diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp | 1427 | 
1 files changed, 1427 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp new file mode 100644 index 000000000000..b70de00db04b --- /dev/null +++ b/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp @@ -0,0 +1,1427 @@ +//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The implementation for the loop memory dependence that was originally +// developed for the loop vectorizer. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/VectorUtils.h" +using namespace llvm; + +#define DEBUG_TYPE "loop-accesses" + +static cl::opt<unsigned, true> +VectorizationFactor("force-vector-width", cl::Hidden, +                    cl::desc("Sets the SIMD width. Zero is autoselect."), +                    cl::location(VectorizerParams::VectorizationFactor)); +unsigned VectorizerParams::VectorizationFactor; + +static cl::opt<unsigned, true> +VectorizationInterleave("force-vector-interleave", cl::Hidden, +                        cl::desc("Sets the vectorization interleave count. " +                                 "Zero is autoselect."), +                        cl::location( +                            VectorizerParams::VectorizationInterleave)); +unsigned VectorizerParams::VectorizationInterleave; + +static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( +    "runtime-memory-check-threshold", cl::Hidden, +    cl::desc("When performing memory disambiguation checks at runtime do not " +             "generate more than this number of comparisons (default = 8)."), +    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); +unsigned VectorizerParams::RuntimeMemoryCheckThreshold; + +/// Maximum SIMD width. +const unsigned VectorizerParams::MaxVectorWidth = 64; + +/// \brief We collect interesting dependences up to this threshold. +static cl::opt<unsigned> MaxInterestingDependence( +    "max-interesting-dependences", cl::Hidden, +    cl::desc("Maximum number of interesting dependences collected by " +             "loop-access analysis (default = 100)"), +    cl::init(100)); + +bool VectorizerParams::isInterleaveForced() { +  return ::VectorizationInterleave.getNumOccurrences() > 0; +} + +void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, +                                    const Function *TheFunction, +                                    const Loop *TheLoop, +                                    const char *PassName) { +  DebugLoc DL = TheLoop->getStartLoc(); +  if (const Instruction *I = Message.getInstr()) +    DL = I->getDebugLoc(); +  emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, +                                 *TheFunction, DL, Message.str()); +} + +Value *llvm::stripIntegerCast(Value *V) { +  if (CastInst *CI = dyn_cast<CastInst>(V)) +    if (CI->getOperand(0)->getType()->isIntegerTy()) +      return CI->getOperand(0); +  return V; +} + +const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, +                                            const ValueToValueMap &PtrToStride, +                                            Value *Ptr, Value *OrigPtr) { + +  const SCEV *OrigSCEV = SE->getSCEV(Ptr); + +  // If there is an entry in the map return the SCEV of the pointer with the +  // symbolic stride replaced by one. +  ValueToValueMap::const_iterator SI = +      PtrToStride.find(OrigPtr ? OrigPtr : Ptr); +  if (SI != PtrToStride.end()) { +    Value *StrideVal = SI->second; + +    // Strip casts. +    StrideVal = stripIntegerCast(StrideVal); + +    // Replace symbolic stride by one. +    Value *One = ConstantInt::get(StrideVal->getType(), 1); +    ValueToValueMap RewriteMap; +    RewriteMap[StrideVal] = One; + +    const SCEV *ByOne = +        SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); +    DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne +                 << "\n"); +    return ByOne; +  } + +  // Otherwise, just return the SCEV of the original pointer. +  return SE->getSCEV(Ptr); +} + +void LoopAccessInfo::RuntimePointerCheck::insert( +    ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, +    unsigned ASId, const ValueToValueMap &Strides) { +  // Get the stride replaced scev. +  const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); +  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); +  assert(AR && "Invalid addrec expression"); +  const SCEV *Ex = SE->getBackedgeTakenCount(Lp); +  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); +  Pointers.push_back(Ptr); +  Starts.push_back(AR->getStart()); +  Ends.push_back(ScEnd); +  IsWritePtr.push_back(WritePtr); +  DependencySetId.push_back(DepSetId); +  AliasSetId.push_back(ASId); +} + +bool LoopAccessInfo::RuntimePointerCheck::needsChecking( +    unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { +  // No need to check if two readonly pointers intersect. +  if (!IsWritePtr[I] && !IsWritePtr[J]) +    return false; + +  // Only need to check pointers between two different dependency sets. +  if (DependencySetId[I] == DependencySetId[J]) +    return false; + +  // Only need to check pointers in the same alias set. +  if (AliasSetId[I] != AliasSetId[J]) +    return false; + +  // If PtrPartition is set omit checks between pointers of the same partition. +  // Partition number -1 means that the pointer is used in multiple partitions. +  // In this case we can't omit the check. +  if (PtrPartition && (*PtrPartition)[I] != -1 && +      (*PtrPartition)[I] == (*PtrPartition)[J]) +    return false; + +  return true; +} + +void LoopAccessInfo::RuntimePointerCheck::print( +    raw_ostream &OS, unsigned Depth, +    const SmallVectorImpl<int> *PtrPartition) const { +  unsigned NumPointers = Pointers.size(); +  if (NumPointers == 0) +    return; + +  OS.indent(Depth) << "Run-time memory checks:\n"; +  unsigned N = 0; +  for (unsigned I = 0; I < NumPointers; ++I) +    for (unsigned J = I + 1; J < NumPointers; ++J) +      if (needsChecking(I, J, PtrPartition)) { +        OS.indent(Depth) << N++ << ":\n"; +        OS.indent(Depth + 2) << *Pointers[I]; +        if (PtrPartition) +          OS << " (Partition: " << (*PtrPartition)[I] << ")"; +        OS << "\n"; +        OS.indent(Depth + 2) << *Pointers[J]; +        if (PtrPartition) +          OS << " (Partition: " << (*PtrPartition)[J] << ")"; +        OS << "\n"; +      } +} + +bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking( +    const SmallVectorImpl<int> *PtrPartition) const { +  unsigned NumPointers = Pointers.size(); + +  for (unsigned I = 0; I < NumPointers; ++I) +    for (unsigned J = I + 1; J < NumPointers; ++J) +      if (needsChecking(I, J, PtrPartition)) +        return true; +  return false; +} + +namespace { +/// \brief Analyses memory accesses in a loop. +/// +/// Checks whether run time pointer checks are needed and builds sets for data +/// dependence checking. +class AccessAnalysis { +public: +  /// \brief Read or write access location. +  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; +  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; + +  AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, +                 MemoryDepChecker::DepCandidates &DA) +      : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckNeeded(false) {} + +  /// \brief Register a load  and whether it is only read from. +  void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { +    Value *Ptr = const_cast<Value*>(Loc.Ptr); +    AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); +    Accesses.insert(MemAccessInfo(Ptr, false)); +    if (IsReadOnly) +      ReadOnlyPtr.insert(Ptr); +  } + +  /// \brief Register a store. +  void addStore(AliasAnalysis::Location &Loc) { +    Value *Ptr = const_cast<Value*>(Loc.Ptr); +    AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); +    Accesses.insert(MemAccessInfo(Ptr, true)); +  } + +  /// \brief Check whether we can check the pointers at runtime for +  /// non-intersection. +  bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, +                       unsigned &NumComparisons, ScalarEvolution *SE, +                       Loop *TheLoop, const ValueToValueMap &Strides, +                       bool ShouldCheckStride = false); + +  /// \brief Goes over all memory accesses, checks whether a RT check is needed +  /// and builds sets of dependent accesses. +  void buildDependenceSets() { +    processMemAccesses(); +  } + +  bool isRTCheckNeeded() { return IsRTCheckNeeded; } + +  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } + +  /// We decided that no dependence analysis would be used.  Reset the state. +  void resetDepChecks(MemoryDepChecker &DepChecker) { +    CheckDeps.clear(); +    DepChecker.clearInterestingDependences(); +  } + +  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } + +private: +  typedef SetVector<MemAccessInfo> PtrAccessSet; + +  /// \brief Go over all memory access and check whether runtime pointer checks +  /// are needed /// and build sets of dependency check candidates. +  void processMemAccesses(); + +  /// Set of all accesses. +  PtrAccessSet Accesses; + +  const DataLayout &DL; + +  /// Set of accesses that need a further dependence check. +  MemAccessInfoSet CheckDeps; + +  /// Set of pointers that are read only. +  SmallPtrSet<Value*, 16> ReadOnlyPtr; + +  /// An alias set tracker to partition the access set by underlying object and +  //intrinsic property (such as TBAA metadata). +  AliasSetTracker AST; + +  LoopInfo *LI; + +  /// Sets of potentially dependent accesses - members of one set share an +  /// underlying pointer. The set "CheckDeps" identfies which sets really need a +  /// dependence check. +  MemoryDepChecker::DepCandidates &DepCands; + +  bool IsRTCheckNeeded; +}; + +} // end anonymous namespace + +/// \brief Check whether a pointer can participate in a runtime bounds check. +static bool hasComputableBounds(ScalarEvolution *SE, +                                const ValueToValueMap &Strides, Value *Ptr) { +  const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); +  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); +  if (!AR) +    return false; + +  return AR->isAffine(); +} + +/// \brief Check the stride of the pointer and ensure that it does not wrap in +/// the address space. +static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, +                        const ValueToValueMap &StridesMap); + +bool AccessAnalysis::canCheckPtrAtRT( +    LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons, +    ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap, +    bool ShouldCheckStride) { +  // Find pointers with computable bounds. We are going to use this information +  // to place a runtime bound check. +  bool CanDoRT = true; + +  bool IsDepCheckNeeded = isDependencyCheckNeeded(); +  NumComparisons = 0; + +  // We assign a consecutive id to access from different alias sets. +  // Accesses between different groups doesn't need to be checked. +  unsigned ASId = 1; +  for (auto &AS : AST) { +    unsigned NumReadPtrChecks = 0; +    unsigned NumWritePtrChecks = 0; + +    // We assign consecutive id to access from different dependence sets. +    // Accesses within the same set don't need a runtime check. +    unsigned RunningDepId = 1; +    DenseMap<Value *, unsigned> DepSetId; + +    for (auto A : AS) { +      Value *Ptr = A.getValue(); +      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); +      MemAccessInfo Access(Ptr, IsWrite); + +      if (IsWrite) +        ++NumWritePtrChecks; +      else +        ++NumReadPtrChecks; + +      if (hasComputableBounds(SE, StridesMap, Ptr) && +          // When we run after a failing dependency check we have to make sure +          // we don't have wrapping pointers. +          (!ShouldCheckStride || +           isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { +        // The id of the dependence set. +        unsigned DepId; + +        if (IsDepCheckNeeded) { +          Value *Leader = DepCands.getLeaderValue(Access).getPointer(); +          unsigned &LeaderId = DepSetId[Leader]; +          if (!LeaderId) +            LeaderId = RunningDepId++; +          DepId = LeaderId; +        } else +          // Each access has its own dependence set. +          DepId = RunningDepId++; + +        RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); + +        DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); +      } else { +        DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); +        CanDoRT = false; +      } +    } + +    if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) +      NumComparisons += 0; // Only one dependence set. +    else { +      NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + +                                              NumWritePtrChecks - 1)); +    } + +    ++ASId; +  } + +  // If the pointers that we would use for the bounds comparison have different +  // address spaces, assume the values aren't