diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/Analysis.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/Analysis.cpp | 285 | 
1 files changed, 285 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/Analysis.cpp b/contrib/llvm/lib/CodeGen/Analysis.cpp new file mode 100644 index 000000000000..f71eee5d01b8 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/Analysis.cpp @@ -0,0 +1,285 @@ +//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines several CodeGen-specific LLVM IR analysis utilties. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Analysis.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +using namespace llvm; + +/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence +/// of insertvalue or extractvalue indices that identify a member, return +/// the linearized index of the start of the member. +/// +unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, +                                  const unsigned *Indices, +                                  const unsigned *IndicesEnd, +                                  unsigned CurIndex) { +  // Base case: We're done. +  if (Indices && Indices == IndicesEnd) +    return CurIndex; + +  // Given a struct type, recursively traverse the elements. +  if (const StructType *STy = dyn_cast<StructType>(Ty)) { +    for (StructType::element_iterator EB = STy->element_begin(), +                                      EI = EB, +                                      EE = STy->element_end(); +        EI != EE; ++EI) { +      if (Indices && *Indices == unsigned(EI - EB)) +        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); +      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); +    } +    return CurIndex; +  } +  // Given an array type, recursively traverse the elements. +  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { +    const Type *EltTy = ATy->getElementType(); +    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { +      if (Indices && *Indices == i) +        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); +      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); +    } +    return CurIndex; +  } +  // We haven't found the type we're looking for, so keep searching. +  return CurIndex + 1; +} + +/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of +/// EVTs that represent all the individual underlying +/// non-aggregate types that comprise it. +/// +/// If Offsets is non-null, it points to a vector to be filled in +/// with the in-memory offsets of each of the individual values. +/// +void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, +                           SmallVectorImpl<EVT> &ValueVTs, +                           SmallVectorImpl<uint64_t> *Offsets, +                           uint64_t StartingOffset) { +  // Given a struct type, recursively traverse the elements. +  if (const StructType *STy = dyn_cast<StructType>(Ty)) { +    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); +    for (StructType::element_iterator EB = STy->element_begin(), +                                      EI = EB, +                                      EE = STy->element_end(); +         EI != EE; ++EI) +      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, +                      StartingOffset + SL->getElementOffset(EI - EB)); +    return; +  } +  // Given an array type, recursively traverse the elements. +  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { +    const Type *EltTy = ATy->getElementType(); +    uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); +    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) +      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, +                      StartingOffset + i * EltSize); +    return; +  } +  // Interpret void as zero return values. +  if (Ty->isVoidTy()) +    return; +  // Base case: we can get an EVT for this LLVM IR type. +  ValueVTs.push_back(TLI.getValueType(Ty)); +  if (Offsets) +    Offsets->push_back(StartingOffset); +} + +/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. +GlobalVariable *llvm::ExtractTypeInfo(Value *V) { +  V = V->stripPointerCasts(); +  GlobalVariable *GV = dyn_cast<GlobalVariable>(V); + +  if (GV && GV->getName() == ".llvm.eh.catch.all.value") { +    assert(GV->hasInitializer() && +           "The EH catch-all value must have an initializer"); +    Value *Init = GV->getInitializer(); +    GV = dyn_cast<GlobalVariable>(Init); +    if (!GV) V = cast<ConstantPointerNull>(Init); +  } + +  assert((GV || isa<ConstantPointerNull>(V)) && +         "TypeInfo must be a global variable or NULL"); +  return GV; +} + +/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being +/// processed uses a memory 'm' constraint. +bool +llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, +                                const TargetLowering &TLI) { +  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { +    InlineAsm::ConstraintInfo &CI = CInfos[i]; +    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { +      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); +      if (CType == TargetLowering::C_Memory) +        return true; +    } + +    // Indirect operand accesses access memory. +    if (CI.isIndirect) +      return true; +  } + +  return false; +} + +/// getFCmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR floating-point condition code.  