diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/ValueTracking.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/ValueTracking.cpp | 4372 | 
1 files changed, 4372 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm/lib/Analysis/ValueTracking.cpp new file mode 100644 index 000000000000..d31472c0d33c --- /dev/null +++ b/contrib/llvm/lib/Analysis/ValueTracking.cpp @@ -0,0 +1,4372 @@ +//===- ValueTracking.cpp - Walk computations to compute properties --------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains routines that help analyze properties that chains of +// computations have. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <array> +#include <cstring> +using namespace llvm; +using namespace llvm::PatternMatch; + +const unsigned MaxDepth = 6; + +// Controls the number of uses of the value searched for possible +// dominating comparisons. +static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", +                                              cl::Hidden, cl::init(20)); + +// This optimization is known to cause performance regressions is some cases, +// keep it under a temporary flag for now. +static cl::opt<bool> +DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", +                              cl::Hidden, cl::init(true)); + +/// Returns the bitwidth of the given scalar or pointer type (if unknown returns +/// 0). For vector types, returns the element type's bitwidth. +static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { +  if (unsigned BitWidth = Ty->getScalarSizeInBits()) +    return BitWidth; + +  return DL.getPointerTypeSizeInBits(Ty); +} + +namespace { +// Simplifying using an assume can only be done in a particular control-flow +// context (the context instruction provides that context). If an assume and +// the context instruction are not in the same block then the DT helps in +// figuring out if we can use it. +struct Query { +  const DataLayout &DL; +  AssumptionCache *AC; +  const Instruction *CxtI; +  const DominatorTree *DT; + +  /// Set of assumptions that should be excluded from further queries. +  /// This is because of the potential for mutual recursion to cause +  /// computeKnownBits to repeatedly visit the same assume intrinsic. The +  /// classic case of this is assume(x = y), which will attempt to determine +  /// bits in x from bits in y, which will attempt to determine bits in y from +  /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call +  /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and +  /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so +  /// on. +  std::array<const Value *, MaxDepth> Excluded; +  unsigned NumExcluded; + +  Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, +        const DominatorTree *DT) +      : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} + +  Query(const Query &Q, const Value *NewExcl) +      : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { +    Excluded = Q.Excluded; +    Excluded[NumExcluded++] = NewExcl; +    assert(NumExcluded <= Excluded.size()); +  } + +  bool isExcluded(const Value *Value) const { +    if (NumExcluded == 0) +      return false; +    auto End = Excluded.begin() + NumExcluded; +    return std::find(Excluded.begin(), End, Value) != End; +  } +}; +} // end anonymous namespace + +// Given the provided Value and, potentially, a context instruction, return +// the preferred context instruction (if any). +static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { +  // If we've been provided with a context instruction, then use that (provided +  // it has been inserted). +  if (CxtI && CxtI->getParent()) +    return CxtI; + +  // If the value is really an already-inserted instruction, then use that. +  CxtI = dyn_cast<Instruction>(V); +  if (CxtI && CxtI->getParent()) +    return CxtI; + +  return nullptr; +} + +static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, +                             unsigned Depth, const Query &Q); + +void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, +                            const DataLayout &DL, unsigned Depth, +                            AssumptionCache *AC, const Instruction *CxtI, +                            const DominatorTree *DT) { +  ::computeKnownBits(V, KnownZero, KnownOne, Depth, +                     Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, +                               const DataLayout &DL, +                               AssumptionCache *AC, const Instruction *CxtI, +                               const DominatorTree *DT) { +  assert(LHS->getType() == RHS->getType() && +         "LHS and RHS should have the same type"); +  assert(LHS->getType()->isIntOrIntVectorTy() && +         "LHS and RHS should be integers"); +  IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); +  APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); +  APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); +  computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); +  computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); +  return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); +} + +static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, +                           unsigned Depth, const Query &Q); + +void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, +                          const DataLayout &DL, unsigned Depth, +                          AssumptionCache *AC, const Instruction *CxtI, +                          const DominatorTree *DT) { +  ::ComputeSignBit(V, KnownZero, KnownOne, Depth, +                   Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, +                                   const Query &Q); + +bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, +                                  bool OrZero, +                                  unsigned Depth, AssumptionCache *AC, +                                  const Instruction *CxtI, +                                  const DominatorTree *DT) { +  return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, +                                  Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); + +bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, +                          AssumptionCache *AC, const Instruction *CxtI, +                          const DominatorTree *DT) { +  return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, +                              unsigned Depth, +                              AssumptionCache *AC, const Instruction *CxtI, +                              const DominatorTree *DT) { +  bool NonNegative, Negative; +  ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); +  return NonNegative; +} + +bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, +                           AssumptionCache *AC, const Instruction *CxtI, +                           const DominatorTree *DT) { +  if (auto *CI = dyn_cast<ConstantInt>(V)) +    return CI->getValue().isStrictlyPositive(); + +  // TODO: We'd doing two recursive queries here.  We should factor this such +  // that only a single query is needed. +  return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && +    isKnownNonZero(V, DL, Depth, AC, CxtI, DT); +} + +bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, +                           AssumptionCache *AC, const Instruction *CxtI, +                           const DominatorTree *DT) { +  bool NonNegative, Negative; +  ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); +  return Negative; +} + +static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); + +bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, +                           const DataLayout &DL, +                           AssumptionCache *AC, const Instruction *CxtI, +                           const DominatorTree *DT) { +  return ::isKnownNonEqual(V1, V2, Query(DL, AC, +                                         safeCxtI(V1, safeCxtI(V2, CxtI)), +                                         DT)); +} + +static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, +                              const Query &Q); + +bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, +                             const DataLayout &DL, +                             unsigned Depth, AssumptionCache *AC, +                             const Instruction *CxtI, const DominatorTree *DT) { +  return ::MaskedValueIsZero(V, Mask, Depth, +                             Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, +                                   const Query &Q); + +unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, +                                  unsigned Depth, AssumptionCache *AC, +                                  const Instruction *CxtI, +                                  const DominatorTree *DT) { +  return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, +                                   bool NSW, +                                   APInt &KnownZero, APInt &KnownOne, +                                   APInt &KnownZero2, APInt &KnownOne2, +                                   unsigned Depth, const Query &Q) { +  if (!Add) { +    if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { +      // We know that the top bits of C-X are clear if X contains less bits +      // than C (i.e. no wrap-around can happen).  For example, 20-X is +      // positive if we can prove that X is >= 0 and < 16. +      if (!CLHS->getValue().isNegative()) { +        unsigned BitWidth = KnownZero.getBitWidth(); +        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); +        // NLZ can't be BitWidth with no sign bit +        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); +        computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); + +        // If all of the MaskV bits are known to be zero, then we know the +        // output top bits are zero, because we now know that the output is +        // from [0-C]. +        if ((KnownZero2 & MaskV) == MaskV) { +          unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); +          // Top bits known zero. +          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); +        } +      } +    } +  } + +  unsigned BitWidth = KnownZero.getBitWidth(); + +  // If an initial sequence of bits in the result is not needed, the +  // corresponding bits in the operands are not needed. +  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); +  computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); +  computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); + +  // Carry in a 1 for a subtract, rather than a 0. +  APInt CarryIn(BitWidth, 0); +  if (!Add) { +    // Sum = LHS + ~RHS + 1 +    std::swap(KnownZero2, KnownOne2); +    CarryIn.setBit(0); +  } + +  APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; +  APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; + +  // Compute known bits of the carry. +  APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); +  APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; + +  // Compute set of known bits (where all three relevant bits are known). +  APInt LHSKnown = LHSKnownZero | LHSKnownOne; +  APInt RHSKnown = KnownZero2 | KnownOne2; +  APInt CarryKnown = CarryKnownZero | CarryKnownOne; +  APInt Known = LHSKnown & RHSKnown & CarryKnown; + +  assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && +         "known bits of sum differ"); + +  // Compute known bits of the result. +  KnownZero = ~PossibleSumOne & Known; +  KnownOne = PossibleSumOne & Known; + +  // Are we still trying to solve for the sign bit? +  if (!Known.isNegative()) { +    if (NSW) { +      // Adding two non-negative numbers, or subtracting a negative number from +      // a non-negative one, can't wrap into negative. +      if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) +        KnownZero |= APInt::getSignBit(BitWidth); +      // Adding two negative numbers, or subtracting a non-negative number from +      // a negative one, can't wrap into non-negative. +      else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) +        KnownOne |= APInt::getSignBit(BitWidth); +    } +  } +} + +static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, +                                APInt &KnownZero, APInt &KnownOne, +                                APInt &KnownZero2, APInt &KnownOne2, +                                unsigned Depth, const Query &Q) { +  unsigned BitWidth = KnownZero.getBitWidth(); +  computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); +  computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); + +  bool isKnownNegative = false; +  bool isKnownNonNegative = false; +  // If the multiplication is known not to overflow, compute the sign bit. +  if (NSW) { +    if (Op0 == Op1) { +      // The product of a number with itself is non-negative. +      isKnownNonNegative = true; +    } else { +      bool isKnownNonNegativeOp1 = KnownZero.isNegative(); +      bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); +      bool isKnownNegativeOp1 = KnownOne.isNegative(); +      bool isKnownNegativeOp0 = KnownOne2.isNegative(); +      // The product of two numbers with the same sign is non-negative. +      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || +        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); +      // The product of a negative number and a non-negative number is either +      // negative or zero. +      if (!isKnownNonNegative) +        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && +                           isKnownNonZero(Op0, Depth, Q)) || +                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 && +                           isKnownNonZero(Op1, Depth, Q)); +    } +  } + +  // If low bits are zero in either operand, output low known-0 bits. +  // Also compute a conservative estimate for high known-0 bits. +  // More trickiness is possible, but this is sufficient for the +  // interesting case of alignment computation. +  KnownOne.clearAllBits(); +  unsigned TrailZ = KnownZero.countTrailingOnes() + +                    KnownZero2.countTrailingOnes(); +  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() + +                             KnownZero2.countLeadingOnes(), +                             BitWidth) - BitWidth; + +  TrailZ = std::min(TrailZ, BitWidth); +  LeadZ = std::min(LeadZ, BitWidth); +  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | +              APInt::getHighBitsSet(BitWidth, LeadZ); + +  // Only make use of no-wrap flags if we failed to compute the sign bit +  // directly.  This matters if the multiplication always overflows, in +  // which case we prefer to follow the result of the direct computation, +  // though as the program is invoking undefined behaviour we can choose +  // whatever we like here. +  if (isKnownNonNegative && !KnownOne.isNegative()) +    KnownZero.setBit(BitWidth - 1); +  else if (isKnownNegative && !KnownZero.isNegative()) +    KnownOne.setBit(BitWidth - 1); +} + +void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, +                                             APInt &KnownZero, +                                             APInt &KnownOne) { +  unsigned BitWidth = KnownZero.getBitWidth(); +  unsigned NumRanges = Ranges.getNumOperands() / 2; +  assert(NumRanges >= 1); + +  KnownZero.setAllBits(); +  KnownOne.setAllBits(); + +  for (unsigned i = 0; i < NumRanges; ++i) { +    ConstantInt *Lower = +        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); +    ConstantInt *Upper = +        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); +    ConstantRange Range(Lower->getValue(), Upper->getValue()); + +    // The first CommonPrefixBits of all values in Range are equal. +    unsigned CommonPrefixBits = +        (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); + +    APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); +    KnownOne &= Range.getUnsignedMax() & Mask; +    KnownZero &= ~Range.getUnsignedMax() & Mask; +  } +} + +static bool isEphemeralValueOf(const Instruction *I, const Value *E) { +  SmallVector<const Value *, 16> WorkSet(1, I); +  SmallPtrSet<const Value *, 32> Visited; +  SmallPtrSet<const Value *, 16> EphValues; + +  // The instruction defining an assumption's condition itself is always +  // considered ephemeral to that assumption (even if it has other +  // non-ephemeral users). See r246696's test case for an example. +  if (is_contained(I->operands(), E)) +    return true; + +  while (!WorkSet.empty()) { +    const Value *V = WorkSet.pop_back_val(); +    if (!Visited.insert(V).second) +      continue; + +    // If all uses of this value are ephemeral, then so is this value. +    if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { +      if (V == E) +        return true; + +      EphValues.insert(V); +      if (const User *U = dyn_cast<User>(V)) +        for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); +             J != JE; ++J) { +          if (isSafeToSpeculativelyExecute(*J)) +            WorkSet.push_back(*J); +        } +    } +  } + +  return false; +} + +// Is this an intrinsic that cannot be speculated but also cannot trap? +static bool isAssumeLikeIntrinsic(const Instruction *I) { +  if (const CallInst *CI = dyn_cast<CallInst>(I)) +    if (Function *F = CI->getCalledFunction()) +      switch (F->getIntrinsicID()) { +      default: break; +      // FIXME: This list is repeated from NoTTI::getIntrinsicCost. +      case Intrinsic::assume: +      case Intrinsic::dbg_declare: +      case Intrinsic::dbg_value: +      case Intrinsic::invariant_start: +      case Intrinsic::invariant_end: +      case Intrinsic::lifetime_start: +      case Intrinsic::lifetime_end: +      case Intrinsic::objectsize: +      case Intrinsic::ptr_annotation: +      case Intrinsic::var_annotation: +        return true; +      } + +  return false; +} + +bool llvm::isValidAssumeForContext(const Instruction *Inv, +                                   const Instruction *CxtI, +                                   const DominatorTree *DT) { + +  // There are two restrictions on the use of an assume: +  //  1. The assume must dominate the context (or the control flow must +  //     reach the assume whenever it reaches the context). +  //  2. The context must not be in the assume's set of ephemeral values +  //     (otherwise we will use the assume to prove that the condition +  //     feeding the assume is trivially true, thus causing the removal of +  //     the assume). + +  if (DT) { +    if (DT->dominates(Inv, CxtI)) +      return true; +  } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { +    // We don't have a DT, but this trivially dominates. +    return true; +  } + +  // With or without a DT, the only remaining case we will check is if the +  // instructions are in the same BB.  Give up if that is not the case. +  if (Inv->getParent() != CxtI->getParent()) +    return false; + +  // If we have a dom tree, then we now know that the assume doens't dominate +  // the other instruction.  If we don't have a dom tree then we can check if +  // the assume is first in the BB. +  if (!DT) { +    // Search forward from the assume until we reach the context (or the end +    // of the block); the common case is that the assume will come first. +    for (auto I = std::next(BasicBlock::const_iterator(Inv)), +         IE = Inv->getParent()->end(); I != IE; ++I) +      if (&*I == CxtI) +        return true; +  } + +  // The context comes first, but they're both in the same block. Make sure +  // there is nothing in between that might interrupt the control flow. +  for (BasicBlock::const_iterator I = +         std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); +       I != IE; ++I) +    if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) +      return false; + +  return !isEphemeralValueOf(Inv, CxtI); +} + +static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, +                                       APInt &KnownOne, unsigned Depth, +                                       const Query &Q) { +  // Use of assumptions is context-sensitive. If we don't have a context, we +  // cannot use them! +  if (!Q.AC || !Q.CxtI) +    return; + +  unsigned BitWidth = KnownZero.getBitWidth(); + +  for (auto &AssumeVH : Q.AC->assumptions()) { +    if (!AssumeVH) +      continue; +    CallInst *I = cast<CallInst>(AssumeVH); +    assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && +           "Got assumption for the wrong function!"); +    if (Q.isExcluded(I)) +      continue; + +    // Warning: This loop can end up being somewhat performance sensetive. +    // We're running this loop for once for each value queried resulting in a +    // runtime of ~O(#assumes * #values). + +    assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && +           "must be an assume intrinsic"); + +    Value *Arg = I->getArgOperand(0); + +    if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      assert(BitWidth == 1 && "assume operand is not i1?"); +      KnownZero.clearAllBits(); +      KnownOne.setAllBits(); +      return; +    } + +    // The remaining tests are all recursive, so bail out if we hit the limit. +    if (Depth == MaxDepth) +      continue; + +    Value *A, *B; +    auto m_V = m_CombineOr(m_Specific(V), +                           m_CombineOr(m_PtrToInt(m_Specific(V)), +                           m_BitCast(m_Specific(V)))); + +    CmpInst::Predicate Pred; +    ConstantInt *C; +    // assume(v = a) +    if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && +        Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      KnownZero |= RHSKnownZero; +      KnownOne  |= RHSKnownOne; +    // assume(v & b = a) +    } else if (match(Arg, +                     m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); +      computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); + +      // For those bits in the mask that are known to be one, we can propagate +      // known bits from the RHS to V. +      KnownZero |= RHSKnownZero & MaskKnownOne; +      KnownOne  |= RHSKnownOne  & MaskKnownOne; +    // assume(~(v & b) = a) +    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), +                                   m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); +      computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); + +      // For those bits in the mask that are known to be one, we can propagate +      // inverted known bits from the RHS to V. +      KnownZero |= RHSKnownOne  & MaskKnownOne; +      KnownOne  |= RHSKnownZero & MaskKnownOne; +    // assume(v | b = a) +    } else if (match(Arg, +                     m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); +      computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); + +      // For those bits in B that are known to be zero, we can propagate known +      // bits from the RHS to V. +      KnownZero |= RHSKnownZero & BKnownZero; +      KnownOne  |= RHSKnownOne  & BKnownZero; +    // assume(~(v | b) = a) +    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), +                                   m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); +      computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); + +      // For those bits in B that are known to be zero, we can propagate +      // inverted known bits from the RHS to V. +      KnownZero |= RHSKnownOne  & BKnownZero; +      KnownOne  |= RHSKnownZero & BKnownZero; +    // assume(v ^ b = a) +    } else if (match(Arg, +                     m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); +      computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); + +      // For those bits in B that are known to be zero, we can propagate known +      // bits from the RHS to V. For those bits in B that are known to be one, +      // we can propagate inverted known bits from the RHS to V. +      KnownZero |= RHSKnownZero & BKnownZero; +      KnownOne  |= RHSKnownOne  & BKnownZero; +      KnownZero |= RHSKnownOne  & BKnownOne; +      KnownOne  |= RHSKnownZero & BKnownOne; +    // assume(~(v ^ b) = a) +    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), +                                   m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); +      computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); + +      // For those bits in B that are known to be zero, we can propagate +      // inverted known bits from the RHS to V. For those bits in B that are +      // known to be one, we can propagate known bits from the RHS to V. +      KnownZero |= RHSKnownOne  & BKnownZero; +      KnownOne  |= RHSKnownZero & BKnownZero; +      KnownZero |= RHSKnownZero & BKnownOne; +      KnownOne  |= RHSKnownOne  & BKnownOne; +    // assume(v << c = a) +    } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), +                                   m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      // For those bits in RHS that are known, we can propagate them to known +      // bits in V shifted to the right by C. +      KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); +      KnownOne  |= RHSKnownOne.lshr(C->getZExtValue()); +    // assume(~(v << c) = a) +    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), +                                   m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      // For those bits in RHS that are known, we can propagate them inverted +      // to known bits in V shifted to the right by C. +      KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); +      KnownOne  |= RHSKnownZero.lshr(C->getZExtValue()); +    // assume(v >> c = a) +    } else if (match(Arg, +                     m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), +                                                m_AShr(m_V, m_ConstantInt(C))), +                              m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      // For those bits in RHS that are known, we can propagate them to known +      // bits in V shifted to the right by C. +      KnownZero |= RHSKnownZero << C->getZExtValue(); +      KnownOne  |= RHSKnownOne  << C->getZExtValue(); +    // assume(~(v >> c) = a) +    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( +                                             m_LShr(m_V, m_ConstantInt(C)), +                                             m_AShr(m_V, m_ConstantInt(C)))), +                                   m_Value(A))) && +               Pred == ICmpInst::ICMP_EQ && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); +      // For those bits in RHS that are known, we can propagate them inverted +      // to known bits in V shifted to the right by C. +      KnownZero |= RHSKnownOne  << C->getZExtValue(); +      KnownOne  |= RHSKnownZero << C->getZExtValue(); +    // assume(v >=_s c) where c is non-negative +    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && +               Pred == ICmpInst::ICMP_SGE && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + +      if (RHSKnownZero.isNegative()) { +        // We know that the sign bit is zero. +        KnownZero |= APInt::getSignBit(BitWidth); +      } +    // assume(v >_s c) where c is at least -1. +    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && +               Pred == ICmpInst::ICMP_SGT && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + +      if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { +        // We know that the sign bit is zero. +        KnownZero |= APInt::getSignBit(BitWidth); +      } +    // assume(v <=_s c) where c is negative +    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && +               Pred == ICmpInst::ICMP_SLE && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + +      if (RHSKnownOne.isNegative()) { +        // We know that the sign bit is one. +        KnownOne |= APInt::getSignBit(BitWidth); +      } +    // assume(v <_s c) where c is non-positive +    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && +               Pred == ICmpInst::ICMP_SLT && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + +      if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { +        // We know that the sign bit is one. +        KnownOne |= APInt::getSignBit(BitWidth); +      } +    // assume(v <=_u c) +    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && +               Pred == ICmpInst::ICMP_ULE && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + +      // Whatever high bits in c are zero are known to be zero. +      KnownZero |= +        APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); +    // assume(v <_u c) +    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && +               Pred == ICmpInst::ICMP_ULT && +               isValidAssumeForContext(I, Q.CxtI, Q.DT)) { +      APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); +      computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + +      // Whatever high bits in c are zero are known to be zero (if c is a power +      // of 2, then one more). +      if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) +        KnownZero |= +          APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); +      else +        KnownZero |= +          APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); +    } +  } +} + +// Compute known bits from a shift operator, including those with a +// non-constant shift amount. KnownZero and KnownOne are the outputs of this +// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the +// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific +// functors that, given the known-zero or known-one bits respectively, and a +// shift amount, compute the implied known-zero or known-one bits of the shift +// operator's result respectively for that shift amount. The results from calling +// KZF and KOF are conservatively combined for all permitted shift amounts. +static void computeKnownBitsFromShiftOperator( +    const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, +    APInt &KnownOne2, unsigned Depth, const Query &Q, +    function_ref<APInt(const APInt &, unsigned)> KZF, +    function_ref<APInt(const APInt &, unsigned)> KOF) { +  unsigned BitWidth = KnownZero.getBitWidth(); + +  if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { +    unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); + +    computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); +    KnownZero = KZF(KnownZero, ShiftAmt); +    KnownOne  = KOF(KnownOne, ShiftAmt); +    // If there is conflict between KnownZero and KnownOne, this must be an +    // overflowing left shift, so the shift result is undefined. Clear KnownZero +    // and KnownOne bits so that other code could propagate this undef. +    if ((KnownZero & KnownOne) != 0) { +      KnownZero.clearAllBits(); +      KnownOne.clearAllBits(); +    } + +    return; +  } + +  computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); + +  // Note: We cannot use KnownZero.getLimitedValue() here, because if +  // BitWidth > 64 and any upper bits are known, we'll end up returning the +  // limit value (which implies all bits are known). +  uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); +  uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); + +  // It would be more-clearly correct to use the two temporaries for this +  // calculation. Reusing the APInts here to prevent unnecessary allocations. +  KnownZero.clearAllBits(); +  KnownOne.clearAllBits(); + +  // If we know the shifter operand is nonzero, we can sometimes infer more +  // known bits. However this is expensive to compute, so be lazy about it and +  // only compute it when absolutely necessary. +  Optional<bool> ShifterOperandIsNonZero; + +  // Early exit if we can't constrain any well-defined shift amount. +  if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { +    ShifterOperandIsNonZero = +        isKnownNonZero(I->getOperand(1), Depth + 1, Q); +    if (!*ShifterOperandIsNonZero) +      return; +  } + +  computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + +  KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); +  for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { +    // Combine the shifted known input bits only for those shift amounts +    // compatible with its known constraints. +    if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) +      continue; +    if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) +      continue; +    // If we know the shifter is nonzero, we may be able to infer more known +    // bits. This check is sunk down as far as possible to avoid the expensive +    // call to isKnownNonZero if the cheaper checks above fail. +    if (ShiftAmt == 0) { +      if (!ShifterOperandIsNonZero.hasValue()) +        ShifterOperandIsNonZero = +            isKnownNonZero(I->getOperand(1), Depth + 1, Q); +      if (*ShifterOperandIsNonZero) +        continue; +    } + +    KnownZero &= KZF(KnownZero2, ShiftAmt); +    KnownOne  &= KOF(KnownOne2, ShiftAmt); +  } + +  // If there are no compatible shift amounts, then we've proven that the shift +  // amount must be >= the BitWidth, and the result is undefined. We could +  // return anything we'd like, but we need to make sure the sets of known bits +  // stay disjoint (it should be better for some other code to actually +  // propagate the undef than to pick a value here using known bits). +  if ((KnownZero & KnownOne) != 0) { +    KnownZero.clearAllBits(); +    KnownOne.clearAllBits(); +  } +} + +static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, +                                         APInt &KnownOne, unsigned Depth, +                                         const Query &Q) { +  unsigned BitWidth = KnownZero.getBitWidth(); + +  APInt KnownZero2(KnownZero), KnownOne2(KnownOne); +  switch (I->getOpcode()) { +  default: break; +  case Instruction::Load: +    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) +      computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); +    break; +  case Instruction::And: { +    // If either the LHS or the RHS are Zero, the result is zero. +    computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); +    computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + +    // Output known-1 bits are only known if set in both the LHS & RHS. +    KnownOne &= KnownOne2; +    // Output known-0 are known to be clear if zero in either the LHS | RHS. +    KnownZero |= KnownZero2; + +    // and(x, add (x, -1)) is a common idiom that always clears the low bit; +    // here we handle the more general case of adding any odd number by +    // matching the form add(x, add(x, y)) where y is odd. +    // TODO: This could be generalized to clearing any bit set in y where the +    // following bit is known to be unset in y. +    Value *Y = nullptr; +    if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), +                                      m_Value(Y))) || +        match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), +                                      m_Value(Y)))) { +      APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); +      computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); +      if (KnownOne3.countTrailingOnes() > 0) +        KnownZero |= APInt::getLowBitsSet(BitWidth, 1); +    } +    break; +  } +  case Instruction::Or: { +    computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); +    computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + +    // Output known-0 bits are only known if clear in both the LHS & RHS. +    KnownZero &= KnownZero2; +    // Output known-1 are known to be set if set in either the LHS | RHS. +    KnownOne |= KnownOne2; +    break; +  } +  case Instruction::Xor: { +    computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); +    computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + +    // Output known-0 bits are known if clear or set in both the LHS & RHS. +    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); +    // Output known-1 are known to be set if set in only one of the LHS, RHS. +    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); +    KnownZero = KnownZeroOut; +    break; +  } +  case Instruction::Mul: { +    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); +    computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, +                        KnownOne, KnownZero2, KnownOne2, Depth, Q); +    break; +  } +  case Instruction::UDiv: { +    // For the purposes of computing leading zeros we can conservatively +    // treat a udiv as a logical right shift by the power of 2 known to +    // be less than the denominator. +    computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); +    unsigned LeadZ = KnownZero2.countLeadingOnes(); + +    KnownOne2.clearAllBits(); +    KnownZero2.clearAllBits(); +    computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); +    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); +    if (RHSUnknownLeadingOnes != BitWidth) +      LeadZ = std::min(BitWidth, +                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); + +    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); +    break; +  } +  case Instruction::Select: { +    computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); +    computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); + +    const Value *LHS; +    const Value *RHS; +    SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; +    if (SelectPatternResult::isMinOrMax(SPF)) { +      computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); +      computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); +    } else { +      computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); +      computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); +    } + +    unsigned MaxHighOnes = 0; +    unsigned MaxHighZeros = 0; +    if (SPF == SPF_SMAX) { +      // If both sides are negative, the result is negative. +      if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) +        // We can derive a lower bound on the result by taking the max of the +        // leading one bits. +        MaxHighOnes = +            std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); +      // If either side is non-negative, the result is non-negative. +      else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) +        MaxHighZeros = 1; +    } else if (SPF == SPF_SMIN) { +      // If both sides are non-negative, the result is non-negative. +      if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) +        // We can derive an upper bound on the result by taking the max of the +        // leading zero bits. +        MaxHighZeros = std::max(KnownZero.countLeadingOnes(), +                                KnownZero2.countLeadingOnes()); +      // If either side is negative, the result is negative. +      else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) +        MaxHighOnes = 1; +    } else if (SPF == SPF_UMAX) { +      // We can derive a lower bound on the result by taking the max of the +      // leading one bits. +      MaxHighOnes = +          std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); +    } else if (SPF == SPF_UMIN) { +      // We can derive an upper bound on the result by taking the max of the +      // leading zero bits. +      MaxHighZeros = +          std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); +    } + +    // Only known if known in both the LHS and RHS. +    KnownOne &= KnownOne2; +    KnownZero &= KnownZero2; +    if (MaxHighOnes > 0) +      KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); +    if (MaxHighZeros > 0) +      KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); +    break; +  } +  case Instruction::FPTrunc: +  case Instruction::FPExt: +  case Instruction::FPToUI: +  case Instruction::FPToSI: +  case Instruction::SIToFP: +  case Instruction::UIToFP: +    break; // Can't work with floating point. +  case Instruction::PtrToInt: +  case Instruction::IntToPtr: +    // Fall through and handle them the same as zext/trunc. +    LLVM_FALLTHROUGH; +  case Instruction::ZExt: +  case Instruction::Trunc: { +    Type *SrcTy = I->getOperand(0)->getType(); + +    unsigned SrcBitWidth; +    // Note that we handle pointer operands here because of inttoptr/ptrtoint +    // which fall through here. +    SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); + +    assert(SrcBitWidth && "SrcBitWidth can't be zero"); +    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); +    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); +    computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); +    KnownZero = KnownZero.zextOrTrunc(BitWidth); +    KnownOne = KnownOne.zextOrTrunc(BitWidth); +    // Any top bits are known to be zero. +    if (BitWidth > SrcBitWidth) +      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); +    break; +  } +  case Instruction::BitCast: { +    Type *SrcTy = I->getOperand(0)->getType(); +    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && +        // TODO: For now, not handling conversions like: +        // (bitcast i64 %x to <2 x i32>) +        !I->getType()->isVectorTy()) { +      computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); +      break; +    } +    break; +  } +  case Instruction::SExt: { +    // Compute the bits in the result that are not present in the input. +    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); + +    KnownZero = KnownZero.trunc(SrcBitWidth); +    KnownOne = KnownOne.trunc(SrcBitWidth); +    computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); +    KnownZero = KnownZero.zext(BitWidth); +    KnownOne = KnownOne.zext(BitWidth); + +    // If the sign bit of the input is known set or clear, then we know the +    // top bits of the result. +    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero +      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); +    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set +      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); +    break; +  } +  case Instruction::Shl: { +    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0 +    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); +    auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { +      APInt KZResult = +          (KnownZero << ShiftAmt) | +          APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. +      // If this shift has "nsw" keyword, then the result is either a poison +      // value or has the same sign bit as the first operand. +      if (NSW && KnownZero.isNegative()) +        KZResult.setBit(BitWidth - 1); +      return KZResult; +    }; + +    auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { +      APInt KOResult = KnownOne << ShiftAmt; +      if (NSW && KnownOne.isNegative()) +        KOResult.setBit(BitWidth - 1); +      return KOResult; +    }; + +    computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, +                                      KnownZero2, KnownOne2, Depth, Q, KZF, +                                      KOF); +    break; +  } +  case Instruction::LShr: { +    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 +    auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { +      return APIntOps::lshr(KnownZero, ShiftAmt) | +             // High bits known zero. +             APInt::getHighBitsSet(BitWidth, ShiftAmt); +    }; + +    auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { +      return APIntOps::lshr(KnownOne, ShiftAmt); +    }; + +    computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, +                                      KnownZero2, KnownOne2, Depth, Q, KZF, +                                      KOF); +    break; +  } +  case Instruction::AShr: { +    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 +    auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { +      return APIntOps::ashr(KnownZero, ShiftAmt); +    }; + +    auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { +      return APIntOps::ashr(KnownOne, ShiftAmt); +    }; + +    computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, +                                      KnownZero2, KnownOne2, Depth, Q, KZF, +                                      KOF); +    break; +  } +  case Instruction::Sub: { +    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); +    computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, +                           KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, +                           Q); +    break; +  } +  case Instruction::Add: { +    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); +    computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, +                           KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, +                           Q); +    break; +  } +  case Instruction::SRem: +    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { +      APInt RA = Rem->getValue().abs(); +      if (RA.isPowerOf2()) { +        APInt LowBits = RA - 1; +        computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, +                         Q); + +        // The low bits of the first operand are unchanged by the srem. +        KnownZero = KnownZero2 & LowBits; +        KnownOne = KnownOne2 & LowBits; + +        // If the first operand is non-negative or has all low bits zero, then +        // the upper bits are all zero. +        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) +          KnownZero |= ~LowBits; + +        // If the first operand is negative and not all low bits are zero, then +        // the upper bits are all one. +        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) +          KnownOne |= ~LowBits; + +        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); +      } +    } + +    // The sign bit is the LHS's sign bit, except when the result of the +    // remainder is zero. +    if (KnownZero.isNonNegative()) { +      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); +      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, +                       Q); +      // If it's known zero, our sign bit is also zero. +      if (LHSKnownZero.isNegative()) +        KnownZero.setBit(BitWidth - 1); +    } + +    break; +  case Instruction::URem: { +    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { +      const APInt &RA = Rem->getValue(); +      if (RA.isPowerOf2()) { +        APInt LowBits = (RA - 1); +        computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); +        KnownZero |= ~LowBits; +        KnownOne &= LowBits; +        break; +      } +    } + +    // Since the result is less than or equal to either operand, any leading +    // zero bits in either operand must also exist in the result. +    computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); +    computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); + +    unsigned Leaders = std::max(KnownZero.countLeadingOnes(), +                                KnownZero2.countLeadingOnes()); +    KnownOne.clearAllBits(); +    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); +    break; +  } + +  case Instruction::Alloca: { +    const AllocaInst *AI = cast<AllocaInst>(I); +    unsigned Align = AI->getAlignment(); +    if (Align == 0) +      Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); + +    if (Align > 0) +      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); +    break; +  } +  case Instruction::GetElementPtr: { +    // Analyze all of the subscripts of this getelementptr instruction +    // to determine if we can prove known low zero bits. +    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); +    computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, +                     Q); +    unsigned TrailZ = LocalKnownZero.countTrailingOnes(); + +    gep_type_iterator GTI = gep_type_begin(I); +    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { +      Value *Index = I->getOperand(i); +      if (StructType *STy = GTI.getStructTypeOrNull()) { +        // Handle struct member offset arithmetic. + +        // Handle case when index is vector zeroinitializer +        Constant *CIndex = cast<Constant>(Index); +        if (CIndex->isZeroValue()) +          continue; + +        if (CIndex->getType()->isVectorTy()) +          Index = CIndex->getSplatValue(); + +        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); +        const StructLayout *SL = Q.DL.getStructLayout(STy); +        uint64_t Offset = SL->getElementOffset(Idx); +        TrailZ = std::min<unsigned>(TrailZ, +                                    countTrailingZeros(Offset)); +      } else { +        // Handle array index arithmetic. +        Type *IndexedTy = GTI.getIndexedType(); +        if (!IndexedTy->isSized()) { +          TrailZ = 0; +          break; +        } +        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); +        uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); +        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); +        computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); +        TrailZ = std::min(TrailZ, +                          unsigned(countTrailingZeros(TypeSize) + +                                   LocalKnownZero.countTrailingOnes())); +      } +    } + +    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); +    break; +  } +  case Instruction::PHI: { +    const PHINode *P = cast<PHINode>(I); +    // Handle the case of a simple two-predecessor recurrence PHI. +    // There's a lot more that could theoretically be done here, but +    // this is sufficient to catch some interesting cases. +    if (P->getNumIncomingValues() == 2) { +      for (unsigned i = 0; i != 2; ++i) { +        Value *L = P->getIncomingValue(i); +        Value *R = P->getIncomingValue(!i); +        Operator *LU = dyn_cast<Operator>(L); +        if (!LU) +          continue; +        unsigned Opcode = LU->getOpcode(); +        // Check for operations that have the property that if +        // both their operands have low zero bits, the result +        // will have low zero bits. +        if (Opcode == Instruction::Add || +            Opcode == Instruction::Sub || +            Opcode == Instruction::And || +            Opcode == Instruction::Or || +            Opcode == Instruction::Mul) { +          Value *LL = LU->getOperand(0); +          Value *LR = LU->getOperand(1); +          // Find a recurrence. +          if (LL == I) +            L = LR; +          else if (LR == I) +            L = LL; +          else +            break; +          // Ok, we have a PHI of the form L op= R. Check for low +          // zero bits. +          computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); + +          // We need to take the minimum number of known bits +          APInt KnownZero3(KnownZero), KnownOne3(KnownOne); +          computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); + +          KnownZero = APInt::getLowBitsSet( +              BitWidth, std::min(KnownZero2.countTrailingOnes(), +                                 KnownZero3.countTrailingOnes())); + +          if (DontImproveNonNegativePhiBits) +            break; + +          auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); +          if (OverflowOp && OverflowOp->hasNoSignedWrap()) { +            // If initial value of recurrence is nonnegative, and we are adding +            // a nonnegative number with nsw, the result can only be nonnegative +            // or poison value regardless of the number of times we execute the +            // add in phi recurrence. If initial value is negative and we are +            // adding a negative number with nsw, the result can only be +            // negative or poison value. Similar arguments apply to sub and mul. +            // +            // (add non-negative, non-negative) --> non-negative +            // (add negative, negative) --> negative +            if (Opcode == Instruction::Add) { +              if (KnownZero2.isNegative() && KnownZero3.isNegative()) +                KnownZero.setBit(BitWidth - 1); +              else if (KnownOne2.isNegative() && KnownOne3.isNegative()) +                KnownOne.setBit(BitWidth - 1); +            } + +            // (sub nsw non-negative, negative) --> non-negative +            // (sub nsw negative, non-negative) --> negative +            else if (Opcode == Instruction::Sub && LL == I) { +              if (KnownZero2.isNegative() && KnownOne3.isNegative()) +                KnownZero.setBit(BitWidth - 1); +              else if (KnownOne2.isNegative() && KnownZero3.isNegative()) +                KnownOne.setBit(BitWidth - 1); +            } + +            // (mul nsw non-negative, non-negative) --> non-negative +            else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && +                     KnownZero3.isNegative()) +              KnownZero.setBit(BitWidth - 1); +          } + +          break; +        } +      } +    } + +    // Unreachable blocks may have zero-operand PHI nodes. +    if (P->getNumIncomingValues() == 0) +      break; + +    // Otherwise take the unions of the known bit sets of the operands, +    // taking conservative care to avoid excessive recursion. +    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { +      // Skip if every incoming value references to ourself. +      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) +        break; + +      KnownZero = APInt::getAllOnesValue(BitWidth); +      KnownOne = APInt::getAllOnesValue(BitWidth); +      for (Value *IncValue : P->incoming_values()) { +        // Skip direct self references. +        if (IncValue == P) continue; + +        KnownZero2 = APInt(BitWidth, 0); +        KnownOne2 = APInt(BitWidth, 0); +        // Recurse, but cap the recursion to one level, because we don't +        // want to waste time spinning around in loops. +        computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); +        KnownZero &= KnownZero2; +        KnownOne &= KnownOne2; +        // If all bits have been ruled out, there's no need to check +        // more operands. +        if (!KnownZero && !KnownOne) +          break; +      } +    } +    break; +  } +  case Instruction::Call: +  case Instruction::Invoke: +    // If range metadata is attached to this call, set known bits from that, +    // and then intersect with known bits based on other properties of the +    // function. +    if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) +      computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); +    if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { +      computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); +      KnownZero |= KnownZero2; +      KnownOne |= KnownOne2; +    } +    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { +      switch (II->getIntrinsicID()) { +      default: break; +      case Intrinsic::bswap: +        computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); +        KnownZero |= KnownZero2.byteSwap(); +        KnownOne |= KnownOne2.byteSwap(); +        break; +      case Intrinsic::ctlz: +      case Intrinsic::cttz: { +        unsigned LowBits = Log2_32(BitWidth)+1; +        // If this call is undefined for 0, the result will be less than 2^n. +        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) +          LowBits -= 1; +        KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); +        break; +      } +      case Intrinsic::ctpop: { +        computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); +        // We can bound the space the count needs.  Also, bits known to be zero +        // can't contribute to the population. +        unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); +        unsigned LeadingZeros = +          APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); +        assert(LeadingZeros <= BitWidth); +        KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); +        KnownOne &= ~KnownZero; +        // TODO: we could bound KnownOne using the lower bound on the number +        // of bits which might be set provided by popcnt KnownOne2. +        break; +      } +      case Intrinsic::x86_sse42_crc32_64_64: +        KnownZero |= APInt::getHighBitsSet(64, 32); +        break; +      } +    } +    break; +  case Instruction::ExtractElement: +    // Look through extract element. At the moment we keep this simple and skip +    // tracking the specific element. But at least we might find information +    // valid for all elements of the vector (for example if vector is sign +    // extended, shifted, etc). +    computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); +    break; +  case Instruction::ExtractValue: +    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { +      const ExtractValueInst *EVI = cast<ExtractValueInst>(I); +      if (EVI->getNumIndices() != 1) break; +      if (EVI->getIndices()[0] == 0) { +        switch (II->getIntrinsicID()) { +        default: break; +        case Intrinsic::uadd_with_overflow: +        case Intrinsic::sadd_with_overflow: +          computeKnownBitsAddSub(true, II->getArgOperand(0), +                                 II->getArgOperand(1), false, KnownZero, +                                 KnownOne, KnownZero2, KnownOne2, Depth, Q); +          break; +        case Intrinsic::usub_with_overflow: +        case Intrinsic::ssub_with_overflow: +          computeKnownBitsAddSub(false, II->getArgOperand(0), +                                 II->getArgOperand(1), false, KnownZero, +                                 KnownOne, KnownZero2, KnownOne2, Depth, Q); +          break; +        case Intrinsic::umul_with_overflow: +        case Intrinsic::smul_with_overflow: +          computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, +                              KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, +                              Q); +          break; +        } +      } +    } +  } +} + +/// Determine which bits of V are known to be either zero or one and return +/// them in the KnownZero/KnownOne bit sets. +/// +/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that +/// we cannot optimize based on the assumption that it is zero without changing +/// it to be an explicit zero.  If we don't change it to zero, other code could +/// optimized based on the contradictory assumption that it is non-zero. +/// Because instcombine aggressively folds operations with undef args anyway, +/// this won't lose us code quality. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers.  In the case +/// where V is a vector, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the elements in the vector. +void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, +                      unsigned Depth, const Query &Q) { +  assert(V && "No Value?"); +  assert(Depth <= MaxDepth && "Limit Search Depth"); +  unsigned BitWidth = KnownZero.getBitWidth(); + +  assert((V->getType()->isIntOrIntVectorTy() || +          V->getType()->getScalarType()->isPointerTy()) && +         "Not integer or pointer type!"); +  assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && +         (!V->getType()->isIntOrIntVectorTy() || +          V->getType()->getScalarSizeInBits() == BitWidth) && +         KnownZero.getBitWidth() == BitWidth && +         KnownOne.getBitWidth() == BitWidth && +         "V, KnownOne and KnownZero should have same BitWidth"); + +  const APInt *C; +  if (match(V, m_APInt(C))) { +    // We know all of the bits for a scalar constant or a splat vector constant! +    KnownOne = *C; +    KnownZero = ~KnownOne; +    return; +  } +  // Null and aggregate-zero are all-zeros. +  if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { +    KnownOne.clearAllBits(); +    KnownZero = APInt::getAllOnesValue(BitWidth); +    return; +  } +  // Handle a constant vector by taking the intersection of the known bits of +  // each element. +  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { +    // We know that CDS must be a vector of integers. Take the intersection of +    // each element. +    KnownZero.setAllBits(); KnownOne.setAllBits(); +    APInt Elt(KnownZero.getBitWidth(), 0); +    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { +      Elt = CDS->getElementAsInteger(i); +      KnownZero &= ~Elt; +      KnownOne &= Elt; +    } +    return; +  } + +  if (const auto *CV = dyn_cast<ConstantVector>(V)) { +    // We know that CV must be a vector of integers. Take the intersection of +    // each element. +    KnownZero.setAllBits(); KnownOne.setAllBits(); +    APInt Elt(KnownZero.getBitWidth(), 0); +    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { +      Constant *Element = CV->getAggregateElement(i); +      auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); +      if (!ElementCI) { +        KnownZero.clearAllBits(); +        KnownOne.clearAllBits(); +        return; +      } +      Elt = ElementCI->getValue(); +      KnownZero &= ~Elt; +      KnownOne &= Elt; +    } +    return; +  } + +  // Start out not knowing anything. +  KnownZero.clearAllBits(); KnownOne.clearAllBits(); + +  // We can't imply anything about undefs. +  if (isa<UndefValue>(V)) +    return; + +  // There's no point in looking through other users of ConstantData for +  // assumptions.  