diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/BranchFolding.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/BranchFolding.cpp | 1725 | 
1 files changed, 1725 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/CodeGen/BranchFolding.cpp b/contrib/llvm/lib/CodeGen/BranchFolding.cpp new file mode 100644 index 000000000000..ef1d2baed9ce --- /dev/null +++ b/contrib/llvm/lib/CodeGen/BranchFolding.cpp @@ -0,0 +1,1725 @@ +//===-- BranchFolding.cpp - Fold machine code branch instructions ---------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass forwards branches to unconditional branches to make them branch +// directly to the target block.  This pass often results in dead MBB's, which +// it then removes. +// +// Note that this pass must be run after register allocation, it cannot handle +// SSA form. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "branchfolding" +#include "BranchFolding.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterScavenging.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); +STATISTIC(NumBranchOpts, "Number of branches optimized"); +STATISTIC(NumTailMerge , "Number of block tails merged"); +STATISTIC(NumHoist     , "Number of times common instructions are hoisted"); + +static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", +                              cl::init(cl::BOU_UNSET), cl::Hidden); + +// Throttle for huge numbers of predecessors (compile speed problems) +static cl::opt<unsigned> +TailMergeThreshold("tail-merge-threshold", +          cl::desc("Max number of predecessors to consider tail merging"), +          cl::init(150), cl::Hidden); + +// Heuristic for tail merging (and, inversely, tail duplication). +// TODO: This should be replaced with a target query. +static cl::opt<unsigned> +TailMergeSize("tail-merge-size", +          cl::desc("Min number of instructions to consider tail merging"), +                              cl::init(3), cl::Hidden); + +namespace { +  /// BranchFolderPass - Wrap branch folder in a machine function pass. +  class BranchFolderPass : public MachineFunctionPass { +  public: +    static char ID; +    explicit BranchFolderPass(): MachineFunctionPass(ID) {} + +    virtual bool runOnMachineFunction(MachineFunction &MF); + +    virtual void getAnalysisUsage(AnalysisUsage &AU) const { +      AU.addRequired<TargetPassConfig>(); +      MachineFunctionPass::getAnalysisUsage(AU); +    } +  }; +} + +char BranchFolderPass::ID = 0; +char &llvm::BranchFolderPassID = BranchFolderPass::ID; + +INITIALIZE_PASS(BranchFolderPass, "branch-folder", +                "Control Flow Optimizer", false, false) + +bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { +  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); +  BranchFolder Folder(PassConfig->getEnableTailMerge(), /*CommonHoist=*/true); +  return Folder.OptimizeFunction(MF, +                                 MF.getTarget().getInstrInfo(), +                                 MF.getTarget().getRegisterInfo(), +                                 getAnalysisIfAvailable<MachineModuleInfo>()); +} + + +BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist) { +  switch (FlagEnableTailMerge) { +  case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; +  case cl::BOU_TRUE: EnableTailMerge = true; break; +  case cl::BOU_FALSE: EnableTailMerge = false; break; +  } + +  EnableHoistCommonCode = CommonHoist; +} + +/// RemoveDeadBlock - Remove the specified dead machine basic block from the +/// function, updating the CFG. +void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { +  assert(MBB->pred_empty() && "MBB must be dead!"); +  DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); + +  MachineFunction *MF = MBB->getParent(); +  // drop all successors. +  while (!MBB->succ_empty()) +    MBB->removeSuccessor(MBB->succ_end()-1); + +  // Avoid matching if this pointer gets reused. +  TriedMerging.erase(MBB); + +  // Remove the block. +  MF->erase(MBB); +} + +/// OptimizeImpDefsBlock - If a basic block is just a bunch of implicit_def +/// followed by terminators, and if the implicitly defined registers are not +/// used by the terminators, remove those implicit_def's. e.g. +/// BB1: +///   r0 = implicit_def +///   r1 = implicit_def +///   br +/// This block can be optimized away later if the implicit instructions are +/// removed. +bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock *MBB) { +  SmallSet<unsigned, 4> ImpDefRegs; +  MachineBasicBlock::iterator I = MBB->begin(); +  while (I != MBB->end()) { +    if (!I->isImplicitDef()) +      break; +    unsigned Reg = I->getOperand(0).getReg(); +    ImpDefRegs.insert(Reg); +    for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg); +         unsigned SubReg = *SubRegs; ++SubRegs) +      ImpDefRegs.insert(SubReg); +    ++I; +  } +  if (ImpDefRegs.empty()) +    return false; + +  MachineBasicBlock::iterator FirstTerm = I; +  while (I != MBB->end()) { +    if (!TII->isUnpredicatedTerminator(I)) +      return false; +    // See if it uses any of the implicitly defined registers. +    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { +      MachineOperand &MO = I->getOperand(i); +      if (!MO.isReg() || !MO.isUse()) +        continue; +      unsigned Reg = MO.getReg(); +      if (ImpDefRegs.count(Reg)) +        return false; +    } +    ++I; +  } + +  I = MBB->begin(); +  while (I != FirstTerm) { +    MachineInstr *ImpDefMI = &*I; +    ++I; +    MBB->erase(ImpDefMI); +  } + +  return true; +} + +/// OptimizeFunction - Perhaps branch folding, tail merging and other +/// CFG optimizations on the given function. +bool BranchFolder::OptimizeFunction(MachineFunction &MF, +                                    const TargetInstrInfo *tii, +                                    const TargetRegisterInfo *tri, +                                    MachineModuleInfo *mmi) { +  if (!tii) return false; + +  TriedMerging.clear(); + +  TII = tii; +  TRI = tri; +  MMI = mmi; +  RS = NULL; + +  // Use a RegScavenger to help update liveness when required. +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  if (MRI.tracksLiveness() && TRI->requiresRegisterScavenging(MF)) +    RS = new RegScavenger(); +  else +    MRI.invalidateLiveness(); + +  // Fix CFG.  The later algorithms expect it to be right. +  bool MadeChange = false; +  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; I++) { +    MachineBasicBlock *MBB = I, *TBB = 0, *FBB = 0; +    SmallVector<MachineOperand, 4> Cond; +    if (!TII->AnalyzeBranch(*MBB, TBB, FBB, Cond, true)) +      MadeChange |= MBB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); +    MadeChange |= OptimizeImpDefsBlock(MBB); +  } + +  bool MadeChangeThisIteration = true; +  while (MadeChangeThisIteration) { +    MadeChangeThisIteration    = TailMergeBlocks(MF); +    MadeChangeThisIteration   |= OptimizeBranches(MF); +    if (EnableHoistCommonCode) +      MadeChangeThisIteration |= HoistCommonCode(MF); +    MadeChange |= MadeChangeThisIteration; +  } + +  // See if any jump tables have become dead as the code generator +  // did its thing. +  MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); +  if (JTI == 0) { +    delete RS; +    return MadeChange; +  } + +  // Walk the function to find jump tables that are live. +  BitVector JTIsLive(JTI->getJumpTables().size()); +  for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); +       BB != E; ++BB) { +    for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); +         I != E; ++I) +      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) { +        MachineOperand &Op = I->getOperand(op); +        if (!Op.isJTI()) continue; + +        // Remember that this JT is live. +        JTIsLive.set(Op.getIndex()); +      } +  } + +  // Finally, remove dead jump tables.  