diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineInstr.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/MachineInstr.cpp | 2377 | 
1 files changed, 2377 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineInstr.cpp b/contrib/llvm/lib/CodeGen/MachineInstr.cpp new file mode 100644 index 000000000000..81c6dace92e0 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachineInstr.cpp @@ -0,0 +1,2377 @@ +//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Methods common to all machine instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/CodeGen/GlobalISel/RegisterBank.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineInstrBundle.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <utility> + +using namespace llvm; + +static cl::opt<bool> PrintWholeRegMask( +    "print-whole-regmask", +    cl::desc("Print the full contents of regmask operands in IR dumps"), +    cl::init(true), cl::Hidden); + +//===----------------------------------------------------------------------===// +// MachineOperand Implementation +//===----------------------------------------------------------------------===// + +void MachineOperand::setReg(unsigned Reg) { +  if (getReg() == Reg) return; // No change. + +  // Otherwise, we have to change the register.  If this operand is embedded +  // into a machine function, we need to update the old and new register's +  // use/def lists. +  if (MachineInstr *MI = getParent()) +    if (MachineBasicBlock *MBB = MI->getParent()) +      if (MachineFunction *MF = MBB->getParent()) { +        MachineRegisterInfo &MRI = MF->getRegInfo(); +        MRI.removeRegOperandFromUseList(this); +        SmallContents.RegNo = Reg; +        MRI.addRegOperandToUseList(this); +        return; +      } + +  // Otherwise, just change the register, no problem.  :) +  SmallContents.RegNo = Reg; +} + +void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, +                                  const TargetRegisterInfo &TRI) { +  assert(TargetRegisterInfo::isVirtualRegister(Reg)); +  if (SubIdx && getSubReg()) +    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); +  setReg(Reg); +  if (SubIdx) +    setSubReg(SubIdx); +} + +void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { +  assert(TargetRegisterInfo::isPhysicalRegister(Reg)); +  if (getSubReg()) { +    Reg = TRI.getSubReg(Reg, getSubReg()); +    // Note that getSubReg() may return 0 if the sub-register doesn't exist. +    // That won't happen in legal code. +    setSubReg(0); +    if (isDef()) +      setIsUndef(false); +  } +  setReg(Reg); +} + +/// Change a def to a use, or a use to a def. +void MachineOperand::setIsDef(bool Val) { +  assert(isReg() && "Wrong MachineOperand accessor"); +  assert((!Val || !isDebug()) && "Marking a debug operation as def"); +  if (IsDef == Val) +    return; +  // MRI may keep uses and defs in different list positions. +  if (MachineInstr *MI = getParent()) +    if (MachineBasicBlock *MBB = MI->getParent()) +      if (MachineFunction *MF = MBB->getParent()) { +        MachineRegisterInfo &MRI = MF->getRegInfo(); +        MRI.removeRegOperandFromUseList(this); +        IsDef = Val; +        MRI.addRegOperandToUseList(this); +        return; +      } +  IsDef = Val; +} + +// If this operand is currently a register operand, and if this is in a +// function, deregister the operand from the register's use/def list. +void MachineOperand::removeRegFromUses() { +  if (!isReg() || !isOnRegUseList()) +    return; + +  if (MachineInstr *MI = getParent()) { +    if (MachineBasicBlock *MBB = MI->getParent()) { +      if (MachineFunction *MF = MBB->getParent()) +        MF->getRegInfo().removeRegOperandFromUseList(this); +    } +  } +} + +/// ChangeToImmediate - Replace this operand with a new immediate operand of +/// the specified value.  