Confirm that we've handled them all. +  assert(!isa<ConstantData>(V) && "Unhandled constant data!"); + +  // Limit search depth. +  // All recursive calls that increase depth must come after this. +  if (Depth == MaxDepth) +    return; + +  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has +  // the bits of its aliasee. +  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { +    if (!GA->isInterposable()) +      computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); +    return; +  } + +  if (const Operator *I = dyn_cast<Operator>(V)) +    computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); + +  // Aligned pointers have trailing zeros - refine KnownZero set +  if (V->getType()->isPointerTy()) { +    unsigned Align = V->getPointerAlignment(Q.DL); +    if (Align) +      KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); +  } + +  // computeKnownBitsFromAssume strictly refines KnownZero and +  // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. + +  // Check whether a nearby assume intrinsic can determine some known bits. +  computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); + +  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); +} + +/// Determine whether the sign bit is known to be zero or one. +/// Convenience wrapper around computeKnownBits. +void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, +                    unsigned Depth, const Query &Q) { +  unsigned BitWidth = getBitWidth(V->getType(), Q.DL); +  if (!BitWidth) { +    KnownZero = false; +    KnownOne = false; +    return; +  } +  APInt ZeroBits(BitWidth, 0); +  APInt OneBits(BitWidth, 0); +  computeKnownBits(V, ZeroBits, OneBits, Depth, Q); +  KnownOne = OneBits[BitWidth - 1]; +  KnownZero = ZeroBits[BitWidth - 1]; +} + +/// Return true if the given value is known to have exactly one +/// bit set when defined. For vectors return true if every element is known to +/// be a power of two when defined. Supports values with integer or pointer +/// types and vectors of integers. +bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, +                            const Query &Q) { +  if (const Constant *C = dyn_cast<Constant>(V)) { +    if (C->isNullValue()) +      return OrZero; + +    const APInt *ConstIntOrConstSplatInt; +    if (match(C, m_APInt(ConstIntOrConstSplatInt))) +      return ConstIntOrConstSplatInt->isPowerOf2(); +  } + +  // 1 << X is clearly a power of two if the one is not shifted off the end.  If +  // it is shifted off the end then the result is undefined. +  if (match(V, m_Shl(m_One(), m_Value()))) +    return true; + +  // (signbit) >>l X is clearly a power of two if the one is not shifted off the +  // bottom.  If it is shifted off the bottom then the result is undefined. +  if (match(V, m_LShr(m_SignBit(), m_Value()))) +    return true; + +  // The remaining tests are all recursive, so bail out if we hit the limit. +  if (Depth++ == MaxDepth) +    return false; + +  Value *X = nullptr, *Y = nullptr; +  // A shift left or a logical shift right of a power of two is a power of two +  // or zero. +  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || +                 match(V, m_LShr(m_Value(X), m_Value())))) +    return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); + +  if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) +    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); + +  if (const SelectInst *SI = dyn_cast<SelectInst>(V)) +    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && +           isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); + +  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { +    // A power of two and'd with anything is a power of two or zero. +    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || +        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) +      return true; +    // X & (-X) is always a power of two or zero. +    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) +      return true; +    return false; +  } + +  // Adding a power-of-two or zero to the same power-of-two or zero yields +  // either the original power-of-two, a larger power-of-two or zero. +  if (match(V, m_Add(m_Value(X), m_Value(Y)))) { +    const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); +    if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { +      if (match(X, m_And(m_Specific(Y), m_Value())) || +          match(X, m_And(m_Value(), m_Specific(Y)))) +        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) +          return true; +      if (match(Y, m_And(m_Specific(X), m_Value())) || +          match(Y, m_And(m_Value(), m_Specific(X)))) +        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) +          return true; + +      unsigned BitWidth = V->getType()->getScalarSizeInBits(); +      APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); +      computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); + +      APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); +      computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); +      // If i8 V is a power of two or zero: +      //  ZeroBits: 1 1 1 0 1 1 1 1 +      // ~ZeroBits: 0 0 0 1 0 0 0 0 +      if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) +        // If OrZero isn't set, we cannot give back a zero result. +        // Make sure either the LHS or RHS has a bit set. +        if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) +          return true; +    } +  } + +  // An exact divide or right shift can only shift off zero bits, so the result +  // is a power of two only if the first operand is a power of two and not +  // copying a sign bit (sdiv int_min, 2). +  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || +      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { +    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, +                                  Depth, Q); +  } + +  return false; +} + +/// \brief Test whether a GEP's result is known to be non-null. +/// +/// Uses properties inherent in a GEP to try to determine whether it is known +/// to be non-null. +/// +/// Currently this routine does not support vector GEPs. +static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, +                              const Query &Q) { +  if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) +    return false; + +  // FIXME: Support vector-GEPs. +  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); + +  // If the base pointer is non-null, we cannot walk to a null address with an +  // inbounds GEP in address space zero. +  if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) +    return true; + +  // Walk the GEP operands and see if any operand introduces a non-zero offset. +  // If so, then the GEP cannot produce a null pointer, as doing so would +  // inherently violate the inbounds contract within address space zero. +  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); +       GTI != GTE; ++GTI) { +    // Struct types are easy -- they must always be indexed by a constant. +    if (StructType *STy = GTI.getStructTypeOrNull()) { +      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); +      unsigned ElementIdx = OpC->getZExtValue(); +      const StructLayout *SL = Q.DL.getStructLayout(STy); +      uint64_t ElementOffset = SL->getElementOffset(ElementIdx); +      if (ElementOffset > 0) +        return true; +      continue; +    } + +    // If we have a zero-sized type, the index doesn't matter. Keep looping. +    if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) +      continue; + +    // Fast path the constant operand case both for efficiency and so we don't +    // increment Depth when just zipping down an all-constant GEP. +    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { +      if (!OpC->isZero()) +        return true; +      continue; +    } + +    // We post-increment Depth here because while isKnownNonZero increments it +    // as well, when we pop back up that increment won't persist. We don't want +    // to recurse 10k times just because we have 10k GEP operands. We don't +    // bail completely out because we want to handle constant GEPs regardless +    // of depth. +    if (Depth++ >= MaxDepth) +      continue; + +    if (isKnownNonZero(GTI.getOperand(), Depth, Q)) +      return true; +  } + +  return false; +} + +/// Does the 'Range' metadata (which must be a valid MD_range operand list) +/// ensure that the value it's attached to is never Value?  'RangeType' is +/// is the type of the value described by the range. +static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { +  const unsigned NumRanges = Ranges->getNumOperands() / 2; +  assert(NumRanges >= 1); +  for (unsigned i = 0; i < NumRanges; ++i) { +    ConstantInt *Lower = +        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); +    ConstantInt *Upper = +        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); +    ConstantRange Range(Lower->getValue(), Upper->getValue()); +    if (Range.contains(Value)) +      return false; +  } +  return true; +} + +/// Return true if the given value is known to be non-zero when defined. +/// For vectors return true if every element is known to be non-zero when +/// defined. Supports values with integer or pointer type and vectors of +/// integers. +bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { +  if (auto *C = dyn_cast<Constant>(V)) { +    if (C->isNullValue()) +      return false; +    if (isa<ConstantInt>(C)) +      // Must be non-zero due to null test above. +      return true; + +    // For constant vectors, check that all elements are undefined or known +    // non-zero to determine that the whole vector is known non-zero. +    if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { +      for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { +        Constant *Elt = C->getAggregateElement(i); +        if (!Elt || Elt->isNullValue()) +          return false; +        if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) +          return false; +      } +      return true; +    } + +    return false; +  } + +  if (auto *I = dyn_cast<Instruction>(V)) { +    if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { +      // If the possible ranges don't contain zero, then the value is +      // definitely non-zero. +      if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { +        const APInt ZeroValue(Ty->getBitWidth(), 0); +        if (rangeMetadataExcludesValue(Ranges, ZeroValue)) +          return true; +      } +    } +  } + +  // The remaining tests are all recursive, so bail out if we hit the limit. +  if (Depth++ >= MaxDepth) +    return false; + +  // Check for pointer simplifications. +  if (V->getType()->isPointerTy()) { +    if (isKnownNonNull(V)) +      return true; +    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) +      if (isGEPKnownNonNull(GEP, Depth, Q)) +        return true; +  } + +  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); + +  // X | Y != 0 if X != 0 or Y != 0. +  Value *X = nullptr, *Y = nullptr; +  if (match(V, m_Or(m_Value(X), m_Value(Y)))) +    return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); + +  // ext X != 0 if X != 0. +  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) +    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); + +  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined +  // if the lowest bit is shifted off the end. +  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { +    // shl nuw can't remove any non-zero bits. +    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); +    if (BO->hasNoUnsignedWrap()) +      return isKnownNonZero(X, Depth, Q); + +    APInt KnownZero(BitWidth, 0); +    APInt KnownOne(BitWidth, 0); +    computeKnownBits(X, KnownZero, KnownOne, Depth, Q); +    if (KnownOne[0]) +      return true; +  } +  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not +  // defined if the sign bit is shifted off the end. +  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { +    // shr exact can only shift out zero bits. +    const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); +    if (BO->isExact()) +      return isKnownNonZero(X, Depth, Q); + +    bool XKnownNonNegative, XKnownNegative; +    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); +    if (XKnownNegative) +      return true; + +    // If the shifter operand is a constant, and all of the bits shifted +    // out are known to be zero, and X is known non-zero then at least one +    // non-zero bit must remain. +    if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { +      APInt KnownZero(BitWidth, 0); +      APInt KnownOne(BitWidth, 0); +      computeKnownBits(X, KnownZero, KnownOne, Depth, Q); + +      auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); +      // Is there a known one in the portion not shifted out? +      if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) +        return true; +      // Are all the bits to be shifted out known zero? +      if (KnownZero.countTrailingOnes() >= ShiftVal) +        return isKnownNonZero(X, Depth, Q); +    } +  } +  // div exact can only produce a zero if the dividend is zero. +  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { +    return isKnownNonZero(X, Depth, Q); +  } +  // X + Y. +  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { +    bool XKnownNonNegative, XKnownNegative; +    bool YKnownNonNegative, YKnownNegative; +    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); +    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); + +    // If X and Y are both non-negative (as signed values) then their sum is not +    // zero unless both X and Y are zero. +    if (XKnownNonNegative && YKnownNonNegative) +      if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) +        return true; + +    // If X and Y are both negative (as signed values) then their sum is not +    // zero unless both X and Y equal INT_MIN. +    if (BitWidth && XKnownNegative && YKnownNegative) { +      APInt KnownZero(BitWidth, 0); +      APInt KnownOne(BitWidth, 0); +      APInt Mask = APInt::getSignedMaxValue(BitWidth); +      // The sign bit of X is set.  If some other bit is set then X is not equal +      // to INT_MIN. +      computeKnownBits(X, KnownZero, KnownOne, Depth, Q); +      if ((KnownOne & Mask) != 0) +        return true; +      // The sign bit of Y is set.  If some other bit is set then Y is not equal +      // to INT_MIN. +      computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); +      if ((KnownOne & Mask) != 0) +        return true; +    } + +    // The sum of a non-negative number and a power of two is not zero. +    if (XKnownNonNegative && +        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) +      return true; +    if (YKnownNonNegative && +        isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) +      return true; +  } +  // X * Y. +  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { +    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); +    // If X and Y are non-zero then so is X * Y as long as the multiplication +    // does not overflow. +    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && +        isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) +      return true; +  } +  // (C ? X : Y) != 0 if X != 0 and Y != 0. +  else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { +    if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && +        isKnownNonZero(SI->getFalseValue(), Depth, Q)) +      return true; +  } +  // PHI +  else if (const PHINode *PN = dyn_cast<PHINode>(V)) { +    // Try and detect a recurrence that monotonically increases from a +    // starting value, as these are common as induction variables. +    if (PN->getNumIncomingValues() == 2) { +      Value *Start = PN->getIncomingValue(0); +      Value *Induction = PN->getIncomingValue(1); +      if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) +        std::swap(Start, Induction); +      if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { +        if (!C->isZero() && !C->isNegative()) { +          ConstantInt *X; +          if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || +               match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && +              !X->isNegative()) +            return true; +        } +      } +    } +    // Check if all incoming values are non-zero constant. +    bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { +      return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); +    }); +    if (AllNonZeroConstants) +      return true; +  } + +  if (!BitWidth) return false; +  APInt KnownZero(BitWidth, 0); +  APInt KnownOne(BitWidth, 0); +  computeKnownBits(V, KnownZero, KnownOne, Depth, Q); +  return KnownOne != 0; +} + +/// Return true if V2 == V1 + X, where X is known non-zero. +static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { +  const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); +  if (!BO || BO->getOpcode() != Instruction::Add) +    return false; +  Value *Op = nullptr; +  if (V2 == BO->getOperand(0)) +    Op = BO->getOperand(1); +  else if (V2 == BO->getOperand(1)) +    Op = BO->getOperand(0); +  else +    return false; +  return isKnownNonZero(Op, 0, Q); +} + +/// Return true if it is known that V1 != V2. +static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { +  if (V1->getType()->isVectorTy() || V1 == V2) +    return false; +  if (V1->getType() != V2->getType()) +    // We can't look through casts yet. +    return false; +  if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) +    return true; + +  if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { +    // Are any known bits in V1 contradictory to known bits in V2? If V1 +    // has a known zero where V2 has a known one, they must not be equal. +    auto BitWidth = Ty->getBitWidth(); +    APInt KnownZero1(BitWidth, 0); +    APInt KnownOne1(BitWidth, 0); +    computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); +    APInt KnownZero2(BitWidth, 0); +    APInt KnownOne2(BitWidth, 0); +    computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); + +    auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); +    if (OppositeBits.getBoolValue()) +      return true; +  } +  return false; +} + +/// Return true if 'V & Mask' is known to be zero.  We use this predicate to +/// simplify operations downstream. Mask is known to be zero for bits that V +/// cannot have. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers.  In the case +/// where V is a vector, the mask, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the elements in the vector. +bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, +                       const Query &Q) { +  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); +  computeKnownBits(V, KnownZero, KnownOne, Depth, Q); +  return (KnownZero & Mask) == Mask; +} + +/// For vector constants, loop over the elements and find the constant with the +/// minimum number of sign bits. Return 0 if the value is not a vector constant +/// or if any element was not analyzed; otherwise, return the count for the +/// element with the minimum number of sign bits. +static unsigned computeNumSignBitsVectorConstant(const Value *V, +                                                 unsigned TyBits) { +  const auto *CV = dyn_cast<Constant>(V); +  if (!CV || !CV->getType()->isVectorTy()) +    return 0; + +  unsigned MinSignBits = TyBits; +  unsigned NumElts = CV->getType()->getVectorNumElements(); +  for (unsigned i = 0; i != NumElts; ++i) { +    // If we find a non-ConstantInt, bail out. +    auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); +    if (!Elt) +      return 0; + +    // If the sign bit is 1, flip the bits, so we always count leading zeros. +    APInt EltVal = Elt->getValue(); +    if (EltVal.isNegative()) +      EltVal = ~EltVal; +    MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); +  } + +  return MinSignBits; +} + +/// Return the number of times the sign bit of the register is replicated into +/// the other bits. We know that at least 1 bit is always equal to the sign bit +/// (itself), but other cases can give us information. For example, immediately +/// after an "ashr X, 2", we know that the top 3 bits are all equal to each +/// other, so we return 3. For vectors, return the number of sign bits for the +/// vector element with the mininum number of known sign bits. +unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { +  unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); +  unsigned Tmp, Tmp2; +  unsigned FirstAnswer = 1; + +  // Note that ConstantInt is handled by the general computeKnownBits case +  // below. + +  if (Depth == MaxDepth) +    return 1;  // Limit search depth. + +  const Operator *U = dyn_cast<Operator>(V); +  switch (Operator::getOpcode(V)) { +  default: break; +  case Instruction::SExt: +    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); +    return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; + +  case Instruction::SDiv: { +    const APInt *Denominator; +    // sdiv X, C -> adds log(C) sign bits. +    if (match(U->getOperand(1), m_APInt(Denominator))) { + +      // Ignore non-positive denominator. +      if (!Denominator->isStrictlyPositive()) +        break; + +      // Calculate the incoming numerator bits. +      unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + +      // Add floor(log(C)) bits to the numerator bits. +      return std::min(TyBits, NumBits + Denominator->logBase2()); +    } +    break; +  } + +  case Instruction::SRem: { +    const APInt *Denominator; +    // srem X, C -> we know that the result is within [-C+1,C) when C is a +    // positive constant.  