This happens when the +  // indirect jump was unreachable (and thus deleted). +  for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) +    if (!JTIsLive.test(i)) { +      JTI->RemoveJumpTable(i); +      MadeChange = true; +    } + +  delete RS; +  return MadeChange; +} + +//===----------------------------------------------------------------------===// +//  Tail Merging of Blocks +//===----------------------------------------------------------------------===// + +/// HashMachineInstr - Compute a hash value for MI and its operands. +static unsigned HashMachineInstr(const MachineInstr *MI) { +  unsigned Hash = MI->getOpcode(); +  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { +    const MachineOperand &Op = MI->getOperand(i); + +    // Merge in bits from the operand if easy. +    unsigned OperandHash = 0; +    switch (Op.getType()) { +    case MachineOperand::MO_Register:          OperandHash = Op.getReg(); break; +    case MachineOperand::MO_Immediate:         OperandHash = Op.getImm(); break; +    case MachineOperand::MO_MachineBasicBlock: +      OperandHash = Op.getMBB()->getNumber(); +      break; +    case MachineOperand::MO_FrameIndex: +    case MachineOperand::MO_ConstantPoolIndex: +    case MachineOperand::MO_JumpTableIndex: +      OperandHash = Op.getIndex(); +      break; +    case MachineOperand::MO_GlobalAddress: +    case MachineOperand::MO_ExternalSymbol: +      // Global address / external symbol are too hard, don't bother, but do +      // pull in the offset. +      OperandHash = Op.getOffset(); +      break; +    default: break; +    } + +    Hash += ((OperandHash << 3) | Op.getType()) << (i&31); +  } +  return Hash; +} + +/// HashEndOfMBB - Hash the last instruction in the MBB. +static unsigned HashEndOfMBB(const MachineBasicBlock *MBB) { +  MachineBasicBlock::const_iterator I = MBB->end(); +  if (I == MBB->begin()) +    return 0;   // Empty MBB. + +  --I; +  // Skip debug info so it will not affect codegen. +  while (I->isDebugValue()) { +    if (I==MBB->begin()) +      return 0;      // MBB empty except for debug info. +    --I; +  } + +  return HashMachineInstr(I); +} + +/// ComputeCommonTailLength - Given two machine basic blocks, compute the number +/// of instructions they actually have in common together at their end.  Return +/// iterators for the first shared instruction in each block. +static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, +                                        MachineBasicBlock *MBB2, +                                        MachineBasicBlock::iterator &I1, +                                        MachineBasicBlock::iterator &I2) { +  I1 = MBB1->end(); +  I2 = MBB2->end(); + +  unsigned TailLen = 0; +  while (I1 != MBB1->begin() && I2 != MBB2->begin()) { +    --I1; --I2; +    // Skip debugging pseudos; necessary to avoid changing the code. +    while (I1->isDebugValue()) { +      if (I1==MBB1->begin()) { +        while (I2->isDebugValue()) { +          if (I2==MBB2->begin()) +            // I1==DBG at begin; I2==DBG at begin +            return TailLen; +          --I2; +        } +        ++I2; +        // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin +        return TailLen; +      } +      --I1; +    } +    // I1==first (untested) non-DBG preceding known match +    while (I2->isDebugValue()) { +      if (I2==MBB2->begin()) { +        ++I1; +        // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin +        return TailLen; +      } +      --I2; +    } +    // I1, I2==first (untested) non-DBGs preceding known match +    if (!I1->isIdenticalTo(I2) || +        // FIXME: This check is dubious. It's used to get around a problem where +        // people incorrectly expect inline asm directives to remain in the same +        // relative order. This is untenable because normal compiler +        // optimizations (like this one) may reorder and/or merge these +        // directives. +        I1->isInlineAsm()) { +      ++I1; ++I2; +      break; +    } +    ++TailLen; +  } +  // Back past possible debugging pseudos at beginning of block.  This matters +  // when one block differs from the other only by whether debugging pseudos +  // are present at the beginning.  (This way, the various checks later for +  // I1==MBB1->begin() work as expected.) +  if (I1 == MBB1->begin() && I2 != MBB2->begin()) { +    --I2; +    while (I2->isDebugValue()) { +      if (I2 == MBB2->begin()) { +        return TailLen; +        } +      --I2; +    } +    ++I2; +  } +  if (I2 == MBB2->begin() && I1 != MBB1->begin()) { +    --I1; +    while (I1->isDebugValue()) { +      if (I1 == MBB1->begin()) +        return TailLen; +      --I1; +    } +    ++I1; +  } +  return TailLen; +} + +void BranchFolder::MaintainLiveIns(MachineBasicBlock *CurMBB, +                                   MachineBasicBlock *NewMBB) { +  if (RS) { +    RS->enterBasicBlock(CurMBB); +    if (!CurMBB->empty()) +      RS->forward(prior(CurMBB->end())); +    BitVector RegsLiveAtExit(TRI->getNumRegs()); +    RS->getRegsUsed(RegsLiveAtExit, false); +    for (unsigned int i = 0, e = TRI->getNumRegs(); i != e; i++) +      if (RegsLiveAtExit[i]) +        NewMBB->addLiveIn(i); +  } +} + +/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything +/// after it, replacing it with an unconditional branch to NewDest. +void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, +                                           MachineBasicBlock *NewDest) { +  MachineBasicBlock *CurMBB = OldInst->getParent(); + +  TII->ReplaceTailWithBranchTo(OldInst, NewDest); + +  // For targets that use the register scavenger, we must maintain LiveIns. +  MaintainLiveIns(CurMBB, NewDest); + +  ++NumTailMerge; +} + +/// SplitMBBAt - Given a machine basic block and an iterator into it, split the +/// MBB so that the part before the iterator falls into the part starting at the +/// iterator.  This returns the new MBB. +MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, +                                            MachineBasicBlock::iterator BBI1) { +  if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) +    return 0; + +  MachineFunction &MF = *CurMBB.getParent(); + +  // Create the fall-through block. +  MachineFunction::iterator MBBI = &CurMBB; +  MachineBasicBlock *NewMBB =MF.CreateMachineBasicBlock(CurMBB.getBasicBlock()); +  CurMBB.getParent()->insert(++MBBI, NewMBB); + +  // Move all the successors of this block to the specified block. +  NewMBB->transferSuccessors(&CurMBB); + +  // Add an edge from CurMBB to NewMBB for the fall-through. +  CurMBB.addSuccessor(NewMBB); + +  // Splice the code over. +  NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); + +  // For targets that use the register scavenger, we must maintain LiveIns. +  MaintainLiveIns(&CurMBB, NewMBB); + +  return NewMBB; +} + +/// EstimateRuntime - Make a rough estimate for how long it will take to run +/// the specified code. +static unsigned EstimateRuntime(MachineBasicBlock::iterator I, +                                MachineBasicBlock::iterator E) { +  unsigned Time = 0; +  for (; I != E; ++I) { +    if (I->isDebugValue()) +      continue; +    if (I->isCall()) +      Time += 10; +    else if (I->mayLoad() || I->mayStore()) +      Time += 2; +    else +      ++Time; +  } +  return Time; +} + +// CurMBB needs to add an unconditional branch to SuccMBB (we removed these +// branches temporarily for tail merging).  In the case where CurMBB ends +// with a conditional branch to the next block, optimize by reversing the +// test and conditionally branching to SuccMBB instead. +static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, +                    const TargetInstrInfo *TII) { +  MachineFunction *MF = CurMBB->getParent(); +  MachineFunction::iterator I = llvm::next(MachineFunction::iterator(CurMBB)); +  MachineBasicBlock *TBB = 0, *FBB = 0; +  SmallVector<MachineOperand, 4> Cond; +  DebugLoc dl;  // FIXME: this is nowhere +  if (I != MF->end() && +      !TII->AnalyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { +    MachineBasicBlock *NextBB = I; +    if (TBB == NextBB && !Cond.empty() && !FBB) { +      if (!TII->ReverseBranchCondition(Cond)) { +        TII->RemoveBranch(*CurMBB); +        TII->InsertBranch(*CurMBB, SuccBB, NULL, Cond, dl); +        return; +      } +    } +  } +  TII->InsertBranch(*CurMBB, SuccBB, NULL, +                    SmallVector<MachineOperand, 0>(), dl); +} + +bool +BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { +  if (getHash() < o.getHash()) +    return true; +   else if (getHash() > o.getHash()) +    return false; +  else if (getBlock()->getNumber() < o.getBlock()->getNumber()) +    return true; +  else if (getBlock()->getNumber() > o.getBlock()->getNumber()) +    return false; +  else { +    // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing +    // an object with itself. +#ifndef _GLIBCXX_DEBUG +    llvm_unreachable("Predecessor appears twice"); +#else +    return false; +#endif +  } +} + +/// CountTerminators - Count the number of terminators in the given +/// block and set I to the position of the first non-terminator, if there +/// is one, or MBB->end() otherwise. +static unsigned CountTerminators(MachineBasicBlock *MBB, +                                 MachineBasicBlock::iterator &I) { +  I = MBB->end(); +  unsigned NumTerms = 0; +  for (;;) { +    if (I == MBB->begin()) { +      I = MBB->end(); +      break; +    } +    --I; +    if (!I->isTerminator()) break; +    ++NumTerms; +  } +  return NumTerms; +} + +/// ProfitableToMerge - Check if two machine basic blocks have a common tail +/// and decide if it would be profitable to merge those tails.  