diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp | 2377 | 
1 files changed, 2377 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp new file mode 100644 index 000000000000..c6175bf9bee9 --- /dev/null +++ b/contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp @@ -0,0 +1,2377 @@ +//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The implementation for the loop memory dependence that was originally +// developed for the loop vectorizer. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/EquivalenceClasses.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/LoopAnalysisManager.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <cstdlib> +#include <iterator> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "loop-accesses" + +static cl::opt<unsigned, true> +VectorizationFactor("force-vector-width", cl::Hidden, +                    cl::desc("Sets the SIMD width. Zero is autoselect."), +                    cl::location(VectorizerParams::VectorizationFactor)); +unsigned VectorizerParams::VectorizationFactor; + +static cl::opt<unsigned, true> +VectorizationInterleave("force-vector-interleave", cl::Hidden, +                        cl::desc("Sets the vectorization interleave count. " +                                 "Zero is autoselect."), +                        cl::location( +                            VectorizerParams::VectorizationInterleave)); +unsigned VectorizerParams::VectorizationInterleave; + +static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( +    "runtime-memory-check-threshold", cl::Hidden, +    cl::desc("When performing memory disambiguation checks at runtime do not " +             "generate more than this number of comparisons (default = 8)."), +    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); +unsigned VectorizerParams::RuntimeMemoryCheckThreshold; + +/// The maximum iterations used to merge memory checks +static cl::opt<unsigned> MemoryCheckMergeThreshold( +    "memory-check-merge-threshold", cl::Hidden, +    cl::desc("Maximum number of comparisons done when trying to merge " +             "runtime memory checks. (default = 100)"), +    cl::init(100)); + +/// Maximum SIMD width. +const unsigned VectorizerParams::MaxVectorWidth = 64; + +/// We collect dependences up to this threshold. +static cl::opt<unsigned> +    MaxDependences("max-dependences", cl::Hidden, +                   cl::desc("Maximum number of dependences collected by " +                            "loop-access analysis (default = 100)"), +                   cl::init(100)); + +/// This enables versioning on the strides of symbolically striding memory +/// accesses in code like the following. +///   for (i = 0; i < N; ++i) +///     A[i * Stride1] += B[i * Stride2] ... +/// +/// Will be roughly translated to +///    if (Stride1 == 1 && Stride2 == 1) { +///      for (i = 0; i < N; i+=4) +///       A[i:i+3] += ... +///    } else +///      ... +static cl::opt<bool> EnableMemAccessVersioning( +    "enable-mem-access-versioning", cl::init(true), cl::Hidden, +    cl::desc("Enable symbolic stride memory access versioning")); + +/// Enable store-to-load forwarding conflict detection. This option can +/// be disabled for correctness testing. +static cl::opt<bool> EnableForwardingConflictDetection( +    "store-to-load-forwarding-conflict-detection", cl::Hidden, +    cl::desc("Enable conflict detection in loop-access analysis"), +    cl::init(true)); + +bool VectorizerParams::isInterleaveForced() { +  return ::VectorizationInterleave.getNumOccurrences() > 0; +} + +Value *llvm::stripIntegerCast(Value *V) { +  if (auto *CI = dyn_cast<CastInst>(V)) +    if (CI->getOperand(0)->getType()->isIntegerTy()) +      return CI->getOperand(0); +  return V; +} + +const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, +                                            const ValueToValueMap &PtrToStride, +                                            Value *Ptr, Value *OrigPtr) { +  const SCEV *OrigSCEV = PSE.getSCEV(Ptr); + +  // If there is an entry in the map return the SCEV of the pointer with the +  // symbolic stride replaced by one. +  ValueToValueMap::const_iterator SI = +      PtrToStride.find(OrigPtr ? OrigPtr : Ptr); +  if (SI != PtrToStride.end()) { +    Value *StrideVal = SI->second; + +    // Strip casts. +    StrideVal = stripIntegerCast(StrideVal); + +    ScalarEvolution *SE = PSE.getSE(); +    const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); +    const auto *CT = +        static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); + +    PSE.addPredicate(*SE->getEqualPredicate(U, CT)); +    auto *Expr = PSE.getSCEV(Ptr); + +    LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV +                      << " by: " << *Expr << "\n"); +    return Expr; +  } + +  // Otherwise, just return the SCEV of the original pointer. +  return OrigSCEV; +} + +/// Calculate Start and End points of memory access. +/// Let's assume A is the first access and B is a memory access on N-th loop +/// iteration. Then B is calculated as:   +///   B = A + Step*N .  +/// Step value may be positive or negative. +/// N is a calculated back-edge taken count: +///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 +/// Start and End points are calculated in the following way: +/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, +/// where SizeOfElt is the size of single memory access in bytes. +/// +/// There is no conflict when the intervals are disjoint: +/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) +void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, +                                    unsigned DepSetId, unsigned ASId, +                                    const ValueToValueMap &Strides, +                                    PredicatedScalarEvolution &PSE) { +  // Get the stride replaced scev. +  const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); +  ScalarEvolution *SE = PSE.getSE(); + +  const SCEV *ScStart; +  const SCEV *ScEnd; + +  if (SE->isLoopInvariant(Sc, Lp)) +    ScStart = ScEnd = Sc; +  else { +    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); +    assert(AR && "Invalid addrec expression"); +    const SCEV *Ex = PSE.getBackedgeTakenCount(); + +    ScStart = AR->getStart(); +    ScEnd = AR->evaluateAtIteration(Ex, *SE); +    const SCEV *Step = AR->getStepRecurrence(*SE); + +    // For expressions with negative step, the upper bound is ScStart and the +    // lower bound is ScEnd. +    if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { +      if (CStep->getValue()->isNegative()) +        std::swap(ScStart, ScEnd); +    } else { +      // Fallback case: the step is not constant, but we can still +      // get the upper and lower bounds of the interval by using min/max +      // expressions. +      ScStart = SE->getUMinExpr(ScStart, ScEnd); +      ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); +    } +    // Add the size of the pointed element to ScEnd. +    unsigned EltSize = +      Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; +    const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); +    ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); +  } + +  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); +} + +SmallVector<RuntimePointerChecking::PointerCheck, 4> +RuntimePointerChecking::generateChecks() const { +  SmallVector<PointerCheck, 4> Checks; + +  for (unsigned I = 0; I < CheckingGroups.size(); ++I) { +    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { +      const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; +      const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; + +      if (needsChecking(CGI, CGJ)) +        Checks.push_back(std::make_pair(&CGI, &CGJ)); +    } +  } +  return Checks; +} + +void RuntimePointerChecking::generateChecks( +    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { +  assert(Checks.empty() && "Checks is not empty"); +  groupChecks(DepCands, UseDependencies); +  Checks = generateChecks(); +} + +bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, +                                           const CheckingPtrGroup &N) const { +  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) +    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) +      if (needsChecking(M.Members[I], N.Members[J])) +        return true; +  return false; +} + +/// Compare \p I and \p J and return the minimum. +/// Return nullptr in case we couldn't find an answer. +static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, +                                   ScalarEvolution *SE) { +  const SCEV *Diff = SE->getMinusSCEV(J, I); +  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); + +  if (!C) +    return nullptr; +  if (C->getValue()->isNegative()) +    return J; +  return I; +} + +bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { +  const SCEV *Start = RtCheck.Pointers[Index].Start; +  const SCEV *End = RtCheck.Pointers[Index].End; + +  // Compare the starts and ends with the known minimum and maximum +  // of this set. We need to know how we compare against the min/max +  // of the set in order to be able to emit memchecks. +  const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); +  if (!Min0) +    return false; + +  const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); +  if (!Min1) +    return false; + +  // Update the low bound  expression if we've found a new min value. +  if (Min0 == Start) +    Low = Start; + +  // Update the high bound expression if we've found a new max value. +  if (Min1 != End) +    High = End; + +  Members.push_back(Index); +  return true; +} + +void RuntimePointerChecking::groupChecks( +    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { +  // We build the groups from dependency candidates equivalence classes +  // because: +  //    - We know that pointers in the same equivalence class share +  //      the same underlying object and therefore there is a chance +  //      that we can compare pointers +  //    - We wouldn't be able to merge two pointers for which we need +  //      to emit a memcheck. The classes in DepCands are already +  //      conveniently built such that no two pointers in the same +  //      class need checking against each other. + +  // We use the following (greedy) algorithm to construct the groups +  // For every pointer in the equivalence class: +  //   For each existing group: +  //   - if the difference between this pointer and the min/max bounds +  //     of the group is a constant, then make the pointer part of the +  //     group and update the min/max bounds of that group as required. + +  CheckingGroups.clear(); + +  // If we need to check two pointers to the same underlying object +  // with a non-constant difference, we shouldn't perform any pointer +  // grouping with those pointers. This is because we can easily get +  // into cases where the resulting check would return false, even when +  // the accesses are safe. +  // +  // The following example shows this: +  // for (i = 0; i < 1000; ++i) +  //   a[5000 + i * m] = a[i] + a[i + 9000] +  // +  // Here grouping gives a check of (5000, 5000 + 1000 * m) against +  // (0, 10000) which is always false. However, if m is 1, there is no +  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows +  // us to perform an accurate check in this case. +  // +  // The above case requires that we have an UnknownDependence between +  // accesses to the same underlying object. This cannot happen unless +  // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies +  // is also false. In this case we will use the fallback path and create +  // separate checking groups for all pointers. + +  // If we don't have the dependency partitions, construct a new +  // checking pointer group for each pointer. This is also required +  // for correctness, because in this case we can have checking between +  // pointers to the same underlying object. +  if (!UseDependencies) { +    for (unsigned I = 0; I < Pointers.size(); ++I) +      CheckingGroups.push_back(CheckingPtrGroup(I, *this)); +    return; +  } + +  unsigned TotalComparisons = 0; + +  DenseMap<Value *, unsigned> PositionMap; +  for (unsigned Index = 0; Index < Pointers.size(); ++Index) +    PositionMap[Pointers[Index].PointerValue] = Index; + +  // We need to keep track of what pointers we've already seen so we +  // don't process them twice. +  SmallSet<unsigned, 2> Seen; + +  // Go through all equivalence classes, get the "pointer check groups" +  // and add them to the overall solution. We use the order in which accesses +  // appear in 'Pointers' to enforce determinism. +  for (unsigned I = 0; I < Pointers.size(); ++I) { +    // We've seen this pointer before, and therefore already processed +    // its equivalence class. +    if (Seen.count(I)) +      continue; + +    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, +                                           Pointers[I].IsWritePtr); + +    SmallVector<CheckingPtrGroup, 2> Groups; +    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); + +    // Because DepCands is constructed by visiting accesses in the order in +    // which they appear in alias sets (which is deterministic) and the +    // iteration order within an equivalence class member is only dependent on +    // the order in which unions and insertions are performed on the +    // equivalence class, the iteration order is deterministic. +    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); +         MI != ME; ++MI) { +      unsigned Pointer = PositionMap[MI->getPointer()]; +      bool Merged = false; +      // Mark this pointer as seen. +      Seen.insert(Pointer); + +      // Go through all the existing sets and see if we can find one +      // which can include this pointer. +      for (CheckingPtrGroup &Group : Groups) { +        // Don't perform more than a certain amount of comparisons. +        // This should limit the cost of grouping the pointers to something +        // reasonable.  If we do end up hitting this threshold, the algorithm +        // will create separate groups for all remaining pointers. +        if (TotalComparisons > MemoryCheckMergeThreshold) +          break; + +        TotalComparisons++; + +        if (Group.addPointer(Pointer)) { +          Merged = true; +          break; +        } +      } + +      if (!Merged) +        // We couldn't add this pointer to any existing set or the threshold +        // for the number of comparisons has been reached. Create a new group +        // to hold the current pointer. +        Groups.push_back(CheckingPtrGroup(Pointer, *this)); +    } + +    // We've computed the grouped checks for this partition. +    // Save the results and continue with the next one. +    std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); +  } +} + +bool RuntimePointerChecking::arePointersInSamePartition( +    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, +    unsigned PtrIdx2) { +  return (PtrToPartition[PtrIdx1] != -1 && +          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); +} + +bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { +  const PointerInfo &PointerI = Pointers[I]; +  const PointerInfo &PointerJ = Pointers[J]; + +  // No need to check if two readonly pointers intersect. +  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) +    return false; + +  // Only need to check pointers between two different dependency sets. +  if (PointerI.DependencySetId == PointerJ.DependencySetId) +    return false; + +  // Only need to check pointers in the same alias set. +  if (PointerI.AliasSetId != PointerJ.AliasSetId) +    return false; + +  return true; +} + +void RuntimePointerChecking::printChecks( +    raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, +    unsigned Depth) const { +  unsigned N = 0; +  for (const auto &Check : Checks) { +    const auto &First = Check.first->Members, &Second = Check.second->Members; + +    OS.indent(Depth) << "Check " << N++ << ":\n"; + +    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; +    for (unsigned K = 0; K < First.size(); ++K) +      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; + +    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; +    for (unsigned K = 0; K < Second.size(); ++K) +      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; +  } +} + +void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { + +  OS.indent(Depth) << "Run-time memory checks:\n"; +  printChecks(OS, Checks, Depth); + +  OS.indent(Depth) << "Grouped accesses:\n"; +  for (unsigned I = 0; I < CheckingGroups.size(); ++I) { +    const auto &CG = CheckingGroups[I]; + +    OS.indent(Depth + 2) << "Group " << &CG << ":\n"; +    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High +                         << ")\n"; +    for (unsigned J = 0; J < CG.Members.size(); ++J) { +      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr +                           << "\n"; +    } +  } +} + +namespace { + +/// Analyses memory accesses in a loop. +/// +/// Checks whether run time pointer checks are needed and builds sets for data +/// dependence checking. +class AccessAnalysis { +public: +  /// Read or write access location. +  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; +  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; + +  AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, +                 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, +                 PredicatedScalarEvolution &PSE) +      : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), +        IsRTCheckAnalysisNeeded(false), PSE(PSE) {} + +  /// Register a load  and whether it is only read from. +  void addLoad(MemoryLocation &Loc, bool IsReadOnly) { +    Value *Ptr = const_cast<Value*>(Loc.Ptr); +    AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); +    Accesses.insert(MemAccessInfo(Ptr, false)); +    if (IsReadOnly) +      ReadOnlyPtr.insert(Ptr); +  } + +  /// Register a store. +  void addStore(MemoryLocation &Loc) { +    Value *Ptr = const_cast<Value*>(Loc.Ptr); +    AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); +    Accesses.insert(MemAccessInfo(Ptr, true)); +  } + +  /// Check if we can emit a run-time no-alias check for \p Access. +  /// +  /// Returns true if we can emit a run-time no alias check for \p Access. +  /// If we can check this access, this also adds it to a dependence set and +  /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, +  /// we will attempt to use additional run-time checks in order to get +  /// the bounds of the pointer. +  bool createCheckForAccess(RuntimePointerChecking &RtCheck, +                            MemAccessInfo Access, +                            const ValueToValueMap &Strides, +                            DenseMap<Value *, unsigned> &DepSetId, +                            Loop *TheLoop, unsigned &RunningDepId, +                            unsigned ASId, bool ShouldCheckStride, +                            bool Assume); + +  /// Check whether we can check the pointers at runtime for +  /// non-intersection. +  /// +  /// Returns true if we need no check or if we do and we can generate them +  /// (i.e. the pointers have computable bounds). +  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, +                       Loop *TheLoop, const ValueToValueMap &Strides, +                       bool ShouldCheckWrap = false); + +  /// Goes over all memory accesses, checks whether a RT check is needed +  /// and builds sets of dependent accesses. +  void buildDependenceSets() { +    processMemAccesses(); +  } + +  /// Initial processing of memory accesses determined that we need to +  /// perform dependency checking. +  /// +  /// Note that this can later be cleared if we retry memcheck analysis without +  /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). +  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } + +  /// We decided that no dependence analysis would be used.  Reset the state. +  void resetDepChecks(MemoryDepChecker &DepChecker) { +    CheckDeps.clear(); +    DepChecker.clearDependences(); +  } + +  MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } + +private: +  typedef SetVector<MemAccessInfo> PtrAccessSet; + +  /// Go over all memory access and check whether runtime pointer checks +  /// are needed and build sets of dependency check candidates. +  void processMemAccesses(); + +  /// Set of all accesses. +  PtrAccessSet Accesses; + +  const DataLayout &DL; + +  /// The loop being checked. +  const Loop *TheLoop; + +  /// List of accesses that need a further dependence check. +  MemAccessInfoList CheckDeps; + +  /// Set of pointers that are read only. +  SmallPtrSet<Value*, 16> ReadOnlyPtr; + +  /// An alias set tracker to partition the access set by underlying object and +  //intrinsic property (such as TBAA metadata). +  AliasSetTracker AST; + +  LoopInfo *LI; + +  /// Sets of potentially dependent accesses - members of one set share an +  /// underlying pointer. The set "CheckDeps" identfies which sets really need a +  /// dependence check. +  MemoryDepChecker::DepCandidates &DepCands; + +  /// Initial processing of memory accesses determined that we may need +  /// to add memchecks.  Perform the analysis to determine the necessary checks. +  /// +  /// Note that, this is different from isDependencyCheckNeeded.  