directly comparable, so we can't +  // use them for the runtime check. We also have to assume they could +  // overlap. In the future there should be metadata for whether address spaces +  // are disjoint. +  unsigned NumPointers = RtCheck.Pointers.size(); +  for (unsigned i = 0; i < NumPointers; ++i) { +    for (unsigned j = i + 1; j < NumPointers; ++j) { +      // Only need to check pointers between two different dependency sets. +      if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) +       continue; +      // Only need to check pointers in the same alias set. +      if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) +        continue; + +      Value *PtrI = RtCheck.Pointers[i]; +      Value *PtrJ = RtCheck.Pointers[j]; + +      unsigned ASi = PtrI->getType()->getPointerAddressSpace(); +      unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); +      if (ASi != ASj) { +        DEBUG(dbgs() << "LAA: Runtime check would require comparison between" +                       " different address spaces\n"); +        return false; +      } +    } +  } + +  return CanDoRT; +} + +void AccessAnalysis::processMemAccesses() { +  // We process the set twice: first we process read-write pointers, last we +  // process read-only pointers. This allows us to skip dependence tests for +  // read-only pointers. + +  DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); +  DEBUG(dbgs() << "  AST: "; AST.dump()); +  DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n"); +  DEBUG({ +    for (auto A : Accesses) +      dbgs() << "\t" << *A.getPointer() << " (" << +                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? +                                         "read-only" : "read")) << ")\n"; +  }); + +  // The AliasSetTracker has nicely partitioned our pointers by metadata +  // compatibility and potential for underlying-object overlap. As a result, we +  // only need to check for potential pointer dependencies within each alias +  // set. +  for (auto &AS : AST) { +    // Note that both the alias-set tracker and the alias sets themselves used +    // linked lists internally and so the iteration order here is deterministic +    // (matching the original instruction order within each set). + +    bool SetHasWrite = false; + +    // Map of pointers to last access encountered. +    typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; +    UnderlyingObjToAccessMap ObjToLastAccess; + +    // Set of access to check after all writes have been processed. +    PtrAccessSet DeferredAccesses; + +    // Iterate over each alias set twice, once to process read/write pointers, +    // and then to process read-only pointers. +    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { +      bool UseDeferred = SetIteration > 0; +      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; + +      for (auto AV : AS) { +        Value *Ptr = AV.getValue(); + +        // For a single memory access in AliasSetTracker, Accesses may contain +        // both read and write, and they both need to be handled for CheckDeps. +        for (auto AC : S) { +          if (AC.getPointer() != Ptr) +            continue; + +          bool IsWrite = AC.getInt(); + +          // If we're using the deferred access set, then it contains only +          // reads. +          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; +          if (UseDeferred && !IsReadOnlyPtr) +            continue; +          // Otherwise, the pointer must be in the PtrAccessSet, either as a +          // read or a write. +          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || +                  S.count(MemAccessInfo(Ptr, false))) && +                 "Alias-set pointer not in the access set?"); + +          MemAccessInfo Access(Ptr, IsWrite); +          DepCands.insert(Access); + +          // Memorize read-only pointers for later processing and skip them in +          // the first round (they need to be checked after we have seen all +          // write pointers). Note: we also mark pointer that are not +          // consecutive as "read-only" pointers (so that we check +          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". +          if (!UseDeferred && IsReadOnlyPtr) { +            DeferredAccesses.insert(Access); +            continue; +          } + +          // If this is a write - check other reads and writes for conflicts. If +          // this is a read only check other writes for conflicts (but only if +          // there is no other write to the ptr - this is an optimization to +          // catch "a[i] = a[i] + " without having to do a dependence check). +          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { +            CheckDeps.insert(Access); +            IsRTCheckNeeded = true; +          } + +          if (IsWrite) +            SetHasWrite = true; + +          // Create sets of pointers connected by a shared alias set and +          // underlying object. +          typedef SmallVector<Value *, 16> ValueVector; +          ValueVector TempObjects; + +          GetUnderlyingObjects(Ptr, TempObjects, DL, LI); +          DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); +          for (Value *UnderlyingObj : TempObjects) { +            UnderlyingObjToAccessMap::iterator Prev = +                ObjToLastAccess.find(UnderlyingObj); +            if (Prev != ObjToLastAccess.end()) +              DepCands.unionSets(Access, Prev->second); + +            ObjToLastAccess[UnderlyingObj] = Access; +            DEBUG(dbgs() << "  " << *UnderlyingObj << "\n"); +          } +        } +      } +    } +  } +} + +static bool isInBoundsGep(Value *Ptr) { +  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) +    return GEP->isInBounds(); +  return false; +} + +/// \brief Check whether the access through \p Ptr has a constant stride. +static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, +                        const ValueToValueMap &StridesMap) { +  const Type *Ty = Ptr->getType(); +  assert(Ty->isPointerTy() && "Unexpected non-ptr"); + +  // Make sure that the pointer does not point to aggregate types. +  const PointerType *PtrTy = cast<PointerType>(Ty); +  if (PtrTy->getElementType()->isAggregateType()) { +    DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" +          << *Ptr << "\n"); +    return 0; +  } + +  const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); + +  