diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp | 1724 | 
1 files changed, 1724 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp b/contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp new file mode 100644 index 000000000000..e7415e623196 --- /dev/null +++ b/contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp @@ -0,0 +1,1724 @@ +//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements an analysis that determines, for a given memory +// operation, what preceding memory operations it depends on.  It builds on +// alias analysis information, and tries to provide a lazy, caching interface to +// a common kind of alias information query. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/PHITransAddr.h" +#include "llvm/Analysis/OrderedBasicBlock.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/PredIteratorCache.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <cassert> +#include <iterator> + +using namespace llvm; + +#define DEBUG_TYPE "memdep" + +STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); +STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); +STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); + +STATISTIC(NumCacheNonLocalPtr, +          "Number of fully cached non-local ptr responses"); +STATISTIC(NumCacheDirtyNonLocalPtr, +          "Number of cached, but dirty, non-local ptr responses"); +STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); +STATISTIC(NumCacheCompleteNonLocalPtr, +          "Number of block queries that were completely cached"); + +// Limit for the number of instructions to scan in a block. + +static cl::opt<unsigned> BlockScanLimit( +    "memdep-block-scan-limit", cl::Hidden, cl::init(100), +    cl::desc("The number of instructions to scan in a block in memory " +             "dependency analysis (default = 100)")); + +static cl::opt<unsigned> +    BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), +                     cl::desc("The number of blocks to scan during memory " +                              "dependency analysis (default = 1000)")); + +// Limit on the number of memdep results to process. +static const unsigned int NumResultsLimit = 100; + +/// This is a helper function that removes Val from 'Inst's set in ReverseMap. +/// +/// If the set becomes empty, remove Inst's entry. +template <typename KeyTy> +static void +RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, +                     Instruction *Inst, KeyTy Val) { +  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = +      ReverseMap.find(Inst); +  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); +  bool Found = InstIt->second.erase(Val); +  assert(Found && "Invalid reverse map!"); +  (void)Found; +  if (InstIt->second.empty()) +    ReverseMap.erase(InstIt); +} + +/// If the given instruction references a specific memory location, fill in Loc +/// with the details, otherwise set Loc.Ptr to null. +/// +/// Returns a ModRefInfo value describing the general behavior of the +/// instruction. +static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, +                              const TargetLibraryInfo &TLI) { +  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { +    if (LI->isUnordered()) { +      Loc = MemoryLocation::get(LI); +      return MRI_Ref; +    } +    if (LI->getOrdering() == AtomicOrdering::Monotonic) { +      Loc = MemoryLocation::get(LI); +      return MRI_ModRef; +    } +    Loc = MemoryLocation(); +    return MRI_ModRef; +  } + +  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { +    if (SI->isUnordered()) { +      Loc = MemoryLocation::get(SI); +      return MRI_Mod; +    } +    if (SI->getOrdering() == AtomicOrdering::Monotonic) { +      Loc = MemoryLocation::get(SI); +      return MRI_ModRef; +    } +    Loc = MemoryLocation(); +    return MRI_ModRef; +  } + +  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { +    Loc = MemoryLocation::get(V); +    return MRI_ModRef; +  } + +  if (const CallInst *CI = isFreeCall(Inst, &TLI)) { +    // calls to free() deallocate the entire structure +    Loc = MemoryLocation(CI->getArgOperand(0)); +    return MRI_Mod; +  } + +  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { +    AAMDNodes AAInfo; + +    switch (II->getIntrinsicID()) { +    case Intrinsic::lifetime_start: +    case Intrinsic::lifetime_end: +    case Intrinsic::invariant_start: +      II->getAAMetadata(AAInfo); +      Loc = MemoryLocation( +          II->getArgOperand(1), +          cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo); +      // These intrinsics don't really modify the memory, but returning Mod +      // will allow them to be handled conservatively. +      return MRI_Mod; +    case Intrinsic::invariant_end: +      II->getAAMetadata(AAInfo); +      Loc = MemoryLocation( +          II->getArgOperand(2), +          cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo); +      // These intrinsics don't really modify the memory, but returning Mod +      // will allow them to be handled conservatively. +      return MRI_Mod; +    default: +      break; +    } +  } + +  // Otherwise, just do the coarse-grained thing that always works. +  if (Inst->mayWriteToMemory()) +    return MRI_ModRef; +  if (Inst->mayReadFromMemory()) +    return MRI_Ref; +  return MRI_NoModRef; +} + +/// Private helper for finding the local dependencies of a call site. +MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom( +    CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt, +    BasicBlock *BB) { +  unsigned Limit = BlockScanLimit; + +  // Walk backwards through the block, looking for dependencies. +  while (ScanIt != BB->begin()) { +    // Limit the amount of scanning we do so we don't end up with quadratic +    // running time on extreme testcases. +    --Limit; +    if (!Limit) +      return MemDepResult::getUnknown(); + +    Instruction *Inst = &*--ScanIt; + +    // If this inst is a memory op, get the pointer it accessed +    MemoryLocation Loc; +    ModRefInfo MR = GetLocation(Inst, Loc, TLI); +    if (Loc.Ptr) { +      // A simple instruction. +      if (AA.getModRefInfo(CS, Loc) != MRI_NoModRef) +        return MemDepResult::getClobber(Inst); +      continue; +    } + +    if (auto InstCS = CallSite(Inst)) { +      // Debug intrinsics don't cause dependences. +      if (isa<DbgInfoIntrinsic>(Inst)) +        continue; +      // If these two calls do not interfere, look past it. +      switch (AA.getModRefInfo(CS, InstCS)) { +      case MRI_NoModRef: +        // If the two calls are the same, return InstCS as a Def, so that +        // CS can be found redundant and eliminated. +        if (isReadOnlyCall && !(MR & MRI_Mod) && +            CS.getInstruction()->isIdenticalToWhenDefined(Inst)) +          return MemDepResult::getDef(Inst); + +        // Otherwise if the two calls don't interact (e.g. InstCS is readnone) +        // keep scanning. +        continue; +      default: +        return MemDepResult::getClobber(Inst); +      } +    } + +    // If we could not obtain a pointer for the instruction and the instruction +    // touches memory then assume that this is a dependency. +    if (MR != MRI_NoModRef) +      return MemDepResult::getClobber(Inst); +  } + +  // No dependence found.  If this is the entry block of the function, it is +  // unknown, otherwise it is non-local. +  if (BB != &BB->getParent()->getEntryBlock()) +    return MemDepResult::getNonLocal(); +  return MemDepResult::getNonFuncLocal(); +} + +unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( +    const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, +    const LoadInst *LI) { +  // We can only extend simple integer loads. +  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) +    return 0; + +  // Load widening is hostile to ThreadSanitizer: it may cause false positives +  // or make the reports more cryptic (access sizes are wrong). +  if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) +    return 0; + +  const DataLayout &DL = LI->getModule()->getDataLayout(); + +  // Get the base of this load. +  int64_t LIOffs = 0; +  const Value *LIBase = +      GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); + +  // If the two pointers are not based on the same pointer, we can't tell that +  // they are related. +  if (LIBase != MemLocBase) +    return 0; + +  // Okay, the two values are based on the same pointer, but returned as +  // no-alias.  