This let us put a lower bound on the number of sign +    // bits. +    if (match(U->getOperand(1), m_APInt(Denominator))) { + +      // Ignore non-positive denominator. +      if (!Denominator->isStrictlyPositive()) +        break; + +      // Calculate the incoming numerator bits. SRem by a positive constant +      // can't lower the number of sign bits. +      unsigned NumrBits = +          ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + +      // Calculate the leading sign bit constraints by examining the +      // denominator.  Given that the denominator is positive, there are two +      // cases: +      // +      //  1. the numerator is positive.  The result range is [0,C) and [0,C) u< +      //     (1 << ceilLogBase2(C)). +      // +      //  2. the numerator is negative.  Then the result range is (-C,0] and +      //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). +      // +      // Thus a lower bound on the number of sign bits is `TyBits - +      // ceilLogBase2(C)`. + +      unsigned ResBits = TyBits - Denominator->ceilLogBase2(); +      return std::max(NumrBits, ResBits); +    } +    break; +  } + +  case Instruction::AShr: { +    Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); +    // ashr X, C   -> adds C sign bits.  Vectors too. +    const APInt *ShAmt; +    if (match(U->getOperand(1), m_APInt(ShAmt))) { +      Tmp += ShAmt->getZExtValue(); +      if (Tmp > TyBits) Tmp = TyBits; +    } +    return Tmp; +  } +  case Instruction::Shl: { +    const APInt *ShAmt; +    if (match(U->getOperand(1), m_APInt(ShAmt))) { +      // shl destroys sign bits. +      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); +      Tmp2 = ShAmt->getZExtValue(); +      if (Tmp2 >= TyBits ||      // Bad shift. +          Tmp2 >= Tmp) break;    // Shifted all sign bits out. +      return Tmp - Tmp2; +    } +    break; +  } +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor:    // NOT is handled here. +    // Logical binary ops preserve the number of sign bits at the worst. +    Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); +    if (Tmp != 1) { +      Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); +      FirstAnswer = std::min(Tmp, Tmp2); +      // We computed what we know about the sign bits as our first +      // answer. Now proceed to the generic code that uses +      // computeKnownBits, and pick whichever answer is better. +    } +    break; + +  case Instruction::Select: +    Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); +    if (Tmp == 1) return 1;  // Early out. +    Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); +    return std::min(Tmp, Tmp2); + +  case Instruction::Add: +    // Add can have at most one carry bit.  Thus we know that the output +    // is, at worst, one more bit than the inputs. +    Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); +    if (Tmp == 1) return 1;  // Early out. + +    // Special case decrementing a value (ADD X, -1): +    if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) +      if (CRHS->isAllOnesValue()) { +        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); +        computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + +        // If the input is known to be 0 or 1, the output is 0/-1, which is all +        // sign bits set. +        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) +          return TyBits; + +        // If we are subtracting one from a positive number, there is no carry +        // out of the result. +        if (KnownZero.isNegative()) +          return Tmp; +      } + +    Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); +    if (Tmp2 == 1) return 1; +    return std::min(Tmp, Tmp2)-1; + +  case Instruction::Sub: +    Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); +    if (Tmp2 == 1) return 1; + +    // Handle NEG. +    if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) +      if (CLHS->isNullValue()) { +        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); +        computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); +        // If the input is known to be 0 or 1, the output is 0/-1, which is all +        // sign bits set. +        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) +          return TyBits; + +        // If the input is known to be positive (the sign bit is known clear), +        // the output of the NEG has the same number of sign bits as the input. +        if (KnownZero.isNegative()) +          return Tmp2; + +        // Otherwise, we treat this like a SUB. +      } + +    // Sub can have at most one carry bit.  Thus we know that the output +    // is, at worst, one more bit than the inputs. +    Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); +    if (Tmp == 1) return 1;  // Early out. +    return std::min(Tmp, Tmp2)-1; + +  case Instruction::PHI: { +    const PHINode *PN = cast<PHINode>(U); +    unsigned NumIncomingValues = PN->getNumIncomingValues(); +    // Don't analyze large in-degree PHIs. +    if (NumIncomingValues > 4) break; +    // Unreachable blocks may have zero-operand PHI nodes. +    if (NumIncomingValues == 0) break; + +    // Take the minimum of all incoming values.  This can't infinitely loop +    // because of our depth threshold. +    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); +    for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { +      if (Tmp == 1) return Tmp; +      Tmp = std::min( +          Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); +    } +    return Tmp; +  } + +  case Instruction::Trunc: +    // FIXME: it's tricky to do anything useful for this, but it is an important +    // case for targets like X86. +    break; + +  case Instruction::ExtractElement: +    // Look through extract element. At the moment we keep this simple and skip +    // tracking the specific element. But at least we might find information +    // valid for all elements of the vector (for example if vector is sign +    // extended, shifted, etc). +    return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); +  } + +  // Finally, if we can prove that the top bits of the result are 0's or 1's, +  // use this information. + +  // If we can examine all elements of a vector constant successfully, we're +  // done (we can't do any better than that). If not, keep trying. +  if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) +    return VecSignBits; + +  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); +  computeKnownBits(V, KnownZero, KnownOne, Depth, Q); + +  // If we know that the sign bit is either zero or one, determine the number of +  // identical bits in the top of the input value. +  if (KnownZero.isNegative()) +    return std::max(FirstAnswer, KnownZero.countLeadingOnes()); + +  if (KnownOne.isNegative()) +    return std::max(FirstAnswer, KnownOne.countLeadingOnes()); + +  // computeKnownBits gave us no extra information about the top bits. +  return FirstAnswer; +} + +/// This function computes the integer multiple of Base that equals V. +/// If successful, it returns true and returns the multiple in +/// Multiple. If unsuccessful, it returns false. It looks +/// through SExt instructions only if LookThroughSExt is true. +bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, +                           bool LookThroughSExt, unsigned Depth) { +  const unsigned MaxDepth = 6; + +  assert(V && "No Value?"); +  assert(Depth <= MaxDepth && "Limit Search Depth"); +  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); + +  Type *T = V->getType(); + +  ConstantInt *CI = dyn_cast<ConstantInt>(V); + +  if (Base == 0) +    return false; + +  if (Base == 1) { +    Multiple = V; +    return true; +  } + +  ConstantExpr *CO = dyn_cast<ConstantExpr>(V); +  Constant *BaseVal = ConstantInt::get(T, Base); +  if (CO && CO == BaseVal) { +    // Multiple is 1. +    Multiple = ConstantInt::get(T, 1); +    return true; +  } + +  if (CI && CI->getZExtValue() % Base == 0) { +    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); +    return true; +  } + +  if (Depth == MaxDepth) return false;  // Limit search depth. + +  Operator *I = dyn_cast<Operator>(V); +  if (!I) return false; + +  switch (I->getOpcode()) { +  default: break; +  case Instruction::SExt: +    if (!LookThroughSExt) return false; +    // otherwise fall through to ZExt +  case Instruction::ZExt: +    return ComputeMultiple(I->getOperand(0), Base, Multiple, +                           LookThroughSExt, Depth+1); +  case Instruction::Shl: +  case Instruction::Mul: { +    Value *Op0 = I->getOperand(0); +    Value *Op1 = I->getOperand(1); + +    if (I->getOpcode() == Instruction::Shl) { +      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); +      if (!Op1CI) return false; +      // Turn Op0 << Op1 into Op0 * 2^Op1 +      APInt Op1Int = Op1CI->getValue(); +      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); +      APInt API(Op1Int.getBitWidth(), 0); +      API.setBit(BitToSet); +      Op1 = ConstantInt::get(V->getContext(), API); +    } + +    Value *Mul0 = nullptr; +    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { +      if (Constant *Op1C = dyn_cast<Constant>(Op1)) +        if (Constant *MulC = dyn_cast<Constant>(Mul0)) { +          if (Op1C->getType()->getPrimitiveSizeInBits() < +              MulC->getType()->getPrimitiveSizeInBits()) +            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); +          if (Op1C->getType()->getPrimitiveSizeInBits() > +              MulC->getType()->getPrimitiveSizeInBits()) +            MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); + +          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) +          Multiple = ConstantExpr::getMul(MulC, Op1C); +          return true; +        } + +      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) +        if (Mul0CI->getValue() == 1) { +          // V == Base * Op1, so return Op1 +          Multiple = Op1; +          return true; +        } +    } + +    Value *Mul1 = nullptr; +    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { +      if (Constant *Op0C = dyn_cast<Constant>(Op0)) +        if (Constant *MulC = dyn_cast<Constant>(Mul1)) { +          if (Op0C->getType()->getPrimitiveSizeInBits() < +              MulC->getType()->getPrimitiveSizeInBits()) +            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); +          if (Op0C->getType()->getPrimitiveSizeInBits() > +              MulC->getType()->getPrimitiveSizeInBits()) +            MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); + +          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) +          Multiple = ConstantExpr::getMul(MulC, Op0C); +          return true; +        } + +      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) +        if (Mul1CI->getValue() == 1) { +          // V == Base * Op0, so return Op0 +          Multiple = Op0; +          return true; +        } +    } +  } +  } + +  // We could not determine if V is a multiple of Base. +  return false; +} + +Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, +                                            const TargetLibraryInfo *TLI) { +  const Function *F = ICS.getCalledFunction(); +  if (!F) +    return Intrinsic::not_intrinsic; + +  if (F->isIntrinsic()) +    return F->getIntrinsicID(); + +  if (!TLI) +    return Intrinsic::not_intrinsic; + +  LibFunc::Func Func; +  // We're going to make assumptions on the semantics of the functions, check +  // that the target knows that it's available in this environment and it does +  // not have local linkage. +  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) +    return Intrinsic::not_intrinsic; + +  if (!ICS.onlyReadsMemory()) +    return Intrinsic::not_intrinsic; + +  // Otherwise check if we have a call to a function that can be turned into a +  // vector intrinsic. +  switch (Func) { +  default: +    break; +  case LibFunc::sin: +  case LibFunc::sinf: +  case LibFunc::sinl: +    return Intrinsic::sin; +  case LibFunc::cos: +  case LibFunc::cosf: +  case LibFunc::cosl: +    return Intrinsic::cos; +  case LibFunc::exp: +  case LibFunc::expf: +  case LibFunc::expl: +    return Intrinsic::exp; +  case LibFunc::exp2: +  case LibFunc::exp2f: +  case LibFunc::exp2l: +    return Intrinsic::exp2; +  case LibFunc::log: +  case LibFunc::logf: +  case LibFunc::logl: +    return Intrinsic::log; +  case LibFunc::log10: +  case LibFunc::log10f: +  case LibFunc::log10l: +    return Intrinsic::log10; +  case LibFunc::log2: +  case LibFunc::log2f: +  case LibFunc::log2l: +    return Intrinsic::log2; +  case LibFunc::fabs: +  case LibFunc::fabsf: +  case LibFunc::fabsl: +    return Intrinsic::fabs; +  case LibFunc::fmin: +  case LibFunc::fminf: +  case LibFunc::fminl: +    return Intrinsic::minnum; +  case LibFunc::fmax: +  case LibFunc::fmaxf: +  case LibFunc::fmaxl: +    return Intrinsic::maxnum; +  case LibFunc::copysign: +  case LibFunc::copysignf: +  case LibFunc::copysignl: +    return Intrinsic::copysign; +  case LibFunc::floor: +  case LibFunc::floorf: +  case LibFunc::floorl: +    return Intrinsic::floor; +  case LibFunc::ceil: +  case LibFunc::ceilf: +  case LibFunc::ceill: +    return Intrinsic::ceil; +  case LibFunc::trunc: +  case LibFunc::truncf: +  case LibFunc::truncl: +    return Intrinsic::trunc; +  case LibFunc::rint: +  case LibFunc::rintf: +  case LibFunc::rintl: +    return Intrinsic::rint; +  case LibFunc::nearbyint: +  case LibFunc::nearbyintf: +  case LibFunc::nearbyintl: +    return Intrinsic::nearbyint; +  case LibFunc::round: +  case LibFunc::roundf: +  case LibFunc::roundl: +    return Intrinsic::round; +  case LibFunc::pow: +  case LibFunc::powf: +  case LibFunc::powl: +    return Intrinsic::pow; +  case LibFunc::sqrt: +  case LibFunc::sqrtf: +  case LibFunc::sqrtl: +    if (ICS->hasNoNaNs()) +      return Intrinsic::sqrt; +    return Intrinsic::not_intrinsic; +  } + +  return Intrinsic::not_intrinsic; +} + +/// Return true if we can prove that the specified FP value is never equal to +/// -0.0. +/// +/// NOTE: this function will need to be revisited when we support non-default +/// rounding modes! +/// +bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, +                                unsigned Depth) { +  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) +    return !CFP->getValueAPF().isNegZero(); + +  if (Depth == MaxDepth) +    return false;  // Limit search depth. + +  const Operator *I = dyn_cast<Operator>(V); +  if (!I) return false; + +  // Check if the nsz fast-math flag is set +  if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) +    if (FPO->hasNoSignedZeros()) +      return true; + +  // (add x, 0.0) is guaranteed to return +0.0, not -0.0. +  if (I->getOpcode() == Instruction::FAdd) +    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) +      if (CFP->isNullValue()) +        return true; + +  // sitofp and uitofp turn into +0.0 for zero. +  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) +    return true; + +  if (const CallInst *CI = dyn_cast<CallInst>(I)) { +    Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); +    switch (IID) { +    default: +      break; +    // sqrt(-0.0) = -0.0, no other negative results are possible. +    case Intrinsic::sqrt: +      return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); +    // fabs(x) != -0.0 +    case Intrinsic::fabs: +      return true; +    } +  } + +  return false; +} + +bool llvm::CannotBeOrderedLessThanZero(const Value *V, +                                       const TargetLibraryInfo *TLI, +                                       unsigned Depth) { +  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) +    return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); + +  if (Depth == MaxDepth) +    return false;  // Limit search depth. + +  const Operator *I = dyn_cast<Operator>(V); +  if (!I) return false; + +  switch (I->getOpcode()) { +  default: break; +  // Unsigned integers are always nonnegative. +  case Instruction::UIToFP: +    return true; +  case Instruction::FMul: +    // x*x is always non-negative or a NaN. +    if (I->getOperand(0) == I->getOperand(1)) +      return true; +    LLVM_FALLTHROUGH; +  case Instruction::FAdd: +  case Instruction::FDiv: +  case Instruction::FRem: +    return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && +           CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); +  case Instruction::Select: +    return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && +           CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); +  case Instruction::FPExt: +  case Instruction::FPTrunc: +    // Widening/narrowing never change sign. +    return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); +  case Instruction::Call: +    Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); +    switch (IID) { +    default: +      break; +    case Intrinsic::maxnum: +      return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || +             CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); +    case Intrinsic::minnum: +      return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && +             CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); +    case Intrinsic::exp: +    case Intrinsic::exp2: +    case Intrinsic::fabs: +    case Intrinsic::sqrt: +      return true; +    case Intrinsic::powi: +      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { +        // powi(x,n) is non-negative if n is even. +        if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) +          return true; +      } +      return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); +    case Intrinsic::fma: +    case Intrinsic::fmuladd: +      // x*x+y is non-negative if y is non-negative. +      return I->getOperand(0) == I->getOperand(1) && +             CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); +    } +    break; +  } +  return false; +} + +/// If the specified value can be set by repeating the same byte in memory, +/// return the i8 value that it is represented with.  This is +/// true for all i8 values obviously, but is also true for i32 0, i32 -1, +/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated +/// byte store (e.g. i16 0x1234), return null. +Value *llvm::isBytewiseValue(Value *V) { +  // All byte-wide stores are splatable, even of arbitrary variables. +  if (V->getType()->isIntegerTy(8)) return V; + +  // Handle 'null' ConstantArrayZero etc. +  if (Constant *C = dyn_cast<Constant>(V)) +    if (C->isNullValue()) +      return Constant::getNullValue(Type::getInt8Ty(V->getContext())); + +  // Constant float and double values can be handled as integer values if the +  // corresponding integer value is "byteable".  