diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/MemorySSA.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/MemorySSA.cpp | 2075 | 
1 files changed, 2075 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/MemorySSA.cpp b/contrib/llvm/lib/Analysis/MemorySSA.cpp new file mode 100644 index 000000000000..86d0d92799f2 --- /dev/null +++ b/contrib/llvm/lib/Analysis/MemorySSA.cpp @@ -0,0 +1,2075 @@ +//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------===// +// +// This file implements the MemorySSA class. +// +//===----------------------------------------------------------------===// +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/IteratedDominanceFrontier.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/PHITransAddr.h" +#include "llvm/IR/AssemblyAnnotationWriter.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Transforms/Scalar.h" +#include <algorithm> + +#define DEBUG_TYPE "memoryssa" +using namespace llvm; +INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, +                      true) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, +                    true) + +INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", +                      "Memory SSA Printer", false, false) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", +                    "Memory SSA Printer", false, false) + +static cl::opt<unsigned> MaxCheckLimit( +    "memssa-check-limit", cl::Hidden, cl::init(100), +    cl::desc("The maximum number of stores/phis MemorySSA" +             "will consider trying to walk past (default = 100)")); + +static cl::opt<bool> +    VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, +                    cl::desc("Verify MemorySSA in legacy printer pass.")); + +namespace llvm { +/// \brief An assembly annotator class to print Memory SSA information in +/// comments. +class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { +  friend class MemorySSA; +  const MemorySSA *MSSA; + +public: +  MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} + +  virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, +                                        formatted_raw_ostream &OS) { +    if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) +      OS << "; " << *MA << "\n"; +  } + +  virtual void emitInstructionAnnot(const Instruction *I, +                                    formatted_raw_ostream &OS) { +    if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) +      OS << "; " << *MA << "\n"; +  } +}; +} + +namespace { +/// Our current alias analysis API differentiates heavily between calls and +/// non-calls, and functions called on one usually assert on the other. +/// This class encapsulates the distinction to simplify other code that wants +/// "Memory affecting instructions and related data" to use as a key. +/// For example, this class is used as a densemap key in the use optimizer. +class MemoryLocOrCall { +public: +  MemoryLocOrCall() : IsCall(false) {} +  MemoryLocOrCall(MemoryUseOrDef *MUD) +      : MemoryLocOrCall(MUD->getMemoryInst()) {} +  MemoryLocOrCall(const MemoryUseOrDef *MUD) +      : MemoryLocOrCall(MUD->getMemoryInst()) {} + +  MemoryLocOrCall(Instruction *Inst) { +    if (ImmutableCallSite(Inst)) { +      IsCall = true; +      CS = ImmutableCallSite(Inst); +    } else { +      IsCall = false; +      // There is no such thing as a memorylocation for a fence inst, and it is +      // unique in that regard. +      if (!isa<FenceInst>(Inst)) +        Loc = MemoryLocation::get(Inst); +    } +  } + +  explicit MemoryLocOrCall(const MemoryLocation &Loc) +      : IsCall(false), Loc(Loc) {} + +  bool IsCall; +  ImmutableCallSite getCS() const { +    assert(IsCall); +    return CS; +  } +  MemoryLocation getLoc() const { +    assert(!IsCall); +    return Loc; +  } + +  bool operator==(const MemoryLocOrCall &Other) const { +    if (IsCall != Other.IsCall) +      return false; + +    if (IsCall) +      return CS.getCalledValue() == Other.CS.getCalledValue(); +    return Loc == Other.Loc; +  } + +private: +  union { +    ImmutableCallSite CS; +    MemoryLocation Loc; +  }; +}; +} + +namespace llvm { +template <> struct DenseMapInfo<MemoryLocOrCall> { +  static inline MemoryLocOrCall getEmptyKey() { +    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); +  } +  static inline MemoryLocOrCall getTombstoneKey() { +    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); +  } +  static unsigned getHashValue(const MemoryLocOrCall &MLOC) { +    if (MLOC.IsCall) +      return hash_combine(MLOC.IsCall, +                          DenseMapInfo<const Value *>::getHashValue( +                              MLOC.getCS().getCalledValue())); +    return hash_combine( +        MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); +  } +  static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { +    return LHS == RHS; +  } +}; + +enum class Reorderability { Always, IfNoAlias, Never }; + +/// This does one-way checks to see if Use could theoretically be hoisted above +/// MayClobber. This will not check the other way around. +/// +/// This assumes that, for the purposes of MemorySSA, Use comes directly after +/// MayClobber, with no potentially clobbering operations in between them. +/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) +static Reorderability getLoadReorderability(const LoadInst *Use, +                                            const LoadInst *MayClobber) { +  bool VolatileUse = Use->isVolatile(); +  bool VolatileClobber = MayClobber->isVolatile(); +  // Volatile operations may never be reordered with other volatile operations. +  if (VolatileUse && VolatileClobber) +    return Reorderability::Never; + +  // The lang ref allows reordering of volatile and non-volatile operations. +  // Whether an aliasing nonvolatile load and volatile load can be reordered, +  // though, is ambiguous. Because it may not be best to exploit this ambiguity, +  // we only allow volatile/non-volatile reordering if the volatile and +  // non-volatile operations don't alias. +  Reorderability Result = VolatileUse || VolatileClobber +                              ? Reorderability::IfNoAlias +                              : Reorderability::Always; + +  // If a load is seq_cst, it cannot be moved above other loads. If its ordering +  // is weaker, it can be moved above other loads. We just need to be sure that +  // MayClobber isn't an acquire load, because loads can't be moved above +  // acquire loads. +  // +  // Note that this explicitly *does* allow the free reordering of monotonic (or +  // weaker) loads of the same address. +  bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; +  bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), +                                                     AtomicOrdering::Acquire); +  if (SeqCstUse || MayClobberIsAcquire) +    return Reorderability::Never; +  return Result; +} + +static bool instructionClobbersQuery(MemoryDef *MD, +                                     const MemoryLocation &UseLoc, +                                     const Instruction *UseInst, +                                     AliasAnalysis &AA) { +  Instruction *DefInst = MD->getMemoryInst(); +  assert(DefInst && "Defining instruction not actually an instruction"); +  ImmutableCallSite UseCS(UseInst); + +  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { +    // These intrinsics will show up as affecting memory, but they are just +    // markers. +    switch (II->getIntrinsicID()) { +    case Intrinsic::lifetime_start: +      if (UseCS) +        return false; +      return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc); +    case Intrinsic::lifetime_end: +    case Intrinsic::invariant_start: +    case Intrinsic::invariant_end: +    case Intrinsic::assume: +      return false; +    default: +      break; +    } +  } + +  if (UseCS) { +    ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); +    return I != MRI_NoModRef; +  } + +  if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) { +    if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) { +      switch (getLoadReorderability(UseLoad, DefLoad)) { +      case Reorderability::Always: +        return false; +      case Reorderability::Never: +        return true; +      case Reorderability::IfNoAlias: +        return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad)); +      } +    } +  } + +  return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod; +} + +static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, +                                     const MemoryLocOrCall &UseMLOC, +                                     AliasAnalysis &AA) { +  // FIXME: This is a temporary hack to allow a single instructionClobbersQuery +  // to exist while MemoryLocOrCall is pushed through places. +  if (UseMLOC.IsCall) +    return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), +                                    AA); +  return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), +                                  AA); +} + +// Return true when MD may alias MU, return false otherwise. +bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, +                                        AliasAnalysis &AA) { +  return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); +} +} + +namespace { +struct UpwardsMemoryQuery { +  // True if our original query started off as a call +  bool IsCall; +  // The pointer location we started the query with. This will be empty if +  // IsCall is true. +  MemoryLocation StartingLoc; +  // This is the instruction we were querying about. +  const