This happens when we have things like two byte loads at "P+1" +  // and "P+3".  Check to see if increasing the size of the "LI" load up to its +  // alignment (or the largest native integer type) will allow us to load all +  // the bits required by MemLoc. + +  // If MemLoc is before LI, then no widening of LI will help us out. +  if (MemLocOffs < LIOffs) +    return 0; + +  // Get the alignment of the load in bytes.  We assume that it is safe to load +  // any legal integer up to this size without a problem.  For example, if we're +  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can +  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it +  // to i16. +  unsigned LoadAlign = LI->getAlignment(); + +  int64_t MemLocEnd = MemLocOffs + MemLocSize; + +  // If no amount of rounding up will let MemLoc fit into LI, then bail out. +  if (LIOffs + LoadAlign < MemLocEnd) +    return 0; + +  // This is the size of the load to try.  Start with the next larger power of +  // two. +  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; +  NewLoadByteSize = NextPowerOf2(NewLoadByteSize); + +  while (true) { +    // If this load size is bigger than our known alignment or would not fit +    // into a native integer register, then we fail. +    if (NewLoadByteSize > LoadAlign || +        !DL.fitsInLegalInteger(NewLoadByteSize * 8)) +      return 0; + +    if (LIOffs + NewLoadByteSize > MemLocEnd && +        LI->getParent()->getParent()->hasFnAttribute( +            Attribute::SanitizeAddress)) +      // We will be reading past the location accessed by the original program. +      // While this is safe in a regular build, Address Safety analysis tools +      // may start reporting false warnings. So, don't do widening. +      return 0; + +    // If a load of this width would include all of MemLoc, then we succeed. +    if (LIOffs + NewLoadByteSize >= MemLocEnd) +      return NewLoadByteSize; + +    NewLoadByteSize <<= 1; +  } +} + +static bool isVolatile(Instruction *Inst) { +  if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) +    return LI->isVolatile(); +  else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) +    return SI->isVolatile(); +  else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) +    return AI->isVolatile(); +  return false; +} + +MemDepResult MemoryDependenceResults::getPointerDependencyFrom( +    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, +    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { + +  if (QueryInst != nullptr) { +    if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { +      MemDepResult invariantGroupDependency = +          getInvariantGroupPointerDependency(LI, BB); + +      if (invariantGroupDependency.isDef()) +        return invariantGroupDependency; +    } +  } +  return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, +                                        Limit); +} + +MemDepResult +MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, +                                                            BasicBlock *BB) { + +  auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group); +  if (!InvariantGroupMD) +    return MemDepResult::getUnknown(); + +  // Take the ptr operand after all casts and geps 0. This way we can search +  // cast graph down only. +  Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); + +  // It's is not safe to walk the use list of global value, because function +  // passes aren't allowed to look outside their functions. +  // FIXME: this could be fixed by filtering instructions from outside +  // of current function. +  if (isa<GlobalValue>(LoadOperand)) +    return MemDepResult::getUnknown(); + +  // Queue to process all pointers that are equivalent to load operand. +  SmallVector<const Value *, 8> LoadOperandsQueue; +  LoadOperandsQueue.push_back(LoadOperand); +  while (!LoadOperandsQueue.empty()) { +    const Value *Ptr = LoadOperandsQueue.pop_back_val(); +    assert(Ptr && !isa<GlobalValue>(Ptr) && +           "Null or GlobalValue should not be inserted"); + +    for (const Use &Us : Ptr->uses()) { +      auto *U = dyn_cast<Instruction>(Us.getUser()); +      if (!U || U == LI || !DT.dominates(U, LI)) +        continue; + +      // Bitcast or gep with zeros are using Ptr. Add to queue to check it's +      // users.      U = bitcast Ptr +      if (isa<BitCastInst>(U)) { +        LoadOperandsQueue.push_back(U); +        continue; +      } +      // Gep with zeros is equivalent to bitcast. +      // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 +      // or gep 0 to bitcast because of SROA, so there are 2 forms. When +      // typeless pointers will be ready then both cases will be gone +      // (and this BFS also won't be needed). +      if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) +        if (GEP->hasAllZeroIndices()) { +          LoadOperandsQueue.push_back(U); +          continue; +        } + +      // If we hit load/store with the same invariant.group metadata (and the +      // same pointer operand) we can assume that value pointed by pointer +      // operand didn't change. +      if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB && +          U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD) +        return MemDepResult::getDef(U); +    } +  } +  return MemDepResult::getUnknown(); +} + +MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( +    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, +    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { +  bool isInvariantLoad = false; + +  if (!Limit) { +    unsigned DefaultLimit = BlockScanLimit; +    return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, +                                          &DefaultLimit); +  } + +  // We must be careful with atomic accesses, as they may allow another thread +  //   to touch this location, clobbering it. We are conservative: if the +  //   QueryInst is not a simple (non-atomic) memory access, we automatically +  //   return getClobber. +  // If it is simple, we know based on the results of +  // "Compiler testing via a theory of sound optimisations in the C11/C++11 +  //   memory model" in PLDI 2013, that a non-atomic location can only be +  //   clobbered between a pair of a release and an acquire action, with no +  //   access to the location in between. +  // Here is an example for giving the general intuition behind this rule. +  // In the following code: +  //   store x 0; +  //   release action; [1] +  //   acquire action; [4] +  //   %val = load x; +  // It is unsafe to replace %val by 0 because another thread may be running: +  //   acquire action; [2] +  //   store x 42; +  //   release action; [3] +  // with synchronization from 1 to 2 and from 3 to 4, resulting in %val +  // being 42. A key property of this program however is that if either +  // 1 or 4 were missing, there would be a race between the store of 42 +  // either the store of 0 or the load (making the whole program racy). +  // The paper mentioned above shows that the same property is respected +  // by every program that can detect any optimization of that kind: either +  // it is racy (undefined) or there is a release followed by an acquire +  // between the pair of accesses under consideration. + +  // If the load is invariant, we "know" that it doesn't alias *any* write. We +  // do want to respect mustalias results since defs are useful for value +  // forwarding, but any mayalias write can be assumed to be noalias. +  // Arguably, this logic should be pushed inside AliasAnalysis itself. +  if (isLoad && QueryInst) { +    LoadInst *LI = dyn_cast<LoadInst>(QueryInst); +    if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) +      isInvariantLoad = true; +  } + +  const DataLayout &DL = BB->getModule()->getDataLayout(); + +  // Create a numbered basic block to lazily compute and cache instruction +  // positions inside a BB. This is used to provide fast queries for relative +  // position between two instructions in a BB and can be used by +  // AliasAnalysis::callCapturesBefore. +  OrderedBasicBlock OBB(BB); + +  // Return "true" if and only if the instruction I is either a non-simple +  // load or a non-simple store. +  auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { +    if (auto *LI = dyn_cast<LoadInst>(I)) +      return !LI->isSimple(); +    if (auto *SI = dyn_cast<StoreInst>(I)) +      return !SI->isSimple(); +    return false; +  }; + +  // Return "true" if I is not a load and not a store, but it does access +  // memory. +  auto isOtherMemAccess = [](Instruction *I) -> bool { +    return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); +  }; + +  // Walk backwards through the basic block, looking for dependencies. +  while (ScanIt != BB->begin()) { +    Instruction *Inst = &*--ScanIt; + +    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) +      // Debug intrinsics don't (and can't) cause dependencies. +      if (isa<DbgInfoIntrinsic>(II)) +        continue; + +    // Limit the amount of scanning we do so we don't end up with quadratic +    // running time on extreme testcases. +    --*Limit; +    if (!*Limit) +      return MemDepResult::getUnknown(); + +    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { +      // If we reach a lifetime begin or end marker, then the query ends here +      // because the value is undefined. +      if (II->getIntrinsicID() == Intrinsic::lifetime_start) { +        // FIXME: This only considers queries directly on the invariant-tagged +        // pointer, not on query pointers that are indexed off of them.  It'd +        // be nice to handle that at some point (the right approach is to use +        // GetPointerBaseWithConstantOffset). +        if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) +          return MemDepResult::getDef(II); +        continue; +      } +    } + +    // Values depend on loads if the pointers are must aliased.  This means +    // that a load depends on another must aliased load from the same value. +    // One exception is atomic loads: a value can depend on an atomic load that +    // it does not alias with when this atomic load indicates that another +    // thread may be accessing the location. +    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { + +      // While volatile access cannot be eliminated, they do not have to clobber +      // non-aliasing locations, as normal accesses, for example, can be safely +      // reordered with volatile accesses. +      if (LI->isVolatile()) { +        if (!QueryInst) +          // Original QueryInst *may* be volatile +          return MemDepResult::getClobber(LI); +        if (isVolatile(QueryInst)) +          // Ordering required if QueryInst is itself volatile +          return MemDepResult::getClobber(LI); +        // Otherwise, volatile doesn't imply any special ordering +      } + +      // Atomic loads have complications involved. +      // A Monotonic (or higher) load is OK if the query inst is itself not +      // atomic. +      // FIXME: This is overly conservative. +      if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { +        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || +            isOtherMemAccess(QueryInst)) +          return MemDepResult::getClobber(LI); +        if (LI->getOrdering() != AtomicOrdering::Monotonic) +          return MemDepResult::getClobber(LI); +      } + +      MemoryLocation LoadLoc = MemoryLocation::get(LI); + +      // If we found a pointer, check if it could be the same as our pointer. +      AliasResult R = AA.alias(LoadLoc, MemLoc); + +      if (isLoad) { +        if (R == NoAlias) +          continue; + +        // Must aliased loads are defs of each other. +        if (R == MustAlias) +          return MemDepResult::getDef(Inst); + +#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads +      // in terms of clobbering loads, but since it does this by looking +      // at the clobbering load directly, it doesn't know about any +      // phi translation that may have happened along the way. + +        // If we have a partial alias, then return this as a clobber for the +        // client to handle. +        if (R == PartialAlias) +          return MemDepResult::getClobber(Inst); +#endif + +        // Random may-alias loads don't depend on each other without a +        // dependence. +        continue; +      } + +      // Stores don't depend on other no-aliased accesses. +      if (R == NoAlias) +        continue; + +      // Stores don't alias loads from read-only memory. +      if (AA.pointsToConstantMemory(LoadLoc)) +        continue; + +      // Stores depend on may/must aliased loads. +      return MemDepResult::getDef(Inst); +    } + +    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { +      // Atomic stores have complications involved. +      // A Monotonic store is OK if the query inst is itself not atomic. +      // FIXME: This is overly conservative. +      if (!SI->isUnordered() && SI->isAtomic()) { +        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || +            isOtherMemAccess(QueryInst)) +          return MemDepResult::getClobber(SI); +        if (SI->getOrdering() != AtomicOrdering::Monotonic) +          return MemDepResult::getClobber(SI); +      } + +      // FIXME: this is overly conservative. +      // While volatile access cannot be eliminated, they do not have to clobber +      // non-aliasing locations, as normal accesses can for example be reordered +      // with volatile accesses. +      if (SI->isVolatile()) +        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || +            isOtherMemAccess(QueryInst)) +          return MemDepResult::getClobber(SI); + +      // If alias analysis can tell that this store is guaranteed to not modify +      // the query pointer, ignore it.  Use getModRefInfo to handle cases where +      // the query pointer points to constant memory etc. +      if (AA.getModRefInfo(SI, MemLoc) == MRI_NoModRef) +        continue; + +      // Ok, this store might clobber the query pointer.  Check to see if it is +      // a must alias: in this case, we want to return this as a def. +      MemoryLocation StoreLoc = MemoryLocation::get(SI); + +      // If we found a pointer, check if it could be the same as our pointer. +      AliasResult R = AA.alias(StoreLoc, MemLoc); + +      if (R == NoAlias) +        continue; +      if (R == MustAlias) +        return MemDepResult::getDef(Inst); +      if (isInvariantLoad) +        continue; +      return MemDepResult::getClobber(Inst); +    } + +    // If this is an allocation, and if we know that the accessed pointer is to +    // the allocation, return Def.  This means that there is no dependence and +    // the access can be optimized based on that.  For example, a load could +    // turn into undef.  Note that we can bypass the allocation itself when +    // looking for a clobber in many cases; that's an alias property and is +    // handled by BasicAA. +    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { +      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); +      if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) +        return MemDepResult::getDef(Inst); +    } + +    if (isInvariantLoad) +      continue; + +    // A release fence requires that all stores complete before it, but does +    // not prevent the reordering of following loads or stores 'before' the +    // fence.  As a result, we look past it when finding a dependency for +    // loads.  DSE uses this to find preceeding stores to delete and thus we +    // can't bypass the fence if the query instruction is a store. +    if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) +      if (isLoad && FI->getOrdering() == AtomicOrdering::Release) +        continue; + +    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. +    ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); +    // If necessary, perform additional analysis. +    if (MR == MRI_ModRef) +      MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB); +    switch (MR) { +    case MRI_NoModRef: +      // If the call has no effect on the queried pointer, just ignore it. +      continue; +    case MRI_Mod: +      return MemDepResult::getClobber(Inst); +    case MRI_Ref: +      // If the call is known to never store to the pointer, and if this is a +      // load query, we can safely ignore it (scan past it). +      if (isLoad) +        continue; +    default: +      // Otherwise, there is a potential dependence.  Return a clobber. +      return MemDepResult::getClobber(Inst); +    } +  } + +  // No dependence found.  