diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/ValueTracking.cpp')
| -rw-r--r-- | contrib/llvm/lib/Analysis/ValueTracking.cpp | 4372 |
1 files changed, 4372 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm/lib/Analysis/ValueTracking.cpp new file mode 100644 index 000000000000..d31472c0d33c --- /dev/null +++ b/contrib/llvm/lib/Analysis/ValueTracking.cpp @@ -0,0 +1,4372 @@ +//===- ValueTracking.cpp - Walk computations to compute properties --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains routines that help analyze properties that chains of +// computations have. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <array> +#include <cstring> +using namespace llvm; +using namespace llvm::PatternMatch; + +const unsigned MaxDepth = 6; + +// Controls the number of uses of the value searched for possible +// dominating comparisons. +static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", + cl::Hidden, cl::init(20)); + +// This optimization is known to cause performance regressions is some cases, +// keep it under a temporary flag for now. +static cl::opt<bool> +DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", + cl::Hidden, cl::init(true)); + +/// Returns the bitwidth of the given scalar or pointer type (if unknown returns +/// 0). For vector types, returns the element type's bitwidth. +static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { + if (unsigned BitWidth = Ty->getScalarSizeInBits()) + return BitWidth; + + return DL.getPointerTypeSizeInBits(Ty); +} + +namespace { +// Simplifying using an assume can only be done in a particular control-flow +// context (the context instruction provides that context). If an assume and +// the context instruction are not in the same block then the DT helps in +// figuring out if we can use it. +struct Query { + const DataLayout &DL; + AssumptionCache *AC; + const Instruction *CxtI; + const DominatorTree *DT; + + /// Set of assumptions that should be excluded from further queries. + /// This is because of the potential for mutual recursion to cause + /// computeKnownBits to repeatedly visit the same assume intrinsic. The + /// classic case of this is assume(x = y), which will attempt to determine + /// bits in x from bits in y, which will attempt to determine bits in y from + /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call + /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and + /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so + /// on. + std::array<const Value *, MaxDepth> Excluded; + unsigned NumExcluded; + + Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) + : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} + + Query(const Query &Q, const Value *NewExcl) + : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { + Excluded = Q.Excluded; + Excluded[NumExcluded++] = NewExcl; + assert(NumExcluded <= Excluded.size()); + } + + bool isExcluded(const Value *Value) const { + if (NumExcluded == 0) + return false; + auto End = Excluded.begin() + NumExcluded; + return std::find(Excluded.begin(), End, Value) != End; + } +}; +} // end anonymous namespace + +// Given the provided Value and, potentially, a context instruction, return +// the preferred context instruction (if any). +static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { + // If we've been provided with a context instruction, then use that (provided + // it has been inserted). + if (CxtI && CxtI->getParent()) + return CxtI; + + // If the value is really an already-inserted instruction, then use that. + CxtI = dyn_cast<Instruction>(V); + if (CxtI && CxtI->getParent()) + return CxtI; + + return nullptr; +} + +static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, + unsigned Depth, const Query &Q); + +void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + ::computeKnownBits(V, KnownZero, KnownOne, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + assert(LHS->getType() == RHS->getType() && + "LHS and RHS should have the same type"); + assert(LHS->getType()->isIntOrIntVectorTy() && + "LHS and RHS should be integers"); + IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); + APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); + APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); + computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); + computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); + return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); +} + +static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, + unsigned Depth, const Query &Q); + +void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + ::ComputeSignBit(V, KnownZero, KnownOne, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, + const Query &Q); + +bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, + bool OrZero, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); + +bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, + unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + bool NonNegative, Negative; + ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); + return NonNegative; +} + +bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + if (auto *CI = dyn_cast<ConstantInt>(V)) + return CI->getValue().isStrictlyPositive(); + + // TODO: We'd doing two recursive queries here. We should factor this such + // that only a single query is needed. + return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && + isKnownNonZero(V, DL, Depth, AC, CxtI, DT); +} + +bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + bool NonNegative, Negative; + ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); + return Negative; +} + +static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); + +bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, + const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + return ::isKnownNonEqual(V1, V2, Query(DL, AC, + safeCxtI(V1, safeCxtI(V2, CxtI)), + DT)); +} + +static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, + const Query &Q); + +bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, + const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT) { + return ::MaskedValueIsZero(V, Mask, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, + const Query &Q); + +unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); +} + +static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, + bool NSW, + APInt &KnownZero, APInt &KnownOne, + APInt &KnownZero2, APInt &KnownOne2, + unsigned Depth, const Query &Q) { + if (!Add) { + if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { + // We know that the top bits of C-X are clear if X contains less bits + // than C (i.e. no wrap-around can happen). For example, 20-X is + // positive if we can prove that X is >= 0 and < 16. + if (!CLHS->getValue().isNegative()) { + unsigned BitWidth = KnownZero.getBitWidth(); + unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); + // NLZ can't be BitWidth with no sign bit + APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); + computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); + + // If all of the MaskV bits are known to be zero, then we know the + // output top bits are zero, because we now know that the output is + // from [0-C]. + if ((KnownZero2 & MaskV) == MaskV) { + unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); + // Top bits known zero. + KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); + } + } + } + } + + unsigned BitWidth = KnownZero.getBitWidth(); + + // If an initial sequence of bits in the result is not needed, the + // corresponding bits in the operands are not needed. + APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); + computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); + computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); + + // Carry in a 1 for a subtract, rather than a 0. + APInt CarryIn(BitWidth, 0); + if (!Add) { + // Sum = LHS + ~RHS + 1 + std::swap(KnownZero2, KnownOne2); + CarryIn.setBit(0); + } + + APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; + APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; + + // Compute known bits of the carry. + APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); + APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; + + // Compute set of known bits (where all three relevant bits are known). + APInt LHSKnown = LHSKnownZero | LHSKnownOne; + APInt RHSKnown = KnownZero2 | KnownOne2; + APInt CarryKnown = CarryKnownZero | CarryKnownOne; + APInt Known = LHSKnown & RHSKnown & CarryKnown; + + assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && + "known bits of sum differ"); + + // Compute known bits of the result. + KnownZero = ~PossibleSumOne & Known; + KnownOne = PossibleSumOne & Known; + + // Are we still trying to solve for the sign bit? + if (!Known.isNegative()) { + if (NSW) { + // Adding two non-negative numbers, or subtracting a negative number from + // a non-negative one, can't wrap into negative. + if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) + KnownZero |= APInt::getSignBit(BitWidth); + // Adding two negative numbers, or subtracting a non-negative number from + // a negative one, can't wrap into non-negative. + else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) + KnownOne |= APInt::getSignBit(BitWidth); + } + } +} + +static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, + APInt &KnownZero, APInt &KnownOne, + APInt &KnownZero2, APInt &KnownOne2, + unsigned Depth, const Query &Q) { + unsigned BitWidth = KnownZero.getBitWidth(); + computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); + computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); + + bool isKnownNegative = false; + bool isKnownNonNegative = false; + // If the multiplication is known not to overflow, compute the sign bit. + if (NSW) { + if (Op0 == Op1) { + // The product of a number with itself is non-negative. + isKnownNonNegative = true; + } else { + bool isKnownNonNegativeOp1 = KnownZero.isNegative(); + bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); + bool isKnownNegativeOp1 = KnownOne.isNegative(); + bool isKnownNegativeOp0 = KnownOne2.isNegative(); + // The product of two numbers with the same sign is non-negative. + isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || + (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); + // The product of a negative number and a non-negative number is either + // negative or zero. + if (!isKnownNonNegative) + isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && + isKnownNonZero(Op0, Depth, Q)) || + (isKnownNegativeOp0 && isKnownNonNegativeOp1 && + isKnownNonZero(Op1, Depth, Q)); + } + } + + // If low bits are zero in either operand, output low known-0 bits. + // Also compute a conservative estimate for high known-0 bits. + // More trickiness is possible, but this is sufficient for the + // interesting case of alignment computation. + KnownOne.clearAllBits(); + unsigned TrailZ = KnownZero.countTrailingOnes() + + KnownZero2.countTrailingOnes(); + unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + + KnownZero2.countLeadingOnes(), + BitWidth) - BitWidth; + + TrailZ = std::min(TrailZ, BitWidth); + LeadZ = std::min(LeadZ, BitWidth); + KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | + APInt::getHighBitsSet(BitWidth, LeadZ); + + // Only make use of no-wrap flags if we failed to compute the sign bit + // directly. This matters if the multiplication always overflows, in + // which case we prefer to follow the result of the direct computation, + // though as the program is invoking undefined behaviour we can choose + // whatever we like here. + if (isKnownNonNegative && !KnownOne.isNegative()) + KnownZero.setBit(BitWidth - 1); + else if (isKnownNegative && !KnownZero.isNegative()) + KnownOne.setBit(BitWidth - 1); +} + +void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, + APInt &KnownZero, + APInt &KnownOne) { + unsigned BitWidth = KnownZero.getBitWidth(); + unsigned NumRanges = Ranges.getNumOperands() / 2; + assert(NumRanges >= 1); + + KnownZero.setAllBits(); + KnownOne.setAllBits(); + + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Lower = + mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); + ConstantRange Range(Lower->getValue(), Upper->getValue()); + + // The first CommonPrefixBits of all values in Range are equal. + unsigned CommonPrefixBits = + (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); + + APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); + KnownOne &= Range.getUnsignedMax() & Mask; + KnownZero &= ~Range.getUnsignedMax() & Mask; + } +} + +static bool isEphemeralValueOf(const Instruction *I, const Value *E) { + SmallVector<const Value *, 16> WorkSet(1, I); + SmallPtrSet<const Value *, 32> Visited; + SmallPtrSet<const Value *, 16> EphValues; + + // The instruction defining an assumption's condition itself is always + // considered ephemeral to that assumption (even if it has other + // non-ephemeral users). See r246696's test case for an example. + if (is_contained(I->operands(), E)) + return true; + + while (!WorkSet.empty()) { + const Value *V = WorkSet.pop_back_val(); + if (!Visited.insert(V).second) + continue; + + // If all uses of this value are ephemeral, then so is this value. + if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { + if (V == E) + return true; + + EphValues.insert(V); + if (const User *U = dyn_cast<User>(V)) + for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); + J != JE; ++J) { + if (isSafeToSpeculativelyExecute(*J)) + WorkSet.push_back(*J); + } + } + } + + return false; +} + +// Is this an intrinsic that cannot be speculated but also cannot trap? +static bool isAssumeLikeIntrinsic(const Instruction *I) { + if (const CallInst *CI = dyn_cast<CallInst>(I)) + if (Function *F = CI->getCalledFunction()) + switch (F->getIntrinsicID()) { + default: break; + // FIXME: This list is repeated from NoTTI::getIntrinsicCost. + case Intrinsic::assume: + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::objectsize: + case Intrinsic::ptr_annotation: + case Intrinsic::var_annotation: + return true; + } + + return false; +} + +bool llvm::isValidAssumeForContext(const Instruction *Inv, + const Instruction *CxtI, + const DominatorTree *DT) { + + // There are two restrictions on the use of an assume: + // 1. The assume must dominate the context (or the control flow must + // reach the assume whenever it reaches the context). + // 2. The context must not be in the assume's set of ephemeral values + // (otherwise we will use the assume to prove that the condition + // feeding the assume is trivially true, thus causing the removal of + // the assume). + + if (DT) { + if (DT->dominates(Inv, CxtI)) + return true; + } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { + // We don't have a DT, but this trivially dominates. + return true; + } + + // With or without a DT, the only remaining case we will check is if the + // instructions are in the same BB. Give up if that is not the case. + if (Inv->getParent() != CxtI->getParent()) + return false; + + // If we have a dom tree, then we now know that the assume doens't dominate + // the other instruction. If we don't have a dom tree then we can check if + // the assume is first in the BB. + if (!DT) { + // Search forward from the assume until we reach the context (or the end + // of the block); the common case is that the assume will come first. + for (auto I = std::next(BasicBlock::const_iterator(Inv)), + IE = Inv->getParent()->end(); I != IE; ++I) + if (&*I == CxtI) + return true; + } + + // The context comes first, but they're both in the same block. Make sure + // there is nothing in between that might interrupt the control flow. + for (BasicBlock::const_iterator I = + std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); + I != IE; ++I) + if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) + return false; + + return !isEphemeralValueOf(Inv, CxtI); +} + +static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, + APInt &KnownOne, unsigned Depth, + const Query &Q) { + // Use of assumptions is context-sensitive. If we don't have a context, we + // cannot use them! + if (!Q.AC || !Q.CxtI) + return; + + unsigned BitWidth = KnownZero.getBitWidth(); + + for (auto &AssumeVH : Q.AC->assumptions()) { + if (!AssumeVH) + continue; + CallInst *I = cast<CallInst>(AssumeVH); + assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && + "Got assumption for the wrong function!"); + if (Q.isExcluded(I)) + continue; + + // Warning: This loop can end up being somewhat performance sensetive. + // We're running this loop for once for each value queried resulting in a + // runtime of ~O(#assumes * #values). + + assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && + "must be an assume intrinsic"); + + Value *Arg = I->getArgOperand(0); + + if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + assert(BitWidth == 1 && "assume operand is not i1?"); + KnownZero.clearAllBits(); + KnownOne.setAllBits(); + return; + } + + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth == MaxDepth) + continue; + + Value *A, *B; + auto m_V = m_CombineOr(m_Specific(V), + m_CombineOr(m_PtrToInt(m_Specific(V)), + m_BitCast(m_Specific(V)))); + + CmpInst::Predicate Pred; + ConstantInt *C; + // assume(v = a) + if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + KnownZero |= RHSKnownZero; + KnownOne |= RHSKnownOne; + // assume(v & b = a) + } else if (match(Arg, + m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); + computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); + + // For those bits in the mask that are known