Instruction *Inst; +  // The MemoryAccess we actually got called with, used to test local domination +  const MemoryAccess *OriginalAccess; + +  UpwardsMemoryQuery() +      : IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {} + +  UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) +      : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { +    if (!IsCall) +      StartingLoc = MemoryLocation::get(Inst); +  } +}; + +static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, +                           AliasAnalysis &AA) { +  Instruction *Inst = MD->getMemoryInst(); +  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { +    switch (II->getIntrinsicID()) { +    case Intrinsic::lifetime_end: +      return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); +    default: +      return false; +    } +  } +  return false; +} + +static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, +                                                   const Instruction *I) { +  // If the memory can't be changed, then loads of the memory can't be +  // clobbered. +  // +  // FIXME: We should handle invariant groups, as well. It's a bit harder, +  // because we need to pay close attention to invariant group barriers. +  return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || +                              AA.pointsToConstantMemory(cast<LoadInst>(I)-> +                                                          getPointerOperand())); +} + +/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing +/// inbetween `Start` and `ClobberAt` can clobbers `Start`. +/// +/// This is meant to be as simple and self-contained as possible. Because it +/// uses no cache, etc., it can be relatively expensive. +/// +/// \param Start     The MemoryAccess that we want to walk from. +/// \param ClobberAt A clobber for Start. +/// \param StartLoc  The MemoryLocation for Start. +/// \param MSSA      The MemorySSA isntance that Start and ClobberAt belong to. +/// \param Query     The UpwardsMemoryQuery we used for our search. +/// \param AA        The AliasAnalysis we used for our search. +static void LLVM_ATTRIBUTE_UNUSED +checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, +                   const MemoryLocation &StartLoc, const MemorySSA &MSSA, +                   const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { +  assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); + +  if (MSSA.isLiveOnEntryDef(Start)) { +    assert(MSSA.isLiveOnEntryDef(ClobberAt) && +           "liveOnEntry must clobber itself"); +    return; +  } + +  bool FoundClobber = false; +  DenseSet<MemoryAccessPair> VisitedPhis; +  SmallVector<MemoryAccessPair, 8> Worklist; +  Worklist.emplace_back(Start, StartLoc); +  // Walk all paths from Start to ClobberAt, while looking for clobbers. If one +  // is found, complain. +  while (!Worklist.empty()) { +    MemoryAccessPair MAP = Worklist.pop_back_val(); +    // All we care about is that nothing from Start to ClobberAt clobbers Start. +    // We learn nothing from revisiting nodes. +    if (!VisitedPhis.insert(MAP).second) +      continue; + +    for (MemoryAccess *MA : def_chain(MAP.first)) { +      if (MA == ClobberAt) { +        if (auto *MD = dyn_cast<MemoryDef>(MA)) { +          // instructionClobbersQuery isn't essentially free, so don't use `|=`, +          // since it won't let us short-circuit. +          // +          // Also, note that this can't be hoisted out of the `Worklist` loop, +          // since MD may only act as a clobber for 1 of N MemoryLocations. +          FoundClobber = +              FoundClobber || MSSA.isLiveOnEntryDef(MD) || +              instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); +        } +        break; +      } + +      // We should never hit liveOnEntry, unless it's the clobber. +      assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); + +      if (auto *MD = dyn_cast<MemoryDef>(MA)) { +        (void)MD; +        assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && +               "Found clobber before reaching ClobberAt!"); +        continue; +      } + +      assert(isa<MemoryPhi>(MA)); +      Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); +    } +  } + +  // If ClobberAt is a MemoryPhi, we can assume something above it acted as a +  // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. +  assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && +         "ClobberAt never acted as a clobber"); +} + +/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up +/// in one class. +class ClobberWalker { +  /// Save a few bytes by using unsigned instead of size_t. +  using ListIndex = unsigned; + +  /// Represents a span of contiguous MemoryDefs, potentially ending in a +  /// MemoryPhi. +  struct DefPath { +    MemoryLocation Loc; +    // Note that, because we always walk in reverse, Last will always dominate +    // First. Also note that First and Last are inclusive. +    MemoryAccess *First; +    MemoryAccess *Last; +    Optional<ListIndex> Previous; + +    DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, +            Optional<ListIndex> Previous) +        : Loc(Loc), First(First), Last(Last), Previous(Previous) {} + +    DefPath(const MemoryLocation &Loc, MemoryAccess *Init, +            Optional<ListIndex> Previous) +        : DefPath(Loc, Init, Init, Previous) {} +  }; + +  const MemorySSA &MSSA; +  AliasAnalysis &AA; +  DominatorTree &DT; +  UpwardsMemoryQuery *Query; + +  // Phi optimization bookkeeping +  SmallVector<DefPath, 32> Paths; +  DenseSet<ConstMemoryAccessPair> VisitedPhis; + +  /// Find the nearest def or phi that `From` can legally be optimized to. +  const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { +    assert(From->getNumOperands() && "Phi with no operands?"); + +    BasicBlock *BB = From->getBlock(); +    MemoryAccess *Result = MSSA.getLiveOnEntryDef(); +    DomTreeNode *Node = DT.getNode(BB); +    while ((Node = Node->getIDom())) { +      auto *Defs = MSSA.getBlockDefs(Node->getBlock()); +      if (Defs) +        return &*Defs->rbegin(); +    } +    return Result; +  } + +  /// Result of calling walkToPhiOrClobber. +  struct UpwardsWalkResult { +    /// The "Result" of the walk. Either a clobber, the last thing we walked, or +    /// both. +    MemoryAccess *Result; +    bool IsKnownClobber; +  }; + +  /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. +  /// This will update Desc.Last as it walks. It will (optionally) also stop at +  /// StopAt. +  /// +  /// This does not test for whether StopAt is a clobber +  UpwardsWalkResult +  walkToPhiOrClobber(DefPath &Desc, +                     const MemoryAccess *StopAt = nullptr) const { +    assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); + +    for (MemoryAccess *Current : def_chain(Desc.Last)) { +      Desc.Last = Current; +      if (Current == StopAt) +        return {Current, false}; + +      if (auto *MD = dyn_cast<MemoryDef>(Current)) +        if (MSSA.isLiveOnEntryDef(MD) || +            instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA)) +          return {MD, true}; +    } + +    assert(isa<MemoryPhi>(Desc.Last) && +           "Ended at a non-clobber that's not a phi?"); +    return {Desc.Last, false}; +  } + +  void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, +                   ListIndex PriorNode) { +    auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), +                                 upward_defs_end()); +    for (const MemoryAccessPair &P : UpwardDefs) { +      PausedSearches.push_back(Paths.size()); +      Paths.emplace_back(P.second, P.first, PriorNode); +    } +  } + +  /// Represents a search that terminated after finding a clobber. This clobber +  /// may or may not be present in the path of defs from LastNode..SearchStart, +  /// since it may have been retrieved from cache. +  struct TerminatedPath { +    MemoryAccess *Clobber; +    ListIndex LastNode; +  }; + +  /// Get an access that keeps us from optimizing to the given phi. +  /// +  /// PausedSearches is an array of indices into the Paths array. Its incoming +  /// value is the indices of searches that stopped at the last phi optimization +  /// target. It's left in an unspecified state. +  /// +  /// If this returns None, NewPaused is a vector of searches that terminated +  /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. +  Optional<TerminatedPath> +  getBlockingAccess(const MemoryAccess *StopWhere, +                    SmallVectorImpl<ListIndex> &PausedSearches, +                    SmallVectorImpl<ListIndex> &NewPaused, +                    SmallVectorImpl<TerminatedPath> &Terminated) { +    assert(!PausedSearches.empty() && "No searches to continue?"); + +    // BFS vs DFS really doesn't make a difference here, so just do a DFS with +    // PausedSearches as our stack. +    while (!PausedSearches.empty()) { +      ListIndex PathIndex = PausedSearches.pop_back_val(); +      DefPath &Node = Paths[PathIndex]; + +      // If we've already visited this path with this MemoryLocation, we don't +      // need to do so again. +      // +      // NOTE: That we just drop these paths on the ground makes caching +      // behavior sporadic. e.g. given a diamond: +      //  A +      // B C +      //  D +      // +      // ...If we walk D, B, A, C, we'll only cache the result of phi +      // optimization for A, B, and D; C will be skipped because it dies here. +      // This arguably isn't the worst thing ever, since: +      //   - We generally query things in a top-down order, so if we got below D +      //     without needing cache entries for {C, MemLoc}, then chances are +      //     that those cache entries would end up ultimately unused. +      //   - We still cache things for A, so C only needs to walk up a bit. +      // If this behavior becomes problematic, we can fix without a ton of extra +      // work. +      if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) +        continue; + +      UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); +      if (Res.IsKnownClobber) { +        assert(Res.Result != StopWhere); +        // If this wasn't a cache hit, we hit a clobber when walking. That's a +        // failure. +        TerminatedPath Term{Res.Result, PathIndex}; +        if (!MSSA.dominates(Res.Result, StopWhere)) +          return Term; + +        // Otherwise, it's a valid thing to potentially optimize to. +        Terminated.push_back(Term); +        continue; +      } + +      if (Res.Result == StopWhere) { +        // We've hit our target. Save this path off for if we want to continue +        // walking. +        NewPaused.push_back(PathIndex); +        continue; +      } + +      assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); +      addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); +    } + +    return None; +  } + +  template <typename T, typename Walker> +  struct generic_def_path_iterator +      : public iterator_facade_base<generic_def_path_iterator<T, Walker>, +                                    std::forward_iterator_tag, T *> { +    generic_def_path_iterator() : W(nullptr), N(None) {} +    generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} + +    T &operator*() const { return curNode(); } + +    generic_def_path_iterator &operator++() { +      N = curNode().Previous; +      return *this; +    } + +    bool operator==(const generic_def_path_iterator &O) const { +      if (N.hasValue() != O.N.hasValue()) +        return false; +      return !N.hasValue() || *N == *O.N; +    } + +  private: +    T &curNode() const { return W->Paths[*N]; } + +    Walker *W; +    Optional<ListIndex> N; +  }; + +  using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; +  using const_def_path_iterator = +      generic_def_path_iterator<const DefPath, const ClobberWalker>; + +  iterator_range<def_path_iterator> def_path(ListIndex From) { +    return make_range(def_path_iterator(this, From), def_path_iterator()); +  } + +  iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { +    return make_range(const_def_path_iterator(this, From), +                      const_def_path_iterator()); +  } + +  struct OptznResult { +    /// The path that contains our result. +    TerminatedPath PrimaryClobber; +    /// The paths that we can legally cache back from, but that aren't +    /// necessarily the result of the Phi optimization. +    SmallVector<TerminatedPath, 4> OtherClobbers; +  }; + +  ListIndex defPathIndex(const DefPath &N) const { +    // The assert looks nicer if we don't need to do &N +    const DefPath *NP = &N; +    assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && +           "Out of bounds DefPath!"); +    return NP - &Paths.front(); +  } + +  /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths +  /// that act as legal clobbers. Note that this won't return *all* clobbers. +  /// +  /// Phi optimization algorithm tl;dr: +  ///   - Find the earliest def/phi, A, we can optimize to +  ///   - Find if all paths from the starting memory access ultimately reach A +  ///     - If not, optimization isn't possible. +  ///     - Otherwise, walk from A to another clobber or phi, A'. +  ///       - If A' is a def, we're done. +  ///       - If A' is a phi, try to optimize it. +  /// +  /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path +  /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. +  OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, +                             const MemoryLocation &Loc) { +    assert(Paths.empty() && VisitedPhis.empty() && +           "Reset the optimization state."); + +    Paths.emplace_back(Loc, Start, Phi, None); +    // Stores how many "valid" optimization nodes we had prior to calling +    // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. +    auto PriorPathsSize = Paths.size(); + +    SmallVector<ListIndex, 16> PausedSearches; +    SmallVector<ListIndex, 8> NewPaused; +    SmallVector<TerminatedPath, 4> TerminatedPaths; + +    addSearches(Phi, PausedSearches, 0); + +    // Moves the TerminatedPath with the "most dominated" Clobber to the end of +    // Paths. +    auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { +      assert(!Paths.empty() && "Need a path to move"); +      auto Dom = Paths.begin(); +      for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) +        if (!MSSA.dominates(I->Clobber, Dom->Clobber)) +          Dom = I; +      auto Last = Paths.end() - 1; +      if (Last != Dom) +        std::iter_swap(Last, Dom); +    }; + +    MemoryPhi *Current = Phi; +    while (1) { +      assert(!MSSA.isLiveOnEntryDef(Current) && +             "liveOnEntry wasn't treated as a clobber?"); + +      const auto *Target = getWalkTarget(Current); +      // If a TerminatedPath doesn't dominate Target, then it wasn't a legal +      // optimization for the prior phi. +      assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { +        return MSSA.dominates(P.Clobber, Target); +      })); + +      // FIXME: This is broken, because the Blocker may be reported to be +      // liveOnEntry, and we'll happily wait for that to disappear (read: never) +      // For the moment, this is fine, since we do nothing with blocker info. +      if (Optional<TerminatedPath> Blocker = getBlockingAccess( +              Target, PausedSearches, NewPaused, TerminatedPaths)) { + +        // Find the node we started at. We can't search based on N->Last, since +        // we may have gone around a loop with a different MemoryLocation. +        auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { +          return defPathIndex(N) < PriorPathsSize; +        }); +        assert(Iter != def_path_iterator()); + +        DefPath &CurNode = *Iter; +        assert(CurNode.Last == Current); + +        // Two things: +        // A. We can't reliably cache all of NewPaused back. Consider a case +        //    where we have two paths in NewPaused; one of which can't optimize +        //    above this phi, whereas the other can. If we cache the second path +        //    back, we'll end up with suboptimal cache entries. We can handle +        //    cases like this a bit better when we either try to find all +        //    clobbers that block phi optimization, or when our cache starts +        //    supporting unfinished searches. +        // B. We can't reliably cache TerminatedPaths back here without doing +        //    extra checks; consider a case like: +        //       T +        //      / \ +        //     D   C +        //      \ / +        //       S +        //    Where T is our target, C is a node with a clobber on it, D is a +        //    diamond (with a clobber *only* on the left or right node, N), and +        //    S is our start. Say we walk to D, through the node opposite N +        //    (read: ignoring the clobber), and see a cache entry in the top +        //    node of D. That cache entry gets put into TerminatedPaths. We then +        //    walk up to C (N is later in our worklist), find the clobber, and +        //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache +        //    the bottom part of D to the cached clobber, ignoring the clobber +        //    in N. Again, this problem goes away if we start tracking all +        //    blockers for a given phi optimization. +        TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; +        return {Result, {}}; +      } + +      // If there's nothing left to search, then all paths led to valid clobbers +      // that we got from our cache; pick the nearest to the start, and allow +      // the rest to be cached back. +      if (NewPaused.empty()) { +        MoveDominatedPathToEnd(TerminatedPaths); +        TerminatedPath Result = TerminatedPaths.pop_back_val(); +        return {Result, std::move(TerminatedPaths)}; +      } + +      MemoryAccess *DefChainEnd = nullptr; +      SmallVector<TerminatedPath, 4> Clobbers; +      for (ListIndex Paused : NewPaused) { +        UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); +        if (WR.IsKnownClobber) +          Clobbers.push_back({WR.Result, Paused}); +        else +          // Micro-opt: If we hit the end of the chain, save it. +          DefChainEnd = WR.Result; +      } + +      if (!TerminatedPaths.empty()) { +        // If we couldn't find the dominating phi/liveOnEntry in the above loop, +        // do it now. +        if (!DefChainEnd) +          for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) +            DefChainEnd = MA; + +        // If any of the terminated paths don't dominate the phi we'll try to +        // optimize, we need to figure out what they are and quit. +        const BasicBlock *ChainBB = DefChainEnd->getBlock(); +        for (const TerminatedPath &TP : TerminatedPaths) { +          // Because we know that DefChainEnd is as "high" as we can go, we +          // don't need local dominance checks; BB dominance is sufficient. +          if (DT.dominates(ChainBB, TP.Clobber->getBlock())) +            Clobbers.push_back(TP); +        } +      } + +      // If we have clobbers in the def chain, find the one closest to Current +      // and quit. +      if (!Clobbers.empty()) { +        MoveDominatedPathToEnd(Clobbers); +        TerminatedPath Result = Clobbers.pop_back_val(); +        return {Result, std::move(Clobbers)}; +      } + +      assert(all_of(NewPaused, +                    [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); + +      // Because liveOnEntry is a clobber, this must be a phi. +      auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); + +      PriorPathsSize = Paths.size(); +      PausedSearches.clear(); +      for (ListIndex I : NewPaused) +        addSearches(DefChainPhi, PausedSearches, I); +      NewPaused.clear(); + +      Current = DefChainPhi; +    } +  } + +  void verifyOptResult(const OptznResult &R) const { +    assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { +      return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); +    })); +  } + +  void resetPhiOptznState() { +    Paths.clear(); +    VisitedPhis.clear(); +  } + +public: +  ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) +      : MSSA(MSSA), AA(AA), DT(DT) {} + +  void reset() {} + +  /// Finds the nearest clobber for the given query, optimizing phis if +  /// possible. +  MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { +    Query = &Q; + +    MemoryAccess *Current = Start; +    // This walker pretends uses don't exist. If we're handed one, silently grab +    // its def. (This has the nice side-effect of ensuring we never cache uses) +    if (auto *MU = dyn_cast<MemoryUse>(Start)) +      Current = MU->getDefiningAccess(); + +    DefPath FirstDesc(Q.StartingLoc, Current, Current, None); +    // Fast path for the overly-common case (no crazy phi optimization +    // necessary) +    UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); +    MemoryAccess *Result; +    if (WalkResult.IsKnownClobber) { +      Result = WalkResult.Result; +    } else { +      OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), +                                          Current, Q.StartingLoc); +      verifyOptResult(OptRes); +      resetPhiOptznState(); +      Result = OptRes.PrimaryClobber.Clobber; +    } + +#ifdef EXPENSIVE_CHECKS +    checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); +#endif +    return Result; +  } + +  void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } +}; + +struct RenamePassData { +  DomTreeNode *DTN; +  DomTreeNode::const_iterator ChildIt; +  MemoryAccess *IncomingVal; + +  RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, +                 MemoryAccess *M) +      : DTN(D), ChildIt(It), IncomingVal(M) {} +  void swap(RenamePassData &RHS) { +    std::swap(DTN, RHS.DTN); +    std::swap(ChildIt, RHS.ChildIt); +    std::swap(IncomingVal, RHS.IncomingVal); +  } +}; +} // anonymous namespace + +namespace llvm { +/// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no +/// longer does caching on its own, +/// but the name has been retained for the moment. +class MemorySSA::CachingWalker final : public MemorySSAWalker { +  ClobberWalker Walker; +  bool AutoResetWalker; + +  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); +  void verifyRemoved(MemoryAccess *); + +public: +  CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); +  ~CachingWalker() override; + +  using MemorySSAWalker::getClobberingMemoryAccess; +  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; +  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, +                                          const MemoryLocation &) override; +  void invalidateInfo(MemoryAccess *) override; + +  /// Whether we call resetClobberWalker() after each time we *actually* walk to +  /// answer a clobber query. +  void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } + +  /// Drop the walker's persistent data structures. +  void resetClobberWalker() { Walker.reset(); } + +  void verify(const MemorySSA *MSSA) override { +    MemorySSAWalker::verify(MSSA); +    Walker.verify(MSSA); +  } +}; + +void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, +                                    bool RenameAllUses) { +  // Pass through values to our successors +  for (const BasicBlock *S : successors(BB)) { +    auto It = PerBlockAccesses.find(S); +    // Rename the phi nodes in our successor block +    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) +      continue; +    AccessList *Accesses = It->second.get(); +    auto *Phi = cast<MemoryPhi>(&Accesses->front()); +    if (RenameAllUses) { +      int PhiIndex = Phi->getBasicBlockIndex(BB); +      assert(PhiIndex != -1 && "Incomplete phi during partial rename"); +      Phi->setIncomingValue(PhiIndex, IncomingVal); +    } else +      Phi->addIncoming(IncomingVal, BB); +  } +} + +/// \brief Rename a single basic block into MemorySSA form. +/// Uses the standard SSA renaming algorithm. +/// \returns The new incoming value. +MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, +                                     bool RenameAllUses) { +  auto It = PerBlockAccesses.find(BB); +  // Skip most processing if the list is empty. +  if (It != PerBlockAccesses.end()) { +    AccessList *Accesses = It->second.get(); +    for (MemoryAccess &L : *Accesses) { +      if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { +        if (MUD->getDefiningAccess() == nullptr || RenameAllUses) +          MUD->setDefiningAccess(IncomingVal); +        if (isa<MemoryDef>(&L)) +          IncomingVal = &L; +      } else { +        IncomingVal = &L; +      } +    } +  } +  return IncomingVal; +} + +/// \brief This is the standard SSA renaming algorithm. +/// +/// We walk the dominator tree in preorder, renaming accesses, and then filling +/// in phi nodes in our successors. +void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, +                           SmallPtrSetImpl<BasicBlock *> &Visited, +                           bool SkipVisited, bool RenameAllUses) { +  SmallVector<RenamePassData, 32> WorkStack; +  // Skip everything if we already renamed this block and we are skipping. +  // Note: You can't sink this into the if, because we need it to occur +  // regardless of whether we skip blocks or not. +  bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; +  if (SkipVisited && AlreadyVisited) +    return; + +  IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); +  renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); +  WorkStack.push_back({Root, Root->begin(), IncomingVal}); + +  while (!WorkStack.empty()) { +    DomTreeNode *Node = WorkStack.back().DTN; +    DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; +    IncomingVal = WorkStack.back().IncomingVal; + +    if (ChildIt == Node->end()) { +      WorkStack.pop_back(); +    } else { +      DomTreeNode *Child = *ChildIt; +      ++WorkStack.back().ChildIt; +      BasicBlock *BB = Child->getBlock(); +      // Note: You can't sink this into the if, because we need it to occur +      // regardless of whether we skip blocks or not. +      AlreadyVisited = !Visited.insert(BB).second; +      if (SkipVisited && AlreadyVisited) { +        // We already visited this during our renaming, which can happen when +        // being asked to rename multiple blocks. Figure out the incoming val, +        // which is the last def. +        // Incoming value can only change if there is a block def, and in that +        // case, it's the last block def in the list. +        if (auto *BlockDefs = getWritableBlockDefs(BB)) +          IncomingVal = &*BlockDefs->rbegin(); +      } else +        IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); +      renameSuccessorPhis(BB, IncomingVal, RenameAllUses); +      WorkStack.push_back({Child, Child->begin(), IncomingVal}); +    } +  } +} + +/// \brief This handles unreachable block accesses by deleting phi nodes in +/// unreachable blocks, and marking all other unreachable MemoryAccess's as +/// being uses of the live on entry definition. +void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { +  assert(!DT->isReachableFromEntry(BB) && +         "Reachable block found while handling unreachable blocks"); + +  // Make sure phi nodes in our reachable successors end up with a +  // LiveOnEntryDef for our incoming edge, even though our block is forward +  // unreachable.  We could just disconnect these blocks from the CFG fully, +  // but we do not right now. +  for (const BasicBlock *S : successors(BB)) { +    if (!DT->isReachableFromEntry(S)) +      continue; +    auto It = PerBlockAccesses.find(S); +    // Rename the phi nodes in our successor block +    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) +      continue; +    AccessList *Accesses = It->second.get(); +    auto *Phi = cast<MemoryPhi>(&Accesses->front()); +    Phi->addIncoming(LiveOnEntryDef.get(), BB); +  } + +  auto It = PerBlockAccesses.find(BB); +  if (It == PerBlockAccesses.end()) +    return; + +  auto &Accesses = It->second; +  for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { +    auto Next = std::next(AI); +    // If we have a phi, just remove it. We are going to replace all +    // users with live on entry. +    if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) +      UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); +    else +      Accesses->erase(AI); +    AI = Next; +  } +} + +MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) +    : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), +      NextID(INVALID_MEMORYACCESS_ID) { +  buildMemorySSA(); +} + +MemorySSA::~MemorySSA() { +  // Drop all our references +  for (const auto &Pair : PerBlockAccesses) +    for (MemoryAccess &MA : *Pair.second) +      MA.dropAllReferences(); +} + +MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { +  auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); + +  if (Res.second) +    Res.first->second = make_unique<AccessList>(); +  return Res.first->second.get(); +} +MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { +  auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); + +  if (Res.second) +    Res.first->second = make_unique<DefsList>(); +  return Res.first->second.get(); +} + +/// This class is a batch walker of all MemoryUse's in the program, and points +/// their defining access at the thing that actually clobbers them.  Because it +/// is a batch walker that touches everything, it does not operate like the +/// other walkers.  This walker is basically performing a top-down SSA renaming +/// pass, where the version stack is used as the cache.  This enables it to be +/// significantly more time and memory efficient than using the regular walker, +/// which is walking bottom-up. +class MemorySSA::OptimizeUses { +public: +  OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, +               DominatorTree *DT) +      : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { +    Walker = MSSA->getWalker(); +  } + +  void optimizeUses(); + +private: +  /// This represents where a given memorylocation is in the stack. +  struct MemlocStackInfo { +    // This essentially is keeping track of versions of the stack. Whenever +    // the stack changes due to pushes or pops, these versions increase. +    unsigned long StackEpoch; +    unsigned long PopEpoch; +    // This is the lower bound of places on the stack to check. It is equal to +    // the place the last stack walk ended. +    // Note: Correctness depends on this being initialized to 0, which densemap +    // does +    unsigned long LowerBound; +    const BasicBlock *LowerBoundBlock; +    // This is where the last walk for this memory location ended. +    unsigned long LastKill; +    bool LastKillValid; +  }; +  void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, +                           SmallVectorImpl<MemoryAccess *> &, +                           DenseMap<MemoryLocOrCall, MemlocStackInfo> &); +  MemorySSA *MSSA; +  MemorySSAWalker *Walker; +  AliasAnalysis *AA; +  DominatorTree *DT; +}; + +/// Optimize the uses in a given block This is basically the SSA renaming +/// algorithm, with one caveat: We are able to use a single stack for all +/// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is +/// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just +/// going to be some position in that stack of possible ones. +/// +/// We track the stack positions that each MemoryLocation needs +/// to check, and last ended at.  This is because we only want to check the +/// things that changed since last time.  The same MemoryLocation should +/// get clobbered by the same store (getModRefInfo does not use invariantness or +/// things like this, and if they start, we can modify MemoryLocOrCall to +/// include relevant data) +void MemorySSA::OptimizeUses::optimizeUsesInBlock( +    const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, +    SmallVectorImpl<MemoryAccess *> &VersionStack, +    DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { + +  /// If no accesses, nothing to do. +  MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); +  if (Accesses == nullptr) +    return; + +  // Pop everything that doesn't dominate the current block off the stack, +  // increment the PopEpoch to account for this. +  while (true) { +    assert( +        !VersionStack.empty() && +        "Version stack should have liveOnEntry sentinel dominating everything"); +    BasicBlock *BackBlock = VersionStack.back()->getBlock(); +    if (DT->dominates(BackBlock, BB)) +      break; +    while (VersionStack.back()->getBlock() == BackBlock) +      VersionStack.pop_back(); +    ++PopEpoch; +  } + +  for (MemoryAccess &MA : *Accesses) { +    auto *MU = dyn_cast<MemoryUse>(&MA); +    if (!MU) { +      VersionStack.push_back(&MA); +      ++StackEpoch; +      continue; +    } + +    if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { +      MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true); +      continue; +    } + +    MemoryLocOrCall UseMLOC(MU); +    auto &LocInfo = LocStackInfo[UseMLOC]; +    // If the pop epoch changed, it means we've removed stuff from top of +    // stack due to changing blocks. We may have to reset the lower bound or +    // last kill info. +    if (LocInfo.PopEpoch != PopEpoch) { +      LocInfo.PopEpoch = PopEpoch; +      LocInfo.StackEpoch = StackEpoch; +      // If the lower bound was in something that no longer dominates us, we +      // have to reset it. +      // We can't simply track stack size, because the stack may have had +      // pushes/pops in the meantime. +      // XXX: This is non-optimal, but only is slower cases with heavily +      // branching dominator trees.  To get the optimal number of queries would +      // be to make lowerbound and lastkill a per-loc stack, and pop it until +      // the top of that stack dominates us.  This does not seem worth it ATM. +      // A much cheaper optimization would be to always explore the deepest +      // branch of the dominator tree first. This will guarantee this resets on +      // the smallest set of blocks. +      if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && +          !DT->dominates(LocInfo.LowerBoundBlock, BB)) { +        // Reset the lower bound of things to check. +        // TODO: Some day we should be able to reset to last kill, rather than +        // 0. +        LocInfo.LowerBound = 0; +        LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); +        LocInfo.LastKillValid = false; +      } +    } else if (LocInfo.StackEpoch != StackEpoch) { +      // If all that has changed is the StackEpoch, we only have to check the +      // new things on the stack, because we've checked everything before.  In +      // this case, the lower bound of things to check remains the same. +      LocInfo.PopEpoch = PopEpoch; +      LocInfo.StackEpoch = StackEpoch; +    } +    if (!LocInfo.LastKillValid) { +      LocInfo.LastKill = VersionStack.size() - 1; +      LocInfo.LastKillValid = true; +    } + +    // At this point, we should have corrected last kill and LowerBound to be +    // in bounds. +    assert(LocInfo.LowerBound < VersionStack.size() && +           "Lower bound out of range"); +    assert(LocInfo.LastKill < VersionStack.size() && +           "Last kill info out of range"); +    // In any case, the new upper bound is the top of the stack. +    unsigned long UpperBound = VersionStack.size() - 1; + +    if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { +      DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" +                   << *(MU->getMemoryInst()) << ")" +                   << " because there are " << UpperBound - LocInfo.LowerBound +                   << " stores to disambiguate\n"); +      // Because we did not walk, LastKill is no longer valid, as this may +      // have been a kill. +      LocInfo.LastKillValid = false; +      continue; +    } +    bool FoundClobberResult = false; +    while (UpperBound > LocInfo.LowerBound) { +      if (isa<MemoryPhi>(VersionStack[UpperBound])) { +        // For phis, use the walker, see where we ended up, go there +        Instruction *UseInst = MU->getMemoryInst(); +        MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); +        // We are guaranteed to find it or something is wrong +        while (VersionStack[UpperBound] != Result) { +          assert(UpperBound != 0); +          --UpperBound; +        } +        FoundClobberResult = true; +        break; +      } + +      MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); +      // If the lifetime of the pointer ends at this instruction, it's live on +      // entry. +      if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { +        // Reset UpperBound to liveOnEntryDef's place in the stack +        UpperBound = 0; +        FoundClobberResult = true; +        break; +      } +      if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { +        FoundClobberResult = true; +        break; +      } +      --UpperBound; +    } +    // At the end of this loop, UpperBound is either a clobber, or lower bound +    // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. +    if (FoundClobberResult || UpperBound < LocInfo.LastKill) { +      MU->setDefiningAccess(VersionStack[UpperBound], true); +      // We were last killed now by where we got to +      LocInfo.LastKill = UpperBound; +    } else { +      // Otherwise, we checked all the new ones, and now we know we can get to +      // LastKill. +      MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); +    } +    LocInfo.LowerBound = VersionStack.size() - 1; +    LocInfo.LowerBoundBlock = BB; +  } +} + +/// Optimize uses to point to their actual clobbering definitions. +void MemorySSA::OptimizeUses::optimizeUses() { +  SmallVector<MemoryAccess *, 16> VersionStack; +  DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; +  VersionStack.push_back(MSSA->getLiveOnEntryDef()); + +  unsigned long StackEpoch = 1; +  unsigned long PopEpoch = 1; +  // We perform a non-recursive top-down dominator tree walk. +  for (const auto *DomNode : depth_first(DT->getRootNode())) +    optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, +                        LocStackInfo); +} + +void MemorySSA::placePHINodes( +    const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks, +    const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) { +  // Determine where our MemoryPhi's should go +  ForwardIDFCalculator IDFs(*DT); +  IDFs.setDefiningBlocks(DefiningBlocks); +  SmallVector<BasicBlock *, 32> IDFBlocks; +  IDFs.calculate(IDFBlocks); + +  std::sort(IDFBlocks.begin(), IDFBlocks.end(), +            [&BBNumbers](const BasicBlock *A, const BasicBlock *B) { +              return BBNumbers.lookup(A) < BBNumbers.lookup(B); +            }); + +  // Now place MemoryPhi nodes. +  for (auto &BB : IDFBlocks) +    createMemoryPhi(BB); +} + +void MemorySSA::buildMemorySSA() { +  // We create an access to represent "live on entry", for things like +  // arguments or users of globals, where the memory they use is defined before +  // the beginning of the function. We do not actually insert it into the IR. +  // We do not define a live on exit for the immediate uses, and thus our +  // semantics do *not* imply that something with no immediate uses can simply +  // be removed. +  BasicBlock &StartingPoint = F.getEntryBlock(); +  LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, +                                          &StartingPoint, NextID++); +  DenseMap<const BasicBlock *, unsigned int> BBNumbers; +  unsigned NextBBNum = 0; + +  // We maintain lists of memory accesses per-block, trading memory for time. We +  // could just look up the memory access for every possible instruction in the +  // stream. +  SmallPtrSet<BasicBlock *, 32> DefiningBlocks; +  // Go through each block, figure out where defs occur, and chain together all +  // the accesses. +  for (BasicBlock &B : F) { +    BBNumbers[&B] = NextBBNum++; +    bool InsertIntoDef = false; +    AccessList *Accesses = nullptr; +    DefsList *Defs = nullptr; +    for (Instruction &I : B) { +      MemoryUseOrDef *MUD = createNewAccess(&I); +      if (!MUD) +        continue; + +      if (!Accesses) +        Accesses = getOrCreateAccessList(&B); +      Accesses->push_back(MUD); +      if (isa<MemoryDef>(MUD)) { +        InsertIntoDef = true; +        if (!Defs) +          Defs = getOrCreateDefsList(&B); +        Defs->push_back(*MUD); +      } +    } +    if (InsertIntoDef) +      DefiningBlocks.insert(&B); +  } +  placePHINodes(DefiningBlocks, BBNumbers); + +  // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get +  // filled in with all blocks. +  SmallPtrSet<BasicBlock *, 16> Visited; +  renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); + +  CachingWalker *Walker = getWalkerImpl(); + +  // We're doing a batch of updates; don't drop useful caches between them. +  Walker->setAutoResetWalker(false); +  OptimizeUses(this, Walker, AA, DT).optimizeUses(); +  Walker->setAutoResetWalker(true); +  Walker->resetClobberWalker(); + +  // Mark the uses in unreachable blocks as live on entry, so that they go +  // somewhere. +  for (auto &BB : F) +    if (!Visited.count(&BB)) +      markUnreachableAsLiveOnEntry(&BB); +} + +MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } + +MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { +  if (Walker) +    return Walker.get(); + +  Walker = make_unique<CachingWalker>(this, AA, DT); +  return Walker.get(); +} + +// This is a helper function used by the creation routines. It places NewAccess +// into the access and defs lists for a given basic block, at the given +// insertion point. +void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, +                                        const BasicBlock *BB, +                                        InsertionPlace Point) { +  auto *Accesses = getOrCreateAccessList(BB); +  if (Point == Beginning) { +    // If it's a phi node, it goes first, otherwise, it goes after any phi +    // nodes. +    if (isa<MemoryPhi>(NewAccess)) { +      Accesses->push_front(NewAccess); +      auto *Defs = getOrCreateDefsList(BB); +      Defs->push_front(*NewAccess); +    } else { +      auto AI = find_if_not( +          *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); +      Accesses->insert(AI, NewAccess); +      if (!isa<MemoryUse>(NewAccess)) { +        auto *Defs = getOrCreateDefsList(BB); +        auto DI = find_if_not( +            *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); +        Defs->insert(DI, *NewAccess); +      } +    } +  } else { +    Accesses->push_back(NewAccess); +    if (!isa<MemoryUse>(NewAccess)) { +      auto *Defs = getOrCreateDefsList(BB); +      Defs->push_back(*NewAccess); +    } +  } +  BlockNumberingValid.erase(BB); +} + +void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, +                                      AccessList::iterator InsertPt) { +  auto *Accesses = getWritableBlockAccesses(BB); +  bool WasEnd = InsertPt == Accesses->end(); +  Accesses->insert(AccessList::iterator(InsertPt), What); +  if (!isa<MemoryUse>(What)) { +    auto *Defs = getOrCreateDefsList(BB); +    // If we got asked to insert at the end, we have an easy job, just shove it +    // at the end. If we got asked to insert before an existing def, we also get +    // an terator. If we got asked to insert before a use, we have to hunt for +    // the next def. +    if (WasEnd) { +      Defs->push_back(*What); +    } else if (isa<MemoryDef>(InsertPt)) { +      Defs->insert(InsertPt->getDefsIterator(), *What); +    } else { +      while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) +        ++InsertPt; +      // Either we found a def, or we are inserting at the end +      if (InsertPt == Accesses->end()) +        Defs->push_back(*What); +      else +        Defs->insert(InsertPt->getDefsIterator(), *What); +    } +  } +  BlockNumberingValid.erase(BB); +} + +// Move What before Where in the IR.  The end result is taht What will belong to +// the right lists and have the right Block set, but will not otherwise be +// correct. It will not have the right defining access, and if it is a def, +// things below it will not properly be updated. +void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, +                       AccessList::iterator Where) { +  // Keep it in the lookup tables, remove from the lists +  removeFromLists(What, false); +  What->setBlock(BB); +  insertIntoListsBefore(What, BB, Where); +} + +void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, +                       InsertionPlace Point) { +  removeFromLists(What, false); +  What->setBlock(BB); +  insertIntoListsForBlock(What, BB, Point); +} + +MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { +  assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); +  MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); +  // Phi's always are placed at the front of the block. +  insertIntoListsForBlock(Phi, BB, Beginning); +  ValueToMemoryAccess[BB] = Phi; +  return Phi; +} + +MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, +                                               MemoryAccess *Definition) { +  assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); +  MemoryUseOrDef *NewAccess = createNewAccess(I); +  assert( +      NewAccess != nullptr && +      "Tried to create a memory access for a non-memory touching instruction"); +  NewAccess->setDefiningAccess(Definition); +  return NewAccess; +} + +// Return true if the instruction has ordering constraints. +// Note specifically that this only considers stores and loads +// because others are still considered ModRef by getModRefInfo. +static inline bool isOrdered(const Instruction *I) { +  if (auto *SI = dyn_cast<StoreInst>(I)) { +    if (!SI->isUnordered()) +      return true; +  } else if (auto *LI = dyn_cast<LoadInst>(I)) { +    if (!LI->isUnordered()) +      return true; +  } +  return false; +} +/// \brief Helper function to create new memory accesses +MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { +  // The assume intrinsic has a control dependency which we model by claiming +  // that it writes arbitrarily. Ignore that fake memory dependency here. +  // FIXME: Replace this special casing with a more accurate modelling of +  // assume's control dependency. +  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) +    if (II->getIntrinsicID() == Intrinsic::assume) +      return nullptr; + +  // Find out what affect this instruction has on memory. +  ModRefInfo ModRef = AA->getModRefInfo(I); +  // The isOrdered check is used to ensure that volatiles end up as defs +  // (atomics end up as ModRef right now anyway).  Until we separate the +  // ordering chain from the memory chain, this enables people to see at least +  // some relative ordering to volatiles.  Note that getClobberingMemoryAccess +  // will still give an answer that bypasses other volatile loads.  TODO: +  // Separate memory aliasing and ordering into two different chains so that we +  // can precisely represent both "what memory will this read/write/is clobbered +  // by" and "what instructions can I move this past". +  bool Def = bool(ModRef & MRI_Mod) || isOrdered(I); +  bool Use = bool(ModRef & MRI_Ref); + +  // It's possible for an instruction to not modify memory at all. During +  // construction, we ignore them. +  if (!Def && !Use) +    return nullptr; + +  assert((Def || Use) && +         "Trying to create a memory access with a non-memory instruction"); + +  MemoryUseOrDef *MUD; +  if (Def) +    MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); +  else +    MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); +  ValueToMemoryAccess[I] = MUD; +  return MUD; +} + +/// \brief Returns true if \p Replacer dominates \p Replacee . +bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, +                             const MemoryAccess *Replacee) const { +  if (isa<MemoryUseOrDef>(Replacee)) +    return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); +  const auto *MP = cast<MemoryPhi>(Replacee); +  // For a phi node, the use occurs in the predecessor block of the phi node. +  // Since we may occur multiple times in the phi node, we have to check each +  // operand to ensure Replacer dominates each operand where Replacee occurs. +  for (const Use &Arg : MP->operands()) { +    if (Arg.get() != Replacee && +        !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) +      return false; +  } +  return true; +} + +/// \brief Properly remove \p MA from all of MemorySSA's lookup tables. +void MemorySSA::removeFromLookups(MemoryAccess *MA) { +  assert(MA->use_empty() && +         "Trying to remove memory access that still has uses"); +  BlockNumbering.erase(MA); +  if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) +    MUD->setDefiningAccess(nullptr); +  // Invalidate our walker's cache if necessary +  if (!isa<MemoryUse>(MA)) +    Walker->invalidateInfo(MA); +  // The call below to erase will destroy MA, so we can't change the order we +  // are doing things here +  Value *MemoryInst; +  if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { +    MemoryInst = MUD->getMemoryInst(); +  } else { +    MemoryInst = MA->getBlock(); +  } +  auto VMA = ValueToMemoryAccess.find(MemoryInst); +  if (VMA->second == MA) +    ValueToMemoryAccess.erase(VMA); +} + +/// \brief Properly remove \p MA from all of MemorySSA's lists. +/// +/// Because of the way the intrusive list and use lists work, it is important to +/// do removal in the right order. +/// ShouldDelete defaults to true, and will cause the memory access to also be +/// deleted, not just removed. +void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { +  // The access list owns the reference, so we erase it from the non-owning list +  // first. +  if (!isa<MemoryUse>(MA)) { +    auto DefsIt = PerBlockDefs.find(MA->getBlock()); +    std::unique_ptr<DefsList> &Defs = DefsIt->second; +    Defs->remove(*MA); +    if (Defs->empty()) +      PerBlockDefs.erase(DefsIt); +  } + +  // The erase call here will delete it. If we don't want it deleted, we call +  // remove instead. +  auto AccessIt = PerBlockAccesses.find(MA->getBlock()); +  std::unique_ptr<AccessList> &Accesses = AccessIt->second; +  if (ShouldDelete) +    Accesses->erase(MA); +  else +    Accesses->remove(MA); + +  if (Accesses->empty()) +    PerBlockAccesses.erase(AccessIt); +} + +void MemorySSA::print(raw_ostream &OS) const { +  MemorySSAAnnotatedWriter Writer(this); +  F.print(OS, &Writer); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } +#endif + +void MemorySSA::verifyMemorySSA() const { +  verifyDefUses(F); +  verifyDomination(F); +  verifyOrdering(F); +  Walker->verify(this); +} + +/// \brief Verify that the order and existence of MemoryAccesses matches the +/// order and existence of memory affecting instructions. +void MemorySSA::verifyOrdering(Function &F) const { +  // Walk all the blocks, comparing what the lookups think and what the access +  // lists think, as well as the order in the blocks vs the order in the access +  // lists. +  SmallVector<MemoryAccess *, 32> ActualAccesses; +  SmallVector<MemoryAccess *, 32> ActualDefs; +  for (BasicBlock &B : F) { +    const AccessList *AL = getBlockAccesses(&B); +    const auto *DL = getBlockDefs(&B); +    MemoryAccess *Phi = getMemoryAccess(&B); +    if (Phi) { +      ActualAccesses.push_back(Phi); +      ActualDefs.push_back(Phi); +    } + +    for (Instruction &I : B) { +      MemoryAccess *MA = getMemoryAccess(&I); +      assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && +             "We have memory affecting instructions " +             "in this block but they are not in the " +             "access list or defs list"); +      if (MA) { +        ActualAccesses.push_back(MA); +        if (isa<MemoryDef>(MA)) +          ActualDefs.push_back(MA); +      } +    } +    // Either we hit the assert, really have no accesses, or we have both +    // accesses and an access list. +    // Same with defs. +    if (!AL && !DL) +      continue; +    assert(AL->size() == ActualAccesses.size() && +           "We don't have the same number of accesses in the block as on the " +           "access list"); +    assert((DL || ActualDefs.size() == 0) && +           "Either we should have a defs list, or we should have no defs"); +    assert((!DL || DL->size() == ActualDefs.size()) && +           "We don't have the same number of defs in the block as on the " +           "def list"); +    auto ALI = AL->begin(); +    auto AAI = ActualAccesses.begin(); +    while (ALI != AL->end() && AAI != ActualAccesses.end()) { +      assert(&*ALI == *AAI && "Not the same accesses in the same order"); +      ++ALI; +      ++AAI; +    } +    ActualAccesses.clear(); +    if (DL) { +      auto DLI = DL->begin(); +      auto ADI = ActualDefs.begin(); +      while (DLI != DL->end() && ADI != ActualDefs.end()) { +        assert(&*DLI == *ADI && "Not the same defs in the same order"); +        ++DLI; +        ++ADI; +      } +    } +    ActualDefs.clear(); +  } +} + +/// \brief Verify the domination properties of MemorySSA by checking that each +/// definition dominates all of its uses. +void MemorySSA::verifyDomination(Function &F) const { +#ifndef NDEBUG +  for (BasicBlock &B : F) { +    // Phi nodes are attached to basic blocks +    if (MemoryPhi *MP = getMemoryAccess(&B)) +      for (const Use &U : MP->uses()) +        assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); + +    for (Instruction &I : B) { +      MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); +      if (!MD) +        continue; + +      for (const Use &U : MD->uses()) +        assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); +    } +  } +#endif +} + +/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use +/// appears in the use list of \p Def. + +void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { +#ifndef NDEBUG +  // The live on entry use may cause us to get a NULL def here +  if (!Def) +    assert(isLiveOnEntryDef(Use) && +           "Null def but use not point to live on entry def"); +  else +    assert(is_contained(Def->users(), Use) && +           "Did not find use in def's use list"); +#endif +} + +/// \brief Verify the immediate use information, by walking all the memory +/// accesses and verifying that, for each use, it appears in the +/// appropriate def's use list +void MemorySSA::verifyDefUses(Function &F) const { +  for (BasicBlock &B : F) { +    // Phi nodes are attached to basic blocks +    if (MemoryPhi *Phi = getMemoryAccess(&B)) { +      assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( +                                          pred_begin(&B), pred_end(&B))) && +             "Incomplete MemoryPhi Node"); +      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) +        verifyUseInDefs(Phi->getIncomingValue(I), Phi); +    } + +    for (Instruction &I : B) { +      if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { +        verifyUseInDefs(MA->getDefiningAccess(), MA); +      } +    } +  } +} + +MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { +  return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); +} + +MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { +  return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); +} + +/// Perform a local numbering on blocks so that instruction ordering can be +/// determined in constant time. +/// TODO: We currently just number in order.  If we numbered by N, we could +/// allow at least N-1 sequences of insertBefore or insertAfter (and at least +/// log2(N) sequences of mixed before and after) without needing to invalidate +/// the numbering. +void MemorySSA::renumberBlock(const BasicBlock *B) const { +  // The pre-increment ensures the numbers really start at 1. +  unsigned long CurrentNumber = 0; +  const AccessList *AL = getBlockAccesses(B); +  assert(AL != nullptr && "Asking to renumber an empty block"); +  for (const auto &I : *AL) +    BlockNumbering[&I] = ++CurrentNumber; +  BlockNumberingValid.insert(B); +} + +/// \brief Determine, for two memory accesses in the same block, +/// whether \p Dominator dominates \p Dominatee. +/// \returns True if \p Dominator dominates \p Dominatee. +bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, +                                 const MemoryAccess *Dominatee) const { + +  const BasicBlock *DominatorBlock = Dominator->getBlock(); + +  assert((DominatorBlock == Dominatee->getBlock()) && +         "Asking for local domination when accesses are in different blocks!"); +  // A node dominates itself. +  if (Dominatee == Dominator) +    return true; + +  // When Dominatee is defined on function entry, it is not dominated by another +  // memory access. +  if (isLiveOnEntryDef(Dominatee)) +    return false; + +  // When Dominator is defined on function entry, it dominates the other memory +  // access. +  if (isLiveOnEntryDef(Dominator)) +    return true; + +  if (!BlockNumberingValid.count(DominatorBlock)) +    renumberBlock(DominatorBlock); + +  unsigned long DominatorNum = BlockNumbering.lookup(Dominator); +  // All numbers start with 1 +  assert(DominatorNum != 0 && "Block was not numbered properly"); +  unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); +  assert(DominateeNum != 0 && "Block was not numbered properly"); +  return DominatorNum < DominateeNum; +} + +bool MemorySSA::dominates(const MemoryAccess *Dominator, +                          const MemoryAccess *Dominatee) const { +  