If this is the entry block of the function, it is +  // unknown, otherwise it is non-local. +  if (BB != &BB->getParent()->getEntryBlock()) +    return MemDepResult::getNonLocal(); +  return MemDepResult::getNonFuncLocal(); +} + +MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { +  Instruction *ScanPos = QueryInst; + +  // Check for a cached result +  MemDepResult &LocalCache = LocalDeps[QueryInst]; + +  // If the cached entry is non-dirty, just return it.  Note that this depends +  // on MemDepResult's default constructing to 'dirty'. +  if (!LocalCache.isDirty()) +    return LocalCache; + +  // Otherwise, if we have a dirty entry, we know we can start the scan at that +  // instruction, which may save us some work. +  if (Instruction *Inst = LocalCache.getInst()) { +    ScanPos = Inst; + +    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); +  } + +  BasicBlock *QueryParent = QueryInst->getParent(); + +  // Do the scan. +  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { +    // No dependence found. If this is the entry block of the function, it is +    // unknown, otherwise it is non-local. +    if (QueryParent != &QueryParent->getParent()->getEntryBlock()) +      LocalCache = MemDepResult::getNonLocal(); +    else +      LocalCache = MemDepResult::getNonFuncLocal(); +  } else { +    MemoryLocation MemLoc; +    ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); +    if (MemLoc.Ptr) { +      // If we can do a pointer scan, make it happen. +      bool isLoad = !(MR & MRI_Mod); +      if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) +        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; + +      LocalCache = getPointerDependencyFrom( +          MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); +    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { +      CallSite QueryCS(QueryInst); +      bool isReadOnly = AA.onlyReadsMemory(QueryCS); +      LocalCache = getCallSiteDependencyFrom( +          QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent); +    } else +      // Non-memory instruction. +      LocalCache = MemDepResult::getUnknown(); +  } + +  // Remember the result! +  if (Instruction *I = LocalCache.getInst()) +    ReverseLocalDeps[I].insert(QueryInst); + +  return LocalCache; +} + +#ifndef NDEBUG +/// This method is used when -debug is specified to verify that cache arrays +/// are properly kept sorted. +static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, +                         int Count = -1) { +  if (Count == -1) +    Count = Cache.size(); +  assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && +         "Cache isn't sorted!"); +} +#endif + +const MemoryDependenceResults::NonLocalDepInfo & +MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) { +  assert(getDependency(QueryCS.getInstruction()).isNonLocal() && +         "getNonLocalCallDependency should only be used on calls with " +         "non-local deps!"); +  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; +  NonLocalDepInfo &Cache = CacheP.first; + +  // This is the set of blocks that need to be recomputed.  In the cached case, +  // this can happen due to instructions being deleted etc. In the uncached +  // case, this starts out as the set of predecessors we care about. +  SmallVector<BasicBlock *, 32> DirtyBlocks; + +  if (!Cache.empty()) { +    // Okay, we have a cache entry.  If we know it is not dirty, just return it +    // with no computation. +    if (!CacheP.second) { +      ++NumCacheNonLocal; +      return Cache; +    } + +    // If we already have a partially computed set of results, scan them to +    // determine what is dirty, seeding our initial DirtyBlocks worklist. +    for (auto &Entry : Cache) +      if (Entry.getResult().isDirty()) +        DirtyBlocks.push_back(Entry.getBB()); + +    // Sort the cache so that we can do fast binary search lookups below. +    std::sort(Cache.begin(), Cache.end()); + +    ++NumCacheDirtyNonLocal; +    // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " +    //     << Cache.size() << " cached: " << *QueryInst; +  } else { +    // Seed DirtyBlocks with each of the preds of QueryInst's block. +    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); +    for (BasicBlock *Pred : PredCache.get(QueryBB)) +      DirtyBlocks.push_back(Pred); +    ++NumUncacheNonLocal; +  } + +  // isReadonlyCall - If this is a read-only call, we can be more aggressive. +  bool isReadonlyCall = AA.onlyReadsMemory(QueryCS); + +  SmallPtrSet<BasicBlock *, 32> Visited; + +  unsigned NumSortedEntries = Cache.size(); +  DEBUG(AssertSorted(Cache)); + +  // Iterate while we still have blocks to update. +  while (!DirtyBlocks.empty()) { +    BasicBlock *DirtyBB = DirtyBlocks.back(); +    DirtyBlocks.pop_back(); + +    // Already processed this block? +    if (!Visited.insert(DirtyBB).second) +      continue; + +    // Do a binary search to see if we already have an entry for this block in +    // the cache set.  If so, find it. +    DEBUG(AssertSorted(Cache, NumSortedEntries)); +    NonLocalDepInfo::iterator Entry = +        std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, +                         NonLocalDepEntry(DirtyBB)); +    if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) +      --Entry; + +    NonLocalDepEntry *ExistingResult = nullptr; +    if (Entry != Cache.begin() + NumSortedEntries && +        Entry->getBB() == DirtyBB) { +      // If we already have an entry, and if it isn't already dirty, the block +      // is done. +      if (!Entry->getResult().isDirty()) +        continue; + +      // Otherwise, remember this slot so we can update the value. +      ExistingResult = &*Entry; +    } + +    // If the dirty entry has a pointer, start scanning from it so we don't have +    // to rescan the entire block. +    BasicBlock::iterator ScanPos = DirtyBB->end(); +    if (ExistingResult) { +      if (Instruction *Inst = ExistingResult->getResult().getInst()) { +        ScanPos = Inst->getIterator(); +        // We're removing QueryInst's use of Inst. +        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, +                             QueryCS.getInstruction()); +      } +    } + +    // Find out if this block has a local dependency for QueryInst. +    MemDepResult Dep; + +    if (ScanPos != DirtyBB->begin()) { +      Dep = +          getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB); +    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { +      // No dependence found.  If this is the entry block of the function, it is +      // a clobber, otherwise it is unknown. +      Dep = MemDepResult::getNonLocal(); +    } else { +      Dep = MemDepResult::getNonFuncLocal(); +    } + +    // If we had a dirty entry for the block, update it.  Otherwise, just add +    // a new entry. +    if (ExistingResult) +      ExistingResult->setResult(Dep); +    else +      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); + +    // If the block has a dependency (i.e. it isn't completely transparent to +    // the value), remember the association! +    if (!Dep.isNonLocal()) { +      // Keep the ReverseNonLocalDeps map up to date so we can efficiently +      // update this when we remove instructions. +      if (Instruction *Inst = Dep.getInst()) +        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); +    } else { + +      // If the block *is* completely transparent to the load, we need to check +      // the predecessors of this block.  Add them to our worklist. +      for (BasicBlock *Pred : PredCache.get(DirtyBB)) +        DirtyBlocks.push_back(Pred); +    } +  } + +  return Cache; +} + +void MemoryDependenceResults::getNonLocalPointerDependency( +    Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { +  const MemoryLocation Loc = MemoryLocation::get(QueryInst); +  bool isLoad = isa<LoadInst>(QueryInst); +  BasicBlock *FromBB = QueryInst->getParent(); +  assert(FromBB); + +  assert(Loc.Ptr->getType()->isPointerTy() && +         "Can't get pointer deps of a non-pointer!"); +  Result.clear(); + +  // This routine does not expect to deal with volatile instructions. +  // Doing so would require piping through the QueryInst all the way through. +  // TODO: volatiles can't be elided, but they can be reordered with other +  // non-volatile accesses. + +  // We currently give up on any instruction which is ordered, but we do handle +  // atomic instructions which are unordered. +  // TODO: Handle ordered instructions +  auto isOrdered = [](Instruction *Inst) { +    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { +      return !LI->isUnordered(); +    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { +      return !SI->isUnordered(); +    } +    return false; +  }; +  if (isVolatile(QueryInst) || isOrdered(QueryInst)) { +    Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), +                                       const_cast<Value *>(Loc.Ptr))); +    return; +  } +  const DataLayout &DL = FromBB->getModule()->getDataLayout(); +  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); + +  // This is the set of blocks we've inspected, and the pointer we consider in +  // each block.  