When we retry +  /// memcheck analysis without dependency checking +  /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared +  /// while this remains set if we have potentially dependent accesses. +  bool IsRTCheckAnalysisNeeded; + +  /// The SCEV predicate containing all the SCEV-related assumptions. +  PredicatedScalarEvolution &PSE; +}; + +} // end anonymous namespace + +/// Check whether a pointer can participate in a runtime bounds check. +/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr +/// by adding run-time checks (overflow checks) if necessary. +static bool hasComputableBounds(PredicatedScalarEvolution &PSE, +                                const ValueToValueMap &Strides, Value *Ptr, +                                Loop *L, bool Assume) { +  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); + +  // The bounds for loop-invariant pointer is trivial. +  if (PSE.getSE()->isLoopInvariant(PtrScev, L)) +    return true; + +  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); + +  if (!AR && Assume) +    AR = PSE.getAsAddRec(Ptr); + +  if (!AR) +    return false; + +  return AR->isAffine(); +} + +/// Check whether a pointer address cannot wrap. +static bool isNoWrap(PredicatedScalarEvolution &PSE, +                     const ValueToValueMap &Strides, Value *Ptr, Loop *L) { +  const SCEV *PtrScev = PSE.getSCEV(Ptr); +  if (PSE.getSE()->isLoopInvariant(PtrScev, L)) +    return true; + +  int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); +  if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) +    return true; + +  return false; +} + +bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, +                                          MemAccessInfo Access, +                                          const ValueToValueMap &StridesMap, +                                          DenseMap<Value *, unsigned> &DepSetId, +                                          Loop *TheLoop, unsigned &RunningDepId, +                                          unsigned ASId, bool ShouldCheckWrap, +                                          bool Assume) { +  Value *Ptr = Access.getPointer(); + +  if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) +    return false; + +  // When we run after a failing dependency check we have to make sure +  // we don't have wrapping pointers. +  if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { +    auto *Expr = PSE.getSCEV(Ptr); +    if (!Assume || !isa<SCEVAddRecExpr>(Expr)) +      return false; +    PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); +  } + +  // The id of the dependence set. +  unsigned DepId; + +  if (isDependencyCheckNeeded()) { +    Value *Leader = DepCands.getLeaderValue(Access).getPointer(); +    unsigned &LeaderId = DepSetId[Leader]; +    if (!LeaderId) +      LeaderId = RunningDepId++; +    DepId = LeaderId; +  } else +    // Each access has its own dependence set. +    DepId = RunningDepId++; + +  bool IsWrite = Access.getInt(); +  RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); +  LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); + +  return true; + } + +bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, +                                     ScalarEvolution *SE, Loop *TheLoop, +                                     const ValueToValueMap &StridesMap, +                                     bool ShouldCheckWrap) { +  // Find pointers with computable bounds. We are going to use this information +  // to place a runtime bound check. +  bool CanDoRT = true; + +  bool NeedRTCheck = false; +  if (!IsRTCheckAnalysisNeeded) return true; + +  bool IsDepCheckNeeded = isDependencyCheckNeeded(); + +  // We assign a consecutive id to access from different alias sets. +  // Accesses between different groups doesn't need to be checked. +  unsigned ASId = 1; +  for (auto &AS : AST) { +    int NumReadPtrChecks = 0; +    int NumWritePtrChecks = 0; +    bool CanDoAliasSetRT = true; + +    // We assign consecutive id to access from different dependence sets. +    // Accesses within the same set don't need a runtime check. +    unsigned RunningDepId = 1; +    DenseMap<Value *, unsigned> DepSetId; + +    SmallVector<MemAccessInfo, 4> Retries; + +    for (auto A : AS) { +      Value *Ptr = A.getValue(); +      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); +      MemAccessInfo Access(Ptr, IsWrite); + +      if (IsWrite) +        ++NumWritePtrChecks; +      else +        ++NumReadPtrChecks; + +      if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, +                                RunningDepId, ASId, ShouldCheckWrap, false)) { +        LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); +        Retries.push_back(Access); +        CanDoAliasSetRT = false; +      } +    } + +    // If we have at least two writes or one write and a read then we need to +    // check them.  But there is no need to checks if there is only one +    // dependence set for this alias set. +    // +    // Note that this function computes CanDoRT and NeedRTCheck independently. +    // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer +    // for which we couldn't find the bounds but we don't actually need to emit +    // any checks so it does not matter. +    bool NeedsAliasSetRTCheck = false; +    if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) +      NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || +                             (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); + +    // We need to perform run-time alias checks, but some pointers had bounds +    // that couldn't be checked. +    if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { +      // Reset the CanDoSetRt flag and retry all accesses that have failed. +      // We know that we need these checks, so we can now be more aggressive +      // and add further checks if required (overflow checks). +      CanDoAliasSetRT = true; +      for (auto Access : Retries) +        if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, +                                  TheLoop, RunningDepId, ASId, +                                  ShouldCheckWrap, /*Assume=*/true)) { +          CanDoAliasSetRT = false; +          break; +        } +    } + +    CanDoRT &= CanDoAliasSetRT; +    NeedRTCheck |= NeedsAliasSetRTCheck; +    ++ASId; +  } + +  // If the pointers that we would use for the bounds comparison have different +  // address spaces, assume the values aren't directly comparable, so we can't +  // use them for the runtime check. We also have to assume they could +  // overlap. In the future there should be metadata for whether address spaces +  // are disjoint. +  unsigned NumPointers = RtCheck.Pointers.size(); +  for (unsigned i = 0; i < NumPointers; ++i) { +    for (unsigned j = i + 1; j < NumPointers; ++j) { +      // Only need to check pointers between two different dependency sets. +      if (RtCheck.Pointers[i].DependencySetId == +          RtCheck.Pointers[j].DependencySetId) +       continue; +      // Only need to check pointers in the same alias set. +      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) +        continue; + +      Value *PtrI = RtCheck.Pointers[i].PointerValue; +      Value *PtrJ = RtCheck.Pointers[j].PointerValue; + +      unsigned ASi = PtrI->getType()->getPointerAddressSpace(); +      unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); +      if (ASi != ASj) { +        LLVM_DEBUG( +            dbgs() << "LAA: Runtime check would require comparison between" +                      " different address spaces\n"); +        return false; +      } +    } +  } + +  if (NeedRTCheck && CanDoRT) +    RtCheck.generateChecks(DepCands, IsDepCheckNeeded); + +  LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() +                    << " pointer comparisons.\n"); + +  RtCheck.Need = NeedRTCheck; + +  bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; +  if (!CanDoRTIfNeeded) +    RtCheck.reset(); +  return CanDoRTIfNeeded; +} + +void AccessAnalysis::processMemAccesses() { +  // We process the set twice: first we process read-write pointers, last we +  // process read-only pointers. This allows us to skip dependence tests for +  // read-only pointers. + +  LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); +  LLVM_DEBUG(dbgs() << "  AST: "; AST.dump()); +  LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n"); +  LLVM_DEBUG({ +    for (auto A : Accesses) +      dbgs() << "\t" << *A.getPointer() << " (" << +                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? +                                         "read-only" : "read")) << ")\n"; +  }); + +  // The AliasSetTracker has nicely partitioned our pointers by metadata +  // compatibility and potential for underlying-object overlap. As a result, we +  // only need to check for potential pointer dependencies within each alias +  // set. +  for (auto &AS : AST) { +    // Note that both the alias-set tracker and the alias sets themselves used +    // linked lists internally and so the iteration order here is deterministic +    // (matching the original instruction order within each set). + +    bool SetHasWrite = false; + +    // Map of pointers to last access encountered. +    typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; +    UnderlyingObjToAccessMap ObjToLastAccess; + +    // Set of access to check after all writes have been processed. +    PtrAccessSet DeferredAccesses; + +    // Iterate over each alias set twice, once to process read/write pointers, +    // and then to process read-only pointers. +    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { +      bool UseDeferred = SetIteration > 0; +      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; + +      for (auto AV : AS) { +        Value *Ptr = AV.getValue(); + +        // For a single memory access in AliasSetTracker, Accesses may contain +        // both read and write, and they both need to be handled for CheckDeps. +        for (auto AC : S) { +          if (AC.getPointer() != Ptr) +            continue; + +          bool IsWrite = AC.getInt(); + +          // If we're using the deferred access set, then it contains only +          // reads. +          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; +          if (UseDeferred && !IsReadOnlyPtr) +            continue; +          // Otherwise, the pointer must be in the PtrAccessSet, either as a +          // read or a write. +          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || +                  S.count(MemAccessInfo(Ptr, false))) && +                 "Alias-set pointer not in the access set?"); + +          MemAccessInfo Access(Ptr, IsWrite); +          DepCands.insert(Access); + +          // Memorize read-only pointers for later processing and skip them in +          // the first round (they need to be checked after we have seen all +          // write pointers). Note: we also mark pointer that are not +          // consecutive as "read-only" pointers (so that we check +          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". +          if (!UseDeferred && IsReadOnlyPtr) { +            DeferredAccesses.insert(Access); +            continue; +          } + +          // If this is a write - check other reads and writes for conflicts. If +          // this is a read only check other writes for conflicts (but only if +          // there is no other write to the ptr - this is an optimization to +          // catch "a[i] = a[i] + " without having to do a dependence check). +          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { +            CheckDeps.push_back(Access); +            IsRTCheckAnalysisNeeded = true; +          } + +          if (IsWrite) +            SetHasWrite = true; + +          // Create sets of pointers connected by a shared alias set and +          // underlying object. +          typedef SmallVector<Value *, 16> ValueVector; +          ValueVector TempObjects; + +          GetUnderlyingObjects(Ptr, TempObjects, DL, LI); +          LLVM_DEBUG(dbgs() +                     << "Underlying objects for pointer " << *Ptr << "\n"); +          for (Value *UnderlyingObj : TempObjects) { +            // nullptr never alias, don't join sets for pointer that have "null" +            // in their UnderlyingObjects