Return the +/// length of the common tail and iterators to the first common instruction +/// in each block. +static bool ProfitableToMerge(MachineBasicBlock *MBB1, +                              MachineBasicBlock *MBB2, +                              unsigned minCommonTailLength, +                              unsigned &CommonTailLen, +                              MachineBasicBlock::iterator &I1, +                              MachineBasicBlock::iterator &I2, +                              MachineBasicBlock *SuccBB, +                              MachineBasicBlock *PredBB) { +  CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); +  if (CommonTailLen == 0) +    return false; +  DEBUG(dbgs() << "Common tail length of BB#" << MBB1->getNumber() +               << " and BB#" << MBB2->getNumber() << " is " << CommonTailLen +               << '\n'); + +  // It's almost always profitable to merge any number of non-terminator +  // instructions with the block that falls through into the common successor. +  if (MBB1 == PredBB || MBB2 == PredBB) { +    MachineBasicBlock::iterator I; +    unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); +    if (CommonTailLen > NumTerms) +      return true; +  } + +  // If one of the blocks can be completely merged and happens to be in +  // a position where the other could fall through into it, merge any number +  // of instructions, because it can be done without a branch. +  // TODO: If the blocks are not adjacent, move one of them so that they are? +  if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) +    return true; +  if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) +    return true; + +  // If both blocks have an unconditional branch temporarily stripped out, +  // count that as an additional common instruction for the following +  // heuristics. +  unsigned EffectiveTailLen = CommonTailLen; +  if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && +      !MBB1->back().isBarrier() && +      !MBB2->back().isBarrier()) +    ++EffectiveTailLen; + +  // Check if the common tail is long enough to be worthwhile. +  if (EffectiveTailLen >= minCommonTailLength) +    return true; + +  // If we are optimizing for code size, 2 instructions in common is enough if +  // we don't have to split a block.  At worst we will be introducing 1 new +  // branch instruction, which is likely to be smaller than the 2 +  // instructions that would be deleted in the merge. +  MachineFunction *MF = MBB1->getParent(); +  if (EffectiveTailLen >= 2 && +      MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize) && +      (I1 == MBB1->begin() || I2 == MBB2->begin())) +    return true; + +  return false; +} + +/// ComputeSameTails - Look through all the blocks in MergePotentials that have +/// hash CurHash (guaranteed to match the last element).  Build the vector +/// SameTails of all those that have the (same) largest number of instructions +/// in common of any pair of these blocks.  SameTails entries contain an +/// iterator into MergePotentials (from which the MachineBasicBlock can be +/// found) and a MachineBasicBlock::iterator into that MBB indicating the +/// instruction where the matching code sequence begins. +/// Order of elements in SameTails is the reverse of the order in which +/// those blocks appear in MergePotentials (where they are not necessarily +/// consecutive). +unsigned BranchFolder::ComputeSameTails(unsigned CurHash, +                                        unsigned minCommonTailLength, +                                        MachineBasicBlock *SuccBB, +                                        MachineBasicBlock *PredBB) { +  unsigned maxCommonTailLength = 0U; +  SameTails.clear(); +  MachineBasicBlock::iterator TrialBBI1, TrialBBI2; +  MPIterator HighestMPIter = prior(MergePotentials.end()); +  for (MPIterator CurMPIter = prior(MergePotentials.end()), +                  B = MergePotentials.begin(); +       CurMPIter != B && CurMPIter->getHash() == CurHash; +       --CurMPIter) { +    for (MPIterator I = prior(CurMPIter); I->getHash() == CurHash ; --I) { +      unsigned CommonTailLen; +      if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), +                            minCommonTailLength, +                            CommonTailLen, TrialBBI1, TrialBBI2, +                            SuccBB, PredBB)) { +        if (CommonTailLen > maxCommonTailLength) { +          SameTails.clear(); +          maxCommonTailLength = CommonTailLen; +          HighestMPIter = CurMPIter; +          SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); +        } +        if (HighestMPIter == CurMPIter && +            CommonTailLen == maxCommonTailLength) +          SameTails.push_back(SameTailElt(I, TrialBBI2)); +      } +      if (I == B) +        break; +    } +  } +  return maxCommonTailLength; +} + +/// RemoveBlocksWithHash - Remove all blocks with hash CurHash from +/// MergePotentials, restoring branches at ends of blocks as appropriate. +void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, +                                        MachineBasicBlock *SuccBB, +                                        MachineBasicBlock *PredBB) { +  MPIterator CurMPIter, B; +  for (CurMPIter = prior(MergePotentials.end()), B = MergePotentials.begin(); +       CurMPIter->getHash() == CurHash; +       --CurMPIter) { +    // Put the unconditional branch back, if we need one. +    MachineBasicBlock *CurMBB = CurMPIter->getBlock(); +    if (SuccBB && CurMBB != PredBB) +      FixTail(CurMBB, SuccBB, TII); +    if (CurMPIter == B) +      break; +  } +  if (CurMPIter->getHash() != CurHash) +    CurMPIter++; +  MergePotentials.erase(CurMPIter, MergePotentials.end()); +} + +/// CreateCommonTailOnlyBlock - None of the blocks to be tail-merged consist +/// only of the common tail.  Create a block that does by splitting one. +bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, +                                             unsigned maxCommonTailLength, +                                             unsigned &commonTailIndex) { +  commonTailIndex = 0; +  unsigned TimeEstimate = ~0U; +  for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { +    // Use PredBB if possible; that doesn't require a new branch. +    if (SameTails[i].getBlock() == PredBB) { +      commonTailIndex = i; +      break; +    } +    // Otherwise, make a (fairly bogus) choice based on estimate of +    // how long it will take the various blocks to execute. +    unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), +                                 SameTails[i].getTailStartPos()); +    if (t <= TimeEstimate) { +      TimeEstimate = t; +      commonTailIndex = i; +    } +  } + +  MachineBasicBlock::iterator BBI = +    SameTails[commonTailIndex].getTailStartPos(); +  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); + +  // If the common tail includes any debug info we will take it pretty +  // randomly from one of the inputs.  Might be better to remove it? +  DEBUG(dbgs() << "\nSplitting BB#" << MBB->getNumber() << ", size " +               << maxCommonTailLength); + +  MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI); +  if (!newMBB) { +    DEBUG(dbgs() << "... failed!"); +    return false; +  } + +  SameTails[commonTailIndex].setBlock(newMBB); +  SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); + +  // If we split PredBB, newMBB is the new predecessor. +  if (PredBB == MBB) +    PredBB = newMBB; + +  return true; +} + +// See if any of the blocks in MergePotentials (which all have a common single +// successor, or all have no successor) can be tail-merged.  