diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp | 681 |
1 files changed, 681 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp b/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp new file mode 100644 index 000000000000..920c2a372a9b --- /dev/null +++ b/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp @@ -0,0 +1,681 @@ +//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass turns explicit null checks of the form +// +// test %r10, %r10 +// je throw_npe +// movl (%r10), %esi +// ... +// +// to +// +// faulting_load_op("movl (%r10), %esi", throw_npe) +// ... +// +// With the help of a runtime that understands the .fault_maps section, +// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs +// a page fault. +// Store and LoadStore are also supported. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/FaultMaps.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include "llvm/Target/TargetInstrInfo.h" + +using namespace llvm; + +static cl::opt<int> PageSize("imp-null-check-page-size", + cl::desc("The page size of the target in bytes"), + cl::init(4096)); + +static cl::opt<unsigned> MaxInstsToConsider( + "imp-null-max-insts-to-consider", + cl::desc("The max number of instructions to consider hoisting loads over " + "(the algorithm is quadratic over this number)"), + cl::init(8)); + +#define DEBUG_TYPE "implicit-null-checks" + +STATISTIC(NumImplicitNullChecks, + "Number of explicit null checks made implicit"); + +namespace { + +class ImplicitNullChecks : public MachineFunctionPass { + /// Return true if \c computeDependence can process \p MI. + static bool canHandle(const MachineInstr *MI); + + /// Helper function for \c computeDependence. Return true if \p A + /// and \p B do not have any dependences between them, and can be + /// re-ordered without changing program semantics. + bool canReorder(const MachineInstr *A, const MachineInstr *B); + + /// A data type for representing the result computed by \c + /// computeDependence. States whether it is okay to reorder the + /// instruction passed to \c computeDependence with at most one + /// depednency. + struct DependenceResult { + /// Can we actually re-order \p MI with \p Insts (see \c + /// computeDependence). + bool CanReorder; + + /// If non-None, then an instruction in \p Insts that also must be + /// hoisted. + Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence; + + /*implicit*/ DependenceResult( + bool CanReorder, + Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence) + : CanReorder(CanReorder), PotentialDependence(PotentialDependence) { + assert((!PotentialDependence || CanReorder) && + "!CanReorder && PotentialDependence.hasValue() not allowed!"); + } + }; + + /// Compute a result for the following question: can \p MI be + /// re-ordered from after \p Insts to before it. + /// + /// \c canHandle should return true for all instructions in \p + /// Insts. + DependenceResult computeDependence(const MachineInstr *MI, + ArrayRef<MachineInstr *> Insts); + + /// Represents one null check that can be made implicit. + class NullCheck { + // The memory operation the null check can be folded into. + MachineInstr *MemOperation; + + // The instruction actually doing the null check (Ptr != 0). + MachineInstr *CheckOperation; + + // The block the check resides in. + MachineBasicBlock *CheckBlock; + + // The block branched to if the pointer is non-null. + MachineBasicBlock *NotNullSucc; + + // The block branched to if the pointer is null. + MachineBasicBlock *NullSucc; + + // If this is non-null, then MemOperation has a dependency on on this + // instruction; and it needs to be hoisted to execute before MemOperation. + MachineInstr *OnlyDependency; + + public: + explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, + MachineBasicBlock *checkBlock, + MachineBasicBlock *notNullSucc, + MachineBasicBlock *nullSucc, + MachineInstr *onlyDependency) + : MemOperation(memOperation), CheckOperation(checkOperation), + CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc), + OnlyDependency(onlyDependency) {} + + MachineInstr *getMemOperation() const { return MemOperation; } + + MachineInstr *getCheckOperation() const { return CheckOperation; } + + MachineBasicBlock *getCheckBlock() const { return