list. +            if (isa<ConstantPointerNull>(UnderlyingObj) && +                !NullPointerIsDefined( +                    TheLoop->getHeader()->getParent(), +                    UnderlyingObj->getType()->getPointerAddressSpace())) +              continue; + +            UnderlyingObjToAccessMap::iterator Prev = +                ObjToLastAccess.find(UnderlyingObj); +            if (Prev != ObjToLastAccess.end()) +              DepCands.unionSets(Access, Prev->second); + +            ObjToLastAccess[UnderlyingObj] = Access; +            LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n"); +          } +        } +      } +    } +  } +} + +static bool isInBoundsGep(Value *Ptr) { +  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) +    return GEP->isInBounds(); +  return false; +} + +/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, +/// i.e. monotonically increasing/decreasing. +static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, +                           PredicatedScalarEvolution &PSE, const Loop *L) { +  // FIXME: This should probably only return true for NUW. +  if (AR->getNoWrapFlags(SCEV::NoWrapMask)) +    return true; + +  // Scalar evolution does not propagate the non-wrapping flags to values that +  // are derived from a non-wrapping induction variable because non-wrapping +  // could be flow-sensitive. +  // +  // Look through the potentially overflowing instruction to try to prove +  // non-wrapping for the *specific* value of Ptr. + +  // The arithmetic implied by an inbounds GEP can't overflow. +  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); +  if (!GEP || !GEP->isInBounds()) +    return false; + +  // Make sure there is only one non-const index and analyze that. +  Value *NonConstIndex = nullptr; +  for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) +    if (!isa<ConstantInt>(Index)) { +      if (NonConstIndex) +        return false; +      NonConstIndex = Index; +    } +  if (!NonConstIndex) +    // The recurrence is on the pointer, ignore for now. +    return false; + +  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW +  // AddRec using a NSW operation. +  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) +    if (OBO->hasNoSignedWrap() && +        // Assume constant for other the operand so that the AddRec can be +        // easily found. +        isa<ConstantInt>(OBO->getOperand(1))) { +      auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); + +      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) +        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); +    } + +  return false; +} + +/// Check whether the access through \p Ptr has a constant stride. +int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, +                           const Loop *Lp, const ValueToValueMap &StridesMap, +                           bool Assume, bool ShouldCheckWrap) { +  Type *Ty = Ptr->getType(); +  assert(Ty->isPointerTy() && "Unexpected non-ptr"); + +  // Make sure that the pointer does not point to aggregate types. +  auto *PtrTy = cast<PointerType>(Ty); +  if (PtrTy->getElementType()->isAggregateType()) { +    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" +                      << *Ptr << "\n"); +    return 0; +  } + +  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); + +  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); +  if (Assume && !AR) +    AR = PSE.getAsAddRec(Ptr); + +  if (!AR) { +    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr +                      << " SCEV: " << *PtrScev << "\n"); +    return 0; +  } + +  // The accesss function must stride over the innermost loop. +  if (Lp != AR->getLoop()) { +    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " +                      << *Ptr << " SCEV: " << *AR << "\n"); +    return 0; +  } + +  // The address calculation must not wrap. Otherwise, a dependence could be +  // inverted. +  // An inbounds getelementptr that is a AddRec with a unit stride +  // cannot wrap per definition. The unit stride requirement is checked later. +  // An getelementptr without an inbounds attribute and unit stride would have +  // to access the pointer value "0" which is undefined behavior in address +  // space 0, therefore we can also vectorize this case. +  bool IsInBoundsGEP = isInBoundsGep(Ptr); +  bool IsNoWrapAddRec = !ShouldCheckWrap || +    PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || +    isNoWrapAddRec(Ptr, AR, PSE, Lp); +  if (!IsNoWrapAddRec && !IsInBoundsGEP && +      NullPointerIsDefined(Lp->getHeader()->getParent(), +                           PtrTy->getAddressSpace())) { +    if (Assume) { +      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); +      IsNoWrapAddRec = true; +      LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" +                        << "LAA:   Pointer: " << *Ptr << "\n" +                        << "LAA:   SCEV: " << *AR << "\n" +                        << "LAA:   Added an overflow assumption\n"); +    } else { +      LLVM_DEBUG( +          dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " +                 << *Ptr << " SCEV: " << *AR << "\n"); +      return 0; +    } +  } + +  // Check the step is constant. +  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); + +  // Calculate the pointer stride and check if it is constant. +  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); +  if (!C) { +    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr +                      << " SCEV: " << *AR << "\n"); +    return 0; +  } + +  auto &DL = Lp->getHeader()->getModule()->getDataLayout(); +  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); +  const APInt &APStepVal = C->getAPInt(); + +  // Huge step value - give up. +  if (APStepVal.getBitWidth() > 64) +    return 0; + +  int64_t StepVal = APStepVal.getSExtValue(); + +  // Strided access. +  int64_t Stride = StepVal / Size; +  int64_t Rem = StepVal % Size; +  if (Rem) +    return 0; + +  // If the SCEV could wrap but we have an inbounds gep with a unit stride we +  // know we can't "wrap around the address space". In case of address space +  // zero we know that this won't happen without triggering undefined behavior. +  if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && +      (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), +                                              PtrTy->getAddressSpace()))) { +    if (Assume) { +      // We can avoid this case by adding a run-time check. +      LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " +                        << "inbouds or in address space 0 may wrap:\n" +                        << "LAA:   Pointer: " << *Ptr << "\n" +                        << "LAA:   SCEV: " << *AR << "\n" +                        << "LAA:   Added an overflow assumption\n"); +      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); +    } else +      return 0; +  } + +  return Stride; +} + +bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, +                           ScalarEvolution &SE, +                           SmallVectorImpl<unsigned> &SortedIndices) { +  assert(llvm::all_of( +             VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && +         "Expected list of pointer operands."); +  SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; +  OffValPairs.reserve(VL.size()); + +  // Walk over the pointers, and map each of them to an offset relative to +  // first pointer in the array. +  Value *Ptr0 = VL[0]; +  const SCEV *Scev0 = SE.getSCEV(Ptr0); +  Value *Obj0 = GetUnderlyingObject(Ptr0, DL); + +  llvm::SmallSet<int64_t, 4> Offsets; +  for (auto *Ptr : VL) { +    // TODO: Outline this code as a special, more time consuming, version of +    // computeConstantDifference() function. +    if (Ptr->getType()->getPointerAddressSpace() != +        Ptr0->getType()->getPointerAddressSpace()) +      return false; +    // If a pointer refers to a different underlying object, bail - the +    // pointers are by definition incomparable. +    Value *CurrObj = GetUnderlyingObject(Ptr, DL); +    if (CurrObj != Obj0) +      return false; + +    const SCEV *Scev = SE.getSCEV(Ptr); +    const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); +    // The pointers may not have a constant offset from each other, or SCEV +    // may just not be smart enough to figure out they do. Regardless, +    // there's nothing we can do. +    if (!Diff) +      return false; + +    // Check if the pointer with the same offset is found. +    int64_t Offset = Diff->getAPInt().getSExtValue(); +    if (!Offsets.insert(Offset).second) +      return false; +    OffValPairs.emplace_back(Offset, Ptr); +  } +  SortedIndices.clear(); +  SortedIndices.resize(VL.size()); +  std::iota(SortedIndices.begin(), SortedIndices.end(), 0); + +  // Sort the memory accesses and keep the order of their uses in UseOrder. +  std::stable_sort(SortedIndices.begin(), SortedIndices.end(), +                   [&OffValPairs](unsigned Left, unsigned Right) { +                     return OffValPairs[Left].first < OffValPairs[Right].first; +                   }); + +  // Check if the order is consecutive already. +  if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { +        return I == SortedIndices[I]; +      })) +    SortedIndices.clear(); + +  return true; +} + +/// Take the address space operand from the Load/Store instruction. +/// Returns -1 if this is not a valid Load/Store instruction. +static unsigned getAddressSpaceOperand(Value *I) { +  if (LoadInst *L = dyn_cast<LoadInst>(I)) +    return L->getPointerAddressSpace(); +  if (StoreInst *S = dyn_cast<StoreInst>(I)) +    return S->getPointerAddressSpace(); +  return -1; +} + +/// Returns true if the memory operations \p A and \p B are consecutive. +bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, +                               ScalarEvolution &SE, bool CheckType) { +  Value *PtrA = getLoadStorePointerOperand(A); +  Value *PtrB = getLoadStorePointerOperand(B); +  unsigned ASA = getAddressSpaceOperand(A); +  unsigned ASB = getAddressSpaceOperand(B); + +  // Check that the address spaces match and that the pointers are valid. +  if (!PtrA || !PtrB || (ASA != ASB)) +    return false; + +  // Make sure that A and B are different pointers. +  if (PtrA == PtrB) +    return false; + +  // Make sure that A and B have the same type if required. +  if (CheckType && PtrA->getType() != PtrB->getType()) +    return false; + +  unsigned IdxWidth = DL.getIndexSizeInBits(ASA); +  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); +  APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); + +  APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); +  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); +  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); + +  //  OffsetDelta = OffsetB - OffsetA; +  const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); +  const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); +  const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); +  const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); +  const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); +  // Check if they are