If there is a +// successor, any blocks in MergePotentials that are not tail-merged and +// are not immediately before Succ must have an unconditional branch to +// Succ added (but the predecessor/successor lists need no adjustment). +// The lone predecessor of Succ that falls through into Succ, +// if any, is given in PredBB. + +bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, +                                      MachineBasicBlock *PredBB) { +  bool MadeChange = false; + +  // Except for the special cases below, tail-merge if there are at least +  // this many instructions in common. +  unsigned minCommonTailLength = TailMergeSize; + +  DEBUG(dbgs() << "\nTryTailMergeBlocks: "; +        for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) +          dbgs() << "BB#" << MergePotentials[i].getBlock()->getNumber() +                 << (i == e-1 ? "" : ", "); +        dbgs() << "\n"; +        if (SuccBB) { +          dbgs() << "  with successor BB#" << SuccBB->getNumber() << '\n'; +          if (PredBB) +            dbgs() << "  which has fall-through from BB#" +                   << PredBB->getNumber() << "\n"; +        } +        dbgs() << "Looking for common tails of at least " +               << minCommonTailLength << " instruction" +               << (minCommonTailLength == 1 ? "" : "s") << '\n'; +       ); + +  // Sort by hash value so that blocks with identical end sequences sort +  // together. +  std::stable_sort(MergePotentials.begin(), MergePotentials.end()); + +  // Walk through equivalence sets looking for actual exact matches. +  while (MergePotentials.size() > 1) { +    unsigned CurHash = MergePotentials.back().getHash(); + +    // Build SameTails, identifying the set of blocks with this hash code +    // and with the maximum number of instructions in common. +    unsigned maxCommonTailLength = ComputeSameTails(CurHash, +                                                    minCommonTailLength, +                                                    SuccBB, PredBB); + +    // If we didn't find any pair that has at least minCommonTailLength +    // instructions in common, remove all blocks with this hash code and retry. +    if (SameTails.empty()) { +      RemoveBlocksWithHash(CurHash, SuccBB, PredBB); +      continue; +    } + +    // If one of the blocks is the entire common tail (and not the entry +    // block, which we can't jump to), we can treat all blocks with this same +    // tail at once.  Use PredBB if that is one of the possibilities, as that +    // will not introduce any extra branches. +    MachineBasicBlock *EntryBB = MergePotentials.begin()->getBlock()-> +                                 getParent()->begin(); +    unsigned commonTailIndex = SameTails.size(); +    // If there are two blocks, check to see if one can be made to fall through +    // into the other. +    if (SameTails.size() == 2 && +        SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && +        SameTails[1].tailIsWholeBlock()) +      commonTailIndex = 1; +    else if (SameTails.size() == 2 && +             SameTails[1].getBlock()->isLayoutSuccessor( +                                                     SameTails[0].getBlock()) && +             SameTails[0].tailIsWholeBlock()) +      commonTailIndex = 0; +    else { +      // Otherwise just pick one, favoring the fall-through predecessor if +      // there is one. +      for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { +        MachineBasicBlock *MBB = SameTails[i].getBlock(); +        if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) +          continue; +        if (MBB == PredBB) { +          commonTailIndex = i; +          break; +        } +        if (SameTails[i].tailIsWholeBlock()) +          commonTailIndex = i; +      } +    } + +    if (commonTailIndex == SameTails.size() || +        (SameTails[commonTailIndex].getBlock() == PredBB && +         !SameTails[commonTailIndex].tailIsWholeBlock())) { +      // None of the blocks consist entirely of the common tail. +      // Split a block so that one does. +      if (!CreateCommonTailOnlyBlock(PredBB, +                                     maxCommonTailLength, commonTailIndex)) { +        RemoveBlocksWithHash(CurHash, SuccBB, PredBB); +        continue; +      } +    } + +    MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); +    // MBB is common tail.  Adjust all other BB's to jump to this one. +    // Traversal must be forwards so erases work. +    DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber() +                 << " for "); +    for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { +      if (commonTailIndex == i) +        continue; +      DEBUG(dbgs() << "BB#" << SameTails[i].getBlock()->getNumber() +                   << (i == e-1 ? "" : ", ")); +      // Hack the end off BB i, making it jump to BB commonTailIndex instead. +      ReplaceTailWithBranchTo(SameTails[i].getTailStartPos(), MBB); +      // BB i is no longer a predecessor of SuccBB; remove it from the worklist. +      MergePotentials.erase(SameTails[i].getMPIter()); +    } +    DEBUG(dbgs() << "\n"); +    // We leave commonTailIndex in the worklist in case there are other blocks +    // that match it with a smaller number of instructions. +    MadeChange = true; +  } +  return MadeChange; +} + +bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { + +  if (!EnableTailMerge) return false; + +  bool MadeChange = false; + +  // First find blocks with no successors. +  MergePotentials.clear(); +  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); +       I != E && MergePotentials.size() < TailMergeThreshold; ++I) { +    if (TriedMerging.count(I)) +      continue; +    if (I->succ_empty()) +      MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(I), I)); +  } + +  // If this is a large problem, avoid visiting the same basic blocks +  // multiple times. +  if (MergePotentials.size() == TailMergeThreshold) +    for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) +      TriedMerging.insert(MergePotentials[i].getBlock()); +  // See if we can do any tail merging on those. +  if (MergePotentials.size() >= 2) +    MadeChange |= TryTailMergeBlocks(NULL, NULL); + +  // Look at blocks (IBB) with multiple predecessors (PBB). +  // We change each predecessor to a canonical form, by +  // (1) temporarily removing any unconditional branch from the predecessor +  // to IBB, and +  // (2) alter conditional branches so they branch to the other block +  // not IBB; this may require adding back an unconditional branch to IBB +  // later, where there wasn't one coming in.  E.g. +  //   Bcc IBB +  //   fallthrough to QBB +  // here becomes +  //   Bncc QBB +  // with a conceptual B to IBB after that, which never actually exists. +  // With those changes, we see whether the predecessors' tails match, +  // and merge them if so.  We change things out of canonical form and +  // back to the way they were later in the process.  (OptimizeBranches +  // would undo some of this, but we can't use it, because we'd get into +  // a compile-time infinite loop repeatedly doing and undoing the same +  // transformations.) + +  for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end(); +       I != E; ++I) { +    if (I->pred_size() >= 2) { +      SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; +      MachineBasicBlock *IBB = I; +      MachineBasicBlock *PredBB = prior(I); +      MergePotentials.clear(); +      for (MachineBasicBlock::pred_iterator P = I->pred_begin(), +                                            E2 = I->pred_end(); +           P != E2 && MergePotentials.size() < TailMergeThreshold; ++P) { +        MachineBasicBlock *PBB = *P; +        if (TriedMerging.count(PBB)) +          continue; +        // Skip blocks that loop to themselves, can't tail merge these. +        if (PBB == IBB) +          continue; +        // Visit each predecessor only once. +        if (!UniquePreds.insert(PBB)) +          continue; +        // Skip blocks which may jump to a landing pad. Can't tail merge these. +        if (PBB->getLandingPadSuccessor()) +          continue; +        MachineBasicBlock *TBB = 0, *FBB = 0; +        SmallVector<MachineOperand, 4> Cond; +        if (!TII->AnalyzeBranch(*PBB, TBB, FBB, Cond, true)) { +          // Failing case:  IBB is the target of a cbr, and +          // we cannot reverse the branch. +          SmallVector<MachineOperand, 4> NewCond(Cond); +          if (!Cond.empty() && TBB == IBB) { +            if (TII->ReverseBranchCondition(NewCond)) +              continue; +            // This is the QBB case described above +            if (!FBB) +              FBB = llvm::next(MachineFunction::iterator(PBB)); +          } +          // Failing case:  the only way IBB can be reached from PBB is via +          // exception handling.  