to be one, we can propagate + // known bits from the RHS to V. + KnownZero |= RHSKnownZero & MaskKnownOne; + KnownOne |= RHSKnownOne & MaskKnownOne; + // assume(~(v & b) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); + computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); + + // For those bits in the mask that are known to be one, we can propagate + // inverted known bits from the RHS to V. + KnownZero |= RHSKnownOne & MaskKnownOne; + KnownOne |= RHSKnownZero & MaskKnownOne; + // assume(v | b = a) + } else if (match(Arg, + m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); + computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate known + // bits from the RHS to V. + KnownZero |= RHSKnownZero & BKnownZero; + KnownOne |= RHSKnownOne & BKnownZero; + // assume(~(v | b) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); + computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate + // inverted known bits from the RHS to V. + KnownZero |= RHSKnownOne & BKnownZero; + KnownOne |= RHSKnownZero & BKnownZero; + // assume(v ^ b = a) + } else if (match(Arg, + m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); + computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate known + // bits from the RHS to V. For those bits in B that are known to be one, + // we can propagate inverted known bits from the RHS to V. + KnownZero |= RHSKnownZero & BKnownZero; + KnownOne |= RHSKnownOne & BKnownZero; + KnownZero |= RHSKnownOne & BKnownOne; + KnownOne |= RHSKnownZero & BKnownOne; + // assume(~(v ^ b) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); + computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate + // inverted known bits from the RHS to V. For those bits in B that are + // known to be one, we can propagate known bits from the RHS to V. + KnownZero |= RHSKnownOne & BKnownZero; + KnownOne |= RHSKnownZero & BKnownZero; + KnownZero |= RHSKnownZero & BKnownOne; + KnownOne |= RHSKnownOne & BKnownOne; + // assume(v << c = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them to known + // bits in V shifted to the right by C. + KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); + KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); + // assume(~(v << c) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them inverted + // to known bits in V shifted to the right by C. + KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); + KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); + // assume(v >> c = a) + } else if (match(Arg, + m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), + m_AShr(m_V, m_ConstantInt(C))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them to known + // bits in V shifted to the right by C. + KnownZero |= RHSKnownZero << C->getZExtValue(); + KnownOne |= RHSKnownOne << C->getZExtValue(); + // assume(~(v >> c) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( + m_LShr(m_V, m_ConstantInt(C)), + m_AShr(m_V, m_ConstantInt(C)))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them inverted + // to known bits in V shifted to the right by C. + KnownZero |= RHSKnownOne << C->getZExtValue(); + KnownOne |= RHSKnownZero << C->getZExtValue(); + // assume(v >=_s c) where c is non-negative + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_SGE && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + + if (RHSKnownZero.isNegative()) { + // We know that the sign bit is zero. + KnownZero |= APInt::getSignBit(BitWidth); + } + // assume(v >_s c) where c is at least -1. + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_SGT && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + + if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { + // We know that the sign bit is zero. + KnownZero |= APInt::getSignBit(BitWidth); + } + // assume(v <=_s c) where c is negative + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_SLE && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + + if (RHSKnownOne.isNegative()) { + // We know that the sign bit is one. + KnownOne |= APInt::getSignBit(BitWidth); + } + // assume(v <_s c) where c is non-positive + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_SLT && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + + if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { + // We know that the sign bit is one. + KnownOne |= APInt::getSignBit(BitWidth); + } + // assume(v <=_u c) + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_ULE && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + + // Whatever high bits in c are zero are known to be zero. + KnownZero |= + APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); + // assume(v <_u c) + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_ULT && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); + + // Whatever high bits in c are zero are known to be zero (if c is a power + // of 2, then one more). + if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) + KnownZero |= + APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); + else + KnownZero |= + APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); + } + } +} + +// Compute known bits from a shift operator, including those with a +// non-constant shift amount. KnownZero and KnownOne are the outputs of this +// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the +// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific +// functors that, given the known-zero or known-one bits respectively, and a +// shift amount, compute the implied known-zero or known-one bits of the shift +// operator's result respectively for that shift amount. The results from calling +// KZF and KOF are conservatively combined for all permitted shift amounts. +static void computeKnownBitsFromShiftOperator( + const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, + APInt &KnownOne2, unsigned Depth, const Query &Q, + function_ref<APInt(const APInt &, unsigned)> KZF, + function_ref<APInt(const APInt &, unsigned)> KOF) { + unsigned BitWidth = KnownZero.getBitWidth(); + + if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); + + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + KnownZero = KZF(KnownZero, ShiftAmt); + KnownOne = KOF(KnownOne, ShiftAmt); + // If there is conflict between KnownZero and KnownOne, this must be an + // overflowing left shift, so the shift result is undefined. Clear KnownZero + // and KnownOne bits so that other code could propagate this undef. + if ((KnownZero & KnownOne) != 0) { + KnownZero.clearAllBits(); + KnownOne.clearAllBits(); + } + + return; + } + + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); + + // Note: We cannot use KnownZero.getLimitedValue() here, because if + // BitWidth > 64 and any upper bits are known, we'll end up returning the + // limit value (which implies all bits are known). + uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); + uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); + + // It would be more-clearly correct to use the two temporaries for this + // calculation. Reusing the APInts here to prevent unnecessary allocations. + KnownZero.clearAllBits(); + KnownOne.clearAllBits(); + + // If we know the shifter operand is nonzero, we can sometimes infer more + // known bits. However this is expensive to compute, so be lazy about it and + // only compute it when absolutely necessary. + Optional<bool> ShifterOperandIsNonZero; + + // Early exit if we can't constrain any well-defined shift amount. + if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { + ShifterOperandIsNonZero = + isKnownNonZero(I->getOperand(1), Depth + 1, Q); + if (!*ShifterOperandIsNonZero) + return; + } + + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + + KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); + for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { + // Combine the shifted known input bits only for those shift amounts + // compatible with its known constraints. + if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) + continue; + if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) + continue; + // If we know the shifter is nonzero, we may be able to infer more known + // bits. This check is sunk down as far as possible to avoid the expensive + // call to isKnownNonZero if the cheaper checks above fail. + if (ShiftAmt == 0) { + if (!ShifterOperandIsNonZero.hasValue()) + ShifterOperandIsNonZero = + isKnownNonZero(I->getOperand(1), Depth + 1, Q); + if (*ShifterOperandIsNonZero) + continue; + } + + KnownZero &= KZF(KnownZero2, ShiftAmt); + KnownOne &= KOF(KnownOne2, ShiftAmt); + } + + // If there are no compatible shift amounts, then we've proven that the shift + // amount must be >= the BitWidth, and the result is undefined. We could + // return anything we'd like, but we need to make sure the sets of known bits + // stay disjoint (it should be better for some other code to actually + // propagate the undef than to pick a value here using known bits). + if ((KnownZero & KnownOne) != 0) { + KnownZero.clearAllBits(); + KnownOne.clearAllBits(); + } +} + +static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, + APInt &KnownOne, unsigned Depth, + const Query &Q) { + unsigned BitWidth = KnownZero.getBitWidth(); + + APInt KnownZero2(KnownZero), KnownOne2(KnownOne); + switch (I->getOpcode()) { + default: break; + case Instruction::Load: + if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) + computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); + break; + case Instruction::And: { + // If either the LHS or the RHS are Zero, the result is zero. + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + + // Output known-1 bits are only known if set in both the LHS & RHS. + KnownOne &= KnownOne2; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + KnownZero |= KnownZero2; + + // and(x, add (x, -1)) is a common idiom that always clears the low bit; + // here we handle the more general case of adding any odd number by + // matching the form add(x, add(x, y)) where y is odd. + // TODO: This could be generalized to clearing any bit set in y where the + // following bit is known to be unset in y. + Value *Y = nullptr; + if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), + m_Value(Y))) || + match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), + m_Value(Y)))) { + APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); + computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); + if (KnownOne3.countTrailingOnes() > 0) + KnownZero |= APInt::getLowBitsSet(BitWidth, 1); + } + break; + } + case Instruction::Or: { + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + + // Output known-0 bits are only known if clear in both the LHS & RHS. + KnownZero &= KnownZero2; + // Output known-1 are known to be set if set in either the LHS | RHS. + KnownOne |= KnownOne2; + break; + } + case Instruction::Xor: { + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); + KnownZero = KnownZeroOut; + break; + } + case Instruction::Mul: { + bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); + computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, + KnownOne, KnownZero2, KnownOne2, Depth, Q); + break; + } + case Instruction::UDiv: { + // For the purposes of computing leading zeros we can conservatively + // treat a udiv as a logical right shift by the power of 2 known to + // be less than the denominator. + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + unsigned LeadZ = KnownZero2.countLeadingOnes(); + + KnownOne2.clearAllBits(); + KnownZero2.clearAllBits(); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); + unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); + if (RHSUnknownLeadingOnes != BitWidth) + LeadZ = std::min(BitWidth, + LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); + + KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); + break; + } + case Instruction::Select: { + computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); + + const Value *LHS; + const Value *RHS; + SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; + if (SelectPatternResult::isMinOrMax(SPF)) { + computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); + computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); + } else { + computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); + } + + unsigned MaxHighOnes = 0; + unsigned MaxHighZeros = 0; + if (SPF == SPF_SMAX) { + // If both sides are negative, the result is negative. + if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) + // We can derive a lower bound on the result by taking the max of the + // leading one bits. + MaxHighOnes = + std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); + // If either side is non-negative, the result is non-negative. + else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) + MaxHighZeros = 1; + } else if (SPF == SPF_SMIN) { + // If both sides are non-negative, the result is non-negative. + if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) + // We can derive an upper bound on the result by taking the max of the + // leading zero bits. + MaxHighZeros = std::max(KnownZero.countLeadingOnes(), + KnownZero2.countLeadingOnes()); + // If either side is negative, the result is negative. + else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) + MaxHighOnes = 1; + } else if (SPF == SPF_UMAX) { + // We can derive a lower bound on the result by taking the max of the + // leading one bits. + MaxHighOnes = + std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); + } else if (SPF == SPF_UMIN) { + // We can derive an upper bound on the result by taking the max of the + // leading zero bits. + MaxHighZeros = + std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); + } + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + if (MaxHighOnes > 0) + KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); + if (MaxHighZeros > 0) + KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); + break; + } + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::SIToFP: + case Instruction::UIToFP: + break; // Can't work with floating point. + case Instruction::PtrToInt: + case Instruction::IntToPtr: + // Fall through and handle them the same as zext/trunc. + LLVM_FALLTHROUGH; + case Instruction::ZExt: + case Instruction::Trunc: { + Type *SrcTy = I->getOperand(0)->getType(); + + unsigned SrcBitWidth; + // Note that we handle pointer operands here because of inttoptr/ptrtoint + // which fall through here. + SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); + + assert(SrcBitWidth && "SrcBitWidth can't be zero"); + KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); + KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + KnownZero = KnownZero.zextOrTrunc(BitWidth); + KnownOne = KnownOne.zextOrTrunc(BitWidth); + // Any top bits are known to be zero. + if (BitWidth > SrcBitWidth) + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); + break; + } + case Instruction::BitCast: { + Type *SrcTy = I->getOperand(0)->getType(); + if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && + // TODO: For now, not handling conversions like: + // (bitcast i64 %x to <2 x i32>) + !I->getType()->isVectorTy()) { + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + break; + } + break; + } + case Instruction::SExt: { + // Compute the bits in the result that are not present in the input. + unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); + + KnownZero = KnownZero.trunc(SrcBitWidth); + KnownOne = KnownOne.trunc(SrcBitWidth); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); + else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set + KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); + break; + } + case Instruction::Shl: { + // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 + bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); + auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { + APInt KZResult = + (KnownZero << ShiftAmt) | + APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. + // If this shift has "nsw" keyword, then the result is either a poison + // value or has the same sign bit as the first operand. + if (NSW && KnownZero.isNegative()) + KZResult.setBit(BitWidth - 1); + return KZResult; + }; + + auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { + APInt KOResult = KnownOne << ShiftAmt; + if (NSW && KnownOne.isNegative()) + KOResult.setBit(BitWidth - 1); + return KOResult; + }; + + computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, + KnownZero2, KnownOne2, Depth, Q, KZF, + KOF); + break; + } + case Instruction::LShr: { + // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 + auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { + return APIntOps::lshr(KnownZero, ShiftAmt) | + // High bits known zero. + APInt::getHighBitsSet(BitWidth, ShiftAmt); + }; + + auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { + return APIntOps::lshr(KnownOne, ShiftAmt); + }; + + computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, + KnownZero2, KnownOne2, Depth, Q, KZF, + KOF); + break; + } + case Instruction::AShr: { + // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 + auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { + return APIntOps::ashr(KnownZero, ShiftAmt); + }; + + auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { + return APIntOps::ashr(KnownOne, ShiftAmt); + }; + + computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, + KnownZero2, KnownOne2, Depth, Q, KZF, + KOF); + break; + } + case Instruction::Sub: { + bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); + computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, + KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, + Q); + break; + } + case