Because of critical edges, we currently bail out if querying +  // a block with multiple different pointers.  This can happen during PHI +  // translation. +  DenseMap<BasicBlock *, Value *> Visited; +  if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, +                                   Result, Visited, true)) +    return; +  Result.clear(); +  Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), +                                     const_cast<Value *>(Loc.Ptr))); +} + +/// Compute the memdep value for BB with Pointer/PointeeSize using either +/// cached information in Cache or by doing a lookup (which may use dirty cache +/// info if available). +/// +/// If we do a lookup, add the result to the cache. +MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( +    Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, +    BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { + +  // Do a binary search to see if we already have an entry for this block in +  // the cache set.  If so, find it. +  NonLocalDepInfo::iterator Entry = std::upper_bound( +      Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); +  if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) +    --Entry; + +  NonLocalDepEntry *ExistingResult = nullptr; +  if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) +    ExistingResult = &*Entry; + +  // If we have a cached entry, and it is non-dirty, use it as the value for +  // this dependency. +  if (ExistingResult && !ExistingResult->getResult().isDirty()) { +    ++NumCacheNonLocalPtr; +    return ExistingResult->getResult(); +  } + +  // Otherwise, we have to scan for the value.  If we have a dirty cache +  // entry, start scanning from its position, otherwise we scan from the end +  // of the block. +  BasicBlock::iterator ScanPos = BB->end(); +  if (ExistingResult && ExistingResult->getResult().getInst()) { +    assert(ExistingResult->getResult().getInst()->getParent() == BB && +           "Instruction invalidated?"); +    ++NumCacheDirtyNonLocalPtr; +    ScanPos = ExistingResult->getResult().getInst()->getIterator(); + +    // Eliminating the dirty entry from 'Cache', so update the reverse info. +    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); +    RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); +  } else { +    ++NumUncacheNonLocalPtr; +  } + +  // Scan the block for the dependency. +  MemDepResult Dep = +      getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); + +  // If we had a dirty entry for the block, update it.  Otherwise, just add +  // a new entry. +  if (ExistingResult) +    ExistingResult->setResult(Dep); +  else +    Cache->push_back(NonLocalDepEntry(BB, Dep)); + +  // If the block has a dependency (i.e. it isn't completely transparent to +  // the value), remember the reverse association because we just added it +  // to Cache! +  if (!Dep.isDef() && !Dep.isClobber()) +    return Dep; + +  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently +  // update MemDep when we remove instructions. +  Instruction *Inst = Dep.getInst(); +  assert(Inst && "Didn't depend on anything?"); +  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); +  ReverseNonLocalPtrDeps[Inst].insert(CacheKey); +  return Dep; +} + +/// Sort the NonLocalDepInfo cache, given a certain number of elements in the +/// array that are already properly ordered. +/// +/// This is optimized for the case when only a few entries are added. +static void +SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, +                         unsigned NumSortedEntries) { +  switch (Cache.size() - NumSortedEntries) { +  case 0: +    // done, no new entries. +    break; +  case 2: { +    // Two new entries, insert the last one into place. +    NonLocalDepEntry Val = Cache.back(); +    Cache.pop_back(); +    MemoryDependenceResults::NonLocalDepInfo::iterator Entry = +        std::upper_bound(Cache.begin(), Cache.end() - 1, Val); +    Cache.insert(Entry, Val); +    LLVM_FALLTHROUGH; +  } +  case 1: +    // One new entry, Just insert the new value at the appropriate position. +    if (Cache.size() != 1) { +      NonLocalDepEntry Val = Cache.back(); +      Cache.pop_back(); +      MemoryDependenceResults::NonLocalDepInfo::iterator Entry = +          std::upper_bound(Cache.begin(), Cache.end(), Val); +      Cache.insert(Entry, Val); +    } +    break; +  default: +    // Added many values, do a full scale sort. +    std::sort(Cache.begin(), Cache.end()); +    break; +  } +} + +/// Perform a dependency query based on pointer/pointeesize starting at the end +/// of StartBB. +/// +/// Add any clobber/def results to the results vector and keep track of which +/// blocks are visited in 'Visited'. +/// +/// This has special behavior for the first block queries (when SkipFirstBlock +/// is true).  In this special case, it ignores the contents of the specified +/// block and starts returning dependence info for its predecessors. +/// +/// This function returns true on success, or false to indicate that it could +/// not compute dependence information for some reason.  This should be treated +/// as a clobber dependence on the first instruction in the predecessor block. +bool MemoryDependenceResults::getNonLocalPointerDepFromBB( +    Instruction *QueryInst, const PHITransAddr &Pointer, +    const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, +    SmallVectorImpl<NonLocalDepResult> &Result, +    DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { +  // Look up the cached info for Pointer. +  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); + +  // Set up a temporary NLPI value. If the map doesn't yet have an entry for +  // CacheKey, this value will be inserted as the associated value. Otherwise, +  // it'll be ignored, and we'll have to check to see if the cached size and +  // aa tags are consistent with the current query. +  NonLocalPointerInfo InitialNLPI; +  InitialNLPI.Size = Loc.Size; +  InitialNLPI.AATags = Loc.AATags; + +  // Get the NLPI for CacheKey, inserting one into the map if it doesn't +  // already have one. +  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = +      NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); +  NonLocalPointerInfo *CacheInfo = &Pair.first->second; + +  // If we already have a cache entry for this CacheKey, we may need to do some +  // work to reconcile the cache entry and the current query. +  if (!Pair.second) { +    if (CacheInfo->Size < Loc.Size) { +      // The query's Size is greater than the cached one. Throw out the +      // cached data and proceed with the query at the greater size. +      CacheInfo->Pair = BBSkipFirstBlockPair(); +      CacheInfo->Size = Loc.Size; +      for (auto &Entry : CacheInfo->NonLocalDeps) +        if (Instruction *Inst = Entry.getResult().getInst()) +          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); +      CacheInfo->NonLocalDeps.clear(); +    } else if (CacheInfo->Size > Loc.Size) { +      // This query's Size is less than the cached one. Conservatively restart +      // the query using the greater size. +      return getNonLocalPointerDepFromBB( +          QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, +          StartBB, Result, Visited, SkipFirstBlock); +    } + +    // If the query's AATags are inconsistent with the cached one, +    // conservatively throw out the cached data and restart the query with +    // no tag if needed. +    if (CacheInfo->AATags != Loc.AATags) { +      if (CacheInfo->AATags) { +        CacheInfo->Pair = BBSkipFirstBlockPair(); +        CacheInfo->AATags = AAMDNodes(); +        for (auto &Entry : CacheInfo->NonLocalDeps) +          if (Instruction *Inst = Entry.getResult().getInst()) +            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); +        CacheInfo->NonLocalDeps.clear(); +      } +      if (Loc.AATags) +        return getNonLocalPointerDepFromBB( +            QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, +            Visited, SkipFirstBlock); +    } +  } + +  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; + +  // If we have valid cached information for exactly the block we are +  // investigating, just return it with no recomputation. +  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { +    // We have a fully cached result for this query then we can just return the +    // cached results and populate the visited set.  