diff options
Diffstat (limited to 'contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp')
| -rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp | 1662 | 
1 files changed, 1662 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp new file mode 100644 index 000000000000..7b6fc6cd928d --- /dev/null +++ b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp @@ -0,0 +1,1662 @@ +//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Bitcode writer implementation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Bitcode/ReaderWriter.h" +#include "llvm/Bitcode/BitstreamWriter.h" +#include "llvm/Bitcode/LLVMBitCodes.h" +#include "ValueEnumerator.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Operator.h" +#include "llvm/TypeSymbolTable.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/System/Program.h" +using namespace llvm; + +/// These are manifest constants used by the bitcode writer. They do not need to +/// be kept in sync with the reader, but need to be consistent within this file. +enum { +  CurVersion = 0, + +  // VALUE_SYMTAB_BLOCK abbrev id's. +  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  VST_ENTRY_7_ABBREV, +  VST_ENTRY_6_ABBREV, +  VST_BBENTRY_6_ABBREV, + +  // CONSTANTS_BLOCK abbrev id's. +  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  CONSTANTS_INTEGER_ABBREV, +  CONSTANTS_CE_CAST_Abbrev, +  CONSTANTS_NULL_Abbrev, + +  // FUNCTION_BLOCK abbrev id's. +  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  FUNCTION_INST_BINOP_ABBREV, +  FUNCTION_INST_BINOP_FLAGS_ABBREV, +  FUNCTION_INST_CAST_ABBREV, +  FUNCTION_INST_RET_VOID_ABBREV, +  FUNCTION_INST_RET_VAL_ABBREV, +  FUNCTION_INST_UNREACHABLE_ABBREV +}; + + +static unsigned GetEncodedCastOpcode(unsigned Opcode) { +  switch (Opcode) { +  default: llvm_unreachable("Unknown cast instruction!"); +  case Instruction::Trunc   : return bitc::CAST_TRUNC; +  case Instruction::ZExt    : return bitc::CAST_ZEXT; +  case Instruction::SExt    : return bitc::CAST_SEXT; +  case Instruction::FPToUI  : return bitc::CAST_FPTOUI; +  case Instruction::FPToSI  : return bitc::CAST_FPTOSI; +  case Instruction::UIToFP  : return bitc::CAST_UITOFP; +  case Instruction::SIToFP  : return bitc::CAST_SITOFP; +  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; +  case Instruction::FPExt   : return bitc::CAST_FPEXT; +  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; +  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; +  case Instruction::BitCast : return bitc::CAST_BITCAST; +  } +} + +static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { +  switch (Opcode) { +  default: llvm_unreachable("Unknown binary instruction!"); +  case Instruction::Add: +  case Instruction::FAdd: return bitc::BINOP_ADD; +  case Instruction::Sub: +  case Instruction::FSub: return bitc::BINOP_SUB; +  case Instruction::Mul: +  case Instruction::FMul: return bitc::BINOP_MUL; +  case Instruction::UDiv: return bitc::BINOP_UDIV; +  case Instruction::FDiv: +  case Instruction::SDiv: return bitc::BINOP_SDIV; +  case Instruction::URem: return bitc::BINOP_UREM; +  case Instruction::FRem: +  case Instruction::SRem: return bitc::BINOP_SREM; +  case Instruction::Shl:  return bitc::BINOP_SHL; +  case Instruction::LShr: return bitc::BINOP_LSHR; +  case Instruction::AShr: return bitc::BINOP_ASHR; +  case Instruction::And:  return bitc::BINOP_AND; +  case Instruction::Or:   return bitc::BINOP_OR; +  case Instruction::Xor:  return bitc::BINOP_XOR; +  } +} + + + +static void WriteStringRecord(unsigned Code, const std::string &Str, +                              unsigned AbbrevToUse, BitstreamWriter &Stream) { +  SmallVector<unsigned, 64> Vals; + +  // Code: [strchar x N] +  for (unsigned i = 0, e = Str.size(); i != e; ++i) +    Vals.push_back(Str[i]); + +  // Emit the finished record. +  Stream.EmitRecord(Code, Vals, AbbrevToUse); +} + +// Emit information about parameter attributes. +static void WriteAttributeTable(const ValueEnumerator &VE, +                                BitstreamWriter &Stream) { +  const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); +  if (Attrs.empty()) return; + +  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); + +  SmallVector<uint64_t, 64> Record; +  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { +    const AttrListPtr &A = Attrs[i]; +    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { +      const AttributeWithIndex &PAWI = A.getSlot(i); +      Record.push_back(PAWI.Index); + +      // FIXME: remove in LLVM 3.0 +      // Store the alignment in the bitcode as a 16-bit raw value instead of a +      // 5-bit log2 encoded value. Shift the bits above the alignment up by +      // 11 bits. +      uint64_t FauxAttr = PAWI.Attrs & 0xffff; +      if (PAWI.Attrs & Attribute::Alignment) +        FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); +      FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; + +      Record.push_back(FauxAttr); +    } + +    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +/// WriteTypeTable - Write out the type table for a module. +static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { +  const ValueEnumerator::TypeList &TypeList = VE.getTypes(); + +  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); +  SmallVector<uint64_t, 64> TypeVals; + +  // Abbrev for TYPE_CODE_POINTER. +  BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0 +  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); + +  // Abbrev for TYPE_CODE_FUNCTION. +  Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg +  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0 +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); + +  // Abbrev for TYPE_CODE_STRUCT. +  Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); + +  // Abbrev for TYPE_CODE_ARRAY. +  Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); + +  // Emit an entry count so the reader can reserve space. +  TypeVals.push_back(TypeList.size()); +  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); +  TypeVals.clear(); + +  // Loop over all of the types, emitting each in turn. +  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { +    const Type *T = TypeList[i].first; +    int AbbrevToUse = 0; +    unsigned Code = 0; + +    switch (T->getTypeID()) { +    default: llvm_unreachable("Unknown type!"); +    case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break; +    case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break; +    case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; +    case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; +    case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; +    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; +    case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break; +    case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; +    case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; +    case Type::IntegerTyID: +      // INTEGER: [width] +      Code = bitc::TYPE_CODE_INTEGER; +      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); +      break; +    case Type::PointerTyID: { +      const PointerType *PTy = cast<PointerType>(T); +      // POINTER: [pointee type, address space] +      Code = bitc::TYPE_CODE_POINTER; +      TypeVals.push_back(VE.getTypeID(PTy->getElementType())); +      unsigned AddressSpace = PTy->getAddressSpace(); +      TypeVals.push_back(AddressSpace); +      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; +      break; +    } +    case Type::FunctionTyID: { +      const FunctionType *FT = cast<FunctionType>(T); +      // FUNCTION: [isvararg, attrid, retty, paramty x N] +      Code = bitc::TYPE_CODE_FUNCTION; +      TypeVals.push_back(FT->isVarArg()); +      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0 +      TypeVals.push_back(VE.getTypeID(FT->getReturnType())); +      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) +        TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); +      AbbrevToUse = FunctionAbbrev; +      break; +    } +    case Type::StructTyID: { +      const StructType *ST = cast<StructType>(T); +      // STRUCT: [ispacked, eltty x N] +      Code = bitc::TYPE_CODE_STRUCT; +      TypeVals.push_back(ST->isPacked()); +      // Output all of the element types. +      for (StructType::element_iterator I = ST->element_begin(), +           E = ST->element_end(); I != E; ++I) +        TypeVals.push_back(VE.getTypeID(*I)); +      AbbrevToUse = StructAbbrev; +      break; +    } +    case Type::ArrayTyID: { +      const ArrayType *AT = cast<ArrayType>(T); +      // ARRAY: [numelts, eltty] +      Code = bitc::TYPE_CODE_ARRAY; +      TypeVals.push_back(AT->getNumElements()); +      TypeVals.push_back(VE.getTypeID(AT->getElementType())); +      AbbrevToUse = ArrayAbbrev; +      break; +    } +    case Type::VectorTyID: { +      const VectorType *VT = cast<VectorType>(T); +      // VECTOR [numelts, eltty] +      Code = bitc::TYPE_CODE_VECTOR; +      TypeVals.push_back(VT->getNumElements()); +      TypeVals.push_back(VE.getTypeID(VT->getElementType())); +      break; +    } +    } + +    // Emit the finished record. +    Stream.EmitRecord(Code, TypeVals, AbbrevToUse); +    TypeVals.clear(); +  } + +  Stream.ExitBlock(); +} + +static unsigned getEncodedLinkage(const GlobalValue *GV) { +  switch (GV->getLinkage()) { +  default: llvm_unreachable("Invalid linkage!"); +  case GlobalValue::ExternalLinkage:                 return 0; +  case GlobalValue::WeakAnyLinkage:                  return 1; +  case GlobalValue::AppendingLinkage:                return 2; +  case GlobalValue::InternalLinkage:                 return 3; +  case GlobalValue::LinkOnceAnyLinkage:              return 4; +  case GlobalValue::DLLImportLinkage:                return 5; +  case GlobalValue::DLLExportLinkage:                return 6; +  case GlobalValue::ExternalWeakLinkage:             return 7; +  case GlobalValue::CommonLinkage:                   return 8; +  case GlobalValue::PrivateLinkage:                  return 9; +  case GlobalValue::WeakODRLinkage:                  return 10; +  case GlobalValue::LinkOnceODRLinkage:              return 11; +  case GlobalValue::AvailableExternallyLinkage:      return 12; +  case GlobalValue::LinkerPrivateLinkage:            return 13; +  case GlobalValue::LinkerPrivateWeakLinkage:        return 14; +  case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; +  } +} + +static unsigned getEncodedVisibility(const GlobalValue *GV) { +  switch (GV->getVisibility()) { +  default: llvm_unreachable("Invalid visibility!"); +  case GlobalValue::DefaultVisibility:   return 0; +  case GlobalValue::HiddenVisibility:    return 1; +  case GlobalValue::ProtectedVisibility: return 2; +  } +} + +// Emit top-level description of module, including target triple, inline asm, +// descriptors for global variables, and function prototype info. +static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, +                            BitstreamWriter &Stream) { +  // Emit the list of dependent libraries for the Module. +  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) +    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); + +  // Emit various pieces of data attached to a module. +  if (!M->getTargetTriple().empty()) +    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), +                      0/*TODO*/, Stream); +  if (!M->getDataLayout().empty()) +    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), +                      0/*TODO*/, Stream); +  if (!M->getModuleInlineAsm().empty()) +    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), +                      0/*TODO*/, Stream); + +  // Emit information about sections and GC, computing how many there are. Also +  // compute the maximum alignment value. +  std::map<std::string, unsigned> SectionMap; +  std::map<std::string, unsigned> GCMap; +  unsigned MaxAlignment = 0; +  unsigned MaxGlobalType = 0; +  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); +       GV != E; ++GV) { +    MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); +    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); + +    if (!GV->hasSection()) continue; +    // Give section names unique ID's. +    unsigned &Entry = SectionMap[GV->getSection()]; +    if (Entry != 0) continue; +    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), +                      0/*TODO*/, Stream); +    Entry = SectionMap.size(); +  } +  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { +    MaxAlignment = std::max(MaxAlignment, F->getAlignment()); +    if (F->hasSection()) { +      // Give section names unique ID's. +      unsigned &Entry = SectionMap[F->getSection()]; +      if (!Entry) { +        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), +                          0/*TODO*/, Stream); +        Entry = SectionMap.size(); +      } +    } +    if (F->hasGC()) { +      // Same for GC names. +      unsigned &Entry = GCMap[F->getGC()]; +      if (!Entry) { +        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), +                          0/*TODO*/, Stream); +        Entry = GCMap.size(); +      } +    } +  } + +  // Emit abbrev for globals, now that we know # sections and max alignment. +  unsigned SimpleGVarAbbrev = 0; +  if (!M->global_empty()) { +    // Add an abbrev for common globals with no visibility or thread localness. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                              Log2_32_Ceil(MaxGlobalType+1))); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant. +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer. +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage. +    if (MaxAlignment == 0)                                      // Alignment. +      Abbv->Add(BitCodeAbbrevOp(0)); +    else { +      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; +      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                               Log2_32_Ceil(MaxEncAlignment+1))); +    } +    if (SectionMap.empty())                                    // Section. +      Abbv->Add(BitCodeAbbrevOp(0)); +    else +      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                               Log2_32_Ceil(SectionMap.size()+1))); +    // Don't bother emitting vis + thread local. +    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); +  } + +  // Emit the global variable information. +  SmallVector<unsigned, 64> Vals; +  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); +       GV != E; ++GV) { +    unsigned AbbrevToUse = 0; + +    // GLOBALVAR: [type, isconst, initid, +    //             linkage, alignment, section, visibility, threadlocal] +    Vals.push_back(VE.getTypeID(GV->getType())); +    Vals.push_back(GV->isConstant()); +    Vals.push_back(GV->isDeclaration() ? 0 : +                   (VE.getValueID(GV->getInitializer()) + 1)); +    Vals.push_back(getEncodedLinkage(GV)); +    Vals.push_back(Log2_32(GV->getAlignment())+1); +    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); +    if (GV->isThreadLocal() || +        GV->getVisibility() != GlobalValue::DefaultVisibility) { +      Vals.push_back(getEncodedVisibility(GV)); +      Vals.push_back(GV->isThreadLocal()); +    } else { +      AbbrevToUse = SimpleGVarAbbrev; +    } + +    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); +    Vals.clear(); +  } + +  // Emit the function proto information. +  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { +    // FUNCTION:  [type, callingconv, isproto, paramattr, +    //             linkage, alignment, section, visibility, gc] +    Vals.push_back(VE.getTypeID(F->getType())); +    Vals.push_back(F->getCallingConv()); +    Vals.push_back(F->isDeclaration()); +    Vals.push_back(getEncodedLinkage(F)); +    Vals.push_back(VE.getAttributeID(F->getAttributes())); +    Vals.push_back(Log2_32(F->getAlignment())+1); +    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); +    Vals.push_back(getEncodedVisibility(F)); +    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); + +    unsigned AbbrevToUse = 0; +    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); +    Vals.clear(); +  } + + +  // Emit the alias information. +  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); +       AI != E; ++AI) { +    Vals.push_back(VE.getTypeID(AI->getType())); +    Vals.push_back(VE.getValueID(AI->getAliasee())); +    Vals.push_back(getEncodedLinkage(AI)); +    Vals.push_back(getEncodedVisibility(AI)); +    unsigned AbbrevToUse = 0; +    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); +    Vals.clear(); +  } +} + +static uint64_t GetOptimizationFlags(const Value *V) { +  uint64_t Flags = 0; + +  if (const OverflowingBinaryOperator *OBO = +        dyn_cast<OverflowingBinaryOperator>(V)) { +    if (OBO->hasNoSignedWrap()) +      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; +    if (OBO->hasNoUnsignedWrap()) +      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; +  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { +    if (Div->isExact()) +      Flags |= 1 << bitc::SDIV_EXACT; +  } + +  return Flags; +} + +static void WriteMDNode(const MDNode *N, +                        const ValueEnumerator &VE, +                        BitstreamWriter &Stream, +                        SmallVector<uint64_t, 64> &Record) { +  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { +    if (N->getOperand(i)) { +      Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); +      Record.push_back(VE.getValueID(N->getOperand(i))); +    } else { +      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); +      Record.push_back(0); +    } +  } +  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE2 : +                                           bitc::METADATA_NODE2; +  Stream.EmitRecord(MDCode, Record, 0); +  Record.clear(); +} + +static void WriteModuleMetadata(const Module *M, +                                const ValueEnumerator &VE, +                                BitstreamWriter &Stream) { +  const ValueEnumerator::ValueList &Vals = VE.getMDValues(); +  bool StartedMetadataBlock = false; +  unsigned MDSAbbrev = 0; +  SmallVector<uint64_t, 64> Record; +  for (unsigned i = 0, e = Vals.size(); i != e; ++i) { + +    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { +      if (!N->isFunctionLocal() || !N->getFunction()) { +        if (!StartedMetadataBlock) { +          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); +          StartedMetadataBlock = true; +        } +        WriteMDNode(N, VE, Stream, Record); +      } +    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { +      if (!StartedMetadataBlock)  { +        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); + +        // Abbrev for METADATA_STRING. +        BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); +        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +        MDSAbbrev = Stream.EmitAbbrev(Abbv); +        StartedMetadataBlock = true; +      } + +      // Code: [strchar x N] +      Record.append(MDS->begin(), MDS->end()); + +      // Emit the finished record. +      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); +      Record.clear(); +    } +  } + +  // Write named metadata. +  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), +       E = M->named_metadata_end(); I != E; ++I) { +    const NamedMDNode *NMD = I; +    if (!StartedMetadataBlock)  { +      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); +      StartedMetadataBlock = true; +    } + +    // Write name. +    StringRef Str = NMD->getName(); +    for (unsigned i = 0, e = Str.size(); i != e; ++i) +      Record.push_back(Str[i]); +    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); +    Record.clear(); + +    // Write named metadata operands. +    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) +      Record.push_back(VE.getValueID(NMD->getOperand(i))); +    Stream.EmitRecord(bitc::METADATA_NAMED_NODE2, Record, 0); +    Record.clear(); +  } + +  if (StartedMetadataBlock) +    Stream.ExitBlock(); +} + +static void WriteFunctionLocalMetadata(const Function &F, +                                       const ValueEnumerator &VE, +                                       BitstreamWriter &Stream) { +  bool StartedMetadataBlock = false; +  SmallVector<uint64_t, 64> Record; +  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); +  for (unsigned i = 0, e = Vals.size(); i != e; ++i) +    if (const MDNode *N = Vals[i]) +      if (N->isFunctionLocal() && N->getFunction() == &F) { +        if (!StartedMetadataBlock) { +          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); +          StartedMetadataBlock = true; +        } +        WriteMDNode(N, VE, Stream, Record); +      } +       +  if (StartedMetadataBlock) +    Stream.ExitBlock(); +} + +static void WriteMetadataAttachment(const Function &F, +                                    const ValueEnumerator &VE, +                                    