based on the same pointer. That makes the offsets +  // sufficient. +  if (PtrA == PtrB) +    return OffsetDelta == Size; + +  // Compute the necessary base pointer delta to have the necessary final delta +  // equal to the size. +  // BaseDelta = Size - OffsetDelta; +  const SCEV *SizeSCEV = SE.getConstant(Size); +  const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); + +  // Otherwise compute the distance with SCEV between the base pointers. +  const SCEV *PtrSCEVA = SE.getSCEV(PtrA); +  const SCEV *PtrSCEVB = SE.getSCEV(PtrB); +  const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); +  return X == PtrSCEVB; +} + +bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { +  switch (Type) { +  case NoDep: +  case Forward: +  case BackwardVectorizable: +    return true; + +  case Unknown: +  case ForwardButPreventsForwarding: +  case Backward: +  case BackwardVectorizableButPreventsForwarding: +    return false; +  } +  llvm_unreachable("unexpected DepType!"); +} + +bool MemoryDepChecker::Dependence::isBackward() const { +  switch (Type) { +  case NoDep: +  case Forward: +  case ForwardButPreventsForwarding: +  case Unknown: +    return false; + +  case BackwardVectorizable: +  case Backward: +  case BackwardVectorizableButPreventsForwarding: +    return true; +  } +  llvm_unreachable("unexpected DepType!"); +} + +bool MemoryDepChecker::Dependence::isPossiblyBackward() const { +  return isBackward() || Type == Unknown; +} + +bool MemoryDepChecker::Dependence::isForward() const { +  switch (Type) { +  case Forward: +  case ForwardButPreventsForwarding: +    return true; + +  case NoDep: +  case Unknown: +  case BackwardVectorizable: +  case Backward: +  case BackwardVectorizableButPreventsForwarding: +    return false; +  } +  llvm_unreachable("unexpected DepType!"); +} + +bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, +                                                    uint64_t TypeByteSize) { +  // If loads occur at a distance that is not a multiple of a feasible vector +  // factor store-load forwarding does not take place. +  // Positive dependences might cause troubles because vectorizing them might +  // prevent store-load forwarding making vectorized code run a lot slower. +  //   a[i] = a[i-3] ^ a[i-8]; +  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and +  //   hence on your typical architecture store-load forwarding does not take +  //   place. Vectorizing in such cases does not make sense. +  // Store-load forwarding distance. + +  // After this many iterations store-to-load forwarding conflicts should not +  // cause any slowdowns. +  const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; +  // Maximum vector factor. +  uint64_t MaxVFWithoutSLForwardIssues = std::min( +      VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); + +  // Compute the smallest VF at which the store and load would be misaligned. +  for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; +       VF *= 2) { +    // If the number of vector iteration between the store and the load are +    // small we could incur conflicts. +    if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { +      MaxVFWithoutSLForwardIssues = (VF >>= 1); +      break; +    } +  } + +  if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { +    LLVM_DEBUG( +        dbgs() << "LAA: Distance " << Distance +               << " that could cause a store-load forwarding conflict\n"); +    return true; +  } + +  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && +      MaxVFWithoutSLForwardIssues != +          VectorizerParams::MaxVectorWidth * TypeByteSize) +    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; +  return false; +} + +/// Given a non-constant (unknown) dependence-distance \p Dist between two  +/// memory accesses, that have the same stride whose absolute value is given +/// in \p Stride, and that have the same type size \p TypeByteSize, +/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is +/// possible to prove statically that the dependence distance is larger +/// than the range that the accesses will travel through the execution of +/// the loop. If so, return true; false otherwise. This is useful for +/// example in loops such as the following (PR31098): +///     for (i = 0; i < D; ++i) { +///                = out[i]; +///       out[i+D] = +///     } +static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, +                                     const SCEV &BackedgeTakenCount, +                                     const SCEV &Dist, uint64_t Stride, +                                     uint64_t TypeByteSize) { + +  // If we can prove that +  //      (**) |Dist| > BackedgeTakenCount * Step +  // where Step is the absolute stride of the memory accesses in bytes,  +  // then there is no dependence. +  // +  // Ratioanle:  +  // We basically want to check if the absolute distance (|Dist/Step|)  +  // is >= the loop iteration count (or > BackedgeTakenCount).  +  // This is equivalent to the Strong SIV Test (Practical Dependence Testing,  +  // Section 4.2.1); Note, that for vectorization it is sufficient to prove  +  // that the dependence distance is >= VF; This is checked elsewhere. +  // But in some cases we can prune unknown dependence distances early, and  +  // even before selecting the VF, and without a runtime test, by comparing  +  // the distance against the loop iteration count. Since the vectorized code  +  // will be executed only if LoopCount >= VF, proving distance >= LoopCount  +  // also guarantees that distance >= VF. +  // +  const uint64_t ByteStride = Stride * TypeByteSize; +  const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); +  const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); + +  const SCEV *CastedDist = &Dist; +  const SCEV *CastedProduct = Product; +  uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); +  uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); + +  // The dependence distance can be positive/negative, so we sign extend Dist;  +  // The multiplication of the absolute stride in bytes and the  +  // backdgeTakenCount is non-negative, so we zero extend Product. +  if (DistTypeSize > ProductTypeSize) +    CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); +  else +    CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); + +  // Is  Dist - (BackedgeTakenCount * Step) > 0 ? +  // (If so, then we have proven (**) because |Dist| >= Dist) +  const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); +  if (SE.isKnownPositive(Minus)) +    return true; + +  // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ? +  // (If so, then we have proven (**) because |Dist| >= -1*Dist) +  const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); +  Minus = SE.getMinusSCEV(NegDist, CastedProduct); +  if (SE.isKnownPositive(Minus)) +    return true; + +  return false; +} + +/// Check the dependence for two accesses with the same stride \p Stride. +/// \p Distance is the positive distance and \p TypeByteSize is type size in +/// bytes. +/// +/// \returns true if they are independent. +static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, +                                          uint64_t TypeByteSize) { +  assert(Stride > 1 && "The stride must be greater than 1"); +  assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); +  assert(Distance > 0 && "The distance must be non-zero"); + +  // Skip if the distance is not multiple of type byte size. +  if (Distance % TypeByteSize) +    return false; + +  uint64_t ScaledDist = Distance / TypeByteSize; + +  // No dependence if the scaled distance is not multiple of the stride. +  // E.g. +  //      for (i = 0; i < 1024 ; i += 4) +  //        A[i+2] = A[i] + 1; +  // +  // Two accesses in memory (scaled distance is 2, stride is 4): +  //     | A[0] |      |      |      | A[4] |      |      |      | +  //     |      |      | A[2] |      |      |      | A[6] |      | +  // +  // E.g. +  //      for (i = 0; i < 1024 ; i += 3) +  //        A[i+4] = A[i] + 1; +  // +  // Two accesses in memory (scaled distance is 4, stride is 3): +  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      | +  //     |      |      |      |      | A[4] |      |      | A[7] |      | +  return ScaledDist % Stride; +} + +MemoryDepChecker::Dependence::DepType +MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, +                              const MemAccessInfo &B, unsigned BIdx, +                              const ValueToValueMap &Strides) { +  assert (AIdx < BIdx && "Must pass arguments in program order"); + +  Value *APtr = A.getPointer(); +  Value *BPtr = B.getPointer(); +  bool AIsWrite = A.getInt(); +  bool BIsWrite = B.getInt(); + +  // Two reads are independent. +  if (!AIsWrite && !BIsWrite) +    return Dependence::NoDep; + +  // We cannot check pointers in different address spaces. +  if (APtr->getType()->getPointerAddressSpace() != +      BPtr->getType()->getPointerAddressSpace()) +    return Dependence::Unknown; + +  int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); +  int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); + +  const SCEV *Src = PSE.getSCEV(APtr); +  const SCEV *Sink = PSE.getSCEV(BPtr); + +  // If the induction step is negative we have to invert source and sink of the +  // dependence. +  if (StrideAPtr < 0) { +    std::swap(APtr, BPtr); +    std::swap(Src, Sink); +    std::swap(AIsWrite, BIsWrite); +    std::swap(AIdx, BIdx); +    std::swap(StrideAPtr, StrideBPtr); +  } + +  const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); + +  LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink +                    << "(Induction step: " << StrideAPtr << ")\n"); +  LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " +                    << *InstMap[BIdx] << ": " << *Dist << "\n"); + +  // Need accesses with constant stride. We don't want to vectorize +  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in +  // the address space. +  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ +    LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); +    return Dependence::Unknown; +  } + +  Type *ATy = APtr->getType()->getPointerElementType(); +  Type *BTy = BPtr->getType()->getPointerElementType(); +  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); +  uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); +  uint64_t Stride = std::abs(StrideAPtr); +  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); +  if (!C) { +    if (TypeByteSize == DL.getTypeAllocSize(BTy) && +        isSafeDependenceDistance(DL, *(PSE.getSE()), +                                 *(PSE.getBackedgeTakenCount()), *Dist, Stride, +                                 TypeByteSize)) +      return Dependence::NoDep; + +    LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); +    ShouldRetryWithRuntimeCheck = true; +    return Dependence::Unknown; +  } + +  const APInt &Val = C->getAPInt(); +  int64_t Distance = Val.getSExtValue(); + +  // Attempt to prove strided accesses independent. +  if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && +      areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { +    LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); +    