An important case is 0.0. +  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { +    if (CFP->getType()->isFloatTy()) +      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); +    if (CFP->getType()->isDoubleTy()) +      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); +    // Don't handle long double formats, which have strange constraints. +  } + +  // We can handle constant integers that are multiple of 8 bits. +  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { +    if (CI->getBitWidth() % 8 == 0) { +      assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); + +      if (!CI->getValue().isSplat(8)) +        return nullptr; +      return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); +    } +  } + +  // A ConstantDataArray/Vector is splatable if all its members are equal and +  // also splatable. +  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { +    Value *Elt = CA->getElementAsConstant(0); +    Value *Val = isBytewiseValue(Elt); +    if (!Val) +      return nullptr; + +    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) +      if (CA->getElementAsConstant(I) != Elt) +        return nullptr; + +    return Val; +  } + +  // Conceptually, we could handle things like: +  //   %a = zext i8 %X to i16 +  //   %b = shl i16 %a, 8 +  //   %c = or i16 %a, %b +  // but until there is an example that actually needs this, it doesn't seem +  // worth worrying about. +  return nullptr; +} + + +// This is the recursive version of BuildSubAggregate. It takes a few different +// arguments. Idxs is the index within the nested struct From that we are +// looking at now (which is of type IndexedType). IdxSkip is the number of +// indices from Idxs that should be left out when inserting into the resulting +// struct. To is the result struct built so far, new insertvalue instructions +// build on that. +static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, +                                SmallVectorImpl<unsigned> &Idxs, +                                unsigned IdxSkip, +                                Instruction *InsertBefore) { +  llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); +  if (STy) { +    // Save the original To argument so we can modify it +    Value *OrigTo = To; +    // General case, the type indexed by Idxs is a struct +    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +      // Process each struct element recursively +      Idxs.push_back(i); +      Value *PrevTo = To; +      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, +                             InsertBefore); +      Idxs.pop_back(); +      if (!To) { +        // Couldn't find any inserted value for this index? Cleanup +        while (PrevTo != OrigTo) { +          InsertValueInst* Del = cast<InsertValueInst>(PrevTo); +          PrevTo = Del->getAggregateOperand(); +          Del->eraseFromParent(); +        } +        // Stop processing elements +        break; +      } +    } +    // If we successfully found a value for each of our subaggregates +    if (To) +      return To; +  } +  // Base case, the type indexed by SourceIdxs is not a struct, or not all of +  // the struct's elements had a value that was inserted directly. In the latter +  // case, perhaps we can't determine each of the subelements individually, but +  // we might be able to find the complete struct somewhere. + +  // Find the value that is at that particular spot +  Value *V = FindInsertedValue(From, Idxs); + +  if (!V) +    return nullptr; + +  // Insert the value in the new (sub) aggregrate +  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), +                                       "tmp", InsertBefore); +} + +// This helper takes a nested struct and extracts a part of it (which is again a +// struct) into a new value. For example, given the struct: +// { a, { b, { c, d }, e } } +// and the indices "1, 1" this returns +// { c, d }. +// +// It does this by inserting an insertvalue for each element in the resulting +// struct, as opposed to just inserting a single struct. This will only work if +// each of the elements of the substruct are known (ie, inserted into From by an +// insertvalue instruction somewhere). +// +// All inserted insertvalue instructions are inserted before InsertBefore +static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, +                                Instruction *InsertBefore) { +  assert(InsertBefore && "Must have someplace to insert!"); +  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), +                                                             idx_range); +  Value *To = UndefValue::get(IndexedType); +  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); +  unsigned IdxSkip = Idxs.size(); + +  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); +} + +/// Given an aggregrate and an sequence of indices, see if +/// the scalar value indexed is already around as a register, for example if it +/// were inserted directly into the aggregrate. +/// +/// If InsertBefore is not null, this function will duplicate (modified) +/// insertvalues when a part of a nested struct is extracted. +Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, +                               Instruction *InsertBefore) { +  // Nothing to index? Just return V then (this is useful at the end of our +  // recursion). +  if (idx_range.empty()) +    return V; +  // We have indices, so V should have an indexable type. +  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && +         "Not looking at a struct or array?"); +  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && +         "Invalid indices for type?"); + +  if (Constant *C = dyn_cast<Constant>(V)) { +    C = C->getAggregateElement(idx_range[0]); +    if (!C) return nullptr; +    return FindInsertedValue(C, idx_range.slice(1), InsertBefore); +  } + +  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { +    // Loop the indices for the insertvalue instruction in parallel with the +    // requested indices +    const unsigned *req_idx = idx_range.begin(); +    for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); +         i != e; ++i, ++req_idx) { +      if (req_idx == idx_range.end()) { +        // We can't handle this without inserting insertvalues +        if (!InsertBefore) +          return nullptr; + +        // The requested index identifies a part of a nested aggregate. Handle +        // this specially. For example, +        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 +        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 +        // %C = extractvalue {i32, { i32, i32 } } %B, 1 +        // This can be changed into +        // %A = insertvalue {i32, i32 } undef, i32 10, 0 +        // %C = insertvalue {i32, i32 } %A, i32 11, 1 +        // which allows the unused 0,0 element from the nested struct to be +        // removed. +        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), +                                 InsertBefore); +      } + +      // This insert value inserts something else than what we are looking for. +      // See if the (aggregate) value inserted into has the value we are +      // looking for, then. +      if (*req_idx != *i) +        return FindInsertedValue(I->getAggregateOperand(), idx_range, +                                 InsertBefore); +    } +    // If we end up here, the indices of the insertvalue match with those +    // requested (though possibly only partially). Now we recursively look at +    // the inserted value, passing any remaining indices. +    return FindInsertedValue(I->getInsertedValueOperand(), +                             makeArrayRef(req_idx, idx_range.end()), +                             InsertBefore); +  } + +  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { +    // If we're extracting a value from an aggregate that was extracted from +    // something else, we can extract from that something else directly instead. +    // However, we will need to chain I's indices with the requested indices. + +    // Calculate the number of indices required +    unsigned size = I->getNumIndices() + idx_range.size(); +    // Allocate some space to put the new indices in +    SmallVector<unsigned, 5> Idxs; +    Idxs.reserve(size); +    // Add indices from the extract value instruction +    Idxs.append(I->idx_begin(), I->idx_end()); + +    // Add requested indices +    Idxs.append(idx_range.begin(), idx_range.end()); + +    assert(Idxs.size() == size +           && "Number of indices added not correct?"); + +    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); +  } +  // Otherwise, we don't know (such as, extracting from a function return value +  // or load instruction) +  return nullptr; +} + +/// Analyze the specified pointer to see if it can be expressed as a base +/// pointer plus a constant offset. Return the base and offset to the caller. +Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, +                                              const DataLayout &DL) { +  unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); +  APInt ByteOffset(BitWidth, 0); + +  // We walk up the defs but use a visited set to handle unreachable code. In +  // that case, we stop after accumulating the cycle once (not that it +  // matters). +  SmallPtrSet<Value *, 16> Visited; +  while (Visited.insert(Ptr).second) { +    if (Ptr->getType()->isVectorTy()) +      break; + +    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { +      // If one of the values we have visited is an addrspacecast, then +      // the pointer type of this GEP may be different from the type +      // of the Ptr parameter which was passed to this function.  This +      // means when we construct GEPOffset, we need to use the size +      // of GEP's pointer type rather than the size of the original +      // pointer type. +      APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); +      if (!GEP->accumulateConstantOffset(DL, GEPOffset)) +        break; + +      ByteOffset += GEPOffset.getSExtValue(); + +      Ptr = GEP->getPointerOperand(); +    } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || +               Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { +      Ptr = cast<Operator>(Ptr)->getOperand(0); +    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { +      if (GA->isInterposable()) +        break; +      Ptr = GA->getAliasee(); +    } else { +      break; +    } +  } +  Offset = ByteOffset.getSExtValue(); +  return Ptr; +} + +bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { +  // Make sure the GEP has exactly three arguments. +  if (GEP->getNumOperands() != 3) +    return false; + +  // Make sure the index-ee is a pointer to array of i8. +  ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); +  if (!AT || !AT->getElementType()->isIntegerTy(8)) +    return false; + +  // Check to make sure that the first operand of the GEP is an integer and +  // has value 0 so that we are sure we're indexing into the initializer. +  const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); +  if (!FirstIdx || !FirstIdx->isZero()) +    return false; + +  return true; +} + +/// This function computes the length of a null-terminated C string pointed to +/// by V. If successful, it returns true and returns the string in Str. +/// If unsuccessful, it returns false. +bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, +                                 uint64_t Offset, bool TrimAtNul) { +  assert(V); + +  // Look through bitcast instructions and geps. +  V = V->stripPointerCasts(); + +  // If the value is a GEP instruction or constant expression, treat it as an +  // offset. +  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { +    // The GEP operator should be based on a pointer to string constant, and is +    // indexing into the string constant. +    if (!isGEPBasedOnPointerToString(GEP)) +      return false; + +    // If the second index isn't a ConstantInt, then this is a variable index +    // into the array.  If this occurs, we can't say anything meaningful about +    // the string. +    uint64_t StartIdx = 0; +    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) +      StartIdx = CI->getZExtValue(); +    else +      return false; +    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, +                                 TrimAtNul); +  } + +  // The GEP instruction, constant or instruction, must reference a global +  // variable that is a constant and is initialized. The referenced constant +  // initializer is the array that we'll use for optimization. +  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); +  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) +    return false; + +  // Handle the all-zeros case. +  if (GV->getInitializer()->isNullValue()) { +    // This is a degenerate case. The initializer is constant zero so the +    // length of the string must be zero. +    Str = ""; +    return true; +  } + +  // This must be a ConstantDataArray. +  const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); +  if (!Array || !Array->isString()) +    return false; + +  // Get the number of elements in the array. +  uint64_t NumElts = Array->getType()->getArrayNumElements(); + +  // Start out with the entire array in the StringRef. +  Str = Array->getAsString(); + +  if (Offset > NumElts) +    return false; + +  // Skip over 'offset' bytes. +  Str = Str.substr(Offset); + +  if (TrimAtNul) { +    // Trim off the \0 and anything after it.  If the array is not nul +    // terminated, we just return the whole end of string.  The client may know +    // some other way that the string is length-bound. +    Str = Str.substr(0, Str.find('\0')); +  } +  return true; +} + +// These next two are very similar to the above, but also look through PHI +// nodes. +// TODO: See if we can integrate these two together. + +/// If we can compute the length of the string pointed to by +/// the specified pointer, return 'len+1'.  If we can't, return 0. +static uint64_t GetStringLengthH(const Value *V, +                                 SmallPtrSetImpl<const PHINode*> &PHIs) { +  // Look through noop bitcast instructions. +  V = V->stripPointerCasts(); + +  // If this is a PHI node, there are two cases: either we have already seen it +  // or we haven't. +  if (const PHINode *PN = dyn_cast<PHINode>(V)) { +    if (!PHIs.insert(PN).second) +      return ~0ULL;  // already in the set. + +    // If it was new, see if all the input strings are the same length. +    uint64_t LenSoFar = ~0ULL; +    for (Value *IncValue : PN->incoming_values()) { +      uint64_t Len = GetStringLengthH(IncValue, PHIs); +      if (Len == 0) return 0; // Unknown length -> unknown. + +      if (Len == ~0ULL) continue; + +      if (Len != LenSoFar && LenSoFar != ~0ULL) +        return 0;    // Disagree -> unknown. +      LenSoFar = Len; +    } + +    // Success, all agree. +    return LenSoFar; +  } + +  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) +  if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { +    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); +    if (Len1 == 0) return 0; +    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); +    if (Len2 == 0) return 0; +    if (Len1 == ~0ULL) return Len2; +    if (Len2 == ~0ULL) return Len1; +    if (Len1 != Len2) return 0; +    return Len1; +  } + +  // Otherwise, see if we can read the string. +  StringRef StrData; +  if (!getConstantStringInfo(V, StrData)) +    return 0; + +  return StrData.size()+1; +} + +/// If we can compute the length of the string pointed to by +/// the specified pointer, return 'len+1'.  If we can't, return 0. +uint64_t llvm::GetStringLength(const Value *V) { +  if (!V->getType()->isPointerTy()) return 0; + +  SmallPtrSet<const PHINode*, 32> PHIs; +  uint64_t Len = GetStringLengthH(V, PHIs); +  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return +  // an empty string as a length. +  return Len == ~0ULL ? 1 : Len; +} + +/// \brief \p PN defines a loop-variant pointer to an object.  Check if the +/// previous iteration of the loop was referring to the same object as \p PN. +static bool isSameUnderlyingObjectInLoop(const PHINode *PN, +                                         const LoopInfo *LI) { +  // Find the loop-defined value. +  Loop *L = LI->getLoopFor(PN->getParent()); +  if (PN->getNumIncomingValues() != 2) +    return true; + +  // Find the value from previous iteration. +  auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); +  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) +    PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); +  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) +    return true; + +  // If a new pointer is loaded in the loop, the pointer references a different +  // object in every iteration.  E.g.: +  //    for (i) +  //       int *p = a[i]; +  //       ... +  if (auto *Load = dyn_cast<LoadInst>(PrevValue)) +    if (!L->isLoopInvariant(Load->getPointerOperand())) +      return false; +  return true; +} + +Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, +                                 unsigned MaxLookup) { +  if (!V->getType()->isPointerTy()) +    return V; +  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { +    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { +      V = GEP->getPointerOperand(); +    } else if (Operator::getOpcode(V) == Instruction::BitCast || +               Operator::getOpcode(V) == Instruction::AddrSpaceCast) { +      V = cast<Operator>(V)->getOperand(0); +    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { +      if (GA->isInterposable()) +        return V; +      V = GA->getAliasee(); +    } else { +      if (auto CS = CallSite(V)) +        if (Value *RV = CS.getReturnedArgOperand()) { +          V = RV; +          continue; +        } + +      // See if InstructionSimplify knows any relevant tricks. +      if (Instruction *I = dyn_cast<Instruction>(V)) +        // TODO: Acquire a DominatorTree and AssumptionCache and use them. +        if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { +          V = Simplified; +          continue; +        } + +      return V; +    } +    assert(V->getType()->isPointerTy() && "Unexpected operand type!"); +  } +  return V; +} + +void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, +                                const DataLayout &DL, LoopInfo *LI, +                                unsigned MaxLookup) { +  SmallPtrSet<Value *, 4> Visited; +  SmallVector<Value *, 4> Worklist; +  Worklist.push_back(V); +  do { +    Value *P = Worklist.pop_back_val(); +    P = GetUnderlyingObject(P, DL, MaxLookup); + +    if (!Visited.insert(P).second) +      continue; + +    if (SelectInst *SI = dyn_cast<SelectInst>(P)) { +      Worklist.push_back(SI->getTrueValue()); +      Worklist.push_back(SI->getFalseValue()); +      continue; +    } + +    if (PHINode *PN = dyn_cast<PHINode>(P)) { +      // If this PHI changes the underlying object in every iteration of the +      // loop, don't look through it.  Consider: +      //   int **A; +      //   for (i) { +      //     Prev = Curr;     // Prev = PHI (Prev_0, Curr) +      //     Curr = A[i]; +      //     *Prev, *Curr; +      // +      // Prev is tracking Curr one iteration behind so they refer to different +      // underlying objects. +      if (!LI || !LI->isLoopHeader(PN->getParent()) || +          isSameUnderlyingObjectInLoop(PN, LI)) +        for (Value *IncValue : PN->incoming_values()) +          Worklist.push_back(IncValue); +      continue; +    } + +    Objects.push_back(P); +  } while (!Worklist.empty()); +} + +/// Return true if the only users of this pointer are lifetime markers. +bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { +  for (const User *U : V->users()) { +    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); +    if (!II) return false; + +    if (II->getIntrinsicID() != Intrinsic::lifetime_start && +        II->getIntrinsicID() != Intrinsic::lifetime_end) +      return false; +  } +  return true; +} + +bool llvm::isSafeToSpeculativelyExecute(const Value *V, +                                        const Instruction *CtxI, +                                        const DominatorTree *DT) { +  const Operator *Inst = dyn_cast<Operator>(V); +  if (!Inst) +    return false; + +  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) +    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) +      if (C->canTrap()) +        return false; + +  switch (Inst->getOpcode()) { +  default: +    return true; +  case Instruction::UDiv: +  case Instruction::URem: { +    // x / y is undefined if y == 0. +    const APInt *V; +    if (match(Inst->getOperand(1), m_APInt(V))) +      return *V != 0; +    return false; +  } +  case Instruction::SDiv: +  case Instruction::SRem: { +    // x / y is undefined if y == 0 or x == INT_MIN and y == -1 +    const APInt *Numerator, *Denominator; +    if (!match(Inst->getOperand(1), m_APInt(Denominator))) +      return false; +    // We cannot hoist this division if the denominator is 0. +    if (*Denominator == 0) +      return false; +    // It's safe to hoist if the denominator is not 0 or -1. +    if (*Denominator != -1) +      return true; +    // At this point we know that the denominator is -1.  