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); +  if (!AR) { +    DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " +          << *Ptr << " SCEV: " << *PtrScev << "\n"); +    return 0; +  } + +  // The accesss function must stride over the innermost loop. +  if (Lp != AR->getLoop()) { +    DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << +          *Ptr << " SCEV: " << *PtrScev << "\n"); +  } + +  // The address calculation must not wrap. Otherwise, a dependence could be +  // inverted. +  // An inbounds getelementptr that is a AddRec with a unit stride +  // cannot wrap per definition. The unit stride requirement is checked later. +  // An getelementptr without an inbounds attribute and unit stride would have +  // to access the pointer value "0" which is undefined behavior in address +  // space 0, therefore we can also vectorize this case. +  bool IsInBoundsGEP = isInBoundsGep(Ptr); +  bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); +  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; +  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { +    DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " +          << *Ptr << " SCEV: " << *PtrScev << "\n"); +    return 0; +  } + +  // Check the step is constant. +  const SCEV *Step = AR->getStepRecurrence(*SE); + +  // Calculate the pointer stride and check if it is consecutive. +  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); +  if (!C) { +    DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << +          " SCEV: " << *PtrScev << "\n"); +    return 0; +  } + +  auto &DL = Lp->getHeader()->getModule()->getDataLayout(); +  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); +  const APInt &APStepVal = C->getValue()->getValue(); + +  // Huge step value - give up. +  if (APStepVal.getBitWidth() > 64) +    return 0; + +  int64_t StepVal = APStepVal.getSExtValue(); + +  // Strided access. +  int64_t Stride = StepVal / Size; +  int64_t Rem = StepVal % Size; +  if (Rem) +    return 0; + +  // If the SCEV could wrap but we have an inbounds gep with a unit stride we +  // know we can't "wrap around the address space". In case of address space +  // zero we know that this won't happen without triggering undefined behavior. +  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && +      Stride != 1 && Stride != -1) +    return 0; + +  return Stride; +} + +bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { +  switch (Type) { +  case NoDep: +  case Forward: +  case BackwardVectorizable: +    return true; + +  case Unknown: +  case ForwardButPreventsForwarding: +  case Backward: +  case BackwardVectorizableButPreventsForwarding: +    return false; +  } +  llvm_unreachable("unexpected DepType!"); +} + +bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { +  switch (Type) { +  case NoDep: +  case Forward: +    return false; + +  case BackwardVectorizable: +  case Unknown: +  case ForwardButPreventsForwarding: +  case Backward: +  case BackwardVectorizableButPreventsForwarding: +    return true; +  } +  llvm_unreachable("unexpected DepType!"); +} + +bool MemoryDepChecker::Dependence::isPossiblyBackward() const { +  switch (Type) { +  case NoDep: +  case Forward: +  case ForwardButPreventsForwarding: +    return false; + +  case Unknown: +  case BackwardVectorizable: +  case Backward: +  case BackwardVectorizableButPreventsForwarding: +    return true; +  } +  llvm_unreachable("unexpected DepType!"); +} + +bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, +                                                    unsigned TypeByteSize) { +  // If loads occur at a distance that is not a multiple of a feasible vector +  // factor store-load forwarding does not take place. +  // Positive dependences might cause troubles because vectorizing them might +  // prevent store-load forwarding making vectorized code run a lot slower. +  //   a[i] = a[i-3] ^ a[i-8]; +  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and +  //   hence on your typical architecture store-load forwarding does not take +  //   place. Vectorizing in such cases does not make sense. +  // Store-load forwarding distance. +  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; +  // Maximum vector factor. +  unsigned MaxVFWithoutSLForwardIssues = +    VectorizerParams::MaxVectorWidth * TypeByteSize; +  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) +    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; + +  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; +       vf *= 2) { +    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { +      MaxVFWithoutSLForwardIssues = (vf >>=1); +      break; +    } +  } + +  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { +    DEBUG(dbgs() << "LAA: Distance " << Distance << +          " that could cause a store-load forwarding conflict\n"); +    return true; +  } + +  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && +      MaxVFWithoutSLForwardIssues != +      VectorizerParams::MaxVectorWidth * TypeByteSize) +    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; +  return false; +} + +MemoryDepChecker::Dependence::DepType +MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, +                              const MemAccessInfo &B, unsigned BIdx, +                              const ValueToValueMap &Strides) { +  assert (AIdx < BIdx && "Must pass arguments in program order"); + +  Value *APtr = A.getPointer(); +  Value *BPtr = B.getPointer(); +  bool AIsWrite = A.getInt(); +  bool BIsWrite = B.getInt(); + +  // Two reads are independent. +  if (!AIsWrite && !BIsWrite) +    return Dependence::NoDep; + +  // We cannot check pointers in different address spaces. +  if (APtr->getType()->getPointerAddressSpace() != +      BPtr->getType()->getPointerAddressSpace()) +    return Dependence::Unknown; + +  const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); +  const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); + +  int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); +  int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); + +  const SCEV *Src = AScev; +  const SCEV *Sink = BScev; + +  // If the induction step is negative we have to invert source and sink of the +  // dependence. +  if (StrideAPtr < 0) { +    //Src = BScev; +    //Sink = AScev; +    std::swap(APtr, BPtr); +    std::swap(Src, Sink); +    std::swap(AIsWrite, BIsWrite); +    std::swap(AIdx, BIdx); +    std::swap(StrideAPtr, StrideBPtr); +  } + +  const SCEV *Dist = SE->getMinusSCEV(Sink, Src); + +  DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink +        << "(Induction step: " << StrideAPtr <<  ")\n"); +  DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " +        << *InstMap[BIdx] << ": " << *Dist << "\n"); + +  // Need consecutive accesses. We don't want to vectorize +  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in +  // the address space. +  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ +    DEBUG(dbgs() << "Non-consecutive pointer access\n"); +    return Dependence::Unknown; +  } + +  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); +  if (!C) { +    DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); +    ShouldRetryWithRuntimeCheck = true; +    return Dependence::Unknown; +  } + +  Type *ATy = APtr->getType()->getPointerElementType(); +  Type *BTy = BPtr->getType()->getPointerElementType(); +  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); +  unsigned TypeByteSize = DL.getTypeAllocSize(ATy); + +  // Negative distances are not plausible dependencies. +  const APInt &Val = C->getValue()->getValue(); +  if (Val.isNegative()) { +    bool IsTrueDataDependence = (AIsWrite && !BIsWrite); +    if (IsTrueDataDependence && +        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || +         ATy != BTy)) +      return Dependence::ForwardButPreventsForwarding; + +    DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); +    return Dependence::Forward; +  } + +  // Write to the same location with the same size. +  // Could be improved to assert type sizes are the same (i32 == float, etc). +  if (Val == 0) { +    if (ATy == BTy) +      return Dependence::NoDep; +    DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); +    return Dependence::Unknown; +  } + +  assert(Val.isStrictlyPositive() && "Expect a positive value"); + +  if (ATy != BTy) { +    DEBUG(dbgs() << +          "LAA: ReadWrite-Write positive dependency with different types\n"); +    return Dependence::Unknown; +  } + +  unsigned Distance = (unsigned) Val.getZExtValue(); + +  // Bail out early if passed-in parameters make vectorization not feasible. +  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? +                           VectorizerParams::VectorizationFactor : 1); +  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? +                           VectorizerParams::VectorizationInterleave : 1); + +  // The distance must be bigger than the size needed for a vectorized version +  // of the operation and the size of the vectorized operation must not be +  // bigger than the currrent maximum size. +  if (Distance < 2*TypeByteSize || +      2*TypeByteSize > MaxSafeDepDistBytes || +      Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { +    DEBUG(dbgs() << "LAA: Failure because of Positive distance " +        << Val.getSExtValue() << '\n'); +    return Dependence::Backward; +  } + +  // Positive distance bigger than max vectorization factor. +  MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? +    Distance : MaxSafeDepDistBytes; + +  bool IsTrueDataDependence = (!AIsWrite && BIsWrite); +  if (IsTrueDataDependence && +      couldPreventStoreLoadForward(Distance, TypeByteSize)) +    return Dependence::BackwardVectorizableButPreventsForwarding; + +  DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() << +        " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); + +  return Dependence::BackwardVectorizable; +} + +bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, +                                   MemAccessInfoSet &CheckDeps, +                                   const ValueToValueMap &Strides) { + +  MaxSafeDepDistBytes = -1U; +  while (!CheckDeps.empty()) { +    MemAccessInfo CurAccess = *CheckDeps.begin(); + +    // Get the relevant memory access set. +    EquivalenceClasses<MemAccessInfo>::iterator I = +      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); + +    // Check accesses within this set. +    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; +    AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); + +    // Check every access pair. +    while (AI != AE) { +      CheckDeps.erase(*AI); +      EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); +      while (OI != AE) { +        // Check every accessing instruction pair in program order. +        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), +             I1E = Accesses[*AI].end(); I1 != I1E; ++I1) +          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), +               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { +            auto A = std::make_pair(&*AI, *I1); +            auto B = std::make_pair(&*OI, *I2); + +            assert(*I1 != *I2); +            if (*I1 > *I2) +              std::swap(A, B); + +            Dependence::DepType Type = +                isDependent(*A.first, A.second, *B.first, B.second, Strides); +            SafeForVectorization &= Dependence::isSafeForVectorization(Type); + +            // Gather dependences unless we accumulated MaxInterestingDependence +            // dependences.  In that case return as soon as we find the first +            // unsafe dependence.  This puts a limit on this quadratic +            // algorithm. +            if (RecordInterestingDependences) { +              if (Dependence::isInterestingDependence(Type)) +                InterestingDependences.push_back( +                    Dependence(A.second, B.second, Type)); + +              if (InterestingDependences.size() >= MaxInterestingDependence) { +                RecordInterestingDependences = false; +                InterestingDependences.clear(); +                DEBUG(dbgs() << "Too many dependences, stopped recording\n"); +              } +            } +            if (!RecordInterestingDependences && !SafeForVectorization) +              return false; +          } +        ++OI; +      } +      AI++; +    } +  } + +  DEBUG(dbgs() << "Total Interesting Dependences: " +               << InterestingDependences.size() << "\n"); +  return SafeForVectorization; +} + +SmallVector<Instruction *, 4> +MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { +  MemAccessInfo Access(Ptr, isWrite); +  auto &IndexVector = Accesses.find(Access)->second; + +  SmallVector<Instruction *, 4> Insts; +  std::transform(IndexVector.begin(), IndexVector.end(), +                 