do so reasonbly without building a small version +    // of BasicAA into this code. We could recurse into AAResultBase::alias +    // here but that seems likely to go poorly as we're inside the +    // implementation of such a query. Until then, just conservatievly retun +    // false. +    return false; +  } while (!Inputs.empty()); + +  // If all the inputs to V were definitively no-alias, then V is no-alias. +  return true; +} + +/// alias - If one of the pointers is to a global that we are tracking, and the +/// other is some random pointer, we know there cannot be an alias, because the +/// address of the global isn't taken. +AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, +                                   const MemoryLocation &LocB) { +  // Get the base object these pointers point to. +  const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); +  const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); + +  // If either of the underlying values is a global, they may be non-addr-taken +  // globals, which we can answer queries about. +  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); +  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); +  if (GV1 || GV2) { +    // If the global's address is taken, pretend we don't know it's a pointer to +    // the global. +    if (GV1 && !NonAddressTakenGlobals.count(GV1)) +      GV1 = nullptr; +    if (GV2 && !NonAddressTakenGlobals.count(GV2)) +      GV2 = nullptr; + +    // If the two pointers are derived from two different non-addr-taken +    // globals we know these can't alias. +    if (GV1 && GV2 && GV1 != GV2) +      return NoAlias; + +    // If one is and the other isn't, it isn't strictly safe but we can fake +    // this result if necessary for performance. This does not appear to be +    // a common problem in practice. +    if (EnableUnsafeGlobalsModRefAliasResults) +      if ((GV1 || GV2) && GV1 != GV2) +        return NoAlias; + +    // Check for a special case where a non-escaping global can be used to +    // conclude no-alias. +    if ((GV1 || GV2) && GV1 != GV2) { +      const GlobalValue *GV = GV1 ? GV1 : GV2; +      const Value *UV = GV1 ? UV2 : UV1; +      if (isNonEscapingGlobalNoAlias(GV, UV)) +        return NoAlias; +    } + +    // Otherwise if they are both derived from the same addr-taken global, we +    // can't know the two accesses don't overlap. +  } + +  // These pointers may be based on the memory owned by an indirect global.  If +  // so, we may be able to handle this.  First check to see if the base pointer +  // is a direct load from an indirect global. +  GV1 = GV2 = nullptr; +  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) +    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) +      if (IndirectGlobals.count(GV)) +        GV1 = GV; +  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) +    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) +      if (IndirectGlobals.count(GV)) +        GV2 = GV; + +  // These pointers may also be from an allocation for the indirect global.  If +  // so, also handle them. +  if (!GV1) +    GV1 = AllocsForIndirectGlobals.lookup(UV1); +  if (!GV2) +    GV2 = AllocsForIndirectGlobals.lookup(UV2); + +  // Now that we know whether the two pointers are related to indirect globals, +  // use this to disambiguate the pointers. If the pointers are based on +  // different indirect globals they cannot alias. +  if (GV1 && GV2 && GV1 != GV2) +    return NoAlias; + +  // If one is based on an indirect global and the other isn't, it isn't +  // strictly safe but we can fake this result if necessary for performance. +  // This does not appear to be a common problem in practice. +  if (EnableUnsafeGlobalsModRefAliasResults) +    if ((GV1 || GV2) && GV1 != GV2) +      return NoAlias; + +  return AAResultBase::alias(LocA, LocB); +} + +ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS, +                                                     const GlobalValue *GV) { +  if (CS.doesNotAccessMemory()) +    return ModRefInfo::NoModRef; +  ModRefInfo ConservativeResult = +      CS.onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; + +  // Iterate through all the arguments to the called function. If any argument +  // is based on GV, return the conservative result. +  for (auto &A : CS.args()) { +    SmallVector<Value*, 4> Objects; +    GetUnderlyingObjects(A, Objects, DL); + +    // All objects must be identified. +    if (!all_of(Objects, isIdentifiedObject) && +        // Try ::alias to see if all objects are known not to alias GV. +        !all_of(Objects, [&](Value *V) { +          return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias; +        })) +      return ConservativeResult; + +    if (is_contained(Objects, GV)) +      return ConservativeResult; +  } + +  // We identified all objects in the argument list, and none of them were GV. +  return ModRefInfo::NoModRef; +} + +ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, +                                          const MemoryLocation &Loc) { +  ModRefInfo Known = ModRefInfo::ModRef; + +  // If we are asking for mod/ref info of a direct call with a pointer to a +  // global we are tracking, return information if we have it. +  if (const GlobalValue *GV = +          dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) +    if (GV->hasLocalLinkage()) +      if (const Function *F = CS.getCalledFunction()) +        if (NonAddressTakenGlobals.count(GV)) +          if (const FunctionInfo *FI = getFunctionInfo(F)) +            Known = unionModRef(FI->getModRefInfoForGlobal(*GV), +                                getModRefInfoForArgument(CS, GV)); + +  if (!isModOrRefSet(Known)) +    return ModRefInfo::NoModRef; // No need to query other mod/ref analyses +  return intersectModRef(Known, AAResultBase::getModRefInfo(CS, Loc)); +} + +GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, +                                 const TargetLibraryInfo &TLI) +    : AAResultBase(), DL(DL), TLI(TLI) {} + +GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) +    : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), +      NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), +      IndirectGlobals(std::move(Arg.IndirectGlobals)), +      AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), +      FunctionInfos(std::move(Arg.FunctionInfos)), +      Handles(std::move(Arg.Handles)) { +  // Update the parent for each DeletionCallbackHandle. +  for (auto &H : Handles) { +    assert(H.GAR == &Arg); +    H.GAR = this; +  } +} + +GlobalsAAResult::~GlobalsAAResult() {} + +/*static*/ GlobalsAAResult +GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, +                               CallGraph &CG) { +  GlobalsAAResult Result(M.getDataLayout(), TLI); + +  // Discover which functions aren't recursive, to feed into AnalyzeGlobals. +  Result.CollectSCCMembership(CG); + +  // Find non-addr taken globals. +  Result.AnalyzeGlobals(M); + +  // Propagate on CG. +  Result.AnalyzeCallGraph(CG, M); + +  return Result; +} + +AnalysisKey GlobalsAA::Key; + +GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { +  return GlobalsAAResult::analyzeModule(M, +                                        AM.getResult<TargetLibraryAnalysis>(M), +                                        AM.getResult<CallGraphAnalysis>(M)); +} + +char GlobalsAAWrapperPass::ID = 0; +INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", +                      "Globals Alias Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", +                    "Globals Alias Analysis", false, true) + +ModulePass *llvm::createGlobalsAAWrapperPass() { +  return new GlobalsAAWrapperPass(); +} + +GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { +  initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +bool GlobalsAAWrapperPass::runOnModule(Module &M) { +  Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( +      M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), +      getAnalysis<CallGraphWrapperPass>().getCallGraph()))); +  return false; +} + +bool GlobalsAAWrapperPass::doFinalization(Module &M) { +  Result.reset(); +  return false; +} + +void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequired<CallGraphWrapperPass>(); +  AU.addRequired<TargetLibraryInfoWrapperPass>(); +}  | 