It is safe to hoist as +    // long we know that the numerator is not INT_MIN. +    if (match(Inst->getOperand(0), m_APInt(Numerator))) +      return !Numerator->isMinSignedValue(); +    // The numerator *might* be MinSignedValue. +    return false; +  } +  case Instruction::Load: { +    const LoadInst *LI = cast<LoadInst>(Inst); +    if (!LI->isUnordered() || +        // Speculative load may create a race that did not exist in the source. +        LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || +        // Speculative load may load data from dirty regions. +        LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) +      return false; +    const DataLayout &DL = LI->getModule()->getDataLayout(); +    return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), +                                              LI->getAlignment(), DL, CtxI, DT); +  } +  case Instruction::Call: { +    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { +      switch (II->getIntrinsicID()) { +      // These synthetic intrinsics have no side-effects and just mark +      // information about their operands. +      // FIXME: There are other no-op synthetic instructions that potentially +      // should be considered at least *safe* to speculate... +      case Intrinsic::dbg_declare: +      case Intrinsic::dbg_value: +        return true; + +      case Intrinsic::bitreverse: +      case Intrinsic::bswap: +      case Intrinsic::ctlz: +      case Intrinsic::ctpop: +      case Intrinsic::cttz: +      case Intrinsic::objectsize: +      case Intrinsic::sadd_with_overflow: +      case Intrinsic::smul_with_overflow: +      case Intrinsic::ssub_with_overflow: +      case Intrinsic::uadd_with_overflow: +      case Intrinsic::umul_with_overflow: +      case Intrinsic::usub_with_overflow: +        return true; +      // These intrinsics are defined to have the same behavior as libm +      // functions except for setting errno. +      case Intrinsic::sqrt: +      case Intrinsic::fma: +      case Intrinsic::fmuladd: +        return true; +      // These intrinsics are defined to have the same behavior as libm +      // functions, and the corresponding libm functions never set errno. +      case Intrinsic::trunc: +      case Intrinsic::copysign: +      case Intrinsic::fabs: +      case Intrinsic::minnum: +      case Intrinsic::maxnum: +        return true; +      // These intrinsics are defined to have the same behavior as libm +      // functions, which never overflow when operating on the IEEE754 types +      // that we support, and never set errno otherwise. +      case Intrinsic::ceil: +      case Intrinsic::floor: +      case Intrinsic::nearbyint: +      case Intrinsic::rint: +      case Intrinsic::round: +        return true; +      // TODO: are convert_{from,to}_fp16 safe? +      // TODO: can we list target-specific intrinsics here? +      default: break; +      } +    } +    return false; // The called function could have undefined behavior or +                  // side-effects, even if marked readnone nounwind. +  } +  case Instruction::VAArg: +  case Instruction::Alloca: +  case Instruction::Invoke: +  case Instruction::PHI: +  case Instruction::Store: +  case Instruction::Ret: +  case Instruction::Br: +  case Instruction::IndirectBr: +  case Instruction::Switch: +  case Instruction::Unreachable: +  case Instruction::Fence: +  case Instruction::AtomicRMW: +  case Instruction::AtomicCmpXchg: +  case Instruction::LandingPad: +  case Instruction::Resume: +  case Instruction::CatchSwitch: +  case Instruction::CatchPad: +  case Instruction::CatchRet: +  case Instruction::CleanupPad: +  case Instruction::CleanupRet: +    return false; // Misc instructions which have effects +  } +} + +bool llvm::mayBeMemoryDependent(const Instruction &I) { +  return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); +} + +/// Return true if we know that the specified value is never null. +bool llvm::isKnownNonNull(const Value *V) { +  assert(V->getType()->isPointerTy() && "V must be pointer type"); + +  // Alloca never returns null, malloc might. +  if (isa<AllocaInst>(V)) return true; + +  // A byval, inalloca, or nonnull argument is never null. +  if (const Argument *A = dyn_cast<Argument>(V)) +    return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); + +  // A global variable in address space 0 is non null unless extern weak +  // or an absolute symbol reference. Other address spaces may have null as a +  // valid address for a global, so we can't assume anything. +  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) +    return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && +           GV->getType()->getAddressSpace() == 0; + +  // A Load tagged with nonnull metadata is never null. +  if (const LoadInst *LI = dyn_cast<LoadInst>(V)) +    return LI->getMetadata(LLVMContext::MD_nonnull); + +  if (auto CS = ImmutableCallSite(V)) +    if (CS.isReturnNonNull()) +      return true; + +  return false; +} + +static bool isKnownNonNullFromDominatingCondition(const Value *V, +                                                  const Instruction *CtxI, +                                                  const DominatorTree *DT) { +  assert(V->getType()->isPointerTy() && "V must be pointer type"); +  assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); +  assert(CtxI && "Context instruction required for analysis"); +  assert(DT && "Dominator tree required for analysis"); + +  unsigned NumUsesExplored = 0; +  for (auto *U : V->users()) { +    // Avoid massive lists +    if (NumUsesExplored >= DomConditionsMaxUses) +      break; +    NumUsesExplored++; +    // Consider only compare instructions uniquely controlling a branch +    CmpInst::Predicate Pred; +    if (!match(const_cast<User *>(U), +               m_c_ICmp(Pred, m_Specific(V), m_Zero())) || +        (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) +      continue; + +    for (auto *CmpU : U->users()) { +      if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { +        assert(BI->isConditional() && "uses a comparison!"); + +        BasicBlock *NonNullSuccessor = +            BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); +        BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); +        if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) +          return true; +      } else if (Pred == ICmpInst::ICMP_NE && +                 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && +                 DT->dominates(cast<Instruction>(CmpU), CtxI)) { +        return true; +      } +    } +  } + +  return false; +} + +bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, +                            const DominatorTree *DT) { +  if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) +    return false; + +  if (isKnownNonNull(V)) +    return true; + +  if (!CtxI || !DT) +    return false; + +  return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); +} + +OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, +                                                   const Value *RHS, +                                                   const DataLayout &DL, +                                                   AssumptionCache *AC, +                                                   const Instruction *CxtI, +                                                   const DominatorTree *DT) { +  // Multiplying n * m significant bits yields a result of n + m significant +  // bits. If the total number of significant bits does not exceed the +  // result bit width (minus 1), there is no overflow. +  // This means if we have enough leading zero bits in the operands +  // we can guarantee that the result does not overflow. +  // Ref: "Hacker's Delight" by Henry Warren +  unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); +  APInt LHSKnownZero(BitWidth, 0); +  APInt LHSKnownOne(BitWidth, 0); +  APInt RHSKnownZero(BitWidth, 0); +  APInt RHSKnownOne(BitWidth, 0); +  computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, +                   DT); +  computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, +                   DT); +  // Note that underestimating the number of zero bits gives a more +  // conservative answer. +  unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + +                      RHSKnownZero.countLeadingOnes(); +  // First handle the easy case: if we have enough zero bits there's +  // definitely no overflow. +  if (ZeroBits >= BitWidth) +    return OverflowResult::NeverOverflows; + +  // Get the largest possible values for each operand. +  APInt LHSMax = ~LHSKnownZero; +  APInt RHSMax = ~RHSKnownZero; + +  // We know the multiply operation doesn't overflow if the maximum values for +  // each operand will not overflow after we multiply them together. +  bool MaxOverflow; +  LHSMax.umul_ov(RHSMax, MaxOverflow); +  if (!MaxOverflow) +    return OverflowResult::NeverOverflows; + +  // We know it always overflows if multiplying the smallest possible values for +  // the operands also results in overflow. +  bool MinOverflow; +  LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); +  if (MinOverflow) +    return OverflowResult::AlwaysOverflows; + +  return OverflowResult::MayOverflow; +} + +OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, +                                                   const Value *RHS, +                                                   const DataLayout &DL, +                                                   AssumptionCache *AC, +                                                   const Instruction *CxtI, +                                                   const DominatorTree *DT) { +  bool LHSKnownNonNegative, LHSKnownNegative; +  ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, +                 AC, CxtI, DT); +  if (LHSKnownNonNegative || LHSKnownNegative) { +    bool RHSKnownNonNegative, RHSKnownNegative; +    ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, +                   AC, CxtI, DT); + +    if (LHSKnownNegative && RHSKnownNegative) { +      // The sign bit is set in both cases: this MUST overflow. +      // Create a simple add instruction, and insert it into the struct. +      return OverflowResult::AlwaysOverflows; +    } + +    if (LHSKnownNonNegative && RHSKnownNonNegative) { +      // The sign bit is clear in both cases: this CANNOT overflow. +      // Create a simple add instruction, and insert it into the struct. +      return OverflowResult::NeverOverflows; +    } +  } + +  return OverflowResult::MayOverflow; +} + +static OverflowResult computeOverflowForSignedAdd(const Value *LHS, +                                                  const Value *RHS, +                                                  const AddOperator *Add, +                                                  const DataLayout &DL, +                                                  AssumptionCache *AC, +                                                  const Instruction *CxtI, +                                                  const DominatorTree *DT) { +  if (Add && Add->hasNoSignedWrap()) { +    return OverflowResult::NeverOverflows; +  } + +  bool LHSKnownNonNegative, LHSKnownNegative; +  bool RHSKnownNonNegative, RHSKnownNegative; +  ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, +                 AC, CxtI, DT); +  ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, +                 AC, CxtI, DT); + +  if ((LHSKnownNonNegative && RHSKnownNegative) || +      (LHSKnownNegative && RHSKnownNonNegative)) { +    // The sign bits are opposite: this CANNOT overflow. +    return OverflowResult::NeverOverflows; +  } + +  // The remaining code needs Add to be available. Early returns if not so. +  if (!Add) +    return OverflowResult::MayOverflow; + +  // If the sign of Add is the same as at least one of the operands, this add +  // CANNOT overflow. This is particularly useful when the sum is +  // @llvm.assume'ed non-negative rather than proved so from analyzing its +  // operands. +  bool LHSOrRHSKnownNonNegative = +      (LHSKnownNonNegative || RHSKnownNonNegative); +  bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); +  if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { +    bool AddKnownNonNegative, AddKnownNegative; +    ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, +                   /*Depth=*/0, AC, CxtI, DT); +    if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || +        (AddKnownNegative && LHSOrRHSKnownNegative)) { +      return OverflowResult::NeverOverflows; +    } +  } + +  return OverflowResult::MayOverflow; +} + +bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, +                                     const DominatorTree &DT) { +#ifndef NDEBUG +  auto IID = II->getIntrinsicID(); +  assert((IID == Intrinsic::sadd_with_overflow || +          IID == Intrinsic::uadd_with_overflow || +          IID == Intrinsic::ssub_with_overflow || +          IID == Intrinsic::usub_with_overflow || +          IID == Intrinsic::smul_with_overflow || +          IID == Intrinsic::umul_with_overflow) && +         "Not an overflow intrinsic!"); +#endif + +  SmallVector<const BranchInst *, 2> GuardingBranches; +  SmallVector<const ExtractValueInst *, 2> Results; + +  for (const User *U : II->users()) { +    if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { +      assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); + +      if (EVI->getIndices()[0] == 0) +        Results.push_back(EVI); +      else { +        assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); + +        for (const auto *U : EVI->users()) +          if (const auto *B = dyn_cast<BranchInst>(U)) { +            assert(B->isConditional() && "How else is it using an i1?"); +            GuardingBranches.push_back(B); +          } +      } +    } else { +      // We are using the aggregate directly in a way we don't want to analyze +      // here (storing it to a global, say). +      return false; +    } +  } + +  auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { +    BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); +    if (!NoWrapEdge.isSingleEdge()) +      return false; + +    // Check if all users of the add are provably no-wrap. +    for (const auto *Result : Results) { +      // If the extractvalue itself is not executed on overflow, the we don't +      // need to check each use separately, since domination is transitive. +      if (DT.dominates(NoWrapEdge, Result->getParent())) +        continue; + +      for (auto &RU : Result->uses()) +        if (!DT.dominates(NoWrapEdge, RU)) +          return false; +    } + +    return true; +  }; + +  return any_of(GuardingBranches, AllUsesGuardedByBranch); +} + + +OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, +                                                 const DataLayout &DL, +                                                 AssumptionCache *AC, +                                                 const Instruction *CxtI, +                                                 const DominatorTree *DT) { +  return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), +                                       Add, DL, AC, CxtI, DT); +} + +OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, +                                                 const Value *RHS, +                                                 const DataLayout &DL, +                                                 AssumptionCache *AC, +                                                 const Instruction *CxtI, +                                                 const DominatorTree *DT) { +  return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { +  // A memory operation returns normally if it isn't volatile. A volatile +  // operation is allowed to trap. +  // +  // An atomic operation isn't guaranteed to return in a reasonable amount of +  // time because it's possible for another thread to interfere with it for an +  // arbitrary length of time, but programs aren't allowed to rely on that. +  if (const LoadInst *LI = dyn_cast<LoadInst>(I)) +    return !LI->isVolatile(); +  if (const StoreInst *SI = dyn_cast<StoreInst>(I)) +    return !SI->isVolatile(); +  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) +    return !CXI->isVolatile(); +  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) +    return !RMWI->isVolatile(); +  if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) +    return !MII->isVolatile(); + +  // If there is no successor, then execution can't transfer to it. +  if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) +    return !CRI->unwindsToCaller(); +  if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) +    return !CatchSwitch->unwindsToCaller(); +  if (isa<ResumeInst>(I)) +    return false; +  if (isa<ReturnInst>(I)) +    return false; + +  // Calls can throw, or contain an infinite loop, or kill the process. +  if (auto CS = ImmutableCallSite(I)) { +    // Call sites that throw have implicit non-local control flow. +    if (!CS.doesNotThrow()) +      return false; + +    // Non-throwing call sites can loop infinitely, call exit/pthread_exit +    // etc. and thus not return.  However, LLVM already assumes that +    // +    //  - Thread exiting actions are modeled as writes to memory invisible to +    //    the program. +    // +    //  - Loops that don't have side effects (side effects are volatile/atomic +    //    stores and IO) always terminate (see http://llvm.org/PR965). +    //    Furthermore IO itself is also modeled as writes to memory invisible to +    //    the program. +    // +    // We rely on those assumptions here, and use the memory effects of the call +    // target as a proxy for checking that it always returns. + +    // FIXME: This isn't aggressive enough; a call which only writes to a global +    // is guaranteed to return. +    return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || +           match(I, m_Intrinsic<Intrinsic::assume>()); +  } + +  // Other instructions return normally. +  return true; +} + +bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, +                                                  const Loop *L) { +  // The loop header is guaranteed to be executed for every iteration. +  // +  // FIXME: Relax this constraint to cover all basic blocks that are +  // guaranteed to be executed at every iteration. +  if (I->getParent() != L->getHeader()) return false; + +  for (const Instruction &LI : *L->getHeader()) { +    if (&LI == I) return true; +    if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; +  } +  llvm_unreachable("Instruction not contained in its own parent basic block."); +} + +bool llvm::propagatesFullPoison(const Instruction *I) { +  switch (I->getOpcode()) { +    case Instruction::Add: +    case Instruction::Sub: +    case Instruction::Xor: +    case Instruction::Trunc: +    case Instruction::BitCast: +    case Instruction::AddrSpaceCast: +      // These operations all propagate poison unconditionally. Note that poison +      // is not any particular value, so xor or subtraction of poison with +      // itself still yields poison, not zero. +      return true; + +    case Instruction::AShr: +    case Instruction::SExt: +      // For these operations, one bit of the input is replicated across +      // multiple output bits. A replicated poison bit is still poison. +      return true; + +    case Instruction::Shl: { +      // Left shift *by* a poison value is poison. The number of +      // positions to shift is unsigned, so no negative values are +      // possible there. Left shift by zero places preserves poison. So +      // it only remains to consider left shift of poison by a positive +      // number of places. +      // +      // A left shift by a positive number of places leaves the lowest order bit +      // non-poisoned. However, if such a shift has a no-wrap flag, then we can +      // make the poison operand violate that flag, yielding a fresh full-poison +      // value. +      auto *OBO = cast<OverflowingBinaryOperator>(I); +      return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); +    } + +    case Instruction::Mul: { +      // A multiplication by zero yields a non-poison zero result, so we need to +      // rule out zero as an operand. Conservatively, multiplication by a +      // non-zero constant is not multiplication by zero. +      // +      // Multiplication by a non-zero constant can leave some bits +      // non-poisoned. For example, a multiplication by 2 leaves the lowest +      // order bit unpoisoned. So we need to consider that. +      // +      // Multiplication by 1 preserves poison. If the multiplication has a +      // no-wrap flag, then we can make the poison operand violate that flag +      // when multiplied by any integer other than 0 and 1. +      auto *OBO = cast<OverflowingBinaryOperator>(I); +      if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { +        for (Value *V : OBO->operands()) { +          if (auto *CI = dyn_cast<ConstantInt>(V)) { +            // A ConstantInt cannot yield poison, so we can assume that it is +            // the other operand that is poison. +            return !CI->isZero(); +          } +        } +      } +      return false; +    } + +    case Instruction::ICmp: +      // Comparing poison with any value yields poison.  