std::back_inserter(Insts), +                 [&](unsigned Idx) { return this->InstMap[Idx]; }); +  return Insts; +} + +const char *MemoryDepChecker::Dependence::DepName[] = { +    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", +    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; + +void MemoryDepChecker::Dependence::print( +    raw_ostream &OS, unsigned Depth, +    const SmallVectorImpl<Instruction *> &Instrs) const { +  OS.indent(Depth) << DepName[Type] << ":\n"; +  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; +  OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; +} + +bool LoopAccessInfo::canAnalyzeLoop() { +  // We need to have a loop header. +  DEBUG(dbgs() << "LAA: Found a loop: " << +        TheLoop->getHeader()->getName() << '\n'); + +    // We can only analyze innermost loops. +  if (!TheLoop->empty()) { +    DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); +    emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); +    return false; +  } + +  // We must have a single backedge. +  if (TheLoop->getNumBackEdges() != 1) { +    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); +    emitAnalysis( +        LoopAccessReport() << +        "loop control flow is not understood by analyzer"); +    return false; +  } + +  // We must have a single exiting block. +  if (!TheLoop->getExitingBlock()) { +    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); +    emitAnalysis( +        LoopAccessReport() << +        "loop control flow is not understood by analyzer"); +    return false; +  } + +  // We only handle bottom-tested loops, i.e. loop in which the condition is +  // checked at the end of each iteration. With that we can assume that all +  // instructions in the loop are executed the same number of times. +  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { +    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); +    emitAnalysis( +        LoopAccessReport() << +        "loop control flow is not understood by analyzer"); +    return false; +  } + +  // ScalarEvolution needs to be able to find the exit count. +  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); +  if (ExitCount == SE->getCouldNotCompute()) { +    emitAnalysis(LoopAccessReport() << +                 "could not determine number of loop iterations"); +    DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); +    return false; +  } + +  return true; +} + +void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { + +  typedef SmallVector<Value*, 16> ValueVector; +  typedef SmallPtrSet<Value*, 16> ValueSet; + +  // Holds the Load and Store *instructions*. +  ValueVector Loads; +  ValueVector Stores; + +  // Holds all the different accesses in the loop. +  unsigned NumReads = 0; +  unsigned NumReadWrites = 0; + +  PtrRtCheck.Pointers.clear(); +  PtrRtCheck.Need = false; + +  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); + +  // For each block. +  for (Loop::block_iterator bb = TheLoop->block_begin(), +       be = TheLoop->block_end(); bb != be; ++bb) { + +    // Scan the BB and collect legal loads and stores. +    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; +         ++it) { + +      // If this is a load, save it. If this instruction can read from memory +      // but is not a load, then we quit. Notice that we don't handle function +      // calls that read or write. +      if (it->mayReadFromMemory()) { +        // Many math library functions read the rounding mode. We will only +        // vectorize a loop if it contains known function calls that don't set +        // the flag. Therefore, it is safe to ignore this read from memory. +        CallInst *Call = dyn_cast<CallInst>(it); +        if (Call && getIntrinsicIDForCall(Call, TLI)) +          continue; + +        // If the function has an explicit vectorized counterpart, we can safely +        // assume that it can be vectorized. +        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && +            TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) +          continue; + +        LoadInst *Ld = dyn_cast<LoadInst>(it); +        if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { +          emitAnalysis(LoopAccessReport(Ld) +                       << "read with atomic ordering or volatile read"); +          DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); +          CanVecMem = false; +          return; +        } +        NumLoads++; +        Loads.push_back(Ld); +        DepChecker.addAccess(Ld); +        continue; +      } + +      // Save 'store' instructions. Abort if other instructions write to memory. +      if (it->mayWriteToMemory()) { +        StoreInst *St = dyn_cast<StoreInst>(it); +        if (!St) { +          emitAnalysis(LoopAccessReport(it) << +                       "instruction cannot be vectorized"); +          CanVecMem = false; +          return; +        } +        if (!St->isSimple() && !IsAnnotatedParallel) { +          emitAnalysis(LoopAccessReport(St) +                       << "write with atomic ordering or volatile write"); +          DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); +          CanVecMem = false; +          return; +        } +        NumStores++; +        Stores.push_back(St); +        DepChecker.addAccess(St); +      } +    } // Next instr. +  } // Next block. + +  // Now we have two lists that hold the loads and the stores. +  // Next, we find the pointers that they use. + +  // Check if we see any stores. If there are no stores, then we don't +  // care if the pointers are *restrict*. +  if (!Stores.size()) { +    DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); +    CanVecMem = true; +    return; +  } + +  MemoryDepChecker::DepCandidates DependentAccesses; +  AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), +                          AA, LI, DependentAccesses); + +  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects +  // multiple times on the same object. If the ptr is accessed twice, once +  // for read and once for write, it will only appear once (on the write +  // list). This is okay, since we are going to check for conflicts between +  // writes and between reads and writes, but not between reads and reads. +  ValueSet Seen; + +  ValueVector::iterator I, IE; +  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { +    StoreInst *ST = cast<StoreInst>(*I); +    Value* Ptr = ST->getPointerOperand(); +    // Check for store to loop invariant address. +    StoreToLoopInvariantAddress |= isUniform(Ptr); +    // If we did *not* see this pointer before, insert it to  the read-write +    // list. At this phase it is only a 'write' list. +    if (Seen.insert(Ptr).second) { +      ++NumReadWrites; + +      AliasAnalysis::Location Loc = AA->getLocation(ST); +      // The TBAA metadata could have a control dependency on the predication +      // condition, so we cannot rely on it when determining whether or not we +      // need runtime pointer checks. +      if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) +        Loc.AATags.TBAA = nullptr; + +      Accesses.addStore(Loc); +    } +  } + +  if (IsAnnotatedParallel) { +    DEBUG(dbgs() +          << "LAA: A loop annotated parallel, ignore memory dependency " +          << "checks.