Happens for landing pads.  Would be nice +          // to have a bit in the edge so we didn't have to do all this. +          if (IBB->isLandingPad()) { +            MachineFunction::iterator IP = PBB;  IP++; +            MachineBasicBlock *PredNextBB = NULL; +            if (IP != MF.end()) +              PredNextBB = IP; +            if (TBB == NULL) { +              if (IBB != PredNextBB)      // fallthrough +                continue; +            } else if (FBB) { +              if (TBB != IBB && FBB != IBB)   // cbr then ubr +                continue; +            } else if (Cond.empty()) { +              if (TBB != IBB)               // ubr +                continue; +            } else { +              if (TBB != IBB && IBB != PredNextBB)  // cbr +                continue; +            } +          } +          // Remove the unconditional branch at the end, if any. +          if (TBB && (Cond.empty() || FBB)) { +            DebugLoc dl;  // FIXME: this is nowhere +            TII->RemoveBranch(*PBB); +            if (!Cond.empty()) +              // reinsert conditional branch only, for now +              TII->InsertBranch(*PBB, (TBB == IBB) ? FBB : TBB, 0, NewCond, dl); +          } +          MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(PBB), *P)); +        } +      } +      // If this is a large problem, avoid visiting the same basic blocks +      // multiple times. +      if (MergePotentials.size() == TailMergeThreshold) +        for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) +          TriedMerging.insert(MergePotentials[i].getBlock()); +      if (MergePotentials.size() >= 2) +        MadeChange |= TryTailMergeBlocks(IBB, PredBB); +      // Reinsert an unconditional branch if needed. +      // The 1 below can occur as a result of removing blocks in +      // TryTailMergeBlocks. +      PredBB = prior(I);     // this may have been changed in TryTailMergeBlocks +      if (MergePotentials.size() == 1 && +          MergePotentials.begin()->getBlock() != PredBB) +        FixTail(MergePotentials.begin()->getBlock(), IBB, TII); +    } +  } +  return MadeChange; +} + +//===----------------------------------------------------------------------===// +//  Branch Optimization +//===----------------------------------------------------------------------===// + +bool BranchFolder::OptimizeBranches(MachineFunction &MF) { +  bool MadeChange = false; + +  // Make sure blocks are numbered in order +  MF.RenumberBlocks(); + +  for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end(); +       I != E; ) { +    MachineBasicBlock *MBB = I++; +    MadeChange |= OptimizeBlock(MBB); + +    // If it is dead, remove it. +    if (MBB->pred_empty()) { +      RemoveDeadBlock(MBB); +      MadeChange = true; +      ++NumDeadBlocks; +    } +  } +  return MadeChange; +} + +// Blocks should be considered empty if they contain only debug info; +// else the debug info would affect codegen. +static bool IsEmptyBlock(MachineBasicBlock *MBB) { +  if (MBB->empty()) +    return true; +  for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); +       MBBI!=MBBE; ++MBBI) { +    if (!MBBI->isDebugValue()) +      return false; +  } +  return true; +} + +// Blocks with only debug info and branches should be considered the same +// as blocks with only branches. +static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { +  MachineBasicBlock::iterator MBBI, MBBE; +  for (MBBI = MBB->begin(), MBBE = MBB->end(); MBBI!=MBBE; ++MBBI) { +    if (!MBBI->isDebugValue()) +      break; +  } +  return (MBBI->isBranch()); +} + +/// IsBetterFallthrough - Return true if it would be clearly better to +/// fall-through to MBB1 than to fall through into MBB2.  This has to return +/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will +/// result in infinite loops. +static bool IsBetterFallthrough(MachineBasicBlock *MBB1, +                                MachineBasicBlock *MBB2) { +  // Right now, we use a simple heuristic.  If MBB2 ends with a call, and +  // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to +  // optimize branches that branch to either a return block or an assert block +  // into a fallthrough to the return. +  if (IsEmptyBlock(MBB1) || IsEmptyBlock(MBB2)) return false; + +  // If there is a clear successor ordering we make sure that one block +  // will fall through to the next +  if (MBB1->isSuccessor(MBB2)) return true; +  if (MBB2->isSuccessor(MBB1)) return false; + +  // Neither block consists entirely of debug info (per IsEmptyBlock check), +  // so we needn't test for falling off the beginning here. +  MachineBasicBlock::iterator MBB1I = --MBB1->end(); +  while (MBB1I->isDebugValue()) +    --MBB1I; +  MachineBasicBlock::iterator MBB2I = --MBB2->end(); +  while (MBB2I->isDebugValue()) +    --MBB2I; +  return MBB2I->isCall() && !MBB1I->isCall(); +} + +/// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch +/// instructions on the block. Always use the DebugLoc of the first +/// branching instruction found unless its absent, in which case use the +/// DebugLoc of the second if present. +static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { +  MachineBasicBlock::iterator I = MBB.end(); +  if (I == MBB.begin()) +    return DebugLoc(); +  --I; +  while (I->isDebugValue() && I != MBB.begin()) +    --I; +  if (I->isBranch()) +    return I->getDebugLoc(); +  return DebugLoc(); +} + +/// OptimizeBlock - Analyze and optimize control flow related to the specified +/// block.  This is never called on the entry block. +bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { +  bool MadeChange = false; +  MachineFunction &MF = *MBB->getParent(); +ReoptimizeBlock: + +  MachineFunction::iterator FallThrough = MBB; +  ++FallThrough; + +  // If this block is empty, make everyone use its fall-through, not the block +  // explicitly.  Landing pads should not do this since the landing-pad table +  // points to this block.  Blocks with their addresses taken shouldn't be +  // optimized away. +  if (IsEmptyBlock(MBB) && !MBB->isLandingPad() && !MBB->hasAddressTaken()) { +    // Dead block?  Leave for cleanup later. +    if (MBB->pred_empty()) return MadeChange; + +    if (FallThrough == MF.end()) { +      // TODO: Simplify preds to not branch here if possible! +    } else { +      // Rewrite all predecessors of the old block to go to the fallthrough +      // instead. +      while (!MBB->pred_empty()) { +        MachineBasicBlock *Pred = *(MBB->pred_end()-1); +        Pred->ReplaceUsesOfBlockWith(MBB, FallThrough); +      } +      // If MBB was the target of a jump table, update jump tables to go to the +      // fallthrough instead. +      if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) +        MJTI->ReplaceMBBInJumpTables(MBB, FallThrough); +      MadeChange = true; +    } +    return MadeChange; +  } + +  // Check to see if we can simplify the terminator of the block before this +  // one. +  MachineBasicBlock &PrevBB = *prior(MachineFunction::iterator(MBB)); + +  MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0; +  SmallVector<MachineOperand, 4> PriorCond; +  bool PriorUnAnalyzable = +    TII->AnalyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); +  if (!PriorUnAnalyzable) { +    // If the CFG for the prior block has extra edges, remove them. +    MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, +                                              !PriorCond.empty()); + +    // If the previous branch is conditional and both conditions go to the same +    // destination, remove the branch, replacing it with an unconditional one or +    // a fall-through. +    if (PriorTBB && PriorTBB == PriorFBB) { +      DebugLoc dl = getBranchDebugLoc(PrevBB); +      TII->RemoveBranch(PrevBB); +      PriorCond.clear(); +      if (PriorTBB != MBB) +        TII->InsertBranch(PrevBB, PriorTBB, 0, PriorCond, dl); +      MadeChange = true; +      ++NumBranchOpts; +      goto ReoptimizeBlock; +    } + +    // If the previous block unconditionally falls through to this block and +    // this block has no other predecessors, move the contents of this block +    // into the prior block. This doesn't usually happen when SimplifyCFG +    // has been used, but it can happen if tail merging splits a fall-through +    // predecessor of a block. +    // This has to check PrevBB->succ_size() because EH edges are ignored by +    // AnalyzeBranch. +    if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && +        PrevBB.succ_size() == 1 && +        !MBB->hasAddressTaken() && !MBB->isLandingPad()) { +      DEBUG(dbgs() << "\nMerging into block: " << PrevBB +                   << "From MBB: " << *MBB); +      // Remove redundant DBG_VALUEs first. +      if (PrevBB.begin() != PrevBB.end()) { +        MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); +        --PrevBBIter; +        MachineBasicBlock::iterator MBBIter = MBB->begin(); +        // Check if DBG_VALUE at the end of PrevBB is identical to the +        // DBG_VALUE at the beginning of MBB. +        while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() +               && PrevBBIter->isDebugValue() && MBBIter->isDebugValue()) { +          if (!MBBIter->isIdenticalTo(PrevBBIter)) +            break; +          MachineInstr *DuplicateDbg = MBBIter; +          ++MBBIter; -- PrevBBIter; +          DuplicateDbg->eraseFromParent(); +        } +      } +      PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); +      PrevBB.removeSuccessor(PrevBB.succ_begin()); +      assert(PrevBB.succ_empty()); +      PrevBB.transferSuccessors(MBB); +      MadeChange = true; +      return MadeChange; +    } + +    // If the previous branch *only* branches to *this* block (conditional or +    // not) remove the branch. +    if (PriorTBB == MBB && PriorFBB == 0) { +      TII->RemoveBranch(PrevBB); +      MadeChange = true; +      ++NumBranchOpts; +      goto ReoptimizeBlock; +    } + +    // If the prior block branches somewhere else on the condition and here if +    // the condition is false, remove the uncond second branch. +    if (PriorFBB == MBB) { +      DebugLoc dl = getBranchDebugLoc(PrevBB); +      TII->RemoveBranch(PrevBB); +      TII->InsertBranch(PrevBB, PriorTBB, 0, PriorCond, dl); +      MadeChange = true; +      ++NumBranchOpts; +      goto ReoptimizeBlock; +    } + +    // If the prior block branches here on true and somewhere else on false, and +    // if the branch condition is reversible, reverse the branch to create a +    // fall-through. +    if (PriorTBB == MBB) { +      SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); +      if (!TII->ReverseBranchCondition(NewPriorCond)) { +        DebugLoc dl = getBranchDebugLoc(PrevBB); +        TII->RemoveBranch(PrevBB); +        TII->InsertBranch(PrevBB, PriorFBB, 0, NewPriorCond, dl); +        MadeChange = true; +        ++NumBranchOpts; +        goto ReoptimizeBlock; +      } +    } + +    // If this block has no successors (e.g. it is a return block or ends with +    // a call to a no-return function like abort or __cxa_throw) and if the pred +    // falls through into this block, and if it would otherwise fall through +    // into the block after this, move this block to the end of the function. +    // +    // We consider it more likely that execution will stay in the function (e.g. +    // due to loops) than it is to exit it.  This asserts in loops etc, moving +    // the assert condition out of the loop body. +    if (MBB->succ_empty() && !PriorCond.empty() && PriorFBB == 0 && +        MachineFunction::iterator(PriorTBB) == FallThrough && +        !MBB->canFallThrough()) { +      bool DoTransform = true; + +      // We have to be careful that the succs of PredBB aren't both no-successor +      // blocks.  If neither have successors and if PredBB is the second from +      // last block in the function, we'd just keep swapping the two blocks for +      // last.  Only do the swap if one is clearly better to fall through than +      // the other. +      if (FallThrough == --MF.end() && +          !IsBetterFallthrough(PriorTBB, MBB)) +        DoTransform = false; + +      if (DoTransform) { +        // Reverse the branch so we will fall through on the previous true cond. +        SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); +        if (!TII->ReverseBranchCondition(NewPriorCond)) { +          DEBUG(dbgs() << "\nMoving MBB: " << *MBB +                       << "To make fallthrough to: " << *PriorTBB << "\n"); + +          DebugLoc dl = getBranchDebugLoc(PrevBB); +          TII->RemoveBranch(PrevBB); +          TII->InsertBranch(PrevBB, MBB, 0, NewPriorCond, dl); + +          // Move this block to the end of the function. +          MBB->moveAfter(--MF.end()); +          MadeChange = true; +          ++NumBranchOpts; +          return MadeChange; +        } +      } +    } +  } + +  // Analyze the branch in the current block. +  MachineBasicBlock *CurTBB = 0, *CurFBB = 0; +  SmallVector<MachineOperand, 4> CurCond; +  bool CurUnAnalyzable= TII->AnalyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); +  if (!CurUnAnalyzable) { +    // If the CFG for the prior block has extra edges, remove them. +    MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); + +    // If this is a two-way branch, and the FBB branches to this block, reverse +    // the condition so the single-basic-block loop is faster.  Instead of: +    //    Loop: xxx; jcc Out; jmp Loop +    // we want: +    //    Loop: xxx; jncc Loop; jmp Out +    if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { +      SmallVector<MachineOperand, 4> NewCond(CurCond); +      if (!TII->ReverseBranchCondition(NewCond)) { +        DebugLoc dl = getBranchDebugLoc(*MBB); +        TII->RemoveBranch(*MBB); +        TII->InsertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); +        MadeChange = true; +        ++NumBranchOpts; +        goto ReoptimizeBlock; +      } +    } + +    // If this branch is the only thing in its block, see if we can forward +    // other blocks across it. +    if (CurTBB && CurCond.empty() && CurFBB == 0 && +        IsBranchOnlyBlock(MBB) && CurTBB != MBB && +        !MBB->hasAddressTaken()) { +      DebugLoc dl = getBranchDebugLoc(*MBB); +      // This block may contain just an unconditional branch.  Because there can +      // be 'non-branch terminators' in the block, try removing the branch and +      // then seeing if the block is empty. +      TII->RemoveBranch(*MBB); +      // If the only things remaining in the block are debug info, remove these +      // as well, so this will behave the same as an empty block in non-debug +      // mode. +      if (!MBB->empty()) { +        bool NonDebugInfoFound = false; +        for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); +             I != E; ++I) { +          if (!I->isDebugValue()) { +            NonDebugInfoFound = true; +            break; +          } +        } +        if (!NonDebugInfoFound) +          // Make the block empty, losing the debug info (we could probably +          // improve this in some cases.) +          MBB->erase(MBB->begin(), MBB->end()); +      } +      // If this block is just an unconditional branch to CurTBB, we can +      // usually completely eliminate the block.  