If an operand is known to be an immediate already, +/// the setImm method should be used. +void MachineOperand::ChangeToImmediate(int64_t ImmVal) { +  assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); + +  removeRegFromUses(); + +  OpKind = MO_Immediate; +  Contents.ImmVal = ImmVal; +} + +void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { +  assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); + +  removeRegFromUses(); + +  OpKind = MO_FPImmediate; +  Contents.CFP = FPImm; +} + +void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { +  assert((!isReg() || !isTied()) && +         "Cannot change a tied operand into an external symbol"); + +  removeRegFromUses(); + +  OpKind = MO_ExternalSymbol; +  Contents.OffsetedInfo.Val.SymbolName = SymName; +  setOffset(0); // Offset is always 0. +  setTargetFlags(TargetFlags); +} + +void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { +  assert((!isReg() || !isTied()) && +         "Cannot change a tied operand into an MCSymbol"); + +  removeRegFromUses(); + +  OpKind = MO_MCSymbol; +  Contents.Sym = Sym; +} + +void MachineOperand::ChangeToFrameIndex(int Idx) { +  assert((!isReg() || !isTied()) && +         "Cannot change a tied operand into a FrameIndex"); + +  removeRegFromUses(); + +  OpKind = MO_FrameIndex; +  setIndex(Idx); +} + +/// ChangeToRegister - Replace this operand with a new register operand of +/// the specified value.  If an operand is known to be an register already, +/// the setReg method should be used. +void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, +                                      bool isKill, bool isDead, bool isUndef, +                                      bool isDebug) { +  MachineRegisterInfo *RegInfo = nullptr; +  if (MachineInstr *MI = getParent()) +    if (MachineBasicBlock *MBB = MI->getParent()) +      if (MachineFunction *MF = MBB->getParent()) +        RegInfo = &MF->getRegInfo(); +  // If this operand is already a register operand, remove it from the +  // register's use/def lists. +  bool WasReg = isReg(); +  if (RegInfo && WasReg) +    RegInfo->removeRegOperandFromUseList(this); + +  // Change this to a register and set the reg#. +  OpKind = MO_Register; +  SmallContents.RegNo = Reg; +  SubReg_TargetFlags = 0; +  IsDef = isDef; +  IsImp = isImp; +  IsKill = isKill; +  IsDead = isDead; +  IsUndef = isUndef; +  IsInternalRead = false; +  IsEarlyClobber = false; +  IsDebug = isDebug; +  // Ensure isOnRegUseList() returns false. +  Contents.Reg.Prev = nullptr; +  // Preserve the tie when the operand was already a register. +  if (!WasReg) +    TiedTo = 0; + +  // If this operand is embedded in a function, add the operand to the +  // register's use/def list. +  if (RegInfo) +    RegInfo->addRegOperandToUseList(this); +} + +/// isIdenticalTo - Return true if this operand is identical to the specified +/// operand. Note that this should stay in sync with the hash_value overload +/// below. +bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { +  if (getType() != Other.getType() || +      getTargetFlags() != Other.getTargetFlags()) +    return false; + +  switch (getType()) { +  case MachineOperand::MO_Register: +    return getReg() == Other.getReg() && isDef() == Other.isDef() && +           getSubReg() == Other.getSubReg(); +  case MachineOperand::MO_Immediate: +    return getImm() == Other.getImm(); +  case MachineOperand::MO_CImmediate: +    return getCImm() == Other.getCImm(); +  case MachineOperand::MO_FPImmediate: +    return getFPImm() == Other.getFPImm(); +  case MachineOperand::MO_MachineBasicBlock: +    return getMBB() == Other.getMBB(); +  case MachineOperand::MO_FrameIndex: +    return getIndex() == Other.getIndex(); +  case MachineOperand::MO_ConstantPoolIndex: +  case MachineOperand::MO_TargetIndex: +    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); +  case MachineOperand::MO_JumpTableIndex: +    return getIndex() == Other.getIndex(); +  case MachineOperand::MO_GlobalAddress: +    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); +  case MachineOperand::MO_ExternalSymbol: +    return strcmp(getSymbolName(), Other.getSymbolName()) == 0 && +           getOffset() == Other.getOffset(); +  case MachineOperand::MO_BlockAddress: +    return getBlockAddress() == Other.getBlockAddress() && +           getOffset() == Other.getOffset(); +  case MachineOperand::MO_RegisterMask: +  case MachineOperand::MO_RegisterLiveOut: { +    // Shallow compare of the two RegMasks +    const uint32_t *RegMask = getRegMask(); +    const uint32_t *OtherRegMask = Other.getRegMask(); +    if (RegMask == OtherRegMask) +      return true; + +    // Calculate the size of the RegMask +    const MachineFunction *MF = getParent()->getParent()->getParent(); +    const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); +    unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; + +    // Deep compare of the two RegMasks +    return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask); +  } +  case MachineOperand::MO_MCSymbol: +    return getMCSymbol() == Other.getMCSymbol(); +  case MachineOperand::MO_CFIIndex: +    return getCFIIndex() == Other.getCFIIndex(); +  case MachineOperand::MO_Metadata: +    return getMetadata() == Other.getMetadata(); +  case MachineOperand::MO_IntrinsicID: +    return getIntrinsicID() == Other.getIntrinsicID(); +  case MachineOperand::MO_Predicate: +    return getPredicate() == Other.getPredicate(); +  } +  llvm_unreachable("Invalid machine operand type"); +} + +// Note: this must stay exactly in sync with isIdenticalTo above. +hash_code llvm::hash_value(const MachineOperand &MO) { +  switch (MO.getType()) { +  case MachineOperand::MO_Register: +    // Register operands don't have target flags. +    return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); +  case MachineOperand::MO_Immediate: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); +  case MachineOperand::MO_CImmediate: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); +  case MachineOperand::MO_FPImmediate: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); +  case MachineOperand::MO_MachineBasicBlock: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); +  case MachineOperand::MO_FrameIndex: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); +  case MachineOperand::MO_ConstantPoolIndex: +  case MachineOperand::MO_TargetIndex: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), +                        MO.getOffset()); +  case MachineOperand::MO_JumpTableIndex: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); +  case MachineOperand::MO_ExternalSymbol: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), +                        MO.getSymbolName()); +  case MachineOperand::MO_GlobalAddress: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), +                        MO.getOffset()); +  case MachineOperand::MO_BlockAddress: +    return hash_combine(MO.getType(), MO.getTargetFlags(), +                        MO.getBlockAddress(), MO.getOffset()); +  case MachineOperand::MO_RegisterMask: +  case MachineOperand::MO_RegisterLiveOut: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); +  case MachineOperand::MO_Metadata: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); +  case MachineOperand::MO_MCSymbol: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); +  case MachineOperand::MO_CFIIndex: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); +  case MachineOperand::MO_IntrinsicID: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID()); +  case MachineOperand::MO_Predicate: +    return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate()); +  } +  llvm_unreachable("Invalid machine operand type"); +} + +void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI, +                           const TargetIntrinsicInfo *IntrinsicInfo) const { +  ModuleSlotTracker DummyMST(nullptr); +  print(OS, DummyMST, TRI, IntrinsicInfo); +} + +void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, +                           const TargetRegisterInfo *TRI, +                           const TargetIntrinsicInfo *IntrinsicInfo) const { +  switch (getType()) { +  case MachineOperand::MO_Register: +    OS << PrintReg(getReg(), TRI, getSubReg()); + +    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || +        isInternalRead() || isEarlyClobber() || isTied()) { +      OS << '<'; +      bool NeedComma = false; +      if (isDef()) { +        if (NeedComma) OS << ','; +        if (isEarlyClobber()) +          OS << "earlyclobber,"; +        if (isImplicit()) +          OS << "imp-"; +        OS << "def"; +        NeedComma = true; +        // <def,read-undef> only makes sense when getSubReg() is set. +        // Don't clutter the output otherwise. +        if (isUndef() && getSubReg()) +          OS << ",read-undef"; +      } else if (isImplicit()) { +        OS << "imp-use"; +        NeedComma = true; +      } + +      if (isKill()) { +        if (NeedComma) OS << ','; +        OS << "kill"; +        NeedComma = true; +      } +      if (isDead()) { +        if (NeedComma) OS << ','; +        OS << "dead"; +        NeedComma = true; +      } +      if (isUndef() