diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/PHITransAddr.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/PHITransAddr.cpp | 440 | 
1 files changed, 440 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/PHITransAddr.cpp b/contrib/llvm/lib/Analysis/PHITransAddr.cpp new file mode 100644 index 000000000000..858f08f6537a --- /dev/null +++ b/contrib/llvm/lib/Analysis/PHITransAddr.cpp @@ -0,0 +1,440 @@ +//===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the PHITransAddr class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/PHITransAddr.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +static bool CanPHITrans(Instruction *Inst) { +  if (isa<PHINode>(Inst) || +      isa<GetElementPtrInst>(Inst)) +    return true; + +  if (isa<CastInst>(Inst) && +      isSafeToSpeculativelyExecute(Inst)) +    return true; + +  if (Inst->getOpcode() == Instruction::Add && +      isa<ConstantInt>(Inst->getOperand(1))) +    return true; + +  //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer; +  //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) +  //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); +  return false; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void PHITransAddr::dump() const { +  if (!Addr) { +    dbgs() << "PHITransAddr: null\n"; +    return; +  } +  dbgs() << "PHITransAddr: " << *Addr << "\n"; +  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) +    dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n"; +} +#endif + + +static bool VerifySubExpr(Value *Expr, +                          SmallVectorImpl<Instruction*> &InstInputs) { +  // If this is a non-instruction value, there is nothing to do. +  Instruction *I = dyn_cast<Instruction>(Expr); +  if (!I) return true; + +  // If it's an instruction, it is either in Tmp or its operands recursively +  // are. +  SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); +  if (Entry != InstInputs.end()) { +    InstInputs.erase(Entry); +    return true; +  } + +  // If it isn't in the InstInputs list it is a subexpr incorporated into the +  // address.  Sanity check that it is phi translatable. +  if (!CanPHITrans(I)) { +    errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; +    errs() << *I << '\n'; +    llvm_unreachable("Either something is missing from InstInputs or " +                     "CanPHITrans is wrong."); +  } + +  // Validate the operands of the instruction. +  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) +    if (!VerifySubExpr(I->getOperand(i), InstInputs)) +      return false; + +  return true; +} + +/// Verify - Check internal consistency of this data structure.  If the +/// structure is valid, it returns true.  If invalid, it prints errors and +/// returns false. +bool PHITransAddr::Verify() const { +  if (!Addr) return true; + +  SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); + +  if (!VerifySubExpr(Addr, Tmp)) +    return false; + +  if (!Tmp.empty()) { +    errs() << "PHITransAddr contains extra instructions:\n"; +    for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) +      errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n"; +    llvm_unreachable("This is unexpected."); +  } + +  // a-ok. +  return true; +} + + +/// IsPotentiallyPHITranslatable - If this needs PHI translation, return true +/// if we have some hope of doing it.  This should be used as a filter to +/// avoid calling PHITranslateValue in hopeless situations. +bool PHITransAddr::IsPotentiallyPHITranslatable() const { +  // If the input value is not an instruction, or if it is not defined in CurBB, +  // then we don't need to phi translate it. +  Instruction *Inst = dyn_cast<Instruction>(Addr); +  return !Inst || CanPHITrans(Inst); +} + + +static void RemoveInstInputs(Value *V, +                             SmallVectorImpl<Instruction*> &InstInputs) { +  Instruction *I = dyn_cast<Instruction>(V); +  if (!I) return; + +  // If the instruction is in the InstInputs list, remove it. +  SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I); +  if (Entry != InstInputs.end()) { +    InstInputs.erase(Entry); +    return; +  } + +  assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); + +  // Otherwise, it must have instruction inputs itself.  Zap them recursively. +  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { +    if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) +      RemoveInstInputs(Op, InstInputs); +  } +} + +Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, +                                         BasicBlock *PredBB, +                                         const DominatorTree *DT) { +  // If this is a non-instruction value, it can't require PHI translation. +  Instruction *Inst = dyn_cast<Instruction>(V); +  if (!Inst) return V; + +  // Determine whether 'Inst' is an input to our PHI translatable expression. +  bool isInput = is_contained(InstInputs, Inst); + +  // Handle inputs instructions if needed. +  if (isInput) { +    if (Inst->getParent() != CurBB) { +      // If it is an input defined in a different block, then it remains an +      // input. +      return Inst; +    } + +    // If 'Inst' is defined in this block and is an input that needs to be phi +    // translated, we need to incorporate the value into the expression or fail. + +    // In either case, the instruction itself isn't an input any longer. +    InstInputs.erase(find(InstInputs, Inst)); + +    // If this is a PHI, go ahead and translate it. +    if (PHINode *PN = dyn_cast<PHINode>(Inst)) +      return AddAsInput(PN->getIncomingValueForBlock(PredBB)); + +    // If this is a non-phi value, and it is analyzable, we can incorporate it +    // into the expression by making all instruction operands be inputs. +    if (!CanPHITrans(Inst)) +      return nullptr; + +    // All instruction operands are now inputs (and of course, they may also be +    // defined in this block, so they may need to be phi translated themselves. +    for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) +      if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) +        InstInputs.push_back(Op); +  } + +  // Ok, it must be an intermediate result (either because it started that way +  // or because we just incorporated it into the expression).  See if its +  // operands need to be phi translated, and if so, reconstruct it. + +  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { +    if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; +    Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); +    if (!PHIIn) return nullptr; +    if (PHIIn == Cast->getOperand(0)) +      return Cast; + +    // Find an available version of this cast. + +    // Constants are trivial to find. +    if (Constant *C = dyn_cast<Constant>(PHIIn)) +      return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), +                                              C, Cast->getType())); + +    // Otherwise we have to see if a casted version of the incoming pointer +    // is available.  If so, we can use it, otherwise we have to fail. +    for (User *U : PHIIn->users()) { +      if (CastInst *CastI = dyn_cast<CastInst>(U)) +        if (CastI->getOpcode() == Cast->getOpcode() && +            CastI->getType() == Cast->getType() && +            (!DT || DT->dominates(CastI->getParent(), PredBB))) +          return CastI; +    } +    return nullptr; +  } + +  // Handle getelementptr with at least one PHI translatable operand. +  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { +    SmallVector<Value*, 8> GEPOps; +    bool AnyChanged = false; +    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { +      Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); +      if (!GEPOp) return nullptr; + +      AnyChanged |= GEPOp != GEP->getOperand(i); +      GEPOps.push_back(GEPOp); +    } + +    if (!AnyChanged) +      return GEP; + +    // Simplify the GEP to handle 'gep x, 0' -> x etc. +    if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(), +                                   GEPOps, {DL, TLI, DT, AC})) { +      for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) +        RemoveInstInputs(GEPOps[i], InstInputs); + +      return AddAsInput(V); +    } + +    // Scan to see if we have this GEP available. +    Value *APHIOp = GEPOps[0]; +    for (User *U : APHIOp->users()) { +      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) +        if (GEPI->getType() == GEP->getType() && +            GEPI->getNumOperands() == GEPOps.size() && +            GEPI->getParent()->getParent() == CurBB->getParent() && +            (!DT || DT->dominates(GEPI->getParent(), PredBB))) { +          if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) +            return GEPI; +        } +    } +    return nullptr; +  } + +  // Handle add with a constant RHS. +  if (Inst->getOpcode() == Instruction::Add && +      isa<ConstantInt>(Inst->getOperand(1))) { +    // PHI translate the LHS. +    Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); +    bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); +    bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); + +    Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); +    if (!LHS) return nullptr; + +    // If the PHI translated LHS is an add of a constant, fold the immediates. +    if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) +      if (BOp->getOpcode() == Instruction::Add) +        if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { +          LHS = BOp->getOperand(0); +          RHS = ConstantExpr::getAdd(RHS, CI); +          isNSW = isNUW = false; + +          // If the old 'LHS' was an input, add the new 'LHS' as an input. +          if (is_contained(InstInputs, BOp)) { +            RemoveInstInputs(BOp, InstInputs); +            AddAsInput(LHS); +          } +        } + +    // See if the add simplifies away. +    if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) { +      // If we simplified the operands, the LHS is no longer an input, but Res +      // is. +      RemoveInstInputs(LHS, InstInputs); +      return AddAsInput(Res); +    } + +    // If we didn't modify the add, just return it. +    if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) +      return Inst; + +    // Otherwise, see if we have this add available somewhere. +    for (User *U : LHS->users()) { +      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) +        if (BO->getOpcode() == Instruction::Add && +            BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && +            BO->getParent()->getParent() == CurBB->getParent() && +            (!DT || DT->dominates(BO->getParent(), PredBB))) +          return BO; +    } + +    return nullptr; +  } + +  // Otherwise, we failed. +  return nullptr; +} + + +/// PHITranslateValue - PHI translate the current address up the CFG from +/// CurBB to Pred, updating our state to reflect any needed changes.  If +/// 'MustDominate' is true, the translated value must dominate +/// PredBB.  This returns true on failure and sets Addr to null. +bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, +                                     const DominatorTree *DT, +                                     bool MustDominate) { +  assert(DT || !MustDominate); +  assert(Verify() && "Invalid PHITransAddr!"); +  if (DT && DT->isReachableFromEntry(PredBB)) +    Addr = +        PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr); +  else +    Addr = nullptr; +  assert(Verify() && "Invalid PHITransAddr!"); + +  if (MustDominate) +    // Make sure the value is live in the predecessor. +    if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) +      if (!DT->dominates(Inst->getParent(), PredBB)) +        Addr = nullptr; + +  return Addr == nullptr; +} + +/// PHITranslateWithInsertion - PHI translate this value into the specified +/// predecessor block, inserting a computation of the value if it is +/// unavailable. +/// +/// All newly created instructions are added to the NewInsts list.  This +/// returns null on failure. +/// +Value *PHITransAddr:: +PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, +                          const DominatorTree &DT, +                          SmallVectorImpl<Instruction*> &NewInsts) { +  unsigned NISize = NewInsts.size(); + +  // Attempt to PHI translate with insertion. +  Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); + +  // If successful, return the new value. +  if (Addr) return Addr; + +  // If not, destroy any intermediate instructions inserted. +  while (NewInsts.size() != NISize) +    NewInsts.pop_back_val()->eraseFromParent(); +  return nullptr; +} + + +/// InsertPHITranslatedPointer - Insert a computation of the PHI translated +/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB +/// block.  All newly created instructions are added to the NewInsts list. +/// This returns null on failure. +/// +Value *PHITransAddr:: +InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, +                           BasicBlock *PredBB, const DominatorTree &DT, +                           SmallVectorImpl<Instruction*> &NewInsts) { +  // See if we have a version of this value already available and dominating +  // PredBB.  If so, there is no need to insert a new instance of it. +  PHITransAddr Tmp(InVal, DL, AC); +  if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true)) +    return Tmp.getAddr(); + +  // We don't need to PHI translate values which aren't instructions. +  auto *Inst = dyn_cast<Instruction>(InVal); +  if (!Inst) +    return nullptr; + +  // Handle cast of PHI translatable value. +  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { +    if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; +    Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), +                                              CurBB, PredBB, DT, NewInsts); +    if (!OpVal) return nullptr; + +    // Otherwise insert a cast at the end of PredBB. +    CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(), +                                     InVal->getName() + ".phi.trans.insert", +                                     PredBB->getTerminator()); +    New->setDebugLoc(Inst->getDebugLoc()); +    NewInsts.push_back(New); +    return New; +  } + +  // Handle getelementptr with at least one PHI operand. +  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { +    SmallVector<Value*, 8> GEPOps; +    BasicBlock *CurBB = GEP->getParent(); +    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { +      Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), +                                                CurBB, PredBB, DT, NewInsts); +      if (!OpVal) return nullptr; +      GEPOps.push_back(OpVal); +    } + +    GetElementPtrInst *Result = GetElementPtrInst::Create( +        GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1), +        InVal->getName() + ".phi.trans.insert", PredBB->getTerminator()); +    Result->setDebugLoc(Inst->getDebugLoc()); +    Result->setIsInBounds(GEP->isInBounds()); +    NewInsts.push_back(Result); +    return Result; +  } + +#if 0 +  // FIXME: This code works, but it is unclear that we actually want to insert +  // a big chain of computation in order to make a value available in a block. +  // This needs to be evaluated carefully to consider its cost trade offs. + +  // Handle add with a constant RHS. +  if (Inst->getOpcode() == Instruction::Add && +      isa<ConstantInt>(Inst->getOperand(1))) { +    // PHI translate the LHS. +    Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), +                                              CurBB, PredBB, DT, NewInsts); +    if (OpVal == 0) return 0; + +    BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), +                                           InVal->getName()+".phi.trans.insert", +                                                    PredBB->getTerminator()); +    Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); +    Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); +    NewInsts.push_back(Res); +    return Res; +  } +#endif + +  return nullptr; +}  | 