This includes +/// consideration of global floating-point math flags. +/// +ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { +  ISD::CondCode FPC, FOC; +  switch (Pred) { +  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; +  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; +  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break; +  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break; +  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break; +  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break; +  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break; +  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break; +  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break; +  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; +  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break; +  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break; +  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break; +  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break; +  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break; +  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break; +  default: +    llvm_unreachable("Invalid FCmp predicate opcode!"); +    FOC = FPC = ISD::SETFALSE; +    break; +  } +  if (FiniteOnlyFPMath()) +    return FOC; +  else +    return FPC; +} + +/// getICmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR integer condition code. +/// +ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { +  switch (Pred) { +  case ICmpInst::ICMP_EQ:  return ISD::SETEQ; +  case ICmpInst::ICMP_NE:  return ISD::SETNE; +  case ICmpInst::ICMP_SLE: return ISD::SETLE; +  case ICmpInst::ICMP_ULE: return ISD::SETULE; +  case ICmpInst::ICMP_SGE: return ISD::SETGE; +  case ICmpInst::ICMP_UGE: return ISD::SETUGE; +  case ICmpInst::ICMP_SLT: return ISD::SETLT; +  case ICmpInst::ICMP_ULT: return ISD::SETULT; +  case ICmpInst::ICMP_SGT: return ISD::SETGT; +  case ICmpInst::ICMP_UGT: return ISD::SETUGT; +  default: +    llvm_unreachable("Invalid ICmp predicate opcode!"); +    return ISD::SETNE; +  } +} + +/// Test if the given instruction is in a position to be optimized +/// with a tail-call. This roughly means that it's in a block with +/// a return and there's nothing that needs to be scheduled +/// between it and the return. +/// +/// This function only tests target-independent requirements. +bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, +                                const TargetLowering &TLI) { +  const Instruction *I = CS.getInstruction(); +  const BasicBlock *ExitBB = I->getParent(); +  const TerminatorInst *Term = ExitBB->getTerminator(); +  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); +  const Function *F = ExitBB->getParent(); + +  // The block must end in a return statement or unreachable. +  // +  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in +  // an unreachable, for now. The way tailcall optimization is currently +  // implemented means it will add an epilogue followed by a jump. That is +  // not profitable. Also, if the callee is a special function (e.g. +  // longjmp on x86), it can end up causing miscompilation that has not +  // been fully understood. +  if (!Ret && +      (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; + +  // If I will have a chain, make sure no other instruction that will have a +  // chain interposes between I and the return. +  if (I->mayHaveSideEffects() || I->mayReadFromMemory() || +      !I->isSafeToSpeculativelyExecute()) +    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; +         --BBI) { +      if (&*BBI == I) +        break; +      // Debug info intrinsics do not get in the way of tail call optimization. +      if (isa<DbgInfoIntrinsic>(BBI)) +        continue; +      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || +          !BBI->isSafeToSpeculativelyExecute()) +        return false; +    } + +  // If the block ends with a void return or unreachable, it doesn't matter +  // what the call's return type is. +  if (!Ret || Ret->getNumOperands() == 0) return true; + +  // If the return value is undef, it doesn't matter what the call's +  // return type is. +  if (isa<UndefValue>(Ret->getOperand(0))) return true; + +  // Conservatively require the attributes of the call to match those of +  // the return. Ignore noalias because it doesn't affect the call sequence. +  unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); +  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) +    return false; + +  // It's not safe to eliminate the sign / zero extension of the return value. +  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) +    return false; + +  // Otherwise, make sure the unmodified return value of I is the return value. +  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; +       U = dyn_cast<Instruction>(U->getOperand(0))) { +    if (!U) +      return false; +    if (!U->hasOneUse()) +      return false; +    if (U == I) +      break; +    // Check for a truly no-op truncate. +    if (isa<TruncInst>(U) && +        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) +      continue; +    // Check for a truly no-op bitcast. +    if (isa<BitCastInst>(U) && +        (U->getOperand(0)->getType() == U->getType() || +         (U->getOperand(0)->getType()->isPointerTy() && +          U->getType()->isPointerTy()))) +      continue; +    // Otherwise it's not a true no-op. +    return false; +  } + +  return true; +} +  | 