This is why, for +      // instance, x s< (x +nsw 1) can be folded to true. +      return true; + +    case Instruction::GetElementPtr: +      // A GEP implicitly represents a sequence of additions, subtractions, +      // truncations, sign extensions and multiplications. The multiplications +      // are by the non-zero sizes of some set of types, so we do not have to be +      // concerned with multiplication by zero. If the GEP is in-bounds, then +      // these operations are implicitly no-signed-wrap so poison is propagated +      // by the arguments above for Add, Sub, Trunc, SExt and Mul. +      return cast<GEPOperator>(I)->isInBounds(); + +    default: +      return false; +  } +} + +const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { +  switch (I->getOpcode()) { +    case Instruction::Store: +      return cast<StoreInst>(I)->getPointerOperand(); + +    case Instruction::Load: +      return cast<LoadInst>(I)->getPointerOperand(); + +    case Instruction::AtomicCmpXchg: +      return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); + +    case Instruction::AtomicRMW: +      return cast<AtomicRMWInst>(I)->getPointerOperand(); + +    case Instruction::UDiv: +    case Instruction::SDiv: +    case Instruction::URem: +    case Instruction::SRem: +      return I->getOperand(1); + +    default: +      return nullptr; +  } +} + +bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { +  // We currently only look for uses of poison values within the same basic +  // block, as that makes it easier to guarantee that the uses will be +  // executed given that PoisonI is executed. +  // +  // FIXME: Expand this to consider uses beyond the same basic block. To do +  // this, look out for the distinction between post-dominance and strong +  // post-dominance. +  const BasicBlock *BB = PoisonI->getParent(); + +  // Set of instructions that we have proved will yield poison if PoisonI +  // does. +  SmallSet<const Value *, 16> YieldsPoison; +  SmallSet<const BasicBlock *, 4> Visited; +  YieldsPoison.insert(PoisonI); +  Visited.insert(PoisonI->getParent()); + +  BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); + +  unsigned Iter = 0; +  while (Iter++ < MaxDepth) { +    for (auto &I : make_range(Begin, End)) { +      if (&I != PoisonI) { +        const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); +        if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) +          return true; +        if (!isGuaranteedToTransferExecutionToSuccessor(&I)) +          return false; +      } + +      // Mark poison that propagates from I through uses of I. +      if (YieldsPoison.count(&I)) { +        for (const User *User : I.users()) { +          const Instruction *UserI = cast<Instruction>(User); +          if (propagatesFullPoison(UserI)) +            YieldsPoison.insert(User); +        } +      } +    } + +    if (auto *NextBB = BB->getSingleSuccessor()) { +      if (Visited.insert(NextBB).second) { +        BB = NextBB; +        Begin = BB->getFirstNonPHI()->getIterator(); +        End = BB->end(); +        continue; +      } +    } + +    break; +  }; +  return false; +} + +static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { +  if (FMF.noNaNs()) +    return true; + +  if (auto *C = dyn_cast<ConstantFP>(V)) +    return !C->isNaN(); +  return false; +} + +static bool isKnownNonZero(const Value *V) { +  if (auto *C = dyn_cast<ConstantFP>(V)) +    return !C->isZero(); +  return false; +} + +/// Match non-obvious integer minimum and maximum sequences. +static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, +                                       Value *CmpLHS, Value *CmpRHS, +                                       Value *TrueVal, Value *FalseVal, +                                       Value *&LHS, Value *&RHS) { +  if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) +    return {SPF_UNKNOWN, SPNB_NA, false}; + +  // Z = X -nsw Y +  // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) +  // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) +  if (match(TrueVal, m_Zero()) && +      match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) { +    LHS = TrueVal; +    RHS = FalseVal; +    return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; +  } + +  // Z = X -nsw Y +  // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) +  // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) +  if (match(FalseVal, m_Zero()) && +      match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) { +    LHS = TrueVal; +    RHS = FalseVal; +    return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; +  } + +  const APInt *C1; +  if (!match(CmpRHS, m_APInt(C1))) +    return {SPF_UNKNOWN, SPNB_NA, false}; + +  // An unsigned min/max can be written with a signed compare. +  const APInt *C2; +  if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || +      (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { +    // Is the sign bit set? +    // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX +    // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN +    if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) { +      LHS = TrueVal; +      RHS = FalseVal; +      return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; +    } + +    // Is the sign bit clear? +    // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX +    // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN +    if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && +        C2->isMinSignedValue()) { +      LHS = TrueVal; +      RHS = FalseVal; +      return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; +    } +  } + +  // Look through 'not' ops to find disguised signed min/max. +  // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) +  // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) +  if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && +      match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) { +    LHS = TrueVal; +    RHS = FalseVal; +    return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; +  } + +  // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) +  // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) +  if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && +      match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) { +    LHS = TrueVal; +    RHS = FalseVal; +    return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; +  } + +  return {SPF_UNKNOWN, SPNB_NA, false}; +} + +static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, +                                              FastMathFlags FMF, +                                              Value *CmpLHS, Value *CmpRHS, +                                              Value *TrueVal, Value *FalseVal, +                                              Value *&LHS, Value *&RHS) { +  LHS = CmpLHS; +  RHS = CmpRHS; + +  // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may +  // return inconsistent results between implementations. +  //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 +  //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) +  // Therefore we behave conservatively and only proceed if at least one of the +  // operands is known to not be zero, or if we don't care about signed zeroes. +  switch (Pred) { +  default: break; +  case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: +  case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: +    if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && +        !isKnownNonZero(CmpRHS)) +      return {SPF_UNKNOWN, SPNB_NA, false}; +  } + +  SelectPatternNaNBehavior NaNBehavior = SPNB_NA; +  bool Ordered = false; + +  // When given one NaN and one non-NaN input: +  //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. +  //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the +  //     ordered comparison fails), which could be NaN or non-NaN. +  // so here we discover exactly what NaN behavior is required/accepted. +  if (CmpInst::isFPPredicate(Pred)) { +    bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); +    bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); + +    if (LHSSafe && RHSSafe) { +      // Both operands are known non-NaN. +      NaNBehavior = SPNB_RETURNS_ANY; +    } else if (CmpInst::isOrdered(Pred)) { +      // An ordered comparison will return false when given a NaN, so it +      // returns the RHS. +      Ordered = true; +      if (LHSSafe) +        // LHS is non-NaN, so if RHS is NaN then NaN will be returned. +        NaNBehavior = SPNB_RETURNS_NAN; +      else if (RHSSafe) +        NaNBehavior = SPNB_RETURNS_OTHER; +      else +        // Completely unsafe. +        return {SPF_UNKNOWN, SPNB_NA, false}; +    } else { +      Ordered = false; +      // An unordered comparison will return true when given a NaN, so it +      // returns the LHS. +      if (LHSSafe) +        // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. +        NaNBehavior = SPNB_RETURNS_OTHER; +      else if (RHSSafe) +        NaNBehavior = SPNB_RETURNS_NAN; +      else +        // Completely unsafe. +        return {SPF_UNKNOWN, SPNB_NA, false}; +    } +  } + +  if (TrueVal == CmpRHS && FalseVal == CmpLHS) { +    std::swap(CmpLHS, CmpRHS); +    Pred = CmpInst::getSwappedPredicate(Pred); +    if (NaNBehavior == SPNB_RETURNS_NAN) +      NaNBehavior = SPNB_RETURNS_OTHER; +    else if (NaNBehavior == SPNB_RETURNS_OTHER) +      NaNBehavior = SPNB_RETURNS_NAN; +    Ordered = !Ordered; +  } + +  // ([if]cmp X, Y) ? X : Y +  if (TrueVal == CmpLHS && FalseVal == CmpRHS) { +    switch (Pred) { +    default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. +    case ICmpInst::ICMP_UGT: +    case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; +    case ICmpInst::ICMP_SGT: +    case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; +    case ICmpInst::ICMP_ULT: +    case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; +    case ICmpInst::ICMP_SLT: +    case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; +    case FCmpInst::FCMP_UGT: +    case FCmpInst::FCMP_UGE: +    case FCmpInst::FCMP_OGT: +    case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; +    case FCmpInst::FCMP_ULT: +    case FCmpInst::FCMP_ULE: +    case FCmpInst::FCMP_OLT: +    case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; +    } +  } + +  const APInt *C1; +  if (match(CmpRHS, m_APInt(C1))) { +    if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || +        (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { + +      // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X +      // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X +      if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { +        return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; +      } + +      // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X +      // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X +      if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { +        return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; +      } +    } +  } + +  return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); +} + +static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, +                              Instruction::CastOps *CastOp) { +  CastInst *CI = dyn_cast<CastInst>(V1); +  Constant *C = dyn_cast<Constant>(V2); +  if (!CI) +    return nullptr; +  *CastOp = CI->getOpcode(); + +  if (auto *CI2 = dyn_cast<CastInst>(V2)) { +    // If V1 and V2 are both the same cast from the same type, we can look +    // through V1. +    if (CI2->getOpcode() == CI->getOpcode() && +        CI2->getSrcTy() == CI->getSrcTy()) +      return CI2->getOperand(0); +    return nullptr; +  } else if (!C) { +    return nullptr; +  } + +  Constant *CastedTo = nullptr; + +  if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) +    CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); + +  if (isa<SExtInst>(CI) && CmpI->isSigned()) +    CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); + +  if (isa<TruncInst>(CI)) +    CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); + +  if (isa<FPTruncInst>(CI)) +    CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); + +  if (isa<FPExtInst>(CI)) +    CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); + +  if (isa<FPToUIInst>(CI)) +    CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); + +  if (isa<FPToSIInst>(CI)) +    CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); + +  if (isa<UIToFPInst>(CI)) +    CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); + +  if (isa<SIToFPInst>(CI)) +    CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); + +  if (!CastedTo) +    return nullptr; + +  Constant *CastedBack = +      ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); +  // Make sure the cast doesn't lose any information. +  if (CastedBack != C) +    return nullptr; + +  return CastedTo; +} + +SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, +                                             Instruction::CastOps *CastOp) { +  SelectInst *SI = dyn_cast<SelectInst>(V); +  if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; + +  CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); +  if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; + +  CmpInst::Predicate Pred = CmpI->getPredicate(); +  Value *CmpLHS = CmpI->getOperand(0); +  Value *CmpRHS = CmpI->getOperand(1); +  Value *TrueVal = SI->getTrueValue(); +  Value *FalseVal = SI->getFalseValue(); +  FastMathFlags FMF; +  if (isa<FPMathOperator>(CmpI)) +    FMF = CmpI->getFastMathFlags(); + +  // Bail out early. +  if (CmpI->isEquality()) +    return {SPF_UNKNOWN, SPNB_NA, false}; + +  // Deal with type mismatches. +  if (CastOp && CmpLHS->getType() != TrueVal->getType()) { +    if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) +      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, +                                  cast<CastInst>(TrueVal)->getOperand(0), C, +                                  LHS, RHS); +    if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) +      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, +                                  C, cast<CastInst>(FalseVal)->getOperand(0), +                                  LHS, RHS); +  } +  return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, +                              LHS, RHS); +} + +/// Return true if "icmp Pred LHS RHS" is always true. +static bool isTruePredicate(CmpInst::Predicate Pred, +                            const Value *LHS, const Value *RHS, +                            const DataLayout &DL, unsigned Depth, +                            AssumptionCache *AC, const Instruction *CxtI, +                            const DominatorTree *DT) { +  assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); +  if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) +    return true; + +  switch (Pred) { +  default: +    return false; + +  case CmpInst::ICMP_SLE: { +    const APInt *C; + +    // LHS s<= LHS +_{nsw} C   if C >= 0 +    if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) +      return !C->isNegative(); +    return false; +  } + +  case CmpInst::ICMP_ULE: { +    const APInt *C; + +    // LHS u<= LHS +_{nuw} C   for any C +    if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) +      return true; + +    // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) +    auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, +                                       const Value *&X, +                                       const APInt *&CA, const APInt *&CB) { +      if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && +          match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) +        return true; + +      // If X & C == 0 then (X | C) == X +_{nuw} C +      if (match(A, m_Or(m_Value(X), m_APInt(CA))) && +          match(B, m_Or(m_Specific(X), m_APInt(CB)))) { +        unsigned BitWidth = CA->getBitWidth(); +        APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); +        computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); + +        if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) +          return true; +      } + +      return false; +    }; + +    const Value *X; +    const APInt *CLHS, *CRHS; +    if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) +      return CLHS->ule(*CRHS); + +    return false; +  } +  } +} + +/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred +/// ALHS ARHS" is true.  Otherwise, return None. +static Optional<bool> +isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, +                      const Value *ARHS, const Value *BLHS, +                      const Value *BRHS, const DataLayout &DL, +                      unsigned Depth, AssumptionCache *AC, +                      const Instruction *CxtI, const DominatorTree *DT) { +  switch (Pred) { +  default: +    return None; + +  case CmpInst::ICMP_SLT: +  case CmpInst::ICMP_SLE: +    if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, +                        DT) && +        isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) +      return true; +    return None; + +  case CmpInst::ICMP_ULT: +  case CmpInst::ICMP_ULE: +    if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, +                        DT) && +        isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) +      return true; +    return None; +  } +} + +/// Return true if the operands of the two compares match.  IsSwappedOps is true +/// when the operands match, but are swapped. +static bool isMatchingOps(const Value *ALHS, const Value *ARHS, +                          const Value *BLHS, const Value *BRHS, +                          bool &IsSwappedOps) { + +  bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); +  IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); +  return IsMatchingOps || IsSwappedOps; +} + +/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is +/// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS +/// BRHS" is false.  Otherwise, return None if we can't infer anything. +static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, +                                                    const Value *ALHS, +                                                    const Value *ARHS, +                                                    CmpInst::Predicate BPred, +                                                    const Value *BLHS, +                                                    const Value *BRHS, +                                                    bool IsSwappedOps) { +  // Canonicalize the operands so they're matching. +  if (IsSwappedOps) { +    std::swap(BLHS, BRHS); +    BPred = ICmpInst::getSwappedPredicate(BPred); +  } +  if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) +    return true; +  if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) +    return false; + +  return None; +} + +/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is +/// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS +/// C2" is false.  Otherwise, return None if we can't infer anything. +static Optional<bool> +isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, +                                 const ConstantInt *C1, +                                 CmpInst::Predicate BPred, +                                 const Value *BLHS, const ConstantInt *C2) { +  assert(ALHS == BLHS && "LHS operands must match."); +  ConstantRange DomCR = +      ConstantRange::makeExactICmpRegion(APred, C1->getValue()); +  ConstantRange CR = +      ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); +  ConstantRange Intersection = DomCR.intersectWith(CR); +  ConstantRange Difference = DomCR.difference(CR); +  if (Intersection.isEmptySet()) +    return false; +  if (Difference.isEmptySet()) +    return true; +  return None; +} + +Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, +                                        const DataLayout &DL, bool InvertAPred, +                                        unsigned Depth, AssumptionCache *AC, +                                        const Instruction *CxtI, +                                        const DominatorTree *DT) { +  // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. +  if (LHS->getType() != RHS->getType()) +    return None; + +  Type *OpTy = LHS->getType(); +  assert(OpTy->getScalarType()->isIntegerTy(1)); + +  // LHS ==> RHS by definition +  if (!InvertAPred && LHS == RHS) +    return true; + +  if (OpTy->isVectorTy()) +    // TODO: extending the code below to handle vectors +    return None; +  assert(OpTy->isIntegerTy(1) && "implied by above"); + +  ICmpInst::Predicate APred, BPred; +  Value *ALHS, *ARHS; +  Value *BLHS, *BRHS; + +  if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || +      !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) +    return None; + +  if (InvertAPred) +    APred = CmpInst::getInversePredicate(APred); + +  // Can we infer anything when the two compares have matching operands? +  bool IsSwappedOps; +  if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { +    if (Optional<bool> Implication = isImpliedCondMatchingOperands( +            APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) +      return Implication; +    // No amount of additional analysis will infer the second condition, so +    // early exit. +    return None; +  } + +  // Can we infer anything when the LHS operands match and the RHS operands are +  // constants (not necessarily matching)? +  if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { +    if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( +            APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, +            cast<ConstantInt>(BRHS))) +      return Implication; +    // No amount of additional analysis will infer the second condition, so +    // early exit. +    return None; +  } + +  if (APred == BPred) +    return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, +                                 CxtI, DT); + +  return None; +} | 