Instruction::Add: { + bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); + computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, + KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, + Q); + break; + } + case Instruction::SRem: + if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { + APInt RA = Rem->getValue().abs(); + if (RA.isPowerOf2()) { + APInt LowBits = RA - 1; + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, + Q); + + // The low bits of the first operand are unchanged by the srem. + KnownZero = KnownZero2 & LowBits; + KnownOne = KnownOne2 & LowBits; + + // If the first operand is non-negative or has all low bits zero, then + // the upper bits are all zero. + if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) + KnownZero |= ~LowBits; + + // If the first operand is negative and not all low bits are zero, then + // the upper bits are all one. + if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) + KnownOne |= ~LowBits; + + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + } + } + + // The sign bit is the LHS's sign bit, except when the result of the + // remainder is zero. + if (KnownZero.isNonNegative()) { + APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); + computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, + Q); + // If it's known zero, our sign bit is also zero. + if (LHSKnownZero.isNegative()) + KnownZero.setBit(BitWidth - 1); + } + + break; + case Instruction::URem: { + if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { + const APInt &RA = Rem->getValue(); + if (RA.isPowerOf2()) { + APInt LowBits = (RA - 1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + KnownZero |= ~LowBits; + KnownOne &= LowBits; + break; + } + } + + // Since the result is less than or equal to either operand, any leading + // zero bits in either operand must also exist in the result. + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); + + unsigned Leaders = std::max(KnownZero.countLeadingOnes(), + KnownZero2.countLeadingOnes()); + KnownOne.clearAllBits(); + KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); + break; + } + + case Instruction::Alloca: { + const AllocaInst *AI = cast<AllocaInst>(I); + unsigned Align = AI->getAlignment(); + if (Align == 0) + Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); + + if (Align > 0) + KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); + break; + } + case Instruction::GetElementPtr: { + // Analyze all of the subscripts of this getelementptr instruction + // to determine if we can prove known low zero bits. + APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); + computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, + Q); + unsigned TrailZ = LocalKnownZero.countTrailingOnes(); + + gep_type_iterator GTI = gep_type_begin(I); + for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { + Value *Index = I->getOperand(i); + if (StructType *STy = GTI.getStructTypeOrNull()) { + // Handle struct member offset arithmetic. + + // Handle case when index is vector zeroinitializer + Constant *CIndex = cast<Constant>(Index); + if (CIndex->isZeroValue()) + continue; + + if (CIndex->getType()->isVectorTy()) + Index = CIndex->getSplatValue(); + + unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); + const StructLayout *SL = Q.DL.getStructLayout(STy); + uint64_t Offset = SL->getElementOffset(Idx); + TrailZ = std::min<unsigned>(TrailZ, + countTrailingZeros(Offset)); + } else { + // Handle array index arithmetic. + Type *IndexedTy = GTI.getIndexedType(); + if (!IndexedTy->isSized()) { + TrailZ = 0; + break; + } + unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); + uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); + LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); + computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); + TrailZ = std::min(TrailZ, + unsigned(countTrailingZeros(TypeSize) + + LocalKnownZero.countTrailingOnes())); + } + } + + KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); + break; + } + case Instruction::PHI: { + const PHINode *P = cast<PHINode>(I); + // Handle the case of a simple two-predecessor recurrence PHI. + // There's a lot more that could theoretically be done here, but + // this is sufficient to catch some interesting cases. + if (P->getNumIncomingValues() == 2) { + for (unsigned i = 0; i != 2; ++i) { + Value *L = P->getIncomingValue(i); + Value *R = P->getIncomingValue(!i); + Operator *LU = dyn_cast<Operator>(L); + if (!LU) + continue; + unsigned Opcode = LU->getOpcode(); + // Check for operations that have the property that if + // both their operands have low zero bits, the result + // will have low zero bits. + if (Opcode == Instruction::Add || + Opcode == Instruction::Sub || + Opcode == Instruction::And || + Opcode == Instruction::Or || + Opcode == Instruction::Mul) { + Value *LL = LU->getOperand(0); + Value *LR = LU->getOperand(1); + // Find a recurrence. + if (LL == I) + L = LR; + else if (LR == I) + L = LL; + else + break; + // Ok, we have a PHI of the form L op= R. Check for low + // zero bits. + computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); + + // We need to take the minimum number of known bits + APInt KnownZero3(KnownZero), KnownOne3(KnownOne); + computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); + + KnownZero = APInt::getLowBitsSet( + BitWidth, std::min(KnownZero2.countTrailingOnes(), + KnownZero3.countTrailingOnes())); + + if (DontImproveNonNegativePhiBits) + break; + + auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); + if (OverflowOp && OverflowOp->hasNoSignedWrap()) { + // If initial value of recurrence is nonnegative, and we are adding + // a nonnegative number with nsw, the result can only be nonnegative + // or poison value regardless of the number of times we execute the + // add in phi recurrence. If initial value is negative and we are + // adding a negative number with nsw, the result can only be + // negative or poison value. Similar arguments apply to sub and mul. + // + // (add non-negative, non-negative) --> non-negative + // (add negative, negative) --> negative + if (Opcode == Instruction::Add) { + if (KnownZero2.isNegative() && KnownZero3.isNegative()) + KnownZero.setBit(BitWidth - 1); + else if (KnownOne2.isNegative() && KnownOne3.isNegative()) + KnownOne.setBit(BitWidth - 1); + } + + // (sub nsw non-negative, negative) --> non-negative + // (sub nsw negative, non-negative) --> negative + else if (Opcode == Instruction::Sub && LL == I) { + if (KnownZero2.isNegative() && KnownOne3.isNegative()) + KnownZero.setBit(BitWidth - 1); + else if (KnownOne2.isNegative() && KnownZero3.isNegative()) + KnownOne.setBit(BitWidth - 1); + } + + // (mul nsw non-negative, non-negative) --> non-negative + else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && + KnownZero3.isNegative()) + KnownZero.setBit(BitWidth - 1); + } + + break; + } + } + } + + // Unreachable blocks may have zero-operand PHI nodes. + if (P->getNumIncomingValues() == 0) + break; + + // Otherwise take the unions of the known bit sets of the operands, + // taking conservative care to avoid excessive recursion. + if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { + // Skip if every incoming value references to ourself. + if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) + break; + + KnownZero = APInt::getAllOnesValue(BitWidth); + KnownOne = APInt::getAllOnesValue(BitWidth); + for (Value *IncValue : P->incoming_values()) { + // Skip direct self references. + if (IncValue == P) continue; + + KnownZero2 = APInt(BitWidth, 0); + KnownOne2 = APInt(BitWidth, 0); + // Recurse, but cap the recursion to one level, because we don't + // want to waste time spinning around in loops. + computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); + KnownZero &= KnownZero2; + KnownOne &= KnownOne2; + // If all bits have been ruled out, there's no need to check + // more operands. + if (!KnownZero && !KnownOne) + break; + } + } + break; + } + case Instruction::Call: + case Instruction::Invoke: + // If range metadata is attached to this call, set known bits from that, + // and then intersect with known bits based on other properties of the + // function. + if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) + computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); + if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { + computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); + KnownZero |= KnownZero2; + KnownOne |= KnownOne2; + } + if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::bswap: + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + KnownZero |= KnownZero2.byteSwap(); + KnownOne |= KnownOne2.byteSwap(); + break; + case Intrinsic::ctlz: + case Intrinsic::cttz: { + unsigned LowBits = Log2_32(BitWidth)+1; + // If this call is undefined for 0, the result will be less than 2^n. + if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) + LowBits -= 1; + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); + break; + } + case Intrinsic::ctpop: { + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); + // We can bound the space the count needs. Also, bits known to be zero + // can't contribute to the population. + unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); + unsigned LeadingZeros = + APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); + assert(LeadingZeros <= BitWidth); + KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); + KnownOne &= ~KnownZero; + // TODO: we could bound KnownOne using the lower bound on the number + // of bits which might be set provided by popcnt KnownOne2. + break; + } + case Intrinsic::x86_sse42_crc32_64_64: + KnownZero |= APInt::getHighBitsSet(64, 32); + break; + } + } + break; + case Instruction::ExtractElement: + // Look through extract element. At the moment we keep this simple and skip + // tracking the specific element. But at least we might find information + // valid for all elements of the vector (for example if vector is sign + // extended, shifted, etc). + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + break; + case Instruction::ExtractValue: + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { + const ExtractValueInst *EVI = cast<ExtractValueInst>(I); + if (EVI->getNumIndices() != 1) break; + if (EVI->getIndices()[0] == 0) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::uadd_with_overflow: + case Intrinsic::sadd_with_overflow: + computeKnownBitsAddSub(true, II->getArgOperand(0), + II->getArgOperand(1), false, KnownZero, + KnownOne, KnownZero2, KnownOne2, Depth, Q); + break; + case Intrinsic::usub_with_overflow: + case Intrinsic::ssub_with_overflow: + computeKnownBitsAddSub(false, II->getArgOperand(0), + II->getArgOperand(1), false, KnownZero, + KnownOne, KnownZero2, KnownOne2, Depth, Q); + break; + case Intrinsic::umul_with_overflow: + case Intrinsic::smul_with_overflow: + computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, + KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, + Q); + break; + } + } + } + } +} + +/// Determine which bits of V are known to be either zero or one and return +/// them in the KnownZero/KnownOne bit sets. +/// +/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that +/// we cannot optimize based on the assumption that it is zero without changing +/// it to be an explicit zero. If we don't change it to zero, other code could +/// optimized based on the contradictory assumption that it is non-zero. +/// Because instcombine aggressively folds operations with undef args anyway, +/// this won't lose us code quality. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers. In the case +/// where V is a vector, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the elements in the vector. +void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, + unsigned Depth, const Query &Q) { + assert(V && "No Value?"); + assert(Depth <= MaxDepth && "Limit Search Depth"); + unsigned BitWidth = KnownZero.getBitWidth(); + + assert((V->getType()->isIntOrIntVectorTy() || + V->getType()->getScalarType()->isPointerTy()) && + "Not integer or pointer type!"); + assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && + (!V->getType()->isIntOrIntVectorTy() || + V->getType()->getScalarSizeInBits() == BitWidth) && + KnownZero.getBitWidth() == BitWidth && + KnownOne.getBitWidth() == BitWidth && + "V, KnownOne and KnownZero should have same BitWidth"); + + const APInt *C; + if (match(V, m_APInt(C))) { + // We know all of the bits for a scalar constant or a splat vector constant! + KnownOne = *C; + KnownZero = ~KnownOne; + return; + } + // Null and aggregate-zero are all-zeros. + if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { + KnownOne.clearAllBits(); + KnownZero = APInt::getAllOnesValue(BitWidth); + return; + } + // Handle a constant vector by taking the intersection of the known bits of + // each element. + if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { + // We know that CDS must be a vector of integers. Take the intersection of + // each element. + KnownZero.setAllBits(); KnownOne.setAllBits(); + APInt Elt(KnownZero.getBitWidth(), 0); + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + Elt = CDS->getElementAsInteger(i); + KnownZero &= ~Elt; + KnownOne &= Elt; + } + return; + } + + if (const auto *CV = dyn_cast<ConstantVector>(V)) { + // We know that CV must be a vector of integers. Take the intersection of + // each element. + KnownZero.setAllBits(); KnownOne.setAllBits(); + APInt Elt(KnownZero.getBitWidth(), 0); + for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { + Constant *Element = CV->getAggregateElement(i); + auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); + if (!ElementCI) { + KnownZero.clearAllBits(); + KnownOne.clearAllBits(); + return; + } + Elt = ElementCI->getValue(); + KnownZero &= ~Elt; + KnownOne &= Elt; + } + return; + } + + // Start out not knowing anything. + KnownZero.clearAllBits(); KnownOne.clearAllBits(); + + // We can't imply anything about undefs. + if (isa<UndefValue>(V)) + return; + + // There's no point in looking through other users of ConstantData for + // assumptions. Confirm that we've handled them all. + assert(!isa<ConstantData>(V) && "Unhandled constant data!"); + + // Limit search depth. + // All recursive calls that increase depth must come after this. + if (Depth == MaxDepth) + return; + + // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has + // the bits of its aliasee. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (!GA->isInterposable()) + computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); + return; + } + + if (const Operator *I = dyn_cast<Operator>(V)) + computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); + + // Aligned pointers have trailing zeros - refine KnownZero set + if (V->getType()->isPointerTy()) { + unsigned Align = V->getPointerAlignment(Q.DL); + if (Align) + KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); + } + + // computeKnownBitsFromAssume strictly refines KnownZero and + // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. + + // Check whether a nearby assume intrinsic can determine some known bits. + computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); + + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); +} + +/// Determine whether the sign bit is known to be zero or one. +/// Convenience wrapper around computeKnownBits. +void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, + unsigned Depth, const Query &Q) { + unsigned BitWidth = getBitWidth(V->getType(), Q.DL); + if (!BitWidth) { + KnownZero = false; + KnownOne = false; + return; + } + APInt ZeroBits(BitWidth, 0); + APInt OneBits(BitWidth, 0); + computeKnownBits(V, ZeroBits, OneBits, Depth, Q); + KnownOne = OneBits[BitWidth - 1]; + KnownZero = ZeroBits[BitWidth - 1]; +} + +/// Return true if the given value is known to have exactly one +/// bit set when defined. For vectors return true if every element is known to +/// be a power of two when defined. Supports values with integer or pointer +/// types and vectors of integers. +bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, + const Query &Q) { + if (const Constant *C = dyn_cast<Constant>(V)) { + if (C->isNullValue()) + return OrZero; + + const APInt *ConstIntOrConstSplatInt; + if (match(C, m_APInt(ConstIntOrConstSplatInt))) + return ConstIntOrConstSplatInt->isPowerOf2(); + } + + // 1 << X is clearly a power of two if the one is not shifted off the end. If + // it is shifted off the end then the result is undefined. + if (match(V, m_Shl(m_One(), m_Value()))) + return true; + + // (signbit) >>l X is clearly a power of two if the one is not shifted off the + // bottom. If it is shifted off the bottom then the result is undefined. + if (match(V, m_LShr(m_SignBit(), m_Value()))) + return true; + + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth++ == MaxDepth) + return false; + + Value *X = nullptr, *Y = nullptr; + // A shift left or a logical shift right of a power of two is a power of two + // or zero. + if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || + match(V, m_LShr(m_Value(X), m_Value())))) + return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); + + if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) + return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); + + if (const SelectInst *SI = dyn_cast<SelectInst>(V)) + return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && + isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); + + if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { + // A power of two and'd with anything is a power of two or zero. + if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || + isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) + return true; + // X & (-X) is always a power of two or zero. + if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) + return true; + return false; + } + + // Adding a power-of-two or zero to the same power-of-two or zero yields + // either the original power-of-two, a larger power-of-two or zero. + if (match(V, m_Add(m_Value(X), m_Value(Y)))) { + const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); + if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { + if (match(X, m_And(m_Specific(Y), m_Value())) || + match(X, m_And(m_Value(), m_Specific(Y)))) + if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) + return true; + if (match(Y, m_And(m_Specific(X), m_Value())) || + match(Y, m_And(m_Value(), m_Specific(X)))) + if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) + return true; + + unsigned BitWidth = V->getType()->getScalarSizeInBits(); + APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); + computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); + + APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); + computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); + // If i8 V is a power of two or zero: + // ZeroBits: 1 1 1 0 1 1 1 1 + // ~ZeroBits: 0 0 0 1 0 0 0 0 + if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) + // If OrZero isn't set, we cannot give back a zero result. + // Make sure either the LHS or RHS has a bit set. + if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) + return true; + } + } + + // An exact divide or right shift can only shift off zero bits, so the result + // is a power of two only if the first operand is a power of two and not + // copying a sign bit (sdiv int_min, 2). + if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || + match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { + return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, + Depth, Q); + } + + return false; +} + +/// \brief Test whether a GEP's result is known to be non-null. +/// +/// Uses properties inherent in a GEP to try to determine whether it is known +/// to be non-null. +/// +/// Currently this routine does not support vector GEPs. +static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, + const Query &Q) { + if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) + return false; + + // FIXME: Support vector-GEPs. + assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); + + // If the base pointer is non-null, we cannot walk to a null address with an + // inbounds GEP in address space zero. + if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) + return true; + + // Walk the GEP operands and see if any operand introduces a non-zero offset. + // If so, then the GEP cannot produce a null pointer, as doing so would + // inherently violate the inbounds contract within address space zero. + for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); + GTI != GTE; ++GTI) { + // Struct types are easy -- they must always be indexed by a constant. + if (StructType *STy = GTI.getStructTypeOrNull()) { + ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); + unsigned ElementIdx = OpC->getZExtValue(); + const StructLayout *SL = Q.DL.getStructLayout(STy); + uint64_t ElementOffset = SL->getElementOffset(ElementIdx); + if (ElementOffset > 0) + return true; + continue; + } + + // If we have a zero-sized type, the index doesn't matter. Keep looping. + if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) + continue; + + // Fast path the constant operand case both for efficiency and so we don't + // increment Depth when just zipping down an all-constant GEP. + if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { + if (!OpC->isZero()) + return true; + continue; + } + + // We post-increment Depth here because while isKnownNonZero increments it + // as well, when we pop back up that increment won't persist. We don't want + // to recurse 10k times just because we have 10k GEP operands. We don't + // bail completely out because we want to handle constant GEPs regardless + // of depth. + if (Depth++ >= MaxDepth) + continue; + + if (isKnownNonZero(GTI.getOperand(), Depth, Q)) + return true; + } + + return false; +} + +/// Does the 'Range' metadata (which must be a valid MD_range operand list) +/// ensure that the value it's attached to is never Value? 'RangeType' is +/// is the type of the value described by the range. +static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { + const unsigned NumRanges = Ranges->getNumOperands() / 2; + assert(NumRanges >= 1); + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Lower = + mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); + ConstantRange Range(Lower->getValue(), Upper->getValue()); + if (Range.contains(Value)) + return false; + } + return true; +} + +/// Return true if the given value is known to be non-zero when defined. +/// For vectors return true if every element is known to be non-zero when +/// defined. Supports values with integer or pointer type and vectors of +/// integers. +bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { + if (auto *C = dyn_cast<Constant>(V)) { + if (C->isNullValue()) + return false; + if (isa<ConstantInt>(C)) + // Must be non-zero due to null test above. + return true; + + // For constant vectors, check that all elements are undefined or known + // non-zero to determine that the whole vector is known non-zero. + if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { + for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { + Constant *Elt = C->getAggregateElement(i); + if (!Elt || Elt->isNullValue()) + return false; + if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) + return false; + } + return true; + } + + return false; + } + + if (auto *I = dyn_cast<Instruction>(V)) { + if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { + // If the possible ranges don't contain zero, then the value is + // definitely non-zero. + if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { + const APInt ZeroValue(Ty->getBitWidth(), 0); + if (rangeMetadataExcludesValue(Ranges, ZeroValue)) + return true; + } + } + } + + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth++ >= MaxDepth) + return false; + + // Check for pointer simplifications. + if (V->getType()->isPointerTy()) { + if (isKnownNonNull(V)) + return true; + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) + if (isGEPKnownNonNull(GEP, Depth, Q)) + return true; + } + + unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); + + // X | Y != 0 if X != 0 or Y != 0. + Value *X = nullptr, *Y = nullptr; + if (match(V, m_Or(m_Value(X), m_Value(Y)))) + return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); + + // ext X != 0 if X != 0. + if (isa<SExtInst>(V) || isa<ZExtInst>(V)) + return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); + + // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined + // if the lowest bit is shifted off the end. + if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { + // shl nuw can't remove any non-zero bits. + const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); + if (BO->hasNoUnsignedWrap()) + return isKnownNonZero(X, Depth, Q); + + APInt KnownZero(BitWidth, 0); + APInt KnownOne(BitWidth, 0); + computeKnownBits(X, KnownZero, KnownOne, Depth, Q); + if (KnownOne[0]) + return true; + } + // shr X, Y != 0 if X is negative. Note that the value of the shift is not + // defined if the sign bit is shifted off the end. + else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { + // shr exact can only shift out zero bits. + const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); + if (BO->isExact()) + return isKnownNonZero(X, Depth, Q); + + bool XKnownNonNegative, XKnownNegative; + ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); + if (XKnownNegative) + return true; + + // If the shifter operand is a constant, and all of the bits shifted + // out are known to be zero, and X is known non-zero then at least one + // non-zero bit must remain. + if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { + APInt KnownZero(BitWidth, 0); + APInt KnownOne(BitWidth, 0); + computeKnownBits(X, KnownZero, KnownOne, Depth, Q); + + auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); + // Is there a known one in the portion not shifted out? + if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) + return true; + // Are all the bits to be shifted out known zero? + if (KnownZero.countTrailingOnes() >= ShiftVal) + return isKnownNonZero(X, Depth, Q); + } + } + // div exact can only produce a zero if the dividend is zero. + else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { + return isKnownNonZero(X, Depth, Q); + } + // X + Y. + else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { + bool XKnownNonNegative, XKnownNegative; + bool YKnownNonNegative, YKnownNegative; + ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); + ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); + + // If X and Y are both non-negative (as signed values) then their sum is not + // zero unless both X and Y are zero. + if (XKnownNonNegative && YKnownNonNegative) + if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) + return true; + + // If X and Y are both negative (as signed values) then their sum is not + // zero unless both X and Y equal INT_MIN. + if (BitWidth && XKnownNegative && YKnownNegative) { + APInt KnownZero(BitWidth, 0); + APInt KnownOne(BitWidth, 0); + APInt Mask = APInt::getSignedMaxValue(BitWidth); + // The sign bit of X is set. If some other bit is set then X is not equal + // to INT_MIN. + computeKnownBits(X, KnownZero, KnownOne, Depth, Q); + if ((KnownOne & Mask) != 0) + return true; + // The sign bit of Y is set. If some other bit is set then Y is not equal + // to INT_MIN. + computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); + if ((KnownOne & Mask) != 0) + return true; + } + + // The sum of a non-negative number and a power of two is not zero. + if (XKnownNonNegative && + isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) + return true; + if (YKnownNonNegative && + isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) + return true; + } + // X * Y. + else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { + const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); + // If X and Y are non-zero then so is X * Y as long as the multiplication + // does not overflow. + if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && + isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) + return true; + } + // (C ? X : Y) != 0 if X != 0 and Y != 0. + else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { + if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && + isKnownNonZero(SI->getFalseValue(), Depth, Q)) + return true; + } + // PHI + else if (const PHINode *PN = dyn_cast<PHINode>(V)) { + // Try and detect a recurrence that monotonically increases from a + // starting value, as these are common as induction variables. + if (PN->getNumIncomingValues() == 2) { + Value *Start = PN->getIncomingValue(0); + Value *Induction = PN->getIncomingValue(1); + if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) + std::swap(Start, Induction); + if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { + if (!C->isZero() && !C->isNegative()) { + ConstantInt *X; + if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || + match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && + !X->isNegative()) + return true; + } + } + } + // Check if all incoming values are non-zero constant. + bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { + return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); + }); + if (AllNonZeroConstants) + return true; + } + + if (!BitWidth) return false; + APInt KnownZero(BitWidth, 0); + APInt KnownOne(BitWidth, 0); + computeKnownBits(V, KnownZero, KnownOne, Depth, Q); + return KnownOne != 0; +} + +/// Return true if V2 == V1 + X, where X is known non-zero. +static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { + const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); + if (!BO || BO->getOpcode() != Instruction::Add) + return false; + Value *Op = nullptr; + if (V2 == BO->getOperand(0)) + Op = BO->getOperand(1); + else if (V2 == BO->getOperand(1)) + Op = BO->getOperand(0); + else + return false; + return isKnownNonZero(Op, 0, Q); +} + +/// Return true if it is known that V1 != V2. +static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { + if (V1->getType()->isVectorTy() || V1 == V2) + return false; + if (V1->getType() != V2->getType()) + // We can't look through casts yet. + return false; + if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) + return true; + + if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { + // Are any known bits in V1 contradictory to known bits in V2? If V1 + // has a known zero where V2 has a known one, they must not be equal. + auto BitWidth = Ty->getBitWidth(); + APInt KnownZero1(BitWidth, 0); + APInt KnownOne1(BitWidth, 0); + computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); + APInt KnownZero2(BitWidth, 0); + APInt KnownOne2(BitWidth, 0); + computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); + + auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); + if (OppositeBits.getBoolValue()) + return true; + } + return false; +} + +/// Return true if 'V & Mask' is known to be zero. We use this predicate to +/// simplify operations downstream. Mask is known to be zero for bits that V +/// cannot have. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers. In the case +/// where V is a vector, the mask, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the elements in the vector. +bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, + const Query &Q) { + APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); + computeKnownBits(V, KnownZero, KnownOne, Depth, Q); + return (KnownZero & Mask) == Mask; +} + +/// For vector constants, loop over the elements and find the constant with the +/// minimum number of sign bits. Return 0 if the value is not a vector constant +/// or if any element was not analyzed; otherwise, return the count for the +/// element with the minimum number of sign bits. +static unsigned computeNumSignBitsVectorConstant(const Value *V, + unsigned TyBits) { + const auto *CV = dyn_cast<Constant>(V); + if (!CV || !CV->getType()->isVectorTy()) + return 0; + + unsigned MinSignBits = TyBits; + unsigned NumElts = CV->getType()->getVectorNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + // If we find a non-ConstantInt, bail out. + auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); + if (!Elt) + return 0; + + // If the sign bit is 1, flip the bits, so we always count leading zeros. + APInt EltVal = Elt->getValue(); + if (EltVal.isNegative()) + EltVal = ~EltVal; + MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); + } + + return MinSignBits; +} + +/// Return the number of times the sign bit of the register is replicated into +/// the other bits. We know that at least 1 bit is always equal to the sign bit +/// (itself), but other cases can give us information. For example, immediately +/// after an "ashr X, 2", we know that the top 3 bits are all equal to each +/// other, so we return 3. For vectors, return the number of sign bits for the +/// vector element with the mininum number of known sign bits. +unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { + unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); + unsigned Tmp, Tmp2; + unsigned FirstAnswer = 1; + + // Note that ConstantInt is handled by the general computeKnownBits case + // below. + + if (Depth == MaxDepth) + return 1; // Limit search depth. + + const Operator *U = dyn_cast<Operator>(V); + switch (Operator::getOpcode(V)) { + default: break; + case Instruction::SExt: + Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); + return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; + + case Instruction::SDiv: { + const APInt *Denominator; + // sdiv X, C -> adds log(C) sign bits. + if (match(U->getOperand(1), m_APInt(Denominator))) { + + // Ignore non-positive denominator. + if (!Denominator->isStrictlyPositive()) + break; + + // Calculate the incoming numerator bits. + unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + + // Add floor(log(C)) bits to the numerator bits. + return std::min(TyBits, NumBits + Denominator->logBase2()); + } + break; + } + + case Instruction::SRem: { + const APInt *Denominator; + // srem X, C -> we know that the result is within [-C+1,C) when C is a + // positive constant. This let us put a lower bound on the number of sign + // bits. + if (match(U->getOperand(1), m_APInt(Denominator))) { + + // Ignore non-positive denominator. + if (!Denominator->isStrictlyPositive()) + break; + + // Calculate the incoming numerator bits. SRem by a positive constant + // can't lower the number of sign bits. + unsigned NumrBits = + ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + + // Calculate the leading sign bit constraints by examining the + // denominator. Given that the denominator is positive, there are two + // cases: + // + // 1. the numerator is positive. The result range is [0,C) and [0,C) u< + // (1 << ceilLogBase2(C)). + // + // 2. the numerator is negative. Then the result range is (-C,0] and + // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). + // + // Thus a lower bound on the number of sign bits is `TyBits - + // ceilLogBase2(C)`. + + unsigned ResBits = TyBits - Denominator->ceilLogBase2(); + return std::max(NumrBits, ResBits); + } + break; + } + + case Instruction::AShr: { + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + // ashr X, C -> adds C sign bits. Vectors too. + const APInt *ShAmt; + if (match(U->getOperand(1), m_APInt(ShAmt))) { + Tmp += ShAmt->getZExtValue(); + if (Tmp > TyBits) Tmp = TyBits; + } + return Tmp; + } + case Instruction::Shl: { + const APInt *ShAmt; + if (match(U->getOperand(1), m_APInt(ShAmt))) { + // shl destroys sign bits. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + Tmp2 = ShAmt->getZExtValue(); + if (Tmp2 >= TyBits || // Bad shift. + Tmp2 >= Tmp) break; // Shifted all sign bits out. + return Tmp - Tmp2; + } + break; + } + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: // NOT is handled here. + // Logical binary ops preserve the number of sign bits at the worst. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp != 1) { + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + FirstAnswer = std::min(Tmp, Tmp2); + // We computed what we know about the sign bits as our first + // answer. Now proceed to the generic code that uses + // computeKnownBits, and pick whichever answer is better. + } + break; + + case Instruction::Select: + Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp == 1) return 1; // Early out. + Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); + return std::min(Tmp, Tmp2); + + case Instruction::Add: + // Add can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp == 1) return 1; // Early out. + + // Special case decrementing a value (ADD X, -1): + if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) + if (CRHS->isAllOnesValue()) { + APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); + computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); + + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) + return TyBits; + + // If we are subtracting one from a positive number, there is no carry + // out of the result. + if (KnownZero.isNegative()) + return Tmp; + } + + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp2 == 1) return 1; + return std::min(Tmp, Tmp2)-1; + + case Instruction::Sub: + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp2 == 1) return 1; + + // Handle NEG. + if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) + if (CLHS->isNullValue()) { + APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); + computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) + return TyBits; + + // If the input is known to be positive (the sign bit is known clear), + // the output of the NEG has the same number of sign bits as the input. + if (KnownZero.isNegative()) + return Tmp2; + + // Otherwise, we treat this like a SUB. + } + + // Sub can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp == 1) return 1; // Early out. + return std::min(Tmp, Tmp2)-1; + + case Instruction::PHI: { + const PHINode *PN = cast<PHINode>(U); + unsigned NumIncomingValues = PN->getNumIncomingValues(); + // Don't analyze large in-degree PHIs. + if (NumIncomingValues > 4) break; + // Unreachable blocks may have zero-operand PHI nodes. + if (NumIncomingValues == 0) break; + + // Take the minimum of all incoming values. This can't infinitely loop + // because of our depth threshold. + Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); + for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { + if (Tmp == 1) return Tmp; + Tmp = std::min( + Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); + } + return Tmp; + } + + case Instruction::Trunc: + // FIXME: it's tricky to do anything useful for this, but it is an important + // case for targets like X86. + break; + + case Instruction::ExtractElement: + // Look through extract element. At the moment we keep this simple and skip + // tracking the specific element. But at least we might find information + // valid for all elements of the vector (for example if vector is sign + // extended, shifted, etc). + return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + } + + // Finally, if we can prove that the top bits of the result are 0's or 1's, + // use this information. + + // If we can examine all elements of a vector constant successfully, we're + // done (we can't do any better than that). If not, keep trying. + if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) + return VecSignBits; + + APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); + computeKnownBits(V, KnownZero, KnownOne, Depth, Q); + + // If we know that the sign bit is either zero or one, determine the number of + // identical bits in the top of the input value. + if (KnownZero.isNegative()) + return std::max(FirstAnswer, KnownZero.countLeadingOnes()); + + if (KnownOne.isNegative()) + return std::max(FirstAnswer, KnownOne.countLeadingOnes()); + + // computeKnownBits gave us no extra information about the top bits. + return FirstAnswer; +} + +/// This function computes the integer multiple of Base that equals V. +/// If successful, it returns true and returns the multiple in +/// Multiple. If unsuccessful, it returns false. It looks +/// through SExt instructions only if LookThroughSExt is true. +bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, + bool LookThroughSExt, unsigned Depth) { + const unsigned MaxDepth = 6; + + assert(V && "No Value?"); + assert(Depth <= MaxDepth && "Limit Search Depth"); + assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); + + Type *T = V->getType(); + + ConstantInt *CI = dyn_cast<ConstantInt>(V); + + if (Base == 0) + return false; + + if (Base == 1) { + Multiple = V; + return true; + } + + ConstantExpr *CO = dyn_cast<ConstantExpr>(V); + Constant *BaseVal = ConstantInt::get(T, Base); + if (CO && CO == BaseVal) { + // Multiple is 1. + Multiple = ConstantInt::get(T, 1); + return true; + } + + if (CI && CI->getZExtValue() % Base == 0) { + Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); + return true; + } + + if (Depth == MaxDepth) return false; // Limit search depth. + + Operator *I = dyn_cast<Operator>(V); + if (!I) return false; + + switch (I->getOpcode()) { + default: break; + case Instruction::SExt: + if (!LookThroughSExt) return false; + // otherwise fall through to ZExt + case Instruction::ZExt: + return ComputeMultiple(I->getOperand(0), Base, Multiple, + LookThroughSExt, Depth+1); + case Instruction::Shl: + case Instruction::Mul: { + Value *Op0 = I->getOperand(0); + Value *Op1 = I->getOperand(1); + + if (I->getOpcode() == Instruction::Shl) { + ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); + if (!Op1CI) return false; + // Turn Op0 << Op1 into Op0 * 2^Op1 + APInt Op1Int = Op1CI->getValue(); + uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); + APInt API(Op1Int.getBitWidth(), 0); + API.setBit(BitToSet); + Op1 = ConstantInt::get(V->getContext(), API); + } + + Value *Mul0 = nullptr; + if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { + if (Constant *Op1C = dyn_cast<Constant>(Op1)) + if (Constant *MulC = dyn_cast<Constant>(Mul0)) { + if (Op1C->getType()->getPrimitiveSizeInBits() < + MulC->getType()->getPrimitiveSizeInBits()) + Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); + if (Op1C->getType()->getPrimitiveSizeInBits() > + MulC->getType()->getPrimitiveSizeInBits()) + MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); + + // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) + Multiple = ConstantExpr::getMul(MulC, Op1C); + return true; + } + + if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) + if (Mul0CI->getValue() == 1) { + // V == Base * Op1, so return Op1 + Multiple = Op1; + return true; + } + } + + Value *Mul1 = nullptr; + if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { + if (Constant *Op0C = dyn_cast<Constant>(Op0)) + if (Constant *MulC = dyn_cast<Constant>(Mul1)) { + if (Op0C->getType()->getPrimitiveSizeInBits() < + MulC->getType()->getPrimitiveSizeInBits()) + Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); + if (Op0C->getType()->getPrimitiveSizeInBits() > + MulC->getType()->getPrimitiveSizeInBits()) + MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); + + // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) + Multiple = ConstantExpr::getMul(MulC, Op0C); + return true; + } + + if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) + if (Mul1CI->getValue() == 1) { + // V == Base * Op0, so return Op0 + Multiple = Op0; + return true; + } + } + } + } + + // We could not determine if V is a multiple of Base. + return false; +} + +Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, + const TargetLibraryInfo *TLI) { + const Function *F = ICS.getCalledFunction(); + if (!F) + return Intrinsic::not_intrinsic; + + if (F->isIntrinsic()) + return F->getIntrinsicID(); + + if (!TLI) + return Intrinsic::not_intrinsic; + + LibFunc::Func Func; + // We're going to make assumptions on the semantics of the functions, check + // that the target knows that it's available in this environment and it does + // not have local linkage. + if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) + return Intrinsic::not_intrinsic; + + if (!ICS.onlyReadsMemory()) + return Intrinsic::not_intrinsic; + + // Otherwise check if we have a call to a function that can be turned into a + // vector intrinsic. + switch (Func) { + default: + break; + case LibFunc::sin: + case LibFunc::sinf: + case LibFunc::sinl: + return Intrinsic::sin; + case LibFunc::cos: + case LibFunc::cosf: + case LibFunc::cosl: + return Intrinsic::cos; + case LibFunc::exp: + case LibFunc::expf: + case LibFunc::expl: + return Intrinsic::exp; + case LibFunc::exp2: + case LibFunc::exp2f: + case LibFunc::exp2l: + return Intrinsic::exp2; + case LibFunc::log: + case LibFunc::logf: + case LibFunc::logl: + return Intrinsic::log; + case LibFunc::log10: + case LibFunc::log10f: + case LibFunc::log10l: + return Intrinsic::log10; + case LibFunc::log2: + case LibFunc::log2f: + case LibFunc::log2l: + return Intrinsic::log2; + case LibFunc::fabs: + case LibFunc::fabsf: + case LibFunc::fabsl: + return Intrinsic::fabs; + case LibFunc::fmin: + case LibFunc::fminf: + case LibFunc::fminl: + return Intrinsic::minnum; + case LibFunc::fmax: + case LibFunc::fmaxf: + case LibFunc::fmaxl: + return Intrinsic::maxnum; + case LibFunc::copysign: + case LibFunc::copysignf: + case LibFunc::copysignl: + return Intrinsic::copysign; + case LibFunc::floor: + case LibFunc::floorf: + case LibFunc::floorl: + return Intrinsic::floor; + case LibFunc::ceil: + case LibFunc::ceilf: + case LibFunc::ceill: + return Intrinsic::ceil; + case LibFunc::trunc: + case LibFunc::truncf: + case LibFunc::truncl: + return Intrinsic::trunc; + case LibFunc::rint: + case LibFunc::rintf: + case LibFunc::rintl: + return Intrinsic::rint; + case LibFunc::nearbyint: + case LibFunc::nearbyintf: + case LibFunc::nearbyintl: + return Intrinsic::nearbyint; + case LibFunc::round: + case LibFunc::roundf: + case LibFunc::roundl: + return Intrinsic::round; + case LibFunc::pow: + case LibFunc::powf: + case LibFunc::powl: + return Intrinsic::pow; + case LibFunc::sqrt: + case LibFunc::sqrtf: + case LibFunc::sqrtl: + if (ICS->hasNoNaNs()) + return Intrinsic::sqrt; + return Intrinsic::not_intrinsic; + } + + return Intrinsic::not_intrinsic; +} + +/// Return true if we can prove that the specified FP value is never equal to +/// -0.0. +/// +/// NOTE: this function will need to be revisited when we support non-default +/// rounding modes! +/// +bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, + unsigned Depth) { + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) + return !CFP->getValueAPF().isNegZero(); + + if (Depth == MaxDepth) + return false; // Limit search depth. + + const Operator *I = dyn_cast<Operator>(V); + if (!I) return false; + + // Check if the nsz fast-math flag is set + if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) + if (FPO->hasNoSignedZeros()) + return true; + + // (add x, 0.0) is guaranteed to return +0.0, not -0.0. + if (I->getOpcode() == Instruction::FAdd) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) + if (CFP->isNullValue()) + return true; + + // sitofp and uitofp turn into +0.0 for zero. + if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) + return true; + + if (const CallInst *CI = dyn_cast<CallInst>(I)) { + Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); + switch (IID) { + default: + break; + // sqrt(-0.0) = -0.0, no other negative results are possible. + case Intrinsic::sqrt: + return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); + // fabs(x) != -0.0 + case Intrinsic::fabs: + return true; + } + } + + return false; +} + +bool llvm::CannotBeOrderedLessThanZero(const Value *V, + const TargetLibraryInfo *TLI, + unsigned Depth) { + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) + return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); + + if (Depth == MaxDepth) + return false; // Limit search depth. + + const Operator *I = dyn_cast<Operator>(V); + if (!I) return false; + + switch (I->getOpcode()) { + default: break; + // Unsigned integers are always nonnegative. + case Instruction::UIToFP: + return true; + case Instruction::FMul: + // x*x is always non-negative or a NaN. + if (I->getOperand(0) == I->getOperand(1)) + return true; + LLVM_FALLTHROUGH; + case Instruction::FAdd: + case Instruction::FDiv: + case Instruction::FRem: + return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && + CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); + case Instruction::Select: + return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && + CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); + case Instruction::FPExt: + case Instruction::FPTrunc: + // Widening/narrowing never change sign. + return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); + case Instruction::Call: + Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); + switch (IID) { + default: + break; + case Intrinsic::maxnum: + return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || + CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); + case Intrinsic::minnum: + return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && + CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::fabs: + case Intrinsic::sqrt: + return true; + case Intrinsic::powi: + if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { + // powi(x,n) is non-negative if n is even. + if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) + return true; + } + return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); + case Intrinsic::fma: + case Intrinsic::fmuladd: + // x*x+y is non-negative if y is non-negative. + return I->getOperand(0) == I->getOperand(1) && + CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); + } + break; + } + return false; +} + +/// If the specified value can be set by repeating the same byte in memory, +/// return the i8 value that it is represented with. This is +/// true for all i8 values obviously, but is also true for i32 0, i32 -1, +/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated +/// byte store (e.g. i16 0x1234), return null. +Value *llvm::isBytewiseValue(Value *V) { + // All byte-wide stores are splatable, even of arbitrary variables. + if (V->getType()->isIntegerTy(8)) return V; + + // Handle 'null' ConstantArrayZero etc. + if (Constant *C = dyn_cast<Constant>(V)) + if (C->isNullValue()) + return Constant::getNullValue(Type::getInt8Ty(V->getContext())); + + // Constant float and double values can be handled as integer values if the + // corresponding integer value is "byteable". An important case is 0.0. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { + if (CFP->getType()->isFloatTy()) + V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); + if (CFP->getType()->isDoubleTy()) + V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); + // Don't handle long double formats, which have strange constraints. + } + + // We can handle constant integers that are multiple of 8 bits. + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + if (CI->getBitWidth() % 8 == 0) { + assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); + + if (!CI->getValue().isSplat(8)) + return nullptr; + return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); + } + } + + // A ConstantDataArray/Vector is splatable if all its members are equal and + // also splatable. + if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { + Value *Elt = CA->getElementAsConstant(0); + Value *Val = isBytewiseValue(Elt); + if (!Val) + return nullptr; + + for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) + if (CA->getElementAsConstant(I) != Elt) + return nullptr; + + return Val; + } + + // Conceptually, we could handle things like: + // %a = zext i8 %X to i16 + // %b = shl i16 %a, 8 + // %c = or i16 %a, %b + // but until there is an example that actually needs this, it doesn't seem + // worth worrying about. + return nullptr; +} + + +// This is the recursive version of BuildSubAggregate. It takes a few different +// arguments. Idxs is the index within the nested struct From that we are +// looking at now (which is of type IndexedType). IdxSkip is the number of +// indices from Idxs that should be left out when inserting into the resulting +// struct. To is the result struct built so far, new insertvalue instructions +// build on that. +static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, + SmallVectorImpl<unsigned> &Idxs, + unsigned IdxSkip, + Instruction *InsertBefore) { + llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); + if (STy) { + // Save the original To argument so we can modify it + Value *OrigTo = To; + // General case, the type indexed by Idxs is a struct + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + // Process each struct element recursively + Idxs.push_back(i); + Value *PrevTo = To; + To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, + InsertBefore); + Idxs.pop_back(); + if (!To) { + // Couldn't find any inserted value for this index? Cleanup + while (PrevTo != OrigTo) { + InsertValueInst* Del = cast<InsertValueInst>(PrevTo); + PrevTo = Del->getAggregateOperand(); + Del->eraseFromParent(); + } + // Stop processing elements + break; + } + } + // If we successfully found a value for each of our subaggregates + if (To) + return To; + } + // Base case, the type indexed by SourceIdxs is not a struct, or not all of + // the struct's elements had a value that was inserted directly. In the latter + // case, perhaps we can't determine each of the subelements individually, but + // we might be able to find the complete struct somewhere. + + // Find the value that is at that particular spot + Value *V = FindInsertedValue(From, Idxs); + + if (!V) + return nullptr; + + // Insert the value in the new (sub) aggregrate + return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), + "tmp", InsertBefore); +} + +// This helper takes a nested struct and extracts a part of it (which is again a +// struct) into a new value. For example, given the struct: +// { a, { b, { c, d }, e } } +// and the indices "1, 1" this returns +// { c, d }. +// +// It does this by inserting an insertvalue for each element in the resulting +// struct, as opposed to just inserting a single struct. This will only work if +// each of the elements of the substruct are known (ie, inserted into From by an +// insertvalue instruction somewhere). +// +// All inserted insertvalue instructions are inserted before InsertBefore +static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, + Instruction *InsertBefore) { + assert(InsertBefore && "Must have someplace to insert!"); + Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), + idx_range); + Value *To = UndefValue::get(IndexedType); + SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); + unsigned IdxSkip = Idxs.size(); + + return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); +} + +/// Given an aggregrate and an sequence of indices, see if +/// the scalar value indexed is already around as a register, for example if it +/// were inserted directly into the aggregrate. +/// +/// If InsertBefore is not null, this function will duplicate (modified) +/// insertvalues when a part of a nested struct is extracted. +Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, + Instruction *InsertBefore) { + // Nothing to index? Just return V then (this is useful at the end of our + // recursion). + if (idx_range.empty()) + return V; + // We have indices, so V should have an indexable type. + assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && + "Not looking at a struct or array?"); + assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && + "Invalid indices for type?"); + + if (Constant *C = dyn_cast<Constant>(V)) { + C = C->getAggregateElement(idx_range[0]); + if (!C) return nullptr; + return FindInsertedValue(C, idx_range.slice(1), InsertBefore); + } + + if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { + // Loop the indices for the insertvalue instruction in parallel with the + // requested indices + const unsigned *req_idx = idx_range.begin(); + for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); + i != e; ++i, ++req_idx) { + if (req_idx == idx_range.end()) { + // We can't handle this without inserting insertvalues + if (!InsertBefore) + return nullptr; + + // The requested index identifies a part of a nested aggregate. Handle + // this specially. For example, + // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 + // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 + // %C = extractvalue {i32, { i32, i32 } } %B, 1 + // This can be changed into + // %A = insertvalue {i32, i32 } undef, i32 10, 0 + // %C = insertvalue {i32, i32 } %A, i32 11, 1 + // which allows the unused 0,0 element from the nested struct to be + // removed. + return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), + InsertBefore); + } + + // This insert value inserts something else than what we are looking for. + // See if the (aggregate) value inserted into has the value we are + // looking for, then. + if (*req_idx != *i) + return FindInsertedValue(I->getAggregateOperand(), idx_range, + InsertBefore); + } + // If we end up here, the indices of the insertvalue match with those + // requested (though possibly only partially). Now we recursively look at + // the inserted value, passing any remaining indices. + return FindInsertedValue(I->getInsertedValueOperand(), + makeArrayRef(req_idx, idx_range.end()), + InsertBefore); + } + + if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { + // If we're extracting a value from an aggregate that was extracted from + // something else, we can extract from that something else directly instead. + // However, we will need to chain I's indices with the requested indices. + + // Calculate the number of indices required + unsigned size = I->getNumIndices() + idx_range.size(); + // Allocate some space to put the new indices in + SmallVector<unsigned, 5> Idxs; + Idxs.reserve(size); + // Add indices from the extract value instruction + Idxs.append(I->idx_begin(), I->idx_end()); + + // Add requested indices + Idxs.append(idx_range.begin(), idx_range.end()); + + assert(Idxs.size() == size + && "Number of indices added not correct?"); + + return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); + } + // Otherwise, we don't know (such as, extracting from a function return value + // or load instruction) + return nullptr; +} + +/// Analyze the specified pointer to see if it can be expressed as a base +/// pointer plus a constant offset. Return the base and offset to the caller. +Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, + const DataLayout &DL) { + unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); + APInt ByteOffset(BitWidth, 0); + + // We walk up the defs but use a visited set to handle unreachable code. In + // that case, we stop after accumulating the cycle once (not that it + // matters). + SmallPtrSet<Value *, 16> Visited; + while (Visited.insert(Ptr).second) { + if (Ptr->getType()->isVectorTy()) + break; + + if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { + // If one of the values we have visited is an addrspacecast, then + // the pointer type of this GEP may be different from the type + // of the Ptr parameter which was passed to this function. This + // means when we construct GEPOffset, we need to use the size + // of GEP's pointer type rather than the size of the original + // pointer type. + APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); + if (!GEP->accumulateConstantOffset(DL, GEPOffset)) + break; + + ByteOffset += GEPOffset.getSExtValue(); + + Ptr = GEP->getPointerOperand(); + } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || + Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { + Ptr = cast<Operator>(Ptr)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { + if (GA->isInterposable()) + break; + Ptr = GA->getAliasee(); + } else { + break; + } + } + Offset = ByteOffset.getSExtValue(); + return Ptr; +} + +bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { + // Make sure the GEP has exactly three arguments. + if (GEP->getNumOperands() != 3) + return false; + + // Make sure the index-ee is a pointer to array of i8. + ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); + if (!AT || !AT->getElementType()->isIntegerTy(8)) + return false; + + // Check to make sure that the first operand of the GEP is an integer and + // has value 0 so that we are sure we're indexing into the initializer. + const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); + if (!FirstIdx || !FirstIdx->isZero()) + return false; + + return true; +} + +/// This function computes the length of a null-terminated C string pointed to +/// by V. If successful, it returns true and returns the string in Str. +/// If unsuccessful, it returns false. +bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, + uint64_t Offset, bool TrimAtNul) { + assert(V); + + // Look through bitcast instructions and geps. + V = V->stripPointerCasts(); + + // If the value is a GEP instruction or constant expression, treat it as an + // offset. + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + // The GEP operator should be based on a pointer to string constant, and is + // indexing into the string constant. + if (!isGEPBasedOnPointerToString(GEP)) + return false; + + // If the second index isn't a ConstantInt, then this is a variable index + // into the array. If this occurs, we can't say anything meaningful about + // the string. + uint64_t StartIdx = 0; + if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) + StartIdx = CI->getZExtValue(); + else + return false; + return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, + TrimAtNul); + } + + // The GEP instruction, constant or instruction, must reference a global + // variable that is a constant and is initialized. The referenced constant + // initializer is the array that we'll use for optimization. + const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); + if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) + return false; + + // Handle the all-zeros case. + if (GV->getInitializer()->isNullValue()) { + // This is a degenerate case. The initializer is constant zero so the + // length of the string must be zero. + Str = ""; + return true; + } + + // This must be a ConstantDataArray. + const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); + if (!Array || !Array->isString()) + return false; + + // Get the number of elements in the array. + uint64_t NumElts = Array->getType()->getArrayNumElements(); + + // Start out with the entire array in the StringRef. + Str = Array->getAsString(); + + if (Offset > NumElts) + return false; + + // Skip over 'offset' bytes. + Str = Str.substr(Offset); + + if (TrimAtNul) { + // Trim off the \0 and anything after it. If the array is not nul + // terminated, we just return the whole end of string. The client may know + // some other way that the string is length-bound. + Str = Str.substr(0, Str.find('\0')); + } + return true; +} + +// These next two are very similar to the above, but also look through PHI +// nodes. +// TODO: See if we can integrate these two together. + +/// If we can compute the length of the string pointed to by +/// the specified pointer, return 'len+1'. If we can't, return 0. +static uint64_t GetStringLengthH(const Value *V, + SmallPtrSetImpl<const PHINode*> &PHIs) { + // Look through noop bitcast instructions. + V = V->stripPointerCasts(); + + // If this is a PHI node, there are two cases: either we have already seen it + // or we haven't. + if (const PHINode *PN = dyn_cast<PHINode>(V)) { + if (!PHIs.insert(PN).second) + return ~0ULL; // already in the set. + + // If it was new, see if all the input strings are the same length. + uint64_t LenSoFar = ~0ULL; + for (Value *IncValue : PN->incoming_values()) { + uint64_t Len = GetStringLengthH(IncValue, PHIs); + if (Len == 0) return 0; // Unknown length -> unknown. + + if (Len == ~0ULL) continue; + + if (Len != LenSoFar && LenSoFar != ~0ULL) + return 0; // Disagree -> unknown. + LenSoFar = Len; + } + + // Success, all agree. + return LenSoFar; + } + + // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) + if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { + uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); + if (Len1 == 0) return 0; + uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); + if (Len2 == 0) return 0; + if (Len1 == ~0ULL) return Len2; + if (Len2 == ~0ULL) return Len1; + if (Len1 != Len2) return 0; + return Len1; + } + + // Otherwise, see if we can read the string. + StringRef StrData; + if (!getConstantStringInfo(V, StrData)) + return 0; + + return StrData.size()+1; +} + +/// If we can compute the length of the string pointed to by +/// the specified pointer, return 'len+1'. If we can't, return 0. +uint64_t llvm::GetStringLength(const Value *V) { + if (!V->getType()->isPointerTy()) return 0; + + SmallPtrSet<const PHINode*, 32> PHIs; + uint64_t Len = GetStringLengthH(V, PHIs); + // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return + // an empty string as a length. + return Len == ~0ULL ? 1 : Len; +} + +/// \brief \p PN defines a loop-variant pointer to an object. Check if the +/// previous iteration of the loop was referring to the same object as \p PN. +static bool isSameUnderlyingObjectInLoop(const PHINode *PN, + const LoopInfo *LI) { + // Find the loop-defined value. + Loop *L = LI->getLoopFor(PN->getParent()); + if (PN->getNumIncomingValues() != 2) + return true; + + // Find the value from previous iteration. + auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); + if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) + PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); + if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) + return true; + + // If a new pointer is loaded in the loop, the pointer references a different + // object in every iteration. E.g.: + // for (i) + // int *p = a[i]; + // ... + if (auto *Load = dyn_cast<LoadInst>(PrevValue)) + if (!L->isLoopInvariant(Load->getPointerOperand())) + return false; + return true; +} + +Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, + unsigned MaxLookup) { + if (!V->getType()->isPointerTy()) + return V; + for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { + if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + V = GEP->getPointerOperand(); + } else if (Operator::getOpcode(V) == Instruction::BitCast || + Operator::getOpcode(V) == Instruction::AddrSpaceCast) { + V = cast<Operator>(V)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (GA->isInterposable()) + return V; + V = GA->getAliasee(); + } else { + if (auto CS = CallSite(V)) + if (Value *RV = CS.getReturnedArgOperand()) { + V = RV; + continue; + } + + // See if InstructionSimplify knows any relevant tricks. + if (Instruction *I = dyn_cast<Instruction>(V)) + // TODO: Acquire a DominatorTree and AssumptionCache and use them. + if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { + V = Simplified; + continue; + } + + return V; + } + assert(V->getType()->isPointerTy() && "Unexpected operand type!"); + } + return V; +} + +void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, + const DataLayout &DL, LoopInfo *LI, + unsigned MaxLookup) { + SmallPtrSet<Value *, 4> Visited; + SmallVector<Value *, 4> Worklist; + Worklist.push_back(V); + do { + Value *P = Worklist.pop_back_val(); + P = GetUnderlyingObject(P, DL, MaxLookup); + + if (!Visited.insert(P).second) + continue; + + if (SelectInst *SI = dyn_cast<SelectInst>(P)) { + Worklist.push_back(SI->getTrueValue()); + Worklist.push_back(SI->getFalseValue()); + continue; + } + + if (PHINode *PN = dyn_cast<PHINode>(P)) { + // If this PHI changes the underlying object in every iteration of the + // loop, don't look through it. Consider: + // int **A; + // for (i) { + // Prev = Curr; // Prev = PHI (Prev_0, Curr) + // Curr = A[i]; + // *Prev, *Curr; + // + // Prev is tracking Curr one iteration behind so they refer to different + // underlying objects. + if (!LI || !LI->isLoopHeader(PN->getParent()) || + isSameUnderlyingObjectInLoop(PN, LI)) + for (Value *IncValue : PN->incoming_values()) + Worklist.push_back(IncValue); + continue; + } + + Objects.push_back(P); + } while (!Worklist.empty()); +} + +/// Return true if the only users of this pointer are lifetime markers. +bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { + for (const User *U : V->users()) { + const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); + if (!II) return false; + + if (II->getIntrinsicID() != Intrinsic::lifetime_start && + II->getIntrinsicID() != Intrinsic::lifetime_end) + return false; + } + return true; +} + +bool llvm::isSafeToSpeculativelyExecute(const Value *V, + const Instruction *CtxI, + const DominatorTree *DT) { + const Operator *Inst = dyn_cast<Operator>(V); + if (!Inst) + return false; + + for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) + if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) + if (C->canTrap()) + return false; + + switch (Inst->getOpcode()) { + default: + return true; + case Instruction::UDiv: + case Instruction::URem: { + // x / y is undefined if y == 0. + const APInt *V; + if (match(Inst->getOperand(1), m_APInt(V))) + return *V != 0; + return false; + } + case Instruction::SDiv: + case Instruction::SRem: { + // x / y is undefined if y == 0 or x == INT_MIN and y == -1 + const APInt *Numerator, *Denominator; + if (!match(Inst->getOperand(1), m_APInt(Denominator))) + return false; + // We cannot hoist this division if the denominator is 0. + if (*Denominator == 0) + return false; + // It's safe to hoist if the denominator is not 0 or -1. + if (*Denominator != -1) + return true; + // At this point we know that the denominator is -1. It is safe to hoist as + // long we know that the numerator is not INT_MIN. + if (match(Inst->getOperand(0), m_APInt(Numerator))) + return !Numerator->isMinSignedValue(); + // The numerator *might* be MinSignedValue. + return false; + } + case Instruction::Load: { + const LoadInst *LI = cast<LoadInst>(Inst); + if (!LI->isUnordered() || + // Speculative load may create a race that did not exist in