\n"); +    CanVecMem = true; +    return; +  } + +  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { +    LoadInst *LD = cast<LoadInst>(*I); +    Value* Ptr = LD->getPointerOperand(); +    // If we did *not* see this pointer before, insert it to the +    // read list. If we *did* see it before, then it is already in +    // the read-write list. This allows us to vectorize expressions +    // such as A[i] += x;  Because the address of A[i] is a read-write +    // pointer. This only works if the index of A[i] is consecutive. +    // If the address of i is unknown (for example A[B[i]]) then we may +    // read a few words, modify, and write a few words, and some of the +    // words may be written to the same address. +    bool IsReadOnlyPtr = false; +    if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { +      ++NumReads; +      IsReadOnlyPtr = true; +    } + +    AliasAnalysis::Location Loc = AA->getLocation(LD); +    // The TBAA metadata could have a control dependency on the predication +    // condition, so we cannot rely on it when determining whether or not we +    // need runtime pointer checks. +    if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) +      Loc.AATags.TBAA = nullptr; + +    Accesses.addLoad(Loc, IsReadOnlyPtr); +  } + +  // If we write (or read-write) to a single destination and there are no +  // other reads in this loop then is it safe to vectorize. +  if (NumReadWrites == 1 && NumReads == 0) { +    DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); +    CanVecMem = true; +    return; +  } + +  // Build dependence sets and check whether we need a runtime pointer bounds +  // check. +  Accesses.buildDependenceSets(); +  bool NeedRTCheck = Accesses.isRTCheckNeeded(); + +  // Find pointers with computable bounds. We are going to use this information +  // to place a runtime bound check. +  bool CanDoRT = false; +  if (NeedRTCheck) +    CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, +                                       Strides); + +  DEBUG(dbgs() << "LAA: We need to do " << NumComparisons << +        " pointer comparisons.\n"); + +  // If we only have one set of dependences to check pointers among we don't +  // need a runtime check. +  if (NumComparisons == 0 && NeedRTCheck) +    NeedRTCheck = false; + +  // Check that we found the bounds for the pointer. +  if (CanDoRT) +    DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); +  else if (NeedRTCheck) { +    emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); +    DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " << +          "the array bounds.\n"); +    PtrRtCheck.reset(); +    CanVecMem = false; +    return; +  } + +  PtrRtCheck.Need = NeedRTCheck; + +  CanVecMem = true; +  if (Accesses.isDependencyCheckNeeded()) { +    DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); +    CanVecMem = DepChecker.areDepsSafe( +        DependentAccesses, Accesses.getDependenciesToCheck(), Strides); +    MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); + +    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { +      DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); +      NeedRTCheck = true; + +      // Clear the dependency checks. We assume they are not needed. +      Accesses.resetDepChecks(DepChecker); + +      PtrRtCheck.reset(); +      PtrRtCheck.Need = true; + +      CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, +                                         TheLoop, Strides, true); +      // Check that we found the bounds for the pointer. +      if (!CanDoRT && NumComparisons > 0) { +        emitAnalysis(LoopAccessReport() +                     << "cannot check memory dependencies at runtime"); +        DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); +        PtrRtCheck.reset(); +        CanVecMem = false; +        return; +      } + +      CanVecMem = true; +    } +  } + +  if (CanVecMem) +    DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We" +                 << (NeedRTCheck ? "" : " don't") +                 << " need a runtime memory check.\n"); +  else { +    emitAnalysis(LoopAccessReport() << +                 "unsafe dependent memory operations in loop"); +    DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); +  } +} + +bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, +                                           DominatorTree *DT)  { +  assert(TheLoop->contains(BB) && "Unknown block used"); + +  // Blocks that do not dominate the latch need predication. +  BasicBlock* Latch = TheLoop->getLoopLatch(); +  return !DT->dominates(BB, Latch); +} + +void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { +  assert(!Report && "Multiple reports generated"); +  Report = Message; +} + +bool LoopAccessInfo::isUniform(Value *V) const { +  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); +} + +// FIXME: this function is currently a duplicate of the one in +// LoopVectorize.cpp. +static Instruction *getFirstInst(Instruction *FirstInst, Value *V, +                                 Instruction *Loc) { +  if (FirstInst) +    return FirstInst; +  if (Instruction *I = dyn_cast<Instruction>(V)) +    return I->getParent() == Loc->getParent() ? I : nullptr; +  return nullptr; +} + +std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( +    Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { +  if (!PtrRtCheck.Need) +    return std::make_pair(nullptr, nullptr); + +  unsigned NumPointers = PtrRtCheck.Pointers.size(); +  SmallVector<TrackingVH<Value> , 2> Starts; +  SmallVector<TrackingVH<Value> , 2> Ends; + +  LLVMContext &Ctx = Loc->getContext(); +  