However, we have to verify +    // that we don't already have conflicting results for these blocks.  Check +    // to ensure that if a block in the results set is in the visited set that +    // it was for the same pointer query. +    if (!Visited.empty()) { +      for (auto &Entry : *Cache) { +        DenseMap<BasicBlock *, Value *>::iterator VI = +            Visited.find(Entry.getBB()); +        if (VI == Visited.end() || VI->second == Pointer.getAddr()) +          continue; + +        // We have a pointer mismatch in a block.  Just return false, saying +        // that something was clobbered in this result.  We could also do a +        // non-fully cached query, but there is little point in doing this. +        return false; +      } +    } + +    Value *Addr = Pointer.getAddr(); +    for (auto &Entry : *Cache) { +      Visited.insert(std::make_pair(Entry.getBB(), Addr)); +      if (Entry.getResult().isNonLocal()) { +        continue; +      } + +      if (DT.isReachableFromEntry(Entry.getBB())) { +        Result.push_back( +            NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); +      } +    } +    ++NumCacheCompleteNonLocalPtr; +    return true; +  } + +  // Otherwise, either this is a new block, a block with an invalid cache +  // pointer or one that we're about to invalidate by putting more info into it +  // than its valid cache info.  If empty, the result will be valid cache info, +  // otherwise it isn't. +  if (Cache->empty()) +    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); +  else +    CacheInfo->Pair = BBSkipFirstBlockPair(); + +  SmallVector<BasicBlock *, 32> Worklist; +  Worklist.push_back(StartBB); + +  // PredList used inside loop. +  SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; + +  // Keep track of the entries that we know are sorted.  Previously cached +  // entries will all be sorted.  The entries we add we only sort on demand (we +  // don't insert every element into its sorted position).  We know that we +  // won't get any reuse from currently inserted values, because we don't +  // revisit blocks after we insert info for them. +  unsigned NumSortedEntries = Cache->size(); +  unsigned WorklistEntries = BlockNumberLimit; +  bool GotWorklistLimit = false; +  DEBUG(AssertSorted(*Cache)); + +  while (!Worklist.empty()) { +    BasicBlock *BB = Worklist.pop_back_val(); + +    // If we do process a large number of blocks it becomes very expensive and +    // likely it isn't worth worrying about +    if (Result.size() > NumResultsLimit) { +      Worklist.clear(); +      // Sort it now (if needed) so that recursive invocations of +      // getNonLocalPointerDepFromBB and other routines that could reuse the +      // cache value will only see properly sorted cache arrays. +      if (Cache && NumSortedEntries != Cache->size()) { +        SortNonLocalDepInfoCache(*Cache, NumSortedEntries); +      } +      // Since we bail out, the "Cache" set won't contain all of the +      // results for the query.  This is ok (we can still use it to accelerate +      // specific block queries) but we can't do the fastpath "return all +      // results from the set".  Clear out the indicator for this. +      CacheInfo->Pair = BBSkipFirstBlockPair(); +      return false; +    } + +    // Skip the first block if we have it. +    if (!SkipFirstBlock) { +      // Analyze the dependency of *Pointer in FromBB.  See if we already have +      // been here. +      assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); + +      // Get the dependency info for Pointer in BB.  If we have cached +      // information, we will use it, otherwise we compute it. +      DEBUG(AssertSorted(*Cache, NumSortedEntries)); +      MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, +                                                 Cache, NumSortedEntries); + +      // If we got a Def or Clobber, add this to the list of results. +      if (!Dep.isNonLocal()) { +        if (DT.isReachableFromEntry(BB)) { +          Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); +          continue; +        } +      } +    } + +    // If 'Pointer' is an instruction defined in this block, then we need to do +    // phi translation to change it into a value live in the predecessor block. +    // If not, we just add the predecessors to the worklist and scan them with +    // the same Pointer. +    if (!Pointer.NeedsPHITranslationFromBlock(BB)) { +      SkipFirstBlock = false; +      SmallVector<BasicBlock *, 16> NewBlocks; +      for (BasicBlock *Pred : PredCache.get(BB)) { +        // Verify that we haven't looked at this block yet. +        std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = +            Visited.insert(std::make_pair(Pred, Pointer.getAddr())); +        if (InsertRes.second) { +          // First time we've looked at *PI. +          NewBlocks.push_back(Pred); +          continue; +        } + +        // If we have seen this block before, but it was with a different +        // pointer then we have a phi translation failure and we have to treat +        // this as a clobber. +        if (InsertRes.first->second != Pointer.getAddr()) { +          // Make sure to clean up the Visited map before continuing on to +          // PredTranslationFailure. +          for (unsigned i = 0; i < NewBlocks.size(); i++) +            Visited.erase(NewBlocks[i]); +          goto PredTranslationFailure; +        } +      } +      if (NewBlocks.size() > WorklistEntries) { +        // Make sure to clean up the Visited map before continuing on to +        // PredTranslationFailure. +        for (unsigned i = 0; i < NewBlocks.size(); i++) +          Visited.erase(NewBlocks[i]); +        GotWorklistLimit = true; +        goto PredTranslationFailure; +      } +      WorklistEntries -= NewBlocks.size(); +      Worklist.append(NewBlocks.begin(), NewBlocks.end()); +      continue; +    } + +    // We do need to do phi translation, if we know ahead of time we can't phi +    // translate this value, don't even try. +    if (!Pointer.IsPotentiallyPHITranslatable()) +      goto PredTranslationFailure; + +    // We may have added values to the cache list before this PHI translation. +    // If so, we haven't done anything to ensure that the cache remains sorted. +    // Sort it now (if needed) so that recursive invocations of +    // getNonLocalPointerDepFromBB and other routines that could reuse the cache +    // value will only see properly sorted cache arrays. +    if (Cache && NumSortedEntries != Cache->size()) { +      SortNonLocalDepInfoCache(*Cache, NumSortedEntries); +      NumSortedEntries = Cache->size(); +    } +    Cache = nullptr; + +    PredList.clear(); +    for (BasicBlock *Pred : PredCache.get(BB)) { +      PredList.push_back(std::make_pair(Pred, Pointer)); + +      // Get the PHI translated pointer in this predecessor.  This can fail if +      // not translatable, in which case the getAddr() returns null. +      PHITransAddr &PredPointer = PredList.back().second; +      PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); +      Value *PredPtrVal = PredPointer.getAddr(); + +      // Check to see if we have already visited this pred block with another +      // pointer.  If so, we can't do this lookup.  This failure can occur +      // with PHI translation when a critical edge exists and the PHI node in +      // the successor translates to a pointer value different than the +      // pointer the block was first analyzed with. +      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = +          Visited.insert(std::make_pair(Pred, PredPtrVal)); + +      if (!InsertRes.second) { +        // We found the pred; take it off the list of preds to visit. +        PredList.pop_back(); + +        // If the predecessor was visited with PredPtr, then we already did +        // the analysis and can ignore it. +        if (InsertRes.first->second == PredPtrVal) +          continue; + +        // Otherwise, the block was previously analyzed with a different +        // pointer.  