BitstreamWriter &Stream) { +  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); + +  SmallVector<uint64_t, 64> Record; + +  // Write metadata attachments +  // METADATA_ATTACHMENT2 - [m x [value, [n x [id, mdnode]]] +  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; +   +  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) +    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); +         I != E; ++I) { +      MDs.clear(); +      I->getAllMetadataOtherThanDebugLoc(MDs); +       +      // If no metadata, ignore instruction. +      if (MDs.empty()) continue; + +      Record.push_back(VE.getInstructionID(I)); +       +      for (unsigned i = 0, e = MDs.size(); i != e; ++i) { +        Record.push_back(MDs[i].first); +        Record.push_back(VE.getValueID(MDs[i].second)); +      } +      Stream.EmitRecord(bitc::METADATA_ATTACHMENT2, Record, 0); +      Record.clear(); +    } + +  Stream.ExitBlock(); +} + +static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { +  SmallVector<uint64_t, 64> Record; + +  // Write metadata kinds +  // METADATA_KIND - [n x [id, name]] +  SmallVector<StringRef, 4> Names; +  M->getMDKindNames(Names); +   +  if (Names.empty()) return; + +  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); +   +  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { +    Record.push_back(MDKindID); +    StringRef KName = Names[MDKindID]; +    Record.append(KName.begin(), KName.end()); +     +    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +static void WriteConstants(unsigned FirstVal, unsigned LastVal, +                           const ValueEnumerator &VE, +                           BitstreamWriter &Stream, bool isGlobal) { +  if (FirstVal == LastVal) return; + +  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); + +  unsigned AggregateAbbrev = 0; +  unsigned String8Abbrev = 0; +  unsigned CString7Abbrev = 0; +  unsigned CString6Abbrev = 0; +  // If this is a constant pool for the module, emit module-specific abbrevs. +  if (isGlobal) { +    // Abbrev for CST_CODE_AGGREGATE. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); +    AggregateAbbrev = Stream.EmitAbbrev(Abbv); + +    // Abbrev for CST_CODE_STRING. +    Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +    String8Abbrev = Stream.EmitAbbrev(Abbv); +    // Abbrev for CST_CODE_CSTRING. +    Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +    CString7Abbrev = Stream.EmitAbbrev(Abbv); +    // Abbrev for CST_CODE_CSTRING. +    Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    CString6Abbrev = Stream.EmitAbbrev(Abbv); +  } + +  SmallVector<uint64_t, 64> Record; + +  const ValueEnumerator::ValueList &Vals = VE.getValues(); +  const Type *LastTy = 0; +  for (unsigned i = FirstVal; i != LastVal; ++i) { +    const Value *V = Vals[i].first; +    // If we need to switch types, do so now. +    if (V->getType() != LastTy) { +      LastTy = V->getType(); +      Record.push_back(VE.getTypeID(LastTy)); +      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, +                        CONSTANTS_SETTYPE_ABBREV); +      Record.clear(); +    } + +    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { +      Record.push_back(unsigned(IA->hasSideEffects()) | +                       unsigned(IA->isAlignStack()) << 1); + +      // Add the asm string. +      const std::string &AsmStr = IA->getAsmString(); +      Record.push_back(AsmStr.size()); +      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) +        Record.push_back(AsmStr[i]); + +      // Add the constraint string. +      const std::string &ConstraintStr = IA->getConstraintString(); +      Record.push_back(ConstraintStr.size()); +      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) +        Record.push_back(ConstraintStr[i]); +      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); +      Record.clear(); +      continue; +    } +    const Constant *C = cast<Constant>(V); +    unsigned Code = -1U; +    unsigned AbbrevToUse = 0; +    if (C->isNullValue()) { +      Code = bitc::CST_CODE_NULL; +    } else if (isa<UndefValue>(C)) { +      Code = bitc::CST_CODE_UNDEF; +    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { +      if (IV->getBitWidth() <= 64) { +        uint64_t V = IV->getSExtValue(); +        if ((int64_t)V >= 0) +          Record.push_back(V << 1); +        else +          Record.push_back((-V << 1) | 1); +        Code = bitc::CST_CODE_INTEGER; +        AbbrevToUse = CONSTANTS_INTEGER_ABBREV; +      } else {                             // Wide integers, > 64 bits in size. +        // We have an arbitrary precision integer value to write whose +        // bit width is > 64. However, in canonical unsigned integer +        // format it is likely that the high bits are going to be zero. +        // So, we only write the number of active words. +        unsigned NWords = IV->getValue().getActiveWords(); +        const uint64_t *RawWords = IV->getValue().getRawData(); +        for (unsigned i = 0; i != NWords; ++i) { +          int64_t V = RawWords[i]; +          if (V >= 0) +            Record.push_back(V << 1); +          else +            Record.push_back((-V << 1) | 1); +        } +        Code = bitc::CST_CODE_WIDE_INTEGER; +      } +    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { +      Code = bitc::CST_CODE_FLOAT; +      const Type *Ty = CFP->getType(); +      if (Ty->isFloatTy() || Ty->isDoubleTy()) { +        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); +      } else if (Ty->isX86_FP80Ty()) { +        // api needed to prevent premature destruction +        // bits are not in the same order as a normal i80 APInt, compensate. +        APInt api = CFP->getValueAPF().bitcastToAPInt(); +        const uint64_t *p = api.getRawData(); +        Record.push_back((p[1] << 48) | (p[0] >> 16)); +        Record.push_back(p[0] & 0xffffLL); +      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { +        APInt api = CFP->getValueAPF().bitcastToAPInt(); +        const uint64_t *p = api.getRawData(); +        Record.push_back(p[0]); +        Record.push_back(p[1]); +      } else { +        assert (0 && "Unknown FP type!"); +      } +    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { +      const ConstantArray *CA = cast<ConstantArray>(C); +      // Emit constant strings specially. +      unsigned NumOps = CA->getNumOperands(); +      // If this is a null-terminated string, use the denser CSTRING encoding. +      if (CA->getOperand(NumOps-1)->isNullValue()) { +        Code = bitc::CST_CODE_CSTRING; +        --NumOps;  // Don't encode the null, which isn't allowed by char6. +      } else { +        Code = bitc::CST_CODE_STRING; +        AbbrevToUse = String8Abbrev; +      } +      bool isCStr7 = Code == bitc::CST_CODE_CSTRING; +      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; +      for (unsigned i = 0; i != NumOps; ++i) { +        unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); +        