CheckBlock; } + + MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; } + + MachineBasicBlock *getNullSucc() const { return NullSucc; } + + MachineInstr *getOnlyDependency() const { return OnlyDependency; } + }; + + const TargetInstrInfo *TII = nullptr; + const TargetRegisterInfo *TRI = nullptr; + AliasAnalysis *AA = nullptr; + MachineModuleInfo *MMI = nullptr; + MachineFrameInfo *MFI = nullptr; + + bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, + SmallVectorImpl<NullCheck> &NullCheckList); + MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB, + MachineBasicBlock *HandlerMBB); + void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); + + enum AliasResult { + AR_NoAlias, + AR_MayAlias, + AR_WillAliasEverything + }; + /// Returns AR_NoAlias if \p MI memory operation does not alias with + /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if + /// they may alias and any further memory operation may alias with \p PrevMI. + AliasResult areMemoryOpsAliased(MachineInstr &MI, MachineInstr *PrevMI); + + enum SuitabilityResult { + SR_Suitable, + SR_Unsuitable, + SR_Impossible + }; + /// Return SR_Suitable if \p MI a memory operation that can be used to + /// implicitly null check the value in \p PointerReg, SR_Unsuitable if + /// \p MI cannot be used to null check and SR_Impossible if there is + /// no sense to continue lookup due to any other instruction will not be able + /// to be used. \p PrevInsts is the set of instruction seen since + /// the explicit null check on \p PointerReg. + SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg, + ArrayRef<MachineInstr *> PrevInsts); + + /// Return true if \p FaultingMI can be hoisted from after the the + /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a + /// non-null value if we also need to (and legally can) hoist a depedency. + bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg, + ArrayRef<MachineInstr *> InstsSeenSoFar, + MachineBasicBlock *NullSucc, MachineInstr *&Dependence); + +public: + static char ID; + + ImplicitNullChecks() : MachineFunctionPass(ID) { + initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AAResultsWrapperPass>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + MachineFunctionProperties getRequiredProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoVRegs); + } +}; + +} + +bool ImplicitNullChecks::canHandle(const MachineInstr *MI) { + if (MI->isCall() || MI->hasUnmodeledSideEffects()) + return false; + auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); }; + (void)IsRegMask; + + assert(!llvm::any_of(MI->operands(), IsRegMask) && + "Calls were filtered out above!"); + + auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); }; + return llvm::all_of(MI->memoperands(), IsUnordered); +} + +ImplicitNullChecks::DependenceResult +ImplicitNullChecks::computeDependence(const MachineInstr *MI, + ArrayRef<MachineInstr *> Block) { + assert(llvm::all_of(Block, canHandle) && "Check this first!"); + assert(!llvm::is_contained(Block, MI) && "Block must be exclusive of MI!"); + + Optional<ArrayRef<MachineInstr *>::iterator> Dep; + + for (auto I = Block.begin(), E = Block.end(); I != E; ++I) { + if (canReorder(*I, MI)) + continue; + + if (Dep == None) { + // Found one possible dependency, keep track of it. + Dep = I; + } else { + // We found two dependencies, so bail out. + return {false, None}; + } + } + + return {true, Dep}; +} + +bool ImplicitNullChecks::canReorder(const MachineInstr *A, + const MachineInstr *B) { + assert(canHandle(A) && canHandle(B) && "Precondition!"); + + // canHandle makes sure that we _can_ correctly analyze the dependencies + // between A and B here -- for instance, we should not be dealing with heap + // load-store dependencies here. + + for (auto MOA : A->operands()) { + if (!(MOA.isReg() && MOA.getReg())) + continue; + + unsigned RegA = MOA.getReg(); + for (auto MOB : B->operands()) { + if (!