We can't represent the result of this case, so we just +        // treat this as a phi translation failure. + +        // Make sure to clean up the Visited map before continuing on to +        // PredTranslationFailure. +        for (unsigned i = 0, n = PredList.size(); i < n; ++i) +          Visited.erase(PredList[i].first); + +        goto PredTranslationFailure; +      } +    } + +    // Actually process results here; this need to be a separate loop to avoid +    // calling getNonLocalPointerDepFromBB for blocks we don't want to return +    // any results for.  (getNonLocalPointerDepFromBB will modify our +    // datastructures in ways the code after the PredTranslationFailure label +    // doesn't expect.) +    for (unsigned i = 0, n = PredList.size(); i < n; ++i) { +      BasicBlock *Pred = PredList[i].first; +      PHITransAddr &PredPointer = PredList[i].second; +      Value *PredPtrVal = PredPointer.getAddr(); + +      bool CanTranslate = true; +      // If PHI translation was unable to find an available pointer in this +      // predecessor, then we have to assume that the pointer is clobbered in +      // that predecessor.  We can still do PRE of the load, which would insert +      // a computation of the pointer in this predecessor. +      if (!PredPtrVal) +        CanTranslate = false; + +      // FIXME: it is entirely possible that PHI translating will end up with +      // the same value.  Consider PHI translating something like: +      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need* +      // to recurse here, pedantically speaking. + +      // If getNonLocalPointerDepFromBB fails here, that means the cached +      // result conflicted with the Visited list; we have to conservatively +      // assume it is unknown, but this also does not block PRE of the load. +      if (!CanTranslate || +          !getNonLocalPointerDepFromBB(QueryInst, PredPointer, +                                      Loc.getWithNewPtr(PredPtrVal), isLoad, +                                      Pred, Result, Visited)) { +        // Add the entry to the Result list. +        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); +        Result.push_back(Entry); + +        // Since we had a phi translation failure, the cache for CacheKey won't +        // include all of the entries that we need to immediately satisfy future +        // queries.  Mark this in NonLocalPointerDeps by setting the +        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the +        // cached value to do more work but not miss the phi trans failure. +        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; +        NLPI.Pair = BBSkipFirstBlockPair(); +        continue; +      } +    } + +    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. +    CacheInfo = &NonLocalPointerDeps[CacheKey]; +    Cache = &CacheInfo->NonLocalDeps; +    NumSortedEntries = Cache->size(); + +    // Since we did phi translation, the "Cache" set won't contain all of the +    // results for the query.  This is ok (we can still use it to accelerate +    // specific block queries) but we can't do the fastpath "return all +    // results from the set"  Clear out the indicator for this. +    CacheInfo->Pair = BBSkipFirstBlockPair(); +    SkipFirstBlock = false; +    continue; + +  PredTranslationFailure: +    // The following code is "failure"; we can't produce a sane translation +    // for the given block.  It assumes that we haven't modified any of +    // our datastructures while processing the current block. + +    if (!Cache) { +      // Refresh the CacheInfo/Cache pointer if it got invalidated. +      CacheInfo = &NonLocalPointerDeps[CacheKey]; +      Cache = &CacheInfo->NonLocalDeps; +      NumSortedEntries = Cache->size(); +    } + +    // Since we failed phi translation, the "Cache" set won't contain all of the +    // results for the query.  This is ok (we can still use it to accelerate +    // specific block queries) but we can't do the fastpath "return all +    // results from the set".  Clear out the indicator for this. +    CacheInfo->Pair = BBSkipFirstBlockPair(); + +    // If *nothing* works, mark the pointer as unknown. +    // +    // If this is the magic first block, return this as a clobber of the whole +    // incoming value.  Since we can't phi translate to one of the predecessors, +    // we have to bail out. +    if (SkipFirstBlock) +      return false; + +    bool foundBlock = false; +    for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { +      if (I.getBB() != BB) +        continue; + +      assert((GotWorklistLimit || I.getResult().isNonLocal() || +              !DT.isReachableFromEntry(BB)) && +             "Should only be here with transparent block"); +      foundBlock = true; +      I.setResult(MemDepResult::getUnknown()); +      Result.push_back( +          NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); +      break; +    } +    (void)foundBlock; (void)GotWorklistLimit; +    assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); +  } + +  // Okay, we're done now.  If we added new values to the cache, re-sort it. +  SortNonLocalDepInfoCache(*Cache, NumSortedEntries); +  DEBUG(AssertSorted(*Cache)); +  return true; +} + +/// If P exists in CachedNonLocalPointerInfo, remove it. +void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( +    ValueIsLoadPair P) { +  CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); +  if (It == NonLocalPointerDeps.end()) +    return; + +  // Remove all of the entries in the BB->val map.  This involves removing +  // instructions from the reverse map. +  NonLocalDepInfo &PInfo = It->second.NonLocalDeps; + +  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { +    Instruction *Target = PInfo[i].getResult().getInst(); +    if (!Target) +      continue; // Ignore non-local dep results. +    assert(Target->getParent() == PInfo[i].getBB()); + +    // Eliminating the dirty entry from 'Cache', so update the reverse info. +    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); +  } + +  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). +  NonLocalPointerDeps.erase(It); +} + +void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { +  // If Ptr isn't really a pointer, just ignore it. +  if (!Ptr->getType()->isPointerTy()) +    return; +  // Flush store info for the pointer. +  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); +  // Flush load info for the pointer. +  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); +} + +void MemoryDependenceResults::invalidateCachedPredecessors() { +  PredCache.clear(); +} + +void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { +  // Walk through the Non-local dependencies, removing this one as the value +  // for any cached queries. +  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); +  if (NLDI != NonLocalDeps.end()) { +    NonLocalDepInfo &BlockMap = NLDI->second.first; +    for (auto &Entry : BlockMap) +      if (Instruction *Inst = Entry.getResult().getInst()) +        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); +    NonLocalDeps.erase(NLDI); +  } + +  // If we have a cached local dependence query for this instruction, remove it. +  // +  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); +  if (LocalDepEntry != LocalDeps.end()) { +    // Remove us from DepInst's reverse set now that the local dep info is gone. +    if (Instruction *Inst = LocalDepEntry->second.getInst()) +      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); + +    // Remove this local dependency info. +    LocalDeps.erase(LocalDepEntry); +  } + +  // If we have any cached pointer dependencies on this instruction, remove +  // them.  If the instruction has non-pointer type, then it can't be a pointer +  // base. + +  // Remove it from both the load info and the store info.  The instruction +  // can't be in either of these maps if it is non-pointer. +  if (RemInst->getType()->isPointerTy()) { +    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); +    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); +  } + +  // Loop over all of the things that depend on the instruction we're removing. +  // +  SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; + +  // If we find RemInst as a clobber or Def in any of the maps for other values, +  // we need to replace its entry with a dirty version of the instruction after +  // it.  