Record.push_back(V); +        isCStr7 &= (V & 128) == 0; +        if (isCStrChar6) +          isCStrChar6 = BitCodeAbbrevOp::isChar6(V); +      } + +      if (isCStrChar6) +        AbbrevToUse = CString6Abbrev; +      else if (isCStr7) +        AbbrevToUse = CString7Abbrev; +    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || +               isa<ConstantVector>(V)) { +      Code = bitc::CST_CODE_AGGREGATE; +      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) +        Record.push_back(VE.getValueID(C->getOperand(i))); +      AbbrevToUse = AggregateAbbrev; +    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { +      switch (CE->getOpcode()) { +      default: +        if (Instruction::isCast(CE->getOpcode())) { +          Code = bitc::CST_CODE_CE_CAST; +          Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); +          Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +          Record.push_back(VE.getValueID(C->getOperand(0))); +          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; +        } else { +          assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); +          Code = bitc::CST_CODE_CE_BINOP; +          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); +          Record.push_back(VE.getValueID(C->getOperand(0))); +          Record.push_back(VE.getValueID(C->getOperand(1))); +          uint64_t Flags = GetOptimizationFlags(CE); +          if (Flags != 0) +            Record.push_back(Flags); +        } +        break; +      case Instruction::GetElementPtr: +        Code = bitc::CST_CODE_CE_GEP; +        if (cast<GEPOperator>(C)->isInBounds()) +          Code = bitc::CST_CODE_CE_INBOUNDS_GEP; +        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { +          Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); +          Record.push_back(VE.getValueID(C->getOperand(i))); +        } +        break; +      case Instruction::Select: +        Code = bitc::CST_CODE_CE_SELECT; +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ExtractElement: +        Code = bitc::CST_CODE_CE_EXTRACTELT; +        Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        break; +      case Instruction::InsertElement: +        Code = bitc::CST_CODE_CE_INSERTELT; +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ShuffleVector: +        // If the return type and argument types are the same, this is a +        // standard shufflevector instruction.  If the types are different, +        // then the shuffle is widening or truncating the input vectors, and +        // the argument type must also be encoded. +        if (C->getType() == C->getOperand(0)->getType()) { +          Code = bitc::CST_CODE_CE_SHUFFLEVEC; +        } else { +          Code = bitc::CST_CODE_CE_SHUFVEC_EX; +          Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        } +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ICmp: +      case Instruction::FCmp: +        Code = bitc::CST_CODE_CE_CMP; +        Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(CE->getPredicate()); +        break; +      } +    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { +      assert(BA->getFunction() == BA->getBasicBlock()->getParent() && +             "Malformed blockaddress"); +      Code = bitc::CST_CODE_BLOCKADDRESS; +      Record.push_back(VE.getTypeID(BA->getFunction()->getType())); +      Record.push_back(VE.getValueID(BA->getFunction())); +      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); +    } else { +#ifndef NDEBUG +      C->dump(); +#endif +      llvm_unreachable("Unknown constant!"); +    } +    Stream.EmitRecord(Code, Record, AbbrevToUse); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +static void WriteModuleConstants(const ValueEnumerator &VE, +                                 BitstreamWriter &Stream) { +  const ValueEnumerator::ValueList &Vals = VE.getValues(); + +  // Find the first constant to emit, which is the first non-globalvalue value. +  // We know globalvalues have been emitted by WriteModuleInfo. +  for (unsigned i = 0, e = Vals.size(); i != e; ++i) { +    if (!isa<GlobalValue>(Vals[i].first)) { +      WriteConstants(i, Vals.size(), VE, Stream, true); +      return; +    } +  } +} + +/// PushValueAndType - The file has to encode both the value and type id for +/// many values, because we need to know what type to create for forward +/// references.  However, most operands are not forward references, so this type +/// field is not needed. +/// +/// This function adds V's value ID to Vals.  If the value ID is higher than the +/// instruction ID, then it is a forward reference, and it also includes the +/// type ID. +static bool PushValueAndType(const Value *V, unsigned InstID, +                             SmallVector<unsigned, 64> &Vals, +                             ValueEnumerator &VE) { +  unsigned ValID = VE.getValueID(V); +  Vals.push_back(ValID); +  if (ValID >= InstID) { +    Vals.push_back(VE.getTypeID(V->getType())); +    return true; +  } +  return false; +} + +/// WriteInstruction - Emit an instruction to the specified stream. +static void WriteInstruction(const Instruction &I, unsigned InstID, +                             ValueEnumerator &VE, BitstreamWriter &Stream, +                             SmallVector<unsigned, 64> &Vals) { +  unsigned Code = 0; +  unsigned AbbrevToUse = 0; +  VE.setInstructionID(&I); +  switch (I.getOpcode()) { +  default: +    if (Instruction::isCast(I.getOpcode())) { +      Code = bitc::FUNC_CODE_INST_CAST; +      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) +        AbbrevToUse = FUNCTION_INST_CAST_ABBREV; +      Vals.push_back(VE.getTypeID(I.getType())); +      Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); +    } else { +      assert(isa<BinaryOperator>(I) && "Unknown instruction!"); +      Code = bitc::FUNC_CODE_INST_BINOP; +      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) +        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; +      Vals.push_back(VE.getValueID(I.getOperand(1))); +      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); +      uint64_t Flags = GetOptimizationFlags(&I); +      if (Flags != 0) { +        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) +          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; +        Vals.push_back(Flags); +      } +    } +    break; + +  case Instruction::GetElementPtr: +    Code = bitc::FUNC_CODE_INST_GEP; +    if (cast<GEPOperator>(&I)->isInBounds()) +      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; +    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +      PushValueAndType(I.getOperand(i), InstID, Vals, VE); +    break; +  case Instruction::ExtractValue: { +    Code = bitc::FUNC_CODE_INST_EXTRACTVAL; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); +    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) +      Vals.push_back(*i); +    break; +  } +  case Instruction::InsertValue: { +    Code = bitc::FUNC_CODE_INST_INSERTVAL; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    PushValueAndType(I.getOperand(1), InstID, Vals, VE); +    const InsertValueInst *IVI = cast<InsertValueInst>(&I); +    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) +      Vals.push_back(*i); +    break; +  } +  case Instruction::Select: +    Code = bitc::FUNC_CODE_INST_VSELECT; +    PushValueAndType(I.getOperand(1), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(2))); +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    break; +  case Instruction::ExtractElement: +    Code = bitc::FUNC_CODE_INST_EXTRACTELT; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(1))); +    break; +  case Instruction::InsertElement: +    Code = bitc::FUNC_CODE_INST_INSERTELT; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(1))); +    Vals.push_back(VE.getValueID(I.getOperand(2))); +    break; +  case Instruction::ShuffleVector: +    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(1))); +    Vals.push_back(VE.getValueID(I.getOperand(2))); +    break; +  case Instruction::ICmp: +  case Instruction::FCmp: +    // compare returning Int1Ty or vector of Int1Ty +    Code = bitc::FUNC_CODE_INST_CMP2; +    PushValueAndType(I.getOperand(0), InstID, Vals, VE); +    Vals.push_back(VE.getValueID(I.getOperand(1))); +    Vals.push_back(cast<CmpInst>(I).getPredicate()); +    break; + +  case Instruction::Ret: +    { +      Code = bitc::FUNC_CODE_INST_RET; +      unsigned NumOperands = I.getNumOperands(); +      if (NumOperands == 0) +        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; +      else if (NumOperands == 1) { +        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) +          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; +      } else { +        for (unsigned i = 0, e = NumOperands; i != e; ++i) +          PushValueAndType(I.getOperand(i), InstID, Vals, VE); +      } +    } +    break; +  case Instruction::Br: +    { +      Code = bitc::FUNC_CODE_INST_BR; +      BranchInst &II = cast<BranchInst>(I); +      Vals.push_back(VE.getValueID(II.getSuccessor(0))); +      if (II.isConditional()) { +        Vals.push_back(VE.getValueID(II.getSuccessor(1))); +        Vals.push_back(VE.getValueID(II.getCondition())); +      } +    } +    break; +  case Instruction::Switch: +    Code = bitc::FUNC_CODE_INST_SWITCH; +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); +    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i))); +    break; +  case Instruction::IndirectBr: +    Code = bitc::FUNC_CODE_INST_INDIRECTBR; +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); +    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i))); +    break; +       +  case Instruction::Invoke: { +    const InvokeInst *II = cast<InvokeInst>(&I); +    const Value *Callee(II->getCalledValue()); +    const PointerType *PTy = cast<PointerType>(Callee->getType()); +    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); +    Code = bitc::FUNC_CODE_INST_INVOKE; + +    Vals.push_back(VE.getAttributeID(II->getAttributes())); +    Vals.push_back(II->getCallingConv()); +    Vals.push_back(VE.getValueID(II->getNormalDest())); +    Vals.push_back(VE.getValueID(II->getUnwindDest())); +    PushValueAndType(Callee, InstID, Vals, VE); + +    // Emit value #'s for the fixed parameters. +    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param. + +    // Emit type/value pairs for varargs params. +    if (FTy->isVarArg()) { +      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; +           i != e; ++i) +        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg +    } +    break; +  } +  case Instruction::Unwind: +    Code = bitc::FUNC_CODE_INST_UNWIND; +    break; +  case Instruction::Unreachable: +    Code = bitc::FUNC_CODE_INST_UNREACHABLE; +    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; +    break; + +  case Instruction::PHI: +    Code = bitc::FUNC_CODE_INST_PHI; +    Vals.push_back(VE.getTypeID(I.getType())); +    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i))); +    break; + +  case Instruction::Alloca: +    Code = bitc::FUNC_CODE_INST_ALLOCA; +    Vals.push_back(VE.getTypeID(I.getType())); +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); +    Vals.push_back(VE.getValueID(I.getOperand(0))); // size. +    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); +    break; + +  case Instruction::Load: +    Code = bitc::FUNC_CODE_INST_LOAD; +    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr +      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; + +    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); +    Vals.push_back(cast<LoadInst>(I).isVolatile()); +    break; +  case Instruction::Store: +    Code = bitc::FUNC_CODE_INST_STORE2; +    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr +    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val. +    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); +    Vals.push_back(cast<StoreInst>(I).isVolatile()); +    break; +  case Instruction::Call: { +    const CallInst &CI = cast<CallInst>(I); +    const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); +    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + +    Code = bitc::FUNC_CODE_INST_CALL2; + +    Vals.push_back(VE.getAttributeID(CI.getAttributes())); +    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); +    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee + +    // Emit value #'s for the fixed parameters. +    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) +      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param. + +    // Emit type/value pairs for varargs params. +    if (FTy->isVarArg()) { +      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); +           i != e; ++i) +        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs +    } +    break; +  } +  case Instruction::VAArg: +    Code = bitc::FUNC_CODE_INST_VAARG; +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty +    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. +    Vals.push_back(VE.getTypeID(I.getType())); // restype. +    break; +  } + +  Stream.EmitRecord(Code, Vals, AbbrevToUse); +  Vals.clear(); +} + +// Emit names for globals/functions etc. +static void WriteValueSymbolTable(const ValueSymbolTable &VST, +                                  const ValueEnumerator &VE, +                                  BitstreamWriter &Stream) { +  if (VST.empty()) return; +  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); + +  // FIXME: Set up the abbrev, we know how many values there are! +  // FIXME: We know if the type names can use 7-bit ascii. +  SmallVector<unsigned, 64> NameVals; + +  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); +       SI != SE; ++SI) { + +    const ValueName &Name = *SI; + +    // Figure out the encoding to use for the name. +    bool is7Bit = true; +    bool isChar6 = true; +    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); +         C != E; ++C) { +      if (isChar6) +        isChar6 = BitCodeAbbrevOp::isChar6(*C); +      if ((unsigned char)*C & 128) { +        is7Bit = false; +        break;  // don't bother scanning the rest. +      } +    } + +    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; + +    // VST_ENTRY:   [valueid, namechar x N] +    // VST_BBENTRY: [bbid, namechar x N] +    unsigned Code; +    if (isa<BasicBlock>(SI->getValue())) { +      Code = bitc::VST_CODE_BBENTRY; +      if (isChar6) +        AbbrevToUse = VST_BBENTRY_6_ABBREV; +    } else { +      Code = bitc::VST_CODE_ENTRY; +      if (isChar6) +        AbbrevToUse = VST_ENTRY_6_ABBREV; +      else if (is7Bit) +        AbbrevToUse = VST_ENTRY_7_ABBREV; +    } + +    NameVals.push_back(VE.getValueID(SI->getValue())); +    for (const char *P = Name.getKeyData(), +         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) +      NameVals.push_back((unsigned char)*P); + +    // Emit the finished record. +    Stream.EmitRecord(Code, NameVals, AbbrevToUse); +    NameVals.clear(); +  } +  Stream.ExitBlock(); +} + +/// WriteFunction - Emit a function body to the module stream. +static void WriteFunction(const Function &F, ValueEnumerator &VE, +                          BitstreamWriter &Stream) { +  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); +  VE.incorporateFunction(F); + +  SmallVector<unsigned, 64> Vals; + +  // Emit the number of basic blocks, so the reader can create them ahead of +  // time. +  Vals.push_back(VE.getBasicBlocks().size()); +  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); +  Vals.clear(); + +  // If there are function-local constants, emit them now. +  unsigned CstStart, CstEnd; +  VE.getFunctionConstantRange(CstStart, CstEnd); +  WriteConstants(CstStart, CstEnd, VE, Stream, false); + +  // If there is function-local metadata, emit it now. +  WriteFunctionLocalMetadata(F, VE, Stream); + +  // Keep a running idea of what the instruction ID is. +  unsigned InstID = CstEnd; + +  bool NeedsMetadataAttachment = false; +   +  DebugLoc LastDL; +   +  // Finally, emit all the instructions, in order. +  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) +    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); +         I != E; ++I) { +      WriteInstruction(*I, InstID, VE, Stream, Vals); +       +      if (!I->getType()->isVoidTy()) +        ++InstID; +       +      // If the instruction has metadata, write a metadata attachment later. +      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); +       +      // If the instruction has a debug location, emit it. +      DebugLoc DL = I->getDebugLoc(); +      if (DL.isUnknown()) { +        // nothing todo. +      } else if (DL == LastDL) { +        // Just repeat the same debug loc as last time. +        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); +      } else { +        MDNode *Scope, *IA; +        DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); +         +        Vals.push_back(DL.getLine()); +        Vals.push_back(DL.getCol()); +        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); +        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); +        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC2, Vals); +        Vals.clear(); +         +        LastDL = DL; +      } +    } + +  // Emit names for all the instructions etc. +  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); + +  if (NeedsMetadataAttachment) +    WriteMetadataAttachment(F, VE, Stream); +  VE.purgeFunction(); +  Stream.ExitBlock(); +} + +/// WriteTypeSymbolTable - Emit a block for the specified type symtab. +static void WriteTypeSymbolTable(const TypeSymbolTable &TST, +                                 const ValueEnumerator &VE, +                                 BitstreamWriter &Stream) { +  if (TST.empty()) return; + +  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); + +  // 7-bit fixed width VST_CODE_ENTRY strings. +  BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                            Log2_32_Ceil(VE.getTypes().size()+1))); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +  unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); + +  SmallVector<unsigned, 64> NameVals; + +  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); +       TI != TE; ++TI) { +    // TST_ENTRY: [typeid, namechar x N] +    NameVals.push_back(VE.getTypeID(TI->second)); + +    const std::string &Str = TI->first; +    bool is7Bit = true; +    for (unsigned i = 0, e = Str.size(); i != e; ++i) { +      NameVals.push_back((unsigned char)Str[i]); +      if (Str[i] & 128) +        is7Bit = false; +    } + +    // Emit the finished record. +    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); +    NameVals.clear(); +  } + +  Stream.ExitBlock(); +} + +// Emit blockinfo, which defines the standard abbreviations etc. +static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { +  // We only want to emit block info records for blocks that have multiple +  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other +  // blocks can defined their abbrevs inline. +  Stream.EnterBlockInfoBlock(2); + +  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, +                                   Abbv) != VST_ENTRY_8_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // 7-bit fixed width VST_ENTRY strings. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, +                                   Abbv) != VST_ENTRY_7_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // 6-bit char6 VST_ENTRY strings. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, +                                   Abbv) != VST_ENTRY_6_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // 6-bit char6 VST_BBENTRY strings. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, +                                   Abbv) != VST_BBENTRY_6_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + + + +  { // SETTYPE abbrev for CONSTANTS_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                              Log2_32_Ceil(VE.getTypes().size()+1))); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, +                                   Abbv) != CONSTANTS_SETTYPE_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // INTEGER abbrev for CONSTANTS_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, +                                   Abbv) != CONSTANTS_INTEGER_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // CE_CAST abbrev for CONSTANTS_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid +                              Log2_32_Ceil(VE.getTypes().size()+1))); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id + +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, +                                   Abbv) != CONSTANTS_CE_CAST_Abbrev) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // NULL abbrev for CONSTANTS_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, +                                   