(MOB.isReg() && MOB.getReg())) + continue; + + unsigned RegB = MOB.getReg(); + + if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef())) + return false; + } + } + + return true; +} + +bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { + TII = MF.getSubtarget().getInstrInfo(); + TRI = MF.getRegInfo().getTargetRegisterInfo(); + MMI = &MF.getMMI(); + MFI = &MF.getFrameInfo(); + AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + + SmallVector<NullCheck, 16> NullCheckList; + + for (auto &MBB : MF) + analyzeBlockForNullChecks(MBB, NullCheckList); + + if (!NullCheckList.empty()) + rewriteNullChecks(NullCheckList); + + return !NullCheckList.empty(); +} + +// Return true if any register aliasing \p Reg is live-in into \p MBB. +static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, + MachineBasicBlock *MBB, unsigned Reg) { + for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid(); + ++AR) + if (MBB->isLiveIn(*AR)) + return true; + return false; +} + +ImplicitNullChecks::AliasResult +ImplicitNullChecks::areMemoryOpsAliased(MachineInstr &MI, + MachineInstr *PrevMI) { + // If it is not memory access, skip the check. + if (!(PrevMI->mayStore() || PrevMI->mayLoad())) + return AR_NoAlias; + // Load-Load may alias + if (!(MI.mayStore() || PrevMI->mayStore())) + return AR_NoAlias; + // We lost info, conservatively alias. If it was store then no sense to + // continue because we won't be able to check against it further. + if (MI.memoperands_empty()) + return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias; + if (PrevMI->memoperands_empty()) + return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias; + + for (MachineMemOperand *MMO1 : MI.memoperands()) { + // MMO1 should have a value due it comes from operation we'd like to use + // as implicit null check. + assert(MMO1->getValue() && "MMO1 should have a Value!"); + for (MachineMemOperand *MMO2 : PrevMI->memoperands()) { + if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) { + if (PSV->mayAlias(MFI)) + return AR_MayAlias; + continue; + } + llvm::AliasResult AAResult = AA->alias( + MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, + MMO1->getAAInfo()), + MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, + MMO2->getAAInfo())); + if (AAResult != NoAlias) + return AR_MayAlias; + } + } + return AR_NoAlias; +} + +ImplicitNullChecks::SuitabilityResult +ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg, + ArrayRef<MachineInstr *> PrevInsts) { + int64_t Offset; + unsigned BaseReg; + + if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) || + BaseReg != PointerReg) + return SR_Unsuitable; + + // We want the mem access to be issued at a sane offset from PointerReg, + // so that if PointerReg is null then the access reliably page faults. + if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() && + Offset < PageSize)) + return SR_Unsuitable; + + // Finally, we need to make sure that the access instruction actually is + // accessing from PointerReg, and there isn't some re-definition of PointerReg + // between the compare and the memory access. + // If PointerReg has been redefined before then there is no sense to continue + // lookup due to this condition will fail for any further instruction. + SuitabilityResult Suitable = SR_Suitable; + for (auto *PrevMI : PrevInsts) + for (auto &PrevMO : PrevMI->operands()) { + if (PrevMO.isReg() && PrevMO.getReg() && PrevMO.isDef() && + TRI->regsOverlap(PrevMO.getReg(), PointerReg)) + return SR_Impossible; + + // Check whether the current memory access aliases with previous one. + // If we already found that it aliases then no need to continue. + // But we continue base pointer check as it can result in SR_Impossible. + if (Suitable == SR_Suitable) { + AliasResult AR = areMemoryOpsAliased(MI, PrevMI); + if (AR == AR_WillAliasEverything) + return SR_Impossible; + if (AR == AR_MayAlias) + Suitable = SR_Unsuitable; + } + } + return Suitable; +} + +bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI, + unsigned PointerReg, + ArrayRef<MachineInstr *> InstsSeenSoFar, + MachineBasicBlock *NullSucc, + MachineInstr *&Dependence) { + auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar); + if (!DepResult.CanReorder) + return false; + + if (!DepResult.PotentialDependence) { + Dependence = nullptr; + return true; + } + + auto DependenceItr = *DepResult.PotentialDependence; + auto *DependenceMI = *DependenceItr; + + // We don't want to reason about speculating loads. Note -- at this point + // we should have already filtered out all of the other non-speculatable + // things, like calls and stores. + assert(canHandle(DependenceMI) && "Should never have reached here!"); + if (DependenceMI->mayLoad()) + return false; + + for (auto &DependenceMO : DependenceMI->operands()) { + if (!