return Dependence::NoDep; +  } + +  // Negative distances are not plausible dependencies. +  if (Val.isNegative()) { +    bool IsTrueDataDependence = (AIsWrite && !BIsWrite); +    if (IsTrueDataDependence && EnableForwardingConflictDetection && +        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || +         ATy != BTy)) { +      LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); +      return Dependence::ForwardButPreventsForwarding; +    } + +    LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); +    return Dependence::Forward; +  } + +  // Write to the same location with the same size. +  // Could be improved to assert type sizes are the same (i32 == float, etc). +  if (Val == 0) { +    if (ATy == BTy) +      return Dependence::Forward; +    LLVM_DEBUG( +        dbgs() << "LAA: Zero dependence difference but different types\n"); +    return Dependence::Unknown; +  } + +  assert(Val.isStrictlyPositive() && "Expect a positive value"); + +  if (ATy != BTy) { +    LLVM_DEBUG( +        dbgs() +        << "LAA: ReadWrite-Write positive dependency with different types\n"); +    return Dependence::Unknown; +  } + +  // Bail out early if passed-in parameters make vectorization not feasible. +  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? +                           VectorizerParams::VectorizationFactor : 1); +  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? +                           VectorizerParams::VectorizationInterleave : 1); +  // The minimum number of iterations for a vectorized/unrolled version. +  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); + +  // It's not vectorizable if the distance is smaller than the minimum distance +  // needed for a vectroized/unrolled version. Vectorizing one iteration in +  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs +  // TypeByteSize (No need to plus the last gap distance). +  // +  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. +  //      foo(int *A) { +  //        int *B = (int *)((char *)A + 14); +  //        for (i = 0 ; i < 1024 ; i += 2) +  //          B[i] = A[i] + 1; +  //      } +  // +  // Two accesses in memory (stride is 2): +  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      | +  //                              | B[0] |      | B[2] |      | B[4] | +  // +  // Distance needs for vectorizing iterations except the last iteration: +  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. +  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. +  // +  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is +  // 12, which is less than distance. +  // +  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), +  // the minimum distance needed is 28, which is greater than distance. It is +  // not safe to do vectorization. +  uint64_t MinDistanceNeeded = +      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; +  if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { +    LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " +                      << Distance << '\n'); +    return Dependence::Backward; +  } + +  // Unsafe if the minimum distance needed is greater than max safe distance. +  if (MinDistanceNeeded > MaxSafeDepDistBytes) { +    LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " +                      << MinDistanceNeeded << " size in bytes"); +    return Dependence::Backward; +  } + +  // Positive distance bigger than max vectorization factor. +  // FIXME: Should use max factor instead of max distance in bytes, which could +  // not handle different types. +  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. +  //      void foo (int *A, char *B) { +  //        for (unsigned i = 0; i < 1024; i++) { +  //          A[i+2] = A[i] + 1; +  //          B[i+2] = B[i] + 1; +  //        } +  //      } +  // +  // This case is currently unsafe according to the max safe distance. If we +  // analyze the two accesses on array B, the max safe dependence distance +  // is 2. Then we analyze the accesses on array A, the minimum distance needed +  // is 8, which is less than 2 and forbidden vectorization, But actually +  // both A and B could be vectorized by 2 iterations. +  MaxSafeDepDistBytes = +      std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); + +  bool IsTrueDataDependence = (!AIsWrite && BIsWrite); +  if (IsTrueDataDependence && EnableForwardingConflictDetection && +      couldPreventStoreLoadForward(Distance, TypeByteSize)) +    return Dependence::BackwardVectorizableButPreventsForwarding; + +  uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); +  LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() +                    << " with max VF = " << MaxVF << '\n'); +  uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; +  MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); +  return Dependence::BackwardVectorizable; +} + +bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, +                                   MemAccessInfoList &CheckDeps, +                                   const ValueToValueMap &Strides) { + +  MaxSafeDepDistBytes = -1; +  SmallPtrSet<MemAccessInfo, 8> Visited; +  for (MemAccessInfo CurAccess : CheckDeps) { +    if (Visited.count(CurAccess)) +      continue; + +    // Get the relevant memory access set. +    EquivalenceClasses<MemAccessInfo>::iterator I = +      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); + +    // Check accesses within this set. +    EquivalenceClasses<MemAccessInfo>::member_iterator AI = +        AccessSets.member_begin(I); +    EquivalenceClasses<MemAccessInfo>::member_iterator AE = +        AccessSets.member_end(); + +    // Check every access pair. +    while (AI != AE) { +      Visited.insert(*AI); +      EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); +      while (OI != AE) { +        // Check every accessing instruction pair in program order. +        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), +             I1E = Accesses[*AI].end(); I1 != I1E; ++I1) +          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), +               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { +            auto A = std::make_pair(&*AI, *I1); +            auto B = std::make_pair(&*OI, *I2); + +            assert(*I1 != *I2); +            if (*I1 > *I2) +              std::swap(A, B); + +            Dependence::DepType Type = +                isDependent(*A.first, A.second, *B.first, B.second, Strides); +            SafeForVectorization &= Dependence::isSafeForVectorization(Type); + +            // Gather dependences unless we accumulated MaxDependences +            // dependences.  In that case return as soon as we find the first +            // unsafe dependence.  This puts a limit on this quadratic +            // algorithm. +            if (RecordDependences) { +              if (Type != Dependence::NoDep) +                Dependences.push_back(Dependence(A.second, B.second, Type)); + +              if (Dependences.size() >= MaxDependences) { +                RecordDependences = false; +                Dependences.clear(); +                LLVM_DEBUG(dbgs() +                           << "Too many dependences, stopped recording\n"); +              } +            } +            if (!RecordDependences && !SafeForVectorization) +              return false; +          } +        ++OI; +      } +      AI++; +    } +  } + +  LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); +  return SafeForVectorization; +} + +SmallVector<Instruction *, 4> +MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { +  MemAccessInfo Access(Ptr, isWrite); +  auto &IndexVector = Accesses.find(Access)->second; + +  SmallVector<Instruction *, 4> Insts; +  transform(IndexVector, +                 std::back_inserter(Insts), +                 [&](unsigned Idx) { return this->InstMap[Idx]; }); +  return Insts; +} + +const char *MemoryDepChecker::Dependence::DepName[] = { +    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", +    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; + +void MemoryDepChecker::Dependence::print( +    raw_ostream &OS, unsigned Depth, +    const SmallVectorImpl<Instruction *> &Instrs) const { +  OS.indent(Depth) << DepName[Type] << ":\n"; +  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; +  OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; +} + +bool LoopAccessInfo::canAnalyzeLoop() { +  // We need to have a loop header. +  LLVM_DEBUG(dbgs() << "LAA: Found a loop in " +                    << TheLoop->getHeader()->getParent()->getName() << ": " +                    << TheLoop->getHeader()->getName() << '\n'); + +  // We can only analyze innermost loops. +  if (!TheLoop->empty()) { +    LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); +    recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; +    return false; +  } + +  // We must have a single backedge. +  if (TheLoop->getNumBackEdges() != 1) { +    LLVM_DEBUG( +        dbgs() << "LAA: loop control flow is not understood by analyzer\n"); +    recordAnalysis("CFGNotUnderstood") +        << "loop control flow is not understood by analyzer"; +    return false; +  } + +  // We must have a single exiting block. +  if (!TheLoop->getExitingBlock()) { +    LLVM_DEBUG( +        dbgs() << "LAA: loop control flow is not understood by analyzer\n"); +    recordAnalysis("CFGNotUnderstood") +        << "loop control flow is not understood by analyzer"; +    return false; +  } + +  // We only handle bottom-tested loops, i.e. loop in which the condition is +  // checked at the end of each iteration. With that we can assume that all +  // instructions in the loop are executed the same number of times. +  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { +    LLVM_DEBUG( +        dbgs() << "LAA: loop control flow is not understood by analyzer\n"); +    recordAnalysis("CFGNotUnderstood") +        << "loop control flow is not understood by analyzer"; +    return false; +  } + +  // ScalarEvolution needs to be able to find the exit count. +  const SCEV *ExitCount = PSE->getBackedgeTakenCount(); +  if (ExitCount == PSE->getSE()->getCouldNotCompute()) { +    recordAnalysis("CantComputeNumberOfIterations") +        << "could not determine number of loop iterations"; +    LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); +    return false; +  } + +  return true; +} + +void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, +                                 const TargetLibraryInfo *TLI, +                                 DominatorTree *DT) { +  typedef SmallPtrSet<Value*, 16> ValueSet; + +  // Holds the Load and Store instructions. +  SmallVector<LoadInst *, 16> Loads; +  SmallVector<StoreInst *, 16> Stores; + +  // Holds all the different accesses in the loop. +  unsigned NumReads = 0; +  unsigned NumReadWrites = 0; + +  PtrRtChecking->Pointers.clear(); +  PtrRtChecking->Need = false; + +  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); + +  // For each block. +  for (BasicBlock *BB : TheLoop->blocks()) { +    // Scan the BB and collect legal loads and stores. +    for (Instruction &I : *BB) { +      // If this is a load, save it. If this instruction can read