SCEVExpander Exp(*SE, DL, "induction"); +  Instruction *FirstInst = nullptr; + +  for (unsigned i = 0; i < NumPointers; ++i) { +    Value *Ptr = PtrRtCheck.Pointers[i]; +    const SCEV *Sc = SE->getSCEV(Ptr); + +    if (SE->isLoopInvariant(Sc, TheLoop)) { +      DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << +            *Ptr <<"\n"); +      Starts.push_back(Ptr); +      Ends.push_back(Ptr); +    } else { +      DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n'); +      unsigned AS = Ptr->getType()->getPointerAddressSpace(); + +      // Use this type for pointer arithmetic. +      Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); + +      Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc); +      Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc); +      Starts.push_back(Start); +      Ends.push_back(End); +    } +  } + +  IRBuilder<> ChkBuilder(Loc); +  // Our instructions might fold to a constant. +  Value *MemoryRuntimeCheck = nullptr; +  for (unsigned i = 0; i < NumPointers; ++i) { +    for (unsigned j = i+1; j < NumPointers; ++j) { +      if (!PtrRtCheck.needsChecking(i, j, PtrPartition)) +        continue; + +      unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); +      unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); + +      assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && +             (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && +             "Trying to bounds check pointers with different address spaces"); + +      Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); +      Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); + +      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); +      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); +      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc"); +      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc"); + +      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); +      FirstInst = getFirstInst(FirstInst, Cmp0, Loc); +      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); +      FirstInst = getFirstInst(FirstInst, Cmp1, Loc); +      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); +      FirstInst = getFirstInst(FirstInst, IsConflict, Loc); +      if (MemoryRuntimeCheck) { +        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, +                                         "conflict.rdx"); +        FirstInst = getFirstInst(FirstInst, IsConflict, Loc); +      } +      MemoryRuntimeCheck = IsConflict; +    } +  } + +  if (!MemoryRuntimeCheck) +    return std::make_pair(nullptr, nullptr); + +  // We have to do this trickery because the IRBuilder might fold the check to a +  // constant expression in which case there is no Instruction anchored in a +  // the block. +  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, +                                                 ConstantInt::getTrue(Ctx)); +  ChkBuilder.Insert(Check, "memcheck.conflict"); +  FirstInst = getFirstInst(FirstInst, Check, Loc); +  return std::make_pair(FirstInst, Check); +} + +LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, +                               const DataLayout &DL, +                               const TargetLibraryInfo *TLI, AliasAnalysis *AA, +                               DominatorTree *DT, LoopInfo *LI, +                               const ValueToValueMap &Strides) +    : DepChecker(SE, L), NumComparisons(0), TheLoop(L), SE(SE), DL(DL), +      TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), +      MaxSafeDepDistBytes(-1U), CanVecMem(false), +      StoreToLoopInvariantAddress(false) { +  if (canAnalyzeLoop()) +    analyzeLoop(Strides); +} + +void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { +  if (CanVecMem) { +    if (PtrRtCheck.Need) +      OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; +    else +      OS.indent(Depth) << "Memory dependences are safe\n"; +  } + +  if (Report) +    OS.indent(Depth) << "Report: " << Report->str() << "\n"; + +  if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { +    OS.indent(Depth) << "Interesting Dependences:\n"; +    for (auto &Dep : *InterestingDependences) { +      Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); +      OS << "\n"; +    } +  } else +    OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; + +  // List the pair of accesses need run-time checks to prove independence. +  PtrRtCheck.print(OS, Depth); +  OS << "\n"; + +  OS.indent(Depth) << "Store to invariant address was " +                   << (StoreToLoopInvariantAddress ? "" : "not ") +                   << "found in loop.\n"; +} + +const LoopAccessInfo & +LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { +  auto &LAI = LoopAccessInfoMap[L]; + +#ifndef NDEBUG +  assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && +         "Symbolic strides changed for loop"); +#endif + +  if (!LAI) { +    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); +    LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, +                                            Strides); +#ifndef NDEBUG +    LAI->NumSymbolicStrides = Strides.size(); +#endif +  } +  return *LAI.get(); +} + +void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { +  LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); + +  ValueToValueMap NoSymbolicStrides; + +  for (Loop *TopLevelLoop : *LI) +    for (Loop *L : depth_first(TopLevelLoop)) { +      OS.indent(2) << L->getHeader()->getName() << ":\n"; +      auto &LAI = LAA.getInfo(L, NoSymbolicStrides); +      LAI.print(OS, 4); +    } +} + +bool LoopAccessAnalysis::runOnFunction(Function &F) { +  SE = &getAnalysis<ScalarEvolution>(); +  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); +  TLI = TLIP ? &TLIP->getTLI() : nullptr; +  AA = &getAnalysis<AliasAnalysis>(); +  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + +  return false; +} + +void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { +    AU.addRequired<ScalarEvolution>(); +    AU.addRequired<AliasAnalysis>(); +    AU.addRequired<DominatorTreeWrapperPass>(); +    AU.addRequired<LoopInfoWrapperPass>(); + +    AU.setPreservesAll(); +} + +char LoopAccessAnalysis::ID = 0; +static const char laa_name[] = "Loop Access Analysis"; +#define LAA_NAME "loop-accesses" + +INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) + +namespace llvm { +  Pass *createLAAPass() { +    return new LoopAccessAnalysis(); +  } +}  | 