(DependenceMO.isReg() && DependenceMO.getReg())) + continue; + + // Make sure that we won't clobber any live ins to the sibling block by + // hoisting Dependency. For instance, we can't hoist INST to before the + // null check (even if it safe, and does not violate any dependencies in + // the non_null_block) if %rdx is live in to _null_block. + // + // test %rcx, %rcx + // je _null_block + // _non_null_block: + // %rdx<def> = INST + // ... + // + // This restriction does not apply to the faulting load inst because in + // case the pointer loaded from is in the null page, the load will not + // semantically execute, and affect machine state. That is, if the load + // was loading into %rax and it faults, the value of %rax should stay the + // same as it would have been had the load not have executed and we'd have + // branched to NullSucc directly. + if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) + return false; + + // The Dependency can't be re-defining the base register -- then we won't + // get the memory operation on the address we want. This is already + // checked in \c IsSuitableMemoryOp. + assert(!(DependenceMO.isDef() && + TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) && + "Should have been checked before!"); + } + + auto DepDepResult = + computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr}); + + if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence) + return false; + + Dependence = DependenceMI; + return true; +} + +/// Analyze MBB to check if its terminating branch can be turned into an +/// implicit null check. If yes, append a description of the said null check to +/// NullCheckList and return true, else return false. +bool ImplicitNullChecks::analyzeBlockForNullChecks( + MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { + typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; + + MDNode *BranchMD = nullptr; + if (auto *BB = MBB.getBasicBlock()) + BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); + + if (!BranchMD) + return false; + + MachineBranchPredicate MBP; + + if (TII->analyzeBranchPredicate(MBB, MBP, true)) + return false; + + // Is the predicate comparing an integer to zero? + if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && + (MBP.Predicate == MachineBranchPredicate::PRED_NE || + MBP.Predicate == MachineBranchPredicate::PRED_EQ))) + return false; + + // If we cannot erase the test instruction itself, then making the null check + // implicit does not buy us much. + if (!MBP.SingleUseCondition) + return false; + + MachineBasicBlock *NotNullSucc, *NullSucc; + + if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { + NotNullSucc = MBP.TrueDest; + NullSucc = MBP.FalseDest; + } else { + NotNullSucc = MBP.FalseDest; + NullSucc = MBP.TrueDest; + } + + // We handle the simplest case for now. We can potentially do better by using + // the machine dominator tree. + if (NotNullSucc->pred_size() != 1) + return false; + + // Starting with a code fragment like: + // + // test %RAX, %RAX + // jne LblNotNull + // + // LblNull: + // callq throw_NullPointerException + // + // LblNotNull: + // Inst0 + // Inst1 + // ... + // Def = Load (%RAX + <offset>) + // ... + // + // + // we want to end up with + // + // Def = FaultingLoad (%RAX + <offset>), LblNull + // jmp LblNotNull ;; explicit or fallthrough + // + // LblNotNull: + // Inst0 + // Inst1 + // ... + // + // LblNull: + // callq throw_NullPointerException + // + // + // To see why this is legal, consider the two possibilities: + // + // 1. %RAX is null: since we constrain <offset> to be less than PageSize, the + // load instruction dereferences the null page, causing a segmentation + // fault. + // + // 2. %RAX is not null: in this case we know that the load cannot fault, as + // otherwise the load would've faulted in the original program too and the + // original program would've been undefined. + // + // This reasoning cannot be extended to justify hoisting through arbitrary + // control flow. For instance, in the example below (in pseudo-C) + // + // if (ptr == null) { throw_npe(); unreachable; } + // if (some_cond) { return 42; } + // v = ptr->field; // LD + // ... + // + // we cannot (without code duplication) use the load marked "LD" to null check + // ptr -- clause (2) above does not apply in this case. In the above program + // the safety of ptr->field can be dependent on some_cond; and, for instance, + // ptr could be some non-null invalid reference that never gets loaded from + // because some_cond is always true. + + const unsigned PointerReg = MBP.LHS.getReg(); + + SmallVector<MachineInstr *, 8> InstsSeenSoFar; + + for (auto &MI : *NotNullSucc) { + if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider) + return false; + + MachineInstr *Dependence; + SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar); + if (SR == SR_Impossible) + return false; + if (SR == SR_Suitable && + canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) { + NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc, + NullSucc, Dependence); + return true; + } + + InstsSeenSoFar.push_back(&MI); + } + + return false; +} + +/// Wrap a machine instruction, MI, into a FAULTING machine instruction. +/// The FAULTING instruction does the same load/store as MI +/// (defining the same register), and branches to HandlerMBB if the mem access +/// faults. The FAULTING instruction is inserted at the end of MBB. +MachineInstr *ImplicitNullChecks::insertFaultingInstr( + MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { + const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for + // all targets. + + DebugLoc DL; + unsigned NumDefs = MI->getDesc().getNumDefs(); + assert(NumDefs <= 1 && "other cases unhandled!"); + + unsigned DefReg = NoRegister; + if (NumDefs != 0) { + DefReg = MI->defs().begin()->getReg(); + assert(std::distance(MI->defs().begin(), MI->defs().end()) == 1 && + "expected exactly one def!"); + } + + FaultMaps::FaultKind FK; + if (MI->mayLoad()) + FK = + MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; + else + FK = FaultMaps::FaultingStore; + + auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) + .addImm(FK) + .addMBB(HandlerMBB) + .addImm(MI->getOpcode()); + + for (auto &MO : MI->uses()) + MIB.add(MO); + + MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); + + return MIB; +} + +/// Rewrite the null checks in NullCheckList into implicit null checks. +void ImplicitNullChecks::rewriteNullChecks( + ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { + DebugLoc DL; + + for (auto &NC : NullCheckList) { + // Remove the conditional branch dependent on the null check. + unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock()); + (void)BranchesRemoved; + assert(BranchesRemoved > 0 && "expected at least one branch!"); + + if (auto *DepMI = NC.getOnlyDependency()) { + DepMI->removeFromParent(); + NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI); + } + + // Insert a faulting instruction where the conditional branch was + // originally. We check earlier ensures that this bit of code motion + // is legal. We do not touch the successors list for any basic block + // since we haven't changed control flow, we've just made it implicit. + MachineInstr *FaultingInstr = insertFaultingInstr( + NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc()); + // Now the values defined by MemOperation, if any, are live-in of + // the block of MemOperation. + // The original operation may define implicit-defs alongside + // the value. + MachineBasicBlock *MBB = NC.getMemOperation()->getParent(); + for (const MachineOperand &MO : FaultingInstr->operands()) { + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg || MBB->isLiveIn(Reg)) + continue; + MBB->addLiveIn(Reg); + } + + if (auto *DepMI = NC.getOnlyDependency()) { + for (auto &MO : DepMI->operands()) { + if (!MO.isReg() || !MO.getReg() || !MO.isDef()) + continue; + if (!NC.getNotNullSucc()->isLiveIn(MO.getReg())) + NC.getNotNullSucc()->addLiveIn(MO.getReg()); + } + } + + NC.getMemOperation()->eraseFromParent(); + NC.getCheckOperation()->eraseFromParent(); + + // Insert an *unconditional* branch to not-null successor. + TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr, + /*Cond=*/None, DL); + + NumImplicitNullChecks++; + } +} + + +char ImplicitNullChecks::ID = 0; +char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; +INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks", + "Implicit null checks", false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks", + "Implicit null checks", false, false) |