from memory +      // but is not a load, then we quit. Notice that we don't handle function +      // calls that read or write. +      if (I.mayReadFromMemory()) { +        // Many math library functions read the rounding mode. We will only +        // vectorize a loop if it contains known function calls that don't set +        // the flag. Therefore, it is safe to ignore this read from memory. +        auto *Call = dyn_cast<CallInst>(&I); +        if (Call && getVectorIntrinsicIDForCall(Call, TLI)) +          continue; + +        // If the function has an explicit vectorized counterpart, we can safely +        // assume that it can be vectorized. +        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && +            TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) +          continue; + +        auto *Ld = dyn_cast<LoadInst>(&I); +        if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { +          recordAnalysis("NonSimpleLoad", Ld) +              << "read with atomic ordering or volatile read"; +          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); +          CanVecMem = false; +          return; +        } +        NumLoads++; +        Loads.push_back(Ld); +        DepChecker->addAccess(Ld); +        if (EnableMemAccessVersioning) +          collectStridedAccess(Ld); +        continue; +      } + +      // Save 'store' instructions. Abort if other instructions write to memory. +      if (I.mayWriteToMemory()) { +        auto *St = dyn_cast<StoreInst>(&I); +        if (!St) { +          recordAnalysis("CantVectorizeInstruction", St) +              << "instruction cannot be vectorized"; +          CanVecMem = false; +          return; +        } +        if (!St->isSimple() && !IsAnnotatedParallel) { +          recordAnalysis("NonSimpleStore", St) +              << "write with atomic ordering or volatile write"; +          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); +          CanVecMem = false; +          return; +        } +        NumStores++; +        Stores.push_back(St); +        DepChecker->addAccess(St); +        if (EnableMemAccessVersioning) +          collectStridedAccess(St); +      } +    } // Next instr. +  } // Next block. + +  // Now we have two lists that hold the loads and the stores. +  // Next, we find the pointers that they use. + +  // Check if we see any stores. If there are no stores, then we don't +  // care if the pointers are *restrict*. +  if (!Stores.size()) { +    LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); +    CanVecMem = true; +    return; +  } + +  MemoryDepChecker::DepCandidates DependentAccesses; +  AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), +                          TheLoop, AA, LI, DependentAccesses, *PSE); + +  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects +  // multiple times on the same object. If the ptr is accessed twice, once +  // for read and once for write, it will only appear once (on the write +  // list). This is okay, since we are going to check for conflicts between +  // writes and between reads and writes, but not between reads and reads. +  ValueSet Seen; + +  for (StoreInst *ST : Stores) { +    Value *Ptr = ST->getPointerOperand(); +    // Check for store to loop invariant address. +    StoreToLoopInvariantAddress |= isUniform(Ptr); +    // If we did *not* see this pointer before, insert it to  the read-write +    // list. At this phase it is only a 'write' list. +    if (Seen.insert(Ptr).second) { +      ++NumReadWrites; + +      MemoryLocation Loc = MemoryLocation::get(ST); +      // The TBAA metadata could have a control dependency on the predication +      // condition, so we cannot rely on it when determining whether or not we +      // need runtime pointer checks. +      if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) +        Loc.AATags.TBAA = nullptr; + +      Accesses.addStore(Loc); +    } +  } + +  if (IsAnnotatedParallel) { +    LLVM_DEBUG( +        dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " +               << "checks.\n"); +    CanVecMem = true; +    return; +  } + +  for (LoadInst *LD : Loads) { +    Value *Ptr = LD->getPointerOperand(); +    // If we did *not* see this pointer before, insert it to the +    // read list. If we *did* see it before, then it is already in +    // the read-write list. This allows us to vectorize expressions +    // such as A[i] += x;  Because the address of A[i] is a read-write +    // pointer. This only works if the index of A[i] is consecutive. +    // If the address of i is unknown (for example A[B[i]]) then we may +    // read a few words, modify, and write a few words, and some of the +    // words may be written to the same address. +    bool IsReadOnlyPtr = false; +    if (Seen.insert(Ptr).second || +        !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { +      ++NumReads; +      IsReadOnlyPtr = true; +    } + +    MemoryLocation Loc = MemoryLocation::get(LD); +    // The TBAA metadata could have a control dependency on the predication +    // condition, so we cannot rely on it when determining whether or not we +    // need runtime pointer checks. +    if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) +      Loc.AATags.TBAA = nullptr; + +    Accesses.addLoad(Loc, IsReadOnlyPtr); +  } + +  // If we write (or read-write) to a single destination and there are no +  // other reads in this loop then is it safe to vectorize. +  if (NumReadWrites == 1 && NumReads == 0) { +    LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); +    CanVecMem = true; +    return; +  } + +  // Build dependence sets and check whether we need a runtime pointer bounds +  // check. +  Accesses.buildDependenceSets(); + +  // Find pointers with computable bounds. We are going to use this information +  // to place a runtime bound check. +  bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), +                                                  TheLoop, SymbolicStrides); +  if (!CanDoRTIfNeeded) { +    recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; +    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " +                      << "the array bounds.\n"); +    CanVecMem = false; +    return; +  } + +  LLVM_DEBUG( +      dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); + +  CanVecMem = true; +  if (Accesses.isDependencyCheckNeeded()) { +    LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); +    CanVecMem = DepChecker->areDepsSafe( +        DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); +    MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); + +    if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { +      LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); + +      // Clear the dependency checks. We assume they are not needed. +      Accesses.resetDepChecks(*DepChecker); + +      PtrRtChecking->reset(); +      PtrRtChecking->Need = true; + +      auto *SE = PSE->getSE(); +      CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, +                                                 SymbolicStrides, true); + +      // Check that we found the bounds for the pointer. +      if (!CanDoRTIfNeeded) { +        recordAnalysis("CantCheckMemDepsAtRunTime") +            << "cannot check memory dependencies at runtime"; +        LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); +        CanVecMem = false; +        return; +      } + +      CanVecMem = true; +    } +  } + +  if (CanVecMem) +    LLVM_DEBUG( +        dbgs() << "LAA: No unsafe dependent memory operations in loop.  We" +               << (PtrRtChecking->Need ? "" : " don't") +               << " need runtime memory checks.\n"); +  else { +    recordAnalysis("UnsafeMemDep") +        << "unsafe dependent memory operations in loop. Use " +           "#pragma loop distribute(enable) to allow loop distribution " +           "to attempt to isolate the offending operations into a separate " +           "loop"; +    LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); +  } +} + +bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, +                                           DominatorTree *DT)  { +  assert(TheLoop->contains(BB) && "Unknown block used"); + +  // Blocks that do not dominate the latch need predication. +  BasicBlock* Latch = TheLoop->getLoopLatch(); +  return !DT->dominates(BB, Latch); +} + +OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, +                                                           Instruction *I) { +  assert(!Report && "Multiple reports generated"); + +  Value *CodeRegion = TheLoop->getHeader(); +  DebugLoc DL = TheLoop->getStartLoc(); + +  if (I) { +    CodeRegion = I->getParent(); +    // If there is no debug location attached to the instruction, revert back to +    // using the loop's. +    if (I->getDebugLoc()) +      DL = I->getDebugLoc(); +  } + +  Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, +                                                   CodeRegion); +  return *Report; +} + +bool LoopAccessInfo::isUniform(Value *V) const { +  auto *SE = PSE->getSE(); +  // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is +  // never considered uniform. +  // TODO: Is this really what we want? Even without FP SCEV, we may want some +  // trivially loop-invariant FP values to be considered uniform. +  if (!SE->isSCEVable(V->getType())) +    return false; +  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); +} + +// FIXME: this function is currently a duplicate of the one in +// LoopVectorize.cpp. +static Instruction *getFirstInst(Instruction *FirstInst, Value *V, +                                 Instruction *Loc) { +  if (FirstInst) +    return FirstInst; +  if (Instruction *I = dyn_cast<Instruction>(V)) +    return I->getParent() == Loc->getParent() ? I : nullptr; +  return nullptr; +} + +namespace { + +/// IR Values for the lower and upper bounds of a pointer evolution.  We +/// need to use value-handles because SCEV expansion can invalidate previously +/// expanded values.  Thus expansion of a pointer can invalidate the bounds for +/// a previous one. +struct PointerBounds { +  TrackingVH<Value> Start; +  TrackingVH<Value> End; +}; + +} // end anonymous namespace + +/// Expand code for the lower and upper bound of the pointer group \p CG +/// in \p TheLoop.  \return the values for the bounds. +static PointerBounds +expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, +             Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, +             const RuntimePointerChecking &PtrRtChecking) { +  Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; +  const SCEV *Sc = SE->getSCEV(Ptr); + +  unsigned AS = Ptr->getType()->getPointerAddressSpace(); +  LLVMContext &Ctx = Loc->getContext(); + +  // Use this type for pointer arithmetic. +  Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); + +  if (SE->isLoopInvariant(Sc, TheLoop)) { +    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" +                      << *Ptr << "\n"); +    // Ptr could be in the loop body. If so, expand a new one at the correct +    // location. +    Instruction *Inst = dyn_cast<Instruction>(Ptr); +    Value *NewPtr = (Inst && TheLoop->contains(Inst)) +                        ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) +                        : Ptr; +    // We must return a half-open range, which means incrementing Sc. +    const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); +    Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); +    return {NewPtr, NewPtrPlusOne}; +  } else { +    Value *Start = nullptr, *End = nullptr; +    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); +    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); +    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); +    LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High +                      << "\n"); +    return {Start, End}; +  } +} + +/// Turns a collection of checks into a collection of expanded upper and +/// lower bounds for both pointers in the check. +static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( +    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, +    Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, +    const RuntimePointerChecking &PtrRtChecking) { +  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; + +  // Here we're relying on the SCEV Expander's cache to only emit code for the +  // same bounds once. +  transform( +      PointerChecks, std::back_inserter(ChecksWithBounds), +      [&](const RuntimePointerChecking::PointerCheck &Check) { +        PointerBounds +          First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), +          Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); +        return std::make_pair(First, Second); +      }); + +  return ChecksWithBounds; +} + +std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( +    Instruction *Loc, +    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) +    const { +  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); +  auto *SE = PSE->getSE(); +  SCEVExpander Exp(*SE, DL, "induction"); +  auto ExpandedChecks = +      expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); + +  LLVMContext &Ctx = Loc->getContext(); +  Instruction *FirstInst = nullptr; +  IRBuilder<> ChkBuilder(Loc); +  // Our instructions might fold to a constant. +  Value *MemoryRuntimeCheck = nullptr; + +  for (const auto &Check : ExpandedChecks) { +    const PointerBounds &A = Check.first, &B = Check.second; +    // Check if two pointers (A and B) conflict where conflict is computed as: +    // start(A) <= end(B) && start(B) <= end(A) +    unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); +    unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); + +    assert((AS0 == B.End->getType()->getPointerAddressSpace()) && +           (AS1 == A.End->getType()->getPointerAddressSpace()) && +           "Trying to bounds check pointers with different address spaces"); + +    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); +    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); + +    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); +    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); +    Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc"); +    Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc"); + +    // [A|B].Start points to the first accessed byte under base [A|B]. +    // [A|B].End points to the last accessed byte, plus one. +    // There is no conflict when the intervals are disjoint: +    // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) +    // +    // bound0 = (B.Start < A.End) +    // bound1 = (A.Start < B.End) +    //  IsConflict = bound0 & bound1 +    Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); +    FirstInst = getFirstInst(FirstInst, Cmp0, Loc); +    Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); +    FirstInst = getFirstInst(FirstInst, Cmp1, Loc); +    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); +    FirstInst = getFirstInst(FirstInst, IsConflict, Loc); +    if (MemoryRuntimeCheck) { +      IsConflict = +          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); +      FirstInst = getFirstInst(FirstInst, IsConflict, Loc); +    } +    MemoryRuntimeCheck = IsConflict; +  } + +  if (!MemoryRuntimeCheck) +    return std::make_pair(nullptr, nullptr); + +  // We have to do this trickery because the IRBuilder might fold the check to a +  // constant expression in which case there is no Instruction anchored in a +  // the block. +  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, +                                                 ConstantInt::getTrue(Ctx)); +  ChkBuilder.Insert(Check, "memcheck.conflict"); +  FirstInst = getFirstInst(FirstInst, Check, Loc); +  return std::make_pair(FirstInst, Check); +} + +std::pair<Instruction *, Instruction *> +LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { +  if (!PtrRtChecking->Need) +    return std::make_pair(nullptr, nullptr); + +  return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); +} + +void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { +  Value *Ptr = nullptr; +  if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) +    Ptr = LI->getPointerOperand(); +  else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) +    Ptr = SI->getPointerOperand(); +  else +    return; + +  Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); +  if (!Stride) +    return; + +  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " +                       "versioning:"); +  LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); + +  // Avoid adding the "Stride == 1" predicate when we know that  +  // Stride >= Trip-Count. Such a predicate will effectively optimize a single +  // or zero iteration loop, as Trip-Count <= Stride == 1. +  //  +  // TODO: We are currently not making a very informed decision on when it is +  // beneficial to apply stride versioning. It might make more sense that the +  // users of this analysis (such as the vectorizer) will trigger it, based on  +  // their specific cost considerations; For example, in cases where stride  +  // versioning does  not help resolving memory accesses/dependences, the +  // vectorizer should evaluate the cost of the runtime test, and the benefit  +  // of various possible stride specializations, considering the alternatives  +  // of using gather/scatters (if available).  +   +  const SCEV *StrideExpr = PSE->getSCEV(Stride); +  const SCEV *BETakenCount = PSE->getBackedgeTakenCount();   + +  // Match the types so we can compare the stride and the BETakenCount. +  // The Stride can be positive/negative, so we sign extend Stride;  +  // The backdgeTakenCount is non-negative, so we zero extend BETakenCount. +  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); +  uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); +  uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); +  const SCEV *CastedStride = StrideExpr; +  const SCEV *CastedBECount = BETakenCount; +  ScalarEvolution *SE = PSE->getSE(); +  if (BETypeSize >= StrideTypeSize) +    CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); +  else +    CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); +  const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); +  // Since TripCount == BackEdgeTakenCount + 1, checking: +  // "Stride >= TripCount" is equivalent to checking:  +  // Stride - BETakenCount > 0 +  if (SE->isKnownPositive(StrideMinusBETaken)) { +    LLVM_DEBUG( +        dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " +                  "Stride==1 predicate will imply that the loop executes " +                  "at most once.\n"); +    return; +  } +  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); + +  SymbolicStrides[Ptr] = Stride; +  StrideSet.insert(Stride); +} + +LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, +                               const TargetLibraryInfo *TLI, AliasAnalysis *AA, +                               DominatorTree *DT, LoopInfo *LI) +    : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), +      PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), +      DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), +      NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), +      StoreToLoopInvariantAddress(false) { +  if (canAnalyzeLoop()) +    analyzeLoop(AA, LI, TLI, DT); +} + +void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { +  if (CanVecMem) { +    OS.indent(Depth) << "Memory dependences are safe"; +    if (MaxSafeDepDistBytes != -1ULL) +      OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes +         << " bytes"; +    if (PtrRtChecking->Need) +      OS << " with run-time checks"; +    OS << "\n"; +  } + +  if (Report) +    OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; + +  if (auto *Dependences = DepChecker->getDependences()) { +    OS.indent(Depth) << "Dependences:\n"; +    for (auto &Dep : *Dependences) { +      Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); +      OS << "\n"; +    } +  } else +    OS.indent(Depth) << "Too many dependences, not recorded\n"; + +  // List the pair of accesses need run-time checks to prove independence. +  PtrRtChecking->print(OS, Depth); +  OS << "\n"; + +  OS.indent(Depth) << "Store to invariant address was " +                   << (StoreToLoopInvariantAddress ? "" : "not ") +                   << "found in loop.\n"; + +  OS.indent(Depth) << "SCEV assumptions:\n"; +  PSE->getUnionPredicate().print(OS, Depth); + +  OS << "\n"; + +  OS.indent(Depth) << "Expressions re-written:\n"; +  PSE->print(OS, Depth); +} + +const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { +  auto &LAI = LoopAccessInfoMap[L]; + +  if (!LAI) +    LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); + +  return *LAI.get(); +} + +void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { +  LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); + +  for (Loop *TopLevelLoop : *LI) +    for (Loop *L : depth_first(TopLevelLoop)) { +      OS.indent(2) << L->getHeader()->getName() << ":\n"; +      auto &LAI = LAA.getInfo(L); +      LAI.print(OS, 4); +    } +} + +bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { +  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); +  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); +  TLI = TLIP ? &TLIP->getTLI() : nullptr; +  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); +  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + +  return false; +} + +void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { +    AU.addRequired<ScalarEvolutionWrapperPass>(); +    AU.addRequired<AAResultsWrapperPass>(); +    AU.addRequired<DominatorTreeWrapperPass>(); +    AU.addRequired<LoopInfoWrapperPass>(); + +    AU.setPreservesAll(); +} + +char LoopAccessLegacyAnalysis::ID = 0; +static const char laa_name[] = "Loop Access Analysis"; +#define LAA_NAME "loop-accesses" + +INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) + +AnalysisKey LoopAccessAnalysis::Key; + +LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, +                                       LoopStandardAnalysisResults &AR) { +  return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); +} + +namespace llvm { + +  Pass *createLAAPass() { +    return new LoopAccessLegacyAnalysis(); +  } + +} // end namespace llvm  | 