The only case we cannot +      // completely eliminate the block is when the block before this one +      // falls through into MBB and we can't understand the prior block's branch +      // condition. +      if (MBB->empty()) { +        bool PredHasNoFallThrough = !PrevBB.canFallThrough(); +        if (PredHasNoFallThrough || !PriorUnAnalyzable || +            !PrevBB.isSuccessor(MBB)) { +          // If the prior block falls through into us, turn it into an +          // explicit branch to us to make updates simpler. +          if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && +              PriorTBB != MBB && PriorFBB != MBB) { +            if (PriorTBB == 0) { +              assert(PriorCond.empty() && PriorFBB == 0 && +                     "Bad branch analysis"); +              PriorTBB = MBB; +            } else { +              assert(PriorFBB == 0 && "Machine CFG out of date!"); +              PriorFBB = MBB; +            } +            DebugLoc pdl = getBranchDebugLoc(PrevBB); +            TII->RemoveBranch(PrevBB); +            TII->InsertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); +          } + +          // Iterate through all the predecessors, revectoring each in-turn. +          size_t PI = 0; +          bool DidChange = false; +          bool HasBranchToSelf = false; +          while(PI != MBB->pred_size()) { +            MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); +            if (PMBB == MBB) { +              // If this block has an uncond branch to itself, leave it. +              ++PI; +              HasBranchToSelf = true; +            } else { +              DidChange = true; +              PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); +              // If this change resulted in PMBB ending in a conditional +              // branch where both conditions go to the same destination, +              // change this to an unconditional branch (and fix the CFG). +              MachineBasicBlock *NewCurTBB = 0, *NewCurFBB = 0; +              SmallVector<MachineOperand, 4> NewCurCond; +              bool NewCurUnAnalyzable = TII->AnalyzeBranch(*PMBB, NewCurTBB, +                      NewCurFBB, NewCurCond, true); +              if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { +                DebugLoc pdl = getBranchDebugLoc(*PMBB); +                TII->RemoveBranch(*PMBB); +                NewCurCond.clear(); +                TII->InsertBranch(*PMBB, NewCurTBB, 0, NewCurCond, pdl); +                MadeChange = true; +                ++NumBranchOpts; +                PMBB->CorrectExtraCFGEdges(NewCurTBB, 0, false); +              } +            } +          } + +          // Change any jumptables to go to the new MBB. +          if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) +            MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); +          if (DidChange) { +            ++NumBranchOpts; +            MadeChange = true; +            if (!HasBranchToSelf) return MadeChange; +          } +        } +      } + +      // Add the branch back if the block is more than just an uncond branch. +      TII->InsertBranch(*MBB, CurTBB, 0, CurCond, dl); +    } +  } + +  // If the prior block doesn't fall through into this block, and if this +  // block doesn't fall through into some other block, see if we can find a +  // place to move this block where a fall-through will happen. +  if (!PrevBB.canFallThrough()) { + +    // Now we know that there was no fall-through into this block, check to +    // see if it has a fall-through into its successor. +    bool CurFallsThru = MBB->canFallThrough(); + +    if (!MBB->isLandingPad()) { +      // Check all the predecessors of this block.  If one of them has no fall +      // throughs, move this block right after it. +      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), +           E = MBB->pred_end(); PI != E; ++PI) { +        // Analyze the branch at the end of the pred. +        MachineBasicBlock *PredBB = *PI; +        MachineFunction::iterator PredFallthrough = PredBB; ++PredFallthrough; +        MachineBasicBlock *PredTBB = 0, *PredFBB = 0; +        SmallVector<MachineOperand, 4> PredCond; +        if (PredBB != MBB && !PredBB->canFallThrough() && +            !TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) +            && (!CurFallsThru || !CurTBB || !CurFBB) +            && (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { +          // If the current block doesn't fall through, just move it. +          // If the current block can fall through and does not end with a +          // conditional branch, we need to append an unconditional jump to +          // the (current) next block.  To avoid a possible compile-time +          // infinite loop, move blocks only backward in this case. +          // Also, if there are already 2 branches here, we cannot add a third; +          // this means we have the case +          // Bcc next +          // B elsewhere +          // next: +          if (CurFallsThru) { +            MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); +            CurCond.clear(); +            TII->InsertBranch(*MBB, NextBB, 0, CurCond, DebugLoc()); +          } +          MBB->moveAfter(PredBB); +          MadeChange = true; +          goto ReoptimizeBlock; +        } +      } +    } + +    if (!CurFallsThru) { +      // Check all successors to see if we can move this block before it. +      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), +           E = MBB->succ_end(); SI != E; ++SI) { +        // Analyze the branch at the end of the block before the succ. +        MachineBasicBlock *SuccBB = *SI; +        MachineFunction::iterator SuccPrev = SuccBB; --SuccPrev; + +        // If this block doesn't already fall-through to that successor, and if +        // the succ doesn't already have a block that can fall through into it, +        // and if the successor isn't an EH destination, we can arrange for the +        // fallthrough to happen. +        if (SuccBB != MBB && &*SuccPrev != MBB && +            !SuccPrev->canFallThrough() && !CurUnAnalyzable && +            !SuccBB->isLandingPad()) { +          MBB->moveBefore(SuccBB); +          MadeChange = true; +          goto ReoptimizeBlock; +        } +      } + +      // Okay, there is no really great place to put this block.  If, however, +      // the block before this one would be a fall-through if this block were +      // removed, move this block to the end of the function. +      MachineBasicBlock *PrevTBB = 0, *PrevFBB = 0; +      SmallVector<MachineOperand, 4> PrevCond; +      if (FallThrough != MF.end() && +          !TII->AnalyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && +          PrevBB.isSuccessor(FallThrough)) { +        MBB->moveAfter(--MF.end()); +        MadeChange = true; +        return MadeChange; +      } +    } +  } + +  return MadeChange; +} + +//===----------------------------------------------------------------------===// +//  Hoist Common Code +//===----------------------------------------------------------------------===// + +/// HoistCommonCode - Hoist common instruction sequences at the start of basic +/// blocks to their common predecessor. +bool BranchFolder::HoistCommonCode(MachineFunction &MF) { +  bool MadeChange = false; +  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { +    MachineBasicBlock *MBB = I++; +    MadeChange |= HoistCommonCodeInSuccs(MBB); +  } + +  return MadeChange; +} + +/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given +/// its 'true' successor. +static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, +                                         MachineBasicBlock *TrueBB) { +  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), +         E = BB->succ_end(); SI != E; ++SI) { +    MachineBasicBlock *SuccBB = *SI; +    if (SuccBB != TrueBB) +      return SuccBB; +  } +  return NULL; +} + +/// findHoistingInsertPosAndDeps - Find the location to move common instructions +/// in successors to. The location is ususally just before the terminator, +/// however if the terminator is a conditional branch and its previous +/// instruction is the flag setting instruction, the previous instruction is +/// the preferred location. This function also gathers uses and defs of the +/// instructions from the insertion point to the end of the block. The data is +/// used by HoistCommonCodeInSuccs to ensure safety. +static +MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, +                                                  const TargetInstrInfo *TII, +                                                  const TargetRegisterInfo *TRI, +                                                  SmallSet<unsigned,4> &Uses, +                                                  SmallSet<unsigned,4> &Defs) { +  MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); +  if (!TII->isUnpredicatedTerminator(Loc)) +    return MBB->end(); + +  for (unsigned i = 0, e = Loc->getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = Loc->getOperand(i); +    if (!MO.isReg()) +      continue; +    unsigned Reg = MO.getReg(); +    if (!Reg) +      continue; +    if (MO.isUse()) { +      Uses.insert(Reg); +      for (const uint16_t *AS = TRI->getAliasSet(Reg); *AS; ++AS) +        Uses.insert(*AS); +    } else if (!MO.isDead()) +      // Don't try to hoist code in the rare case the terminator defines a +      // register that is later used. +      return MBB->end(); +  } + +  if (Uses.empty()) +    return Loc; +  if (Loc == MBB->begin()) +    return MBB->end(); + +  // The terminator is probably a conditional branch, try not to separate the +  // branch from condition setting instruction. +  MachineBasicBlock::iterator PI = Loc; +  --PI; +  while (PI != MBB->begin() && Loc->isDebugValue()) +    --PI; + +  bool IsDef = false; +  for (unsigned i = 0, e = PI->getNumOperands(); !IsDef && i != e; ++i) { +    const MachineOperand &MO = PI->getOperand(i); +    // If PI has a regmask operand, it is probably a call. Separate away. +    if (MO.isRegMask()) +      return Loc; +    if (!MO.isReg() || MO.isUse()) +      continue; +    unsigned Reg = MO.getReg(); +    if (!Reg) +      continue; +    if (Uses.count(Reg)) +      IsDef = true; +  } +  if (!IsDef) +    // The condition setting instruction is not just before the conditional +    // branch. +    return Loc; + +  // Be conservative, don't insert instruction above something that may have +  // side-effects. And since it's potentially bad to separate flag setting +  // instruction from the conditional branch, just abort the optimization +  // completely. +  // Also avoid moving code above predicated instruction since it's hard to +  // reason about register liveness with predicated instruction. +  bool DontMoveAcrossStore = true; +  if (!PI->isSafeToMove(TII, 0, DontMoveAcrossStore) || +      TII->isPredicated(PI)) +    return MBB->end(); + + +  // Find out what registers are live. Note this routine is ignoring other live +  // registers which are only used by instructions in successor blocks. +  for (unsigned i = 0, e = PI->getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = PI->getOperand(i); +    if (!MO.isReg()) +      continue; +    unsigned Reg = MO.getReg(); +    if (!Reg) +      continue; +    if (MO.isUse()) { +      Uses.insert(Reg); +      for (const uint16_t *AS = TRI->getAliasSet(Reg); *AS; ++AS) +        Uses.insert(*AS); +    } else { +      if (Uses.count(Reg)) { +        Uses.erase(Reg); +        for (const uint16_t *SR = TRI->getSubRegisters(Reg); *SR; ++SR) +          Uses.erase(*SR); // Use getSubRegisters to be conservative +      } +      Defs.insert(Reg); +      for (const uint16_t *AS = TRI->getAliasSet(Reg); *AS; ++AS) +        Defs.insert(*AS); +    } +  } + +  return PI; +} + +/// HoistCommonCodeInSuccs - If the successors of MBB has common instruction +/// sequence at the start of the function, move the instructions before MBB +/// terminator if it's legal. +bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { +  MachineBasicBlock *TBB = 0, *FBB = 0; +  SmallVector<MachineOperand, 4> Cond; +  if (TII->AnalyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) +    return false; + +  if (!FBB) FBB = findFalseBlock(MBB, TBB); +  if (!FBB) +    // Malformed bcc? True and false blocks are the same? +    return false; + +  // Restrict the optimization to cases where MBB is the only predecessor, +  // it is an obvious win. +  if (TBB->pred_size() > 1 || FBB->pred_size() > 1) +    return false; + +  // Find a suitable position to hoist the common instructions to. Also figure +  // out which registers are used or defined by instructions from the insertion +  // point to the end of the block. +  SmallSet<unsigned, 4> Uses, Defs; +  MachineBasicBlock::iterator Loc = +    findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); +  if (Loc == MBB->end()) +    return false; + +  bool HasDups = false; +  SmallVector<unsigned, 4> LocalDefs; +  SmallSet<unsigned, 4> LocalDefsSet; +  MachineBasicBlock::iterator TIB = TBB->begin(); +  MachineBasicBlock::iterator FIB = FBB->begin(); +  MachineBasicBlock::iterator TIE = TBB->end(); +  MachineBasicBlock::iterator FIE = FBB->end(); +  while (TIB != TIE && FIB != FIE) { +    // Skip dbg_value instructions. These do not count. +    if (TIB->isDebugValue()) { +      while (TIB != TIE && TIB->isDebugValue()) +        ++TIB; +      if (TIB == TIE) +        break; +    } +    if (FIB->isDebugValue()) { +      while (FIB != FIE && FIB->isDebugValue()) +        ++FIB; +      if (FIB == FIE) +        break; +    } +    if (!TIB->isIdenticalTo(FIB, MachineInstr::CheckKillDead)) +      break; + +    if (TII->isPredicated(TIB)) +      // Hard to reason about register liveness with predicated instruction. +      break; + +    bool IsSafe = true; +    for (unsigned i = 0, e = TIB->getNumOperands(); i != e; ++i) { +      MachineOperand &MO = TIB->getOperand(i); +      // Don't attempt to hoist instructions with register masks. +      if (MO.isRegMask()) { +        IsSafe = false; +        break; +      } +      if (!MO.isReg()) +        continue; +      unsigned Reg = MO.getReg(); +      if (!Reg) +        continue; +      if (MO.isDef()) { +        if (Uses.count(Reg)) { +          // Avoid clobbering a register that's used by the instruction at +          // the point of insertion. +          IsSafe = false; +          break; +        } + +        if (Defs.count(Reg) && !MO.isDead()) { +          // Don't hoist the instruction if the def would be clobber by the +          // instruction at the point insertion. FIXME: This is overly +          // conservative. It should be possible to hoist the instructions +          // in BB2 in the following example: +          // BB1: +          // r1, eflag = op1 r2, r3 +          // brcc eflag +          // +          // BB2: +          // r1 = op2, ... +          //    = op3, r1<kill> +          IsSafe = false; +          break; +        } +      } else if (!LocalDefsSet.count(Reg)) { +        if (Defs.count(Reg)) { +          // Use is defined by the instruction at the point of insertion. +          IsSafe = false; +          break; +        } + +        if (MO.isKill() && Uses.count(Reg)) +          // Kills a register that's read by the instruction at the point of +          // insertion. Remove the kill marker. +          MO.setIsKill(false); +      } +    } +    if (!IsSafe) +      break; + +    bool DontMoveAcrossStore = true; +    if (!TIB->isSafeToMove(TII, 0, DontMoveAcrossStore)) +      break; + +    // Remove kills from LocalDefsSet, these registers had short live ranges. +    for (unsigned i = 0, e = TIB->getNumOperands(); i != e; ++i) { +      MachineOperand &MO = TIB->getOperand(i); +      if (!MO.isReg() || !MO.isUse() || !MO.isKill()) +        continue; +      unsigned Reg = MO.getReg(); +      if (!Reg || !LocalDefsSet.count(Reg)) +        continue; +      for (const uint16_t *OR = TRI->getOverlaps(Reg); *OR; ++OR) +        LocalDefsSet.erase(*OR); +    } + +    // Track local defs so we can update liveins. +    for (unsigned i = 0, e = TIB->getNumOperands(); i != e; ++i) { +      MachineOperand &MO = TIB->getOperand(i); +      if (!MO.isReg() || !MO.isDef() || MO.isDead()) +        continue; +      unsigned Reg = MO.getReg(); +      if (!Reg) +        continue; +      LocalDefs.push_back(Reg); +      for (const uint16_t *OR = TRI->getOverlaps(Reg); *OR; ++OR) +        LocalDefsSet.insert(*OR); +    } + +    HasDups = true; +    ++TIB; +    ++FIB; +  } + +  if (!HasDups) +    return false; + +  MBB->splice(Loc, TBB, TBB->begin(), TIB); +  FBB->erase(FBB->begin(), FIB); + +  // Update livein's. +  for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) { +    unsigned Def = LocalDefs[i]; +    if (LocalDefsSet.count(Def)) { +      TBB->addLiveIn(Def); +      FBB->addLiveIn(Def); +    } +  } + +  ++NumHoist; +  return true; +} | 