the source. + LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || + // Speculative load may load data from dirty regions. + LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) + return false; + const DataLayout &DL = LI->getModule()->getDataLayout(); + return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), + LI->getAlignment(), DL, CtxI, DT); + } + case Instruction::Call: { + if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { + switch (II->getIntrinsicID()) { + // These synthetic intrinsics have no side-effects and just mark + // information about their operands. + // FIXME: There are other no-op synthetic instructions that potentially + // should be considered at least *safe* to speculate... + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + return true; + + case Intrinsic::bitreverse: + case Intrinsic::bswap: + case Intrinsic::ctlz: + case Intrinsic::ctpop: + case Intrinsic::cttz: + case Intrinsic::objectsize: + case Intrinsic::sadd_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::umul_with_overflow: + case Intrinsic::usub_with_overflow: + return true; + // These intrinsics are defined to have the same behavior as libm + // functions except for setting errno. + case Intrinsic::sqrt: + case Intrinsic::fma: + case Intrinsic::fmuladd: + return true; + // These intrinsics are defined to have the same behavior as libm + // functions, and the corresponding libm functions never set errno. + case Intrinsic::trunc: + case Intrinsic::copysign: + case Intrinsic::fabs: + case Intrinsic::minnum: + case Intrinsic::maxnum: + return true; + // These intrinsics are defined to have the same behavior as libm + // functions, which never overflow when operating on the IEEE754 types + // that we support, and never set errno otherwise. + case Intrinsic::ceil: + case Intrinsic::floor: + case Intrinsic::nearbyint: + case Intrinsic::rint: + case Intrinsic::round: + return true; + // TODO: are convert_{from,to}_fp16 safe? + // TODO: can we list target-specific intrinsics here? + default: break; + } + } + return false; // The called function could have undefined behavior or + // side-effects, even if marked readnone nounwind. + } + case Instruction::VAArg: + case Instruction::Alloca: + case Instruction::Invoke: + case Instruction::PHI: + case Instruction::Store: + case Instruction::Ret: + case Instruction::Br: + case Instruction::IndirectBr: + case Instruction::Switch: + case Instruction::Unreachable: + case Instruction::Fence: + case Instruction::AtomicRMW: + case Instruction::AtomicCmpXchg: + case Instruction::LandingPad: + case Instruction::Resume: + case Instruction::CatchSwitch: + case Instruction::CatchPad: + case Instruction::CatchRet: + case Instruction::CleanupPad: + case Instruction::CleanupRet: + return false; // Misc instructions which have effects + } +} + +bool llvm::mayBeMemoryDependent(const Instruction &I) { + return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); +} + +/// Return true if we know that the specified value is never null. +bool llvm::isKnownNonNull(const Value *V) { + assert(V->getType()->isPointerTy() && "V must be pointer type"); + + // Alloca never returns null, malloc might. + if (isa<AllocaInst>(V)) return true; + + // A byval, inalloca, or nonnull argument is never null. + if (const Argument *A = dyn_cast<Argument>(V)) + return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); + + // A global variable in address space 0 is non null unless extern weak + // or an absolute symbol reference. Other address spaces may have null as a + // valid address for a global, so we can't assume anything. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) + return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && + GV->getType()->getAddressSpace() == 0; + + // A Load tagged with nonnull metadata is never null. + if (const LoadInst *LI = dyn_cast<LoadInst>(V)) + return LI->getMetadata(LLVMContext::MD_nonnull); + + if (auto CS = ImmutableCallSite(V)) + if (CS.isReturnNonNull()) + return true; + + return false; +} + +static bool isKnownNonNullFromDominatingCondition(const Value *V, + const Instruction *CtxI, + const DominatorTree *DT) { + assert(V->getType()->isPointerTy() && "V must be pointer type"); + assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); + assert(CtxI && "Context instruction required for analysis"); + assert(DT && "Dominator tree required for analysis"); + + unsigned NumUsesExplored = 0; + for (auto *U : V->users()) { + // Avoid massive lists + if (NumUsesExplored >= DomConditionsMaxUses) + break; + NumUsesExplored++; + // Consider only compare instructions uniquely controlling a branch + CmpInst::Predicate Pred; + if (!match(const_cast<User *>(U), + m_c_ICmp(Pred, m_Specific(V), m_Zero())) || + (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) + continue; + + for (auto *CmpU : U->users()) { + if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { + assert(BI->isConditional() && "uses a comparison!"); + + BasicBlock *NonNullSuccessor = + BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); + BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); + if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) + return true; + } else if (Pred == ICmpInst::ICMP_NE && + match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && + DT->dominates(cast<Instruction>(CmpU), CtxI)) { + return true; + } + } + } + + return false; +} + +bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, + const DominatorTree *DT) { + if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) + return false; + + if (isKnownNonNull(V)) + return true; + + if (!CtxI || !DT) + return false; + + return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); +} + +OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + // Multiplying n * m significant bits yields a result of n + m significant + // bits. If the total number of significant bits does not exceed the + // result bit width (minus 1), there is no overflow. + // This means if we have enough leading zero bits in the operands + // we can guarantee that the result does not overflow. + // Ref: "Hacker's Delight" by Henry Warren + unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); + APInt LHSKnownZero(BitWidth, 0); + APInt LHSKnownOne(BitWidth, 0); + APInt RHSKnownZero(BitWidth, 0); + APInt RHSKnownOne(BitWidth, 0); + computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, + DT); + computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, + DT); + // Note that underestimating the number of zero bits gives a more + // conservative answer. + unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + + RHSKnownZero.countLeadingOnes(); + // First handle the easy case: if we have enough zero bits there's + // definitely no overflow. + if (ZeroBits >= BitWidth) + return OverflowResult::NeverOverflows; + + // Get the largest possible values for each operand. + APInt LHSMax = ~LHSKnownZero; + APInt RHSMax = ~RHSKnownZero; + + // We know the multiply operation doesn't overflow if the maximum values for + // each operand will not overflow after we multiply them together. + bool MaxOverflow; + LHSMax.umul_ov(RHSMax, MaxOverflow); + if (!MaxOverflow) + return OverflowResult::NeverOverflows; + + // We know it always overflows if multiplying the smallest possible values for + // the operands also results in overflow. + bool MinOverflow; + LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); + if (MinOverflow) + return OverflowResult::AlwaysOverflows; + + return OverflowResult::MayOverflow; +} + +OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + bool LHSKnownNonNegative, LHSKnownNegative; + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, + AC, CxtI, DT); + if (LHSKnownNonNegative || LHSKnownNegative) { + bool RHSKnownNonNegative, RHSKnownNegative; + ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, + AC, CxtI, DT); + + if (LHSKnownNegative && RHSKnownNegative) { + // The sign bit is set in both cases: this MUST overflow. + // Create a simple add instruction, and insert it into the struct. + return OverflowResult::AlwaysOverflows; + } + + if (LHSKnownNonNegative && RHSKnownNonNegative) { + // The sign bit is clear in both cases: this CANNOT overflow. + // Create a simple add instruction, and insert it into the struct. + return OverflowResult::NeverOverflows; + } + } + + return OverflowResult::MayOverflow; +} + +static OverflowResult computeOverflowForSignedAdd(const Value *LHS, + const Value *RHS, + const AddOperator *Add, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + if (Add && Add->hasNoSignedWrap()) { + return OverflowResult::NeverOverflows; + } + + bool LHSKnownNonNegative, LHSKnownNegative; + bool RHSKnownNonNegative, RHSKnownNegative; + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, + AC, CxtI, DT); + ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, + AC, CxtI, DT); + + if ((LHSKnownNonNegative && RHSKnownNegative) || + (LHSKnownNegative && RHSKnownNonNegative)) { + // The sign bits are opposite: this CANNOT overflow. + return OverflowResult::NeverOverflows; + } + + // The remaining code needs Add to be available. Early returns if not so. + if (!Add) + return OverflowResult::MayOverflow; + + // If the sign of Add is the same as at least one of the operands, this add + // CANNOT overflow. This is particularly useful when the sum is + // @llvm.assume'ed non-negative rather than proved so from analyzing its + // operands. + bool LHSOrRHSKnownNonNegative = + (LHSKnownNonNegative || RHSKnownNonNegative); + bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); + if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { + bool AddKnownNonNegative, AddKnownNegative; + ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, + /*Depth=*/0, AC, CxtI, DT); + if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || + (AddKnownNegative && LHSOrRHSKnownNegative)) { + return OverflowResult::NeverOverflows; + } + } + + return OverflowResult::MayOverflow; +} + +bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, + const DominatorTree &DT) { +#ifndef NDEBUG + auto IID = II->getIntrinsicID(); + assert((IID == Intrinsic::sadd_with_overflow || + IID == Intrinsic::uadd_with_overflow || + IID == Intrinsic::ssub_with_overflow || + IID == Intrinsic::usub_with_overflow || + IID == Intrinsic::smul_with_overflow || + IID == Intrinsic::umul_with_overflow) && + "Not an overflow intrinsic!"); +#endif + + SmallVector<const BranchInst *, 2> GuardingBranches; + SmallVector<const ExtractValueInst *, 2> Results; + + for (const User *U : II->users()) { + if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { + assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); + + if (EVI->getIndices()[0] == 0) + Results.push_back(EVI); + else { + assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); + + for (const auto *U : EVI->users()) + if (const auto *B = dyn_cast<BranchInst>(U)) { + assert(B->isConditional() && "How else is it using an i1?"); + GuardingBranches.push_back(B); + } + } + } else { + // We are using the aggregate directly in a way we don't want to analyze + // here (storing it to a global, say). + return false; + } + } + + auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { + BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); + if (!NoWrapEdge.isSingleEdge()) + return false; + + // Check if all users of the add are provably no-wrap. + for (const auto *Result : Results) { + // If the extractvalue itself is not executed on overflow, the we don't + // need to check each use separately, since domination is transitive. + if (DT.dominates(NoWrapEdge, Result->getParent())) + continue; + + for (auto &RU : Result->uses()) + if (!DT.dominates(NoWrapEdge, RU)) + return false; + } + + return true; + }; + + return any_of(GuardingBranches, AllUsesGuardedByBranch); +} + + +OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), + Add, DL, AC, CxtI, DT); +} + +OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { + // A memory operation returns normally if it isn't volatile. A volatile + // operation is allowed to trap. + // + // An atomic operation isn't guaranteed to return in a reasonable amount of + // time because it's possible for another thread to interfere with it for an + // arbitrary length of time, but programs aren't allowed to rely on that. + if (const LoadInst *LI = dyn_cast<LoadInst>(I)) + return !LI->isVolatile(); + if (const StoreInst *SI = dyn_cast<StoreInst>(I)) + return !SI->isVolatile(); + if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) + return !CXI->isVolatile(); + if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) + return !RMWI->isVolatile(); + if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) + return !MII->isVolatile(); + + // If there is no successor, then execution can't transfer to it. + if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) + return !CRI->unwindsToCaller(); + if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) + return !CatchSwitch->unwindsToCaller(); + if (isa<ResumeInst>(I)) + return false; + if (isa<ReturnInst>(I)) + return false; + + // Calls can throw, or contain an infinite loop, or kill the process. + if (auto CS = ImmutableCallSite(I)) { + // Call sites that throw have implicit non-local control flow. + if (!CS.doesNotThrow()) + return false; + + // Non-throwing call sites can loop infinitely, call exit/pthread_exit + // etc. and thus not return. However, LLVM already assumes that + // + // - Thread exiting actions are modeled as writes to memory invisible to + // the program. + // + // - Loops that don't have side effects (side effects are volatile/atomic + // stores and IO) always terminate (see http://llvm.org/PR965). + // Furthermore IO itself is also modeled as writes to memory invisible to + // the program. + // + // We rely on those assumptions here, and use the memory effects of the call + // target as a proxy for checking that it always returns. + + // FIXME: This isn't aggressive enough; a call which only writes to a global + // is guaranteed to return. + return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || + match(I, m_Intrinsic<Intrinsic::assume>()); + } + + // Other instructions return normally. + return true; +} + +bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, + const Loop *L) { + // The loop header is guaranteed to be executed for every iteration. + // + // FIXME: Relax this constraint to cover all basic blocks that are + // guaranteed to be executed at every iteration. + if (I->getParent() != L->getHeader()) return false; + + for (const Instruction &LI : *L->getHeader()) { + if (&LI == I) return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; + } + llvm_unreachable("Instruction not contained in its own parent basic block."); +} + +bool llvm::propagatesFullPoison(const Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Xor: + case Instruction::Trunc: + case Instruction::BitCast: + case Instruction::AddrSpaceCast: + // These operations all propagate poison unconditionally. Note that poison + // is not any particular value, so xor or subtraction of poison with + // itself still yields poison, not zero. + return true; + + case Instruction::AShr: + case Instruction::SExt: + // For these operations, one bit of the input is replicated across + // multiple output bits. A replicated poison bit is still poison. + return true; + + case Instruction::Shl: { + // Left shift *by* a poison value is poison. The number of + // positions to shift is unsigned, so no negative values are + // possible there. Left shift by zero places preserves poison. So + // it only remains to consider left shift of poison by a positive + // number of places. + // + // A left shift by a positive number of places leaves the lowest order bit + // non-poisoned. However, if such a shift has a no-wrap flag, then we can + // make the poison operand violate that flag, yielding a fresh full-poison + // value. + auto *OBO = cast<OverflowingBinaryOperator>(I); + return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); + } + + case Instruction::Mul: { + // A multiplication by zero yields a non-poison zero result, so we need to + // rule out zero as an operand. Conservatively, multiplication by a + // non-zero constant is not multiplication by zero. + // + // Multiplication by a non-zero constant can leave some bits + // non-poisoned. For example, a multiplication by 2 leaves the lowest + // order bit unpoisoned. So we need to consider that. + // + // Multiplication by 1 preserves poison. If the multiplication has a + // no-wrap flag, then we can make the poison operand violate that flag + // when multiplied by any integer other than 0 and 1. + auto *OBO = cast<OverflowingBinaryOperator>(I); + if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { + for (Value *V : OBO->operands()) { + if (auto *CI = dyn_cast<ConstantInt>(V)) { + // A ConstantInt cannot yield poison, so we can assume that it is + // the other operand that is poison. + return !CI->isZero(); + } + } + } + return false; + } + + case Instruction::ICmp: + // Comparing poison with any value yields poison. This is why, for + // instance, x s< (x +nsw 1) can be folded to true. + return true; + + case Instruction::GetElementPtr: + // A GEP implicitly represents a sequence of additions, subtractions, + // truncations, sign extensions and multiplications. The multiplications + // are by the non-zero sizes of some set of types, so we do not have to be + // concerned with multiplication by zero. If the GEP is in-bounds, then + // these operations are implicitly no-signed-wrap so poison is propagated + // by the arguments above for Add, Sub, Trunc, SExt and Mul. + return cast<GEPOperator>(I)->isInBounds(); + + default: + return false; + } +} + +const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Store: + return cast<StoreInst>(I)->getPointerOperand(); + + case Instruction::Load: + return cast<LoadInst>(I)->getPointerOperand(); + + case Instruction::AtomicCmpXchg: + return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); + + case Instruction::AtomicRMW: + return cast<AtomicRMWInst>(I)->getPointerOperand(); + + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + return I->getOperand(1); + + default: + return nullptr; + } +} + +bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { + // We currently only look for uses of poison values within the same basic + // block, as that makes it easier to guarantee that the uses will be + // executed given that PoisonI is executed. + // + // FIXME: Expand this to consider uses beyond the same basic block. To do + // this, look out for the distinction between post-dominance and strong + // post-dominance. + const BasicBlock *BB = PoisonI->getParent(); + + // Set of instructions that we have proved will yield poison if PoisonI + // does. + SmallSet<const Value *, 16> YieldsPoison; + SmallSet<const BasicBlock *, 4> Visited; + YieldsPoison.insert(PoisonI); + Visited.insert(PoisonI->getParent()); + + BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); + + unsigned Iter = 0; + while (Iter++ < MaxDepth) { + for (auto &I : make_range(Begin, End)) { + if (&I != PoisonI) { + const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); + if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) + return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&I)) + return false; + } + + // Mark poison that propagates from I through uses of I. + if (YieldsPoison.count(&I)) { + for (const User *User : I.users()) { + const Instruction *UserI = cast<Instruction>(User); + if (propagatesFullPoison(UserI)) + YieldsPoison.insert(User); + } + } + } + + if (auto *NextBB = BB->getSingleSuccessor()) { + if (Visited.insert(NextBB).second) { + BB = NextBB; + Begin = BB->getFirstNonPHI()->getIterator(); + End = BB->end(); + continue; + } + } + + break; + }; + return false; +} + +static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { + if (FMF.noNaNs()) + return true; + + if (auto *C = dyn_cast<ConstantFP>(V)) + return !C->isNaN(); + return false; +} + +static bool isKnownNonZero(const Value *V) { + if (auto *C = dyn_cast<ConstantFP>(V)) + return !C->isZero(); + return false; +} + +/// Match non-obvious integer minimum and maximum sequences. +static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS) { + if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // Z = X -nsw Y + // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) + // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) + if (match(TrueVal, m_Zero()) && + match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) { + LHS = TrueVal; + RHS = FalseVal; + return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; + } + + // Z = X -nsw Y + // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) + // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) + if (match(FalseVal, m_Zero()) && + match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) { + LHS = TrueVal; + RHS = FalseVal; + return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; + } + + const APInt *C1; + if (!match(CmpRHS, m_APInt(C1))) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // An unsigned min/max can be written with a signed compare. + const APInt *C2; + if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || + (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { + // Is the sign bit set? + // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX + // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN + if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) { + LHS = TrueVal; + RHS = FalseVal; + return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; + } + + // Is the sign bit clear? + // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX + // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN + if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && + C2->isMinSignedValue()) { + LHS = TrueVal; + RHS = FalseVal; + return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; + } + } + + // Look through 'not' ops to find disguised signed min/max. + // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) + // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) + if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && + match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) { + LHS = TrueVal; + RHS = FalseVal; + return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; + } + + // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) + // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) + if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && + match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) { + LHS = TrueVal; + RHS = FalseVal; + return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; + } + + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, + FastMathFlags FMF, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS) { + LHS = CmpLHS; + RHS = CmpRHS; + + // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may + // return inconsistent results between implementations. + // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 + // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) + // Therefore we behave conservatively and only proceed if at least one of the + // operands is known to not be zero, or if we don't care about signed zeroes. + switch (Pred) { + default: break; + case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: + case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: + if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && + !isKnownNonZero(CmpRHS)) + return {SPF_UNKNOWN, SPNB_NA, false}; + } + + SelectPatternNaNBehavior NaNBehavior = SPNB_NA; + bool Ordered = false; + + // When given one NaN and one non-NaN input: + // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. + // - A simple C99 (a < b ? a : b) construction will return 'b' (as the + // ordered comparison fails), which could be NaN or non-NaN. + // so here we discover exactly what NaN behavior is required/accepted. + if (CmpInst::isFPPredicate(Pred)) { + bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); + bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); + + if (LHSSafe && RHSSafe) { + // Both operands are known non-NaN. + NaNBehavior = SPNB_RETURNS_ANY; + } else if (CmpInst::isOrdered(Pred)) { + // An ordered comparison will return false when given a NaN, so it + // returns the RHS. + Ordered = true; + if (LHSSafe) + // LHS is non-NaN, so if RHS is NaN then NaN will be returned. + NaNBehavior = SPNB_RETURNS_NAN; + else if (RHSSafe) + NaNBehavior = SPNB_RETURNS_OTHER; + else + // Completely unsafe. + return {SPF_UNKNOWN, SPNB_NA, false}; + } else { + Ordered = false; + // An unordered comparison will return true when given a NaN, so it + // returns the LHS. + if (LHSSafe) + // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. + NaNBehavior = SPNB_RETURNS_OTHER; + else if (RHSSafe) + NaNBehavior = SPNB_RETURNS_NAN; + else + // Completely unsafe. + return {SPF_UNKNOWN, SPNB_NA, false}; + } + } + + if (TrueVal == CmpRHS && FalseVal == CmpLHS) { + std::swap(CmpLHS, CmpRHS); + Pred = CmpInst::getSwappedPredicate(Pred); + if (NaNBehavior == SPNB_RETURNS_NAN) + NaNBehavior = SPNB_RETURNS_OTHER; + else if (NaNBehavior == SPNB_RETURNS_OTHER) + NaNBehavior = SPNB_RETURNS_NAN; + Ordered = !Ordered; + } + + // ([if]cmp X, Y) ? X : Y + if (TrueVal == CmpLHS && FalseVal == CmpRHS) { + switch (Pred) { + default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; + case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; + case FCmpInst::FCMP_ULT: + case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_OLT: + case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; + } + } + + const APInt *C1; + if (match(CmpRHS, m_APInt(C1))) { + if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || + (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { + + // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X + // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X + if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { + return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; + } + + // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X + // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X + if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { + return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; + } + } + } + + return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); +} + +static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, + Instruction::CastOps *CastOp) { + CastInst *CI = dyn_cast<CastInst>(V1); + Constant *C = dyn_cast<Constant>(V2); + if (!CI) + return nullptr; + *CastOp = CI->getOpcode(); + + if (auto *CI2 = dyn_cast<CastInst>(V2)) { + // If V1 and V2 are both the same cast from the same type, we can look + // through V1. + if (CI2->getOpcode() == CI->getOpcode() && + CI2->getSrcTy() == CI->getSrcTy()) + return CI2->getOperand(0); + return nullptr; + } else if (!C) { + return nullptr; + } + + Constant *CastedTo = nullptr; + + if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) + CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); + + if (isa<SExtInst>(CI) && CmpI->isSigned()) + CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); + + if (isa<TruncInst>(CI)) + CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); + + if (isa<FPTruncInst>(CI)) + CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); + + if (isa<FPExtInst>(CI)) + CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); + + if (isa<FPToUIInst>(CI)) + CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); + + if (isa<FPToSIInst>(CI)) + CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); + + if (isa<UIToFPInst>(CI)) + CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); + + if (isa<SIToFPInst>(CI)) + CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); + + if (!CastedTo) + return nullptr; + + Constant *CastedBack = + ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); + // Make sure the cast doesn't lose any information. + if (CastedBack != C) + return nullptr; + + return CastedTo; +} + +SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, + Instruction::CastOps *CastOp) { + SelectInst *SI = dyn_cast<SelectInst>(V); + if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; + + CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); + if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; + + CmpInst::Predicate Pred = CmpI->getPredicate(); + Value *CmpLHS = CmpI->getOperand(0); + Value *CmpRHS = CmpI->getOperand(1); + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + FastMathFlags FMF; + if (isa<FPMathOperator>(CmpI)) + FMF = CmpI->getFastMathFlags(); + + // Bail out early. + if (CmpI->isEquality()) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // Deal with type mismatches. + if (CastOp && CmpLHS->getType() != TrueVal->getType()) { + if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, + cast<CastInst>(TrueVal)->getOperand(0), C, + LHS, RHS); + if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, + C, cast<CastInst>(FalseVal)->getOperand(0), + LHS, RHS); + } + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, + LHS, RHS); +} + +/// Return true if "icmp Pred LHS RHS" is always true. +static bool isTruePredicate(CmpInst::Predicate Pred, + const Value *LHS, const Value *RHS, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); + if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) + return true; + + switch (Pred) { + default: + return false; + + case CmpInst::ICMP_SLE: { + const APInt *C; + + // LHS s<= LHS +_{nsw} C if C >= 0 + if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) + return !C->isNegative(); + return false; + } + + case CmpInst::ICMP_ULE: { + const APInt *C; + + // LHS u<= LHS +_{nuw} C for any C + if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) + return true; + + // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) + auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, + const Value *&X, + const APInt *&CA, const APInt *&CB) { + if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && + match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) + return true; + + // If X & C == 0 then (X | C) == X +_{nuw} C + if (match(A, m_Or(m_Value(X), m_APInt(CA))) && + match(B, m_Or(m_Specific(X), m_APInt(CB)))) { + unsigned BitWidth = CA->getBitWidth(); + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); + + if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) + return true; + } + + return false; + }; + + const Value *X; + const APInt *CLHS, *CRHS; + if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) + return CLHS->ule(*CRHS); + + return false; + } + } +} + +/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred +/// ALHS ARHS" is true. Otherwise, return None. +static Optional<bool> +isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, + const Value *ARHS, const Value *BLHS, + const Value *BRHS, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT) { + switch (Pred) { + default: + return None; + + case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: + if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, + DT) && + isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) + return true; + return None; + + case CmpInst::ICMP_ULT: + case CmpInst::ICMP_ULE: + if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, + DT) && + isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) + return true; + return None; + } +} + +/// Return true if the operands of the two compares match. IsSwappedOps is true +/// when the operands match, but are swapped. +static bool isMatchingOps(const Value *ALHS, const Value *ARHS, + const Value *BLHS, const Value *BRHS, + bool &IsSwappedOps) { + + bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); + IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); + return IsMatchingOps || IsSwappedOps; +} + +/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is +/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS +/// BRHS" is false. Otherwise, return None if we can't infer anything. +static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, + const Value *ALHS, + const Value *ARHS, + CmpInst::Predicate BPred, + const Value *BLHS, + const Value *BRHS, + bool IsSwappedOps) { + // Canonicalize the operands so they're matching. + if (IsSwappedOps) { + std::swap(BLHS, BRHS); + BPred = ICmpInst::getSwappedPredicate(BPred); + } + if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) + return true; + if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) + return false; + + return None; +} + +/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is +/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS +/// C2" is false. Otherwise, return None if we can't infer anything. +static Optional<bool> +isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, + const ConstantInt *C1, + CmpInst::Predicate BPred, + const Value *BLHS, const ConstantInt *C2) { + assert(ALHS == BLHS && "LHS operands must match."); + ConstantRange DomCR = + ConstantRange::makeExactICmpRegion(APred, C1->getValue()); + ConstantRange CR = + ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); + ConstantRange Intersection = DomCR.intersectWith(CR); + ConstantRange Difference = DomCR.difference(CR); + if (Intersection.isEmptySet()) + return false; + if (Difference.isEmptySet()) + return true; + return None; +} + +Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, + const DataLayout &DL, bool InvertAPred, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. + if (LHS->getType() != RHS->getType()) + return None; + + Type *OpTy = LHS->getType(); + assert(OpTy->getScalarType()->isIntegerTy(1)); + + // LHS ==> RHS by definition + if (!InvertAPred && LHS == RHS) + return true; + + if (OpTy->isVectorTy()) + // TODO: extending the code below to handle vectors + return None; + assert(OpTy->isIntegerTy(1) && "implied by above"); + + ICmpInst::Predicate APred, BPred; + Value *ALHS, *ARHS; + Value *BLHS, *BRHS; + + if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || + !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) + return None; + + if (InvertAPred) + APred = CmpInst::getInversePredicate(APred); + + // Can we infer anything when the two compares have matching operands? + bool IsSwappedOps; + if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { + if (Optional<bool> Implication = isImpliedCondMatchingOperands( + APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) + return Implication; + // No amount of additional analysis will infer the second condition, so + // early exit. + return None; + } + + // Can we infer anything when the LHS operands match and the RHS operands are + // constants (not necessarily matching)? + if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { + if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( + APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, + cast<ConstantInt>(BRHS))) + return Implication; + // No amount of additional analysis will infer the second condition, so + // early exit. + return None; + } + + if (APred == BPred) + return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, + CxtI, DT); + + return None; +} |