Abbv) != CONSTANTS_NULL_Abbrev) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  // FIXME: This should only use space for first class types! + +  { // INST_LOAD abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_LOAD_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_BINOP abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_BINOP_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_CAST abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty +                              Log2_32_Ceil(VE.getTypes().size()+1))); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_CAST_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // INST_RET abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_RET abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. +    BitCodeAbbrev *Abbv = new BitCodeAbbrev(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, +                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  Stream.ExitBlock(); +} + + +/// WriteModule - Emit the specified module to the bitstream. +static void WriteModule(const Module *M, BitstreamWriter &Stream) { +  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); + +  // Emit the version number if it is non-zero. +  if (CurVersion) { +    SmallVector<unsigned, 1> Vals; +    Vals.push_back(CurVersion); +    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); +  } + +  // Analyze the module, enumerating globals, functions, etc. +  ValueEnumerator VE(M); + +  // Emit blockinfo, which defines the standard abbreviations etc. +  WriteBlockInfo(VE, Stream); + +  // Emit information about parameter attributes. +  WriteAttributeTable(VE, Stream); + +  // Emit information describing all of the types in the module. +  WriteTypeTable(VE, Stream); + +  // Emit top-level description of module, including target triple, inline asm, +  // descriptors for global variables, and function prototype info. +  WriteModuleInfo(M, VE, Stream); + +  // Emit constants. +  WriteModuleConstants(VE, Stream); + +  // Emit metadata. +  WriteModuleMetadata(M, VE, Stream); + +  // Emit function bodies. +  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) +    if (!I->isDeclaration()) +      WriteFunction(*I, VE, Stream); + +  // Emit metadata. +  WriteModuleMetadataStore(M, Stream); + +  // Emit the type symbol table information. +  WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); + +  // Emit names for globals/functions etc. +  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); + +  Stream.ExitBlock(); +} + +/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a +/// header and trailer to make it compatible with the system archiver.  To do +/// this we emit the following header, and then emit a trailer that pads the +/// file out to be a multiple of 16 bytes. +/// +/// struct bc_header { +///   uint32_t Magic;         // 0x0B17C0DE +///   uint32_t Version;       // Version, currently always 0. +///   uint32_t BitcodeOffset; // Offset to traditional bitcode file. +///   uint32_t BitcodeSize;   // Size of traditional bitcode file. +///   uint32_t CPUType;       // CPU specifier. +///   ... potentially more later ... +/// }; +enum { +  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. +  DarwinBCHeaderSize = 5*4 +}; + +/// isARMTriplet - Return true if the triplet looks like: +/// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. +static bool isARMTriplet(const std::string &TT) { +  size_t Pos = 0; +  size_t Size = TT.size(); +  if (Size >= 6 && +      TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && +      TT[3] == 'm' && TT[4] == 'b') +    Pos = 5; +  else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') +    Pos = 3; +  else +    return false; + +  if (TT[Pos] == '-') +    return true; +  else if (TT[Pos] == 'v') { +    if (Size >= Pos+4 && +        TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') +      return true; +    else if (Size >= Pos+4 && +             TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') +      return true; +  } else +    return false; +  while (++Pos < Size && TT[Pos] != '-') { +    if (!isdigit(TT[Pos])) +      return false; +  } +  return true; +} + +static void EmitDarwinBCHeader(BitstreamWriter &Stream, +                               const std::string &TT) { +  unsigned CPUType = ~0U; + +  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, +  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic +  // number from /usr/include/mach/machine.h.  It is ok to reproduce the +  // specific constants here because they are implicitly part of the Darwin ABI. +  enum { +    DARWIN_CPU_ARCH_ABI64      = 0x01000000, +    DARWIN_CPU_TYPE_X86        = 7, +    DARWIN_CPU_TYPE_ARM        = 12, +    DARWIN_CPU_TYPE_POWERPC    = 18 +  }; + +  if (TT.find("x86_64-") == 0) +    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; +  else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && +           TT[4] == '-' && TT[1] - '3' < 6) +    CPUType = DARWIN_CPU_TYPE_X86; +  else if (TT.find("powerpc-") == 0) +    CPUType = DARWIN_CPU_TYPE_POWERPC; +  else if (TT.find("powerpc64-") == 0) +    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; +  else if (isARMTriplet(TT)) +    CPUType = DARWIN_CPU_TYPE_ARM; + +  // Traditional Bitcode starts after header. +  unsigned BCOffset = DarwinBCHeaderSize; + +  Stream.Emit(0x0B17C0DE, 32); +  Stream.Emit(0         , 32);  // Version. +  Stream.Emit(BCOffset  , 32); +  Stream.Emit(0         , 32);  // Filled in later. +  Stream.Emit(CPUType   , 32); +} + +/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and +/// finalize the header. +static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { +  // Update the size field in the header. +  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); + +  // If the file is not a multiple of 16 bytes, insert dummy padding. +  while (BufferSize & 15) { +    Stream.Emit(0, 8); +    ++BufferSize; +  } +} + + +/// WriteBitcodeToFile - Write the specified module to the specified output +/// stream. +void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { +  std::vector<unsigned char> Buffer; +  BitstreamWriter Stream(Buffer); + +  Buffer.reserve(256*1024); + +  WriteBitcodeToStream( M, Stream ); + +  // Write the generated bitstream to "Out". +  Out.write((char*)&Buffer.front(), Buffer.size()); +} + +/// WriteBitcodeToStream - Write the specified module to the specified output +/// stream. +void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { +  // If this is darwin, emit a file header and trailer if needed. +  bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; +  if (isDarwin) +    EmitDarwinBCHeader(Stream, M->getTargetTriple()); + +  // Emit the file header. +  Stream.Emit((unsigned)'B', 8); +  Stream.Emit((unsigned)'C', 8); +  Stream.Emit(0x0, 4); +  Stream.Emit(0xC, 4); +  Stream.Emit(0xE, 4); +  Stream.Emit(0xD, 4); + +  // Emit the module. +  WriteModule(M, Stream); + +  if (isDarwin) +    EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); +}  | 