if (Dominator == Dominatee) +    return true; + +  if (isLiveOnEntryDef(Dominatee)) +    return false; + +  if (Dominator->getBlock() != Dominatee->getBlock()) +    return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); +  return locallyDominates(Dominator, Dominatee); +} + +bool MemorySSA::dominates(const MemoryAccess *Dominator, +                          const Use &Dominatee) const { +  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { +    BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); +    // The def must dominate the incoming block of the phi. +    if (UseBB != Dominator->getBlock()) +      return DT->dominates(Dominator->getBlock(), UseBB); +    // If the UseBB and the DefBB are the same, compare locally. +    return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); +  } +  // If it's not a PHI node use, the normal dominates can already handle it. +  return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); +} + +const static char LiveOnEntryStr[] = "liveOnEntry"; + +void MemoryAccess::print(raw_ostream &OS) const { +  switch (getValueID()) { +  case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); +  case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); +  case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); +  } +  llvm_unreachable("invalid value id"); +} + +void MemoryDef::print(raw_ostream &OS) const { +  MemoryAccess *UO = getDefiningAccess(); + +  OS << getID() << " = MemoryDef("; +  if (UO && UO->getID()) +    OS << UO->getID(); +  else +    OS << LiveOnEntryStr; +  OS << ')'; +} + +void MemoryPhi::print(raw_ostream &OS) const { +  bool First = true; +  OS << getID() << " = MemoryPhi("; +  for (const auto &Op : operands()) { +    BasicBlock *BB = getIncomingBlock(Op); +    MemoryAccess *MA = cast<MemoryAccess>(Op); +    if (!First) +      OS << ','; +    else +      First = false; + +    OS << '{'; +    if (BB->hasName()) +      OS << BB->getName(); +    else +      BB->printAsOperand(OS, false); +    OS << ','; +    if (unsigned ID = MA->getID()) +      OS << ID; +    else +      OS << LiveOnEntryStr; +    OS << '}'; +  } +  OS << ')'; +} + +void MemoryUse::print(raw_ostream &OS) const { +  MemoryAccess *UO = getDefiningAccess(); +  OS << "MemoryUse("; +  if (UO && UO->getID()) +    OS << UO->getID(); +  else +    OS << LiveOnEntryStr; +  OS << ')'; +} + +void MemoryAccess::dump() const { +// Cannot completely remove virtual function even in release mode. +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +  print(dbgs()); +  dbgs() << "\n"; +#endif +} + +char MemorySSAPrinterLegacyPass::ID = 0; + +MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { +  initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); +} + +void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequired<MemorySSAWrapperPass>(); +} + +bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { +  auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); +  MSSA.print(dbgs()); +  if (VerifyMemorySSA) +    MSSA.verifyMemorySSA(); +  return false; +} + +AnalysisKey MemorySSAAnalysis::Key; + +MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, +                                                 FunctionAnalysisManager &AM) { +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  auto &AA = AM.getResult<AAManager>(F); +  return MemorySSAAnalysis::Result(make_unique<MemorySSA>(F, &AA, &DT)); +} + +PreservedAnalyses MemorySSAPrinterPass::run(Function &F, +                                            FunctionAnalysisManager &AM) { +  OS << "MemorySSA for function: " << F.getName() << "\n"; +  AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); + +  return PreservedAnalyses::all(); +} + +PreservedAnalyses MemorySSAVerifierPass::run(Function &F, +                                             FunctionAnalysisManager &AM) { +  AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); + +  return PreservedAnalyses::all(); +} + +char MemorySSAWrapperPass::ID = 0; + +MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { +  initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } + +void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequiredTransitive<DominatorTreeWrapperPass>(); +  AU.addRequiredTransitive<AAResultsWrapperPass>(); +} + +bool MemorySSAWrapperPass::runOnFunction(Function &F) { +  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); +  MSSA.reset(new MemorySSA(F, &AA, &DT)); +  return false; +} + +void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } + +void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { +  MSSA->print(OS); +} + +MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} + +MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, +                                        DominatorTree *D) +    : MemorySSAWalker(M), Walker(*M, *A, *D), AutoResetWalker(true) {} + +MemorySSA::CachingWalker::~CachingWalker() {} + +void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { +  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) +    MUD->resetOptimized(); +} + +/// \brief Walk the use-def chains starting at \p MA and find +/// the MemoryAccess that actually clobbers Loc. +/// +/// \returns our clobbering memory access +MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( +    MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { +  MemoryAccess *New = Walker.findClobber(StartingAccess, Q); +#ifdef EXPENSIVE_CHECKS +  MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q); +  assert(NewNoCache == New && "Cache made us hand back a different result?"); +  (void)NewNoCache; +#endif +  if (AutoResetWalker) +    resetClobberWalker(); +  return New; +} + +MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( +    MemoryAccess *StartingAccess, const MemoryLocation &Loc) { +  if (isa<MemoryPhi>(StartingAccess)) +    return StartingAccess; + +  auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); +  if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) +    return StartingUseOrDef; + +  Instruction *I = StartingUseOrDef->getMemoryInst(); + +  // Conservatively, fences are always clobbers, so don't perform the walk if we +  // hit a fence. +  if (!ImmutableCallSite(I) && I->isFenceLike()) +    return StartingUseOrDef; + +  UpwardsMemoryQuery Q; +  Q.OriginalAccess = StartingUseOrDef; +  Q.StartingLoc = Loc; +  Q.Inst = I; +  Q.IsCall = false; + +  // Unlike the other function, do not walk to the def of a def, because we are +  // handed something we already believe is the clobbering access. +  MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) +                                     ? StartingUseOrDef->getDefiningAccess() +                                     : StartingUseOrDef; + +  MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); +  DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); +  DEBUG(dbgs() << *StartingUseOrDef << "\n"); +  DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); +  DEBUG(dbgs() << *Clobber << "\n"); +  return Clobber; +} + +MemoryAccess * +MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { +  auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); +  // If this is a MemoryPhi, we can't do anything. +  if (!StartingAccess) +    return MA; + +  // If this is an already optimized use or def, return the optimized result. +  // Note: Currently, we do not store the optimized def result because we'd need +  // a separate field, since we can't use it as the defining access. +  if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) +    if (MUD->isOptimized()) +      return MUD->getOptimized(); + +  const Instruction *I = StartingAccess->getMemoryInst(); +  UpwardsMemoryQuery Q(I, StartingAccess); +  // We can't sanely do anything with a fences, they conservatively +  // clobber all memory, and have no locations to get pointers from to +  // try to disambiguate. +  if (!Q.IsCall && I->isFenceLike()) +    return StartingAccess; + +  if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { +    MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); +    if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) +      MUD->setOptimized(LiveOnEntry); +    return LiveOnEntry; +  } + +  // Start with the thing we already think clobbers this location +  MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); + +  // At this point, DefiningAccess may be the live on entry def. +  // If it is, we will not get a better result. +  if (MSSA->isLiveOnEntryDef(DefiningAccess)) +    return DefiningAccess; + +  MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); +  DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); +  DEBUG(dbgs() << *DefiningAccess << "\n"); +  DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); +  DEBUG(dbgs() << *Result << "\n"); +  if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) +    MUD->setOptimized(Result); + +  return Result; +} + +MemoryAccess * +DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { +  if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) +    return Use->getDefiningAccess(); +  return MA; +} + +MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( +    MemoryAccess *StartingAccess, const MemoryLocation &) { +  if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) +    return Use->getDefiningAccess(); +  return StartingAccess; +} +} // namespace llvm + +void MemoryPhi::deleteMe(DerivedUser *Self) { +  delete static_cast<MemoryPhi *>(Self); +} + +void MemoryDef::deleteMe(DerivedUser *Self) { +  delete static_cast<MemoryDef *>(Self); +} + +void MemoryUse::deleteMe(DerivedUser *Self) { +  delete static_cast<MemoryUse *>(Self); +}  | 