If RemInst is a terminator, we use a null dirty value. +  // +  // Using a dirty version of the instruction after RemInst saves having to scan +  // the entire block to get to this point. +  MemDepResult NewDirtyVal; +  if (!RemInst->isTerminator()) +    NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); + +  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); +  if (ReverseDepIt != ReverseLocalDeps.end()) { +    // RemInst can't be the terminator if it has local stuff depending on it. +    assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && +           "Nothing can locally depend on a terminator"); + +    for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { +      assert(InstDependingOnRemInst != RemInst && +             "Already removed our local dep info"); + +      LocalDeps[InstDependingOnRemInst] = NewDirtyVal; + +      // Make sure to remember that new things depend on NewDepInst. +      assert(NewDirtyVal.getInst() && +             "There is no way something else can have " +             "a local dep on this if it is a terminator!"); +      ReverseDepsToAdd.push_back( +          std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); +    } + +    ReverseLocalDeps.erase(ReverseDepIt); + +    // Add new reverse deps after scanning the set, to avoid invalidating the +    // 'ReverseDeps' reference. +    while (!ReverseDepsToAdd.empty()) { +      ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( +          ReverseDepsToAdd.back().second); +      ReverseDepsToAdd.pop_back(); +    } +  } + +  ReverseDepIt = ReverseNonLocalDeps.find(RemInst); +  if (ReverseDepIt != ReverseNonLocalDeps.end()) { +    for (Instruction *I : ReverseDepIt->second) { +      assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); + +      PerInstNLInfo &INLD = NonLocalDeps[I]; +      // The information is now dirty! +      INLD.second = true; + +      for (auto &Entry : INLD.first) { +        if (Entry.getResult().getInst() != RemInst) +          continue; + +        // Convert to a dirty entry for the subsequent instruction. +        Entry.setResult(NewDirtyVal); + +        if (Instruction *NextI = NewDirtyVal.getInst()) +          ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); +      } +    } + +    ReverseNonLocalDeps.erase(ReverseDepIt); + +    // Add new reverse deps after scanning the set, to avoid invalidating 'Set' +    while (!ReverseDepsToAdd.empty()) { +      ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( +          ReverseDepsToAdd.back().second); +      ReverseDepsToAdd.pop_back(); +    } +  } + +  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a +  // value in the NonLocalPointerDeps info. +  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = +      ReverseNonLocalPtrDeps.find(RemInst); +  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { +    SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> +        ReversePtrDepsToAdd; + +    for (ValueIsLoadPair P : ReversePtrDepIt->second) { +      assert(P.getPointer() != RemInst && +             "Already removed NonLocalPointerDeps info for RemInst"); + +      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; + +      // The cache is not valid for any specific block anymore. +      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); + +      // Update any entries for RemInst to use the instruction after it. +      for (auto &Entry : NLPDI) { +        if (Entry.getResult().getInst() != RemInst) +          continue; + +        // Convert to a dirty entry for the subsequent instruction. +        Entry.setResult(NewDirtyVal); + +        if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) +          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); +      } + +      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its +      // subsequent value may invalidate the sortedness. +      std::sort(NLPDI.begin(), NLPDI.end()); +    } + +    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); + +    while (!ReversePtrDepsToAdd.empty()) { +      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( +          ReversePtrDepsToAdd.back().second); +      ReversePtrDepsToAdd.pop_back(); +    } +  } + +  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); +  DEBUG(verifyRemoved(RemInst)); +} + +/// Verify that the specified instruction does not occur in our internal data +/// structures. +/// +/// This function verifies by asserting in debug builds. +void MemoryDependenceResults::verifyRemoved(Instruction *D) const { +#ifndef NDEBUG +  for (const auto &DepKV : LocalDeps) { +    assert(DepKV.first != D && "Inst occurs in data structures"); +    assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); +  } + +  for (const auto &DepKV : NonLocalPointerDeps) { +    assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); +    for (const auto &Entry : DepKV.second.NonLocalDeps) +      assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); +  } + +  for (const auto &DepKV : NonLocalDeps) { +    assert(DepKV.first != D && "Inst occurs in data structures"); +    const PerInstNLInfo &INLD = DepKV.second; +    for (const auto &Entry : INLD.first) +      assert(Entry.getResult().getInst() != D && +             "Inst occurs in data structures"); +  } + +  for (const auto &DepKV : ReverseLocalDeps) { +    assert(DepKV.first != D && "Inst occurs in data structures"); +    for (Instruction *Inst : DepKV.second) +      assert(Inst != D && "Inst occurs in data structures"); +  } + +  for (const auto &DepKV : ReverseNonLocalDeps) { +    assert(DepKV.first != D && "Inst occurs in data structures"); +    for (Instruction *Inst : DepKV.second) +      assert(Inst != D && "Inst occurs in data structures"); +  } + +  for (const auto &DepKV : ReverseNonLocalPtrDeps) { +    assert(DepKV.first != D && "Inst occurs in rev NLPD map"); + +    for (ValueIsLoadPair P : DepKV.second) +      assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && +             "Inst occurs in ReverseNonLocalPtrDeps map"); +  } +#endif +} + +AnalysisKey MemoryDependenceAnalysis::Key; + +MemoryDependenceResults +MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { +  auto &AA = AM.getResult<AAManager>(F); +  auto &AC = AM.getResult<AssumptionAnalysis>(F); +  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  return MemoryDependenceResults(AA, AC, TLI, DT); +} + +char MemoryDependenceWrapperPass::ID = 0; + +INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", +                      "Memory Dependence Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", +                    "Memory Dependence Analysis", false, true) + +MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { +  initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() {} + +void MemoryDependenceWrapperPass::releaseMemory() { +  MemDep.reset(); +} + +void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequired<AssumptionCacheTracker>(); +  AU.addRequired<DominatorTreeWrapperPass>(); +  AU.addRequiredTransitive<AAResultsWrapperPass>(); +  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); +} + +bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, +                               FunctionAnalysisManager::Invalidator &Inv) { +  // Check whether our analysis is preserved. +  auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); +  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) +    // If not, give up now. +    return true; + +  // Check whether the analyses we depend on became invalid for any reason. +  if (Inv.invalidate<AAManager>(F, PA) || +      Inv.invalidate<AssumptionAnalysis>(F, PA) || +      Inv.invalidate<DominatorTreeAnalysis>(F, PA)) +    return true; + +  // Otherwise this analysis result remains valid. +  return false; +} + +unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { +  return BlockScanLimit; +} + +bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { +  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); +  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); +  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); +  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  MemDep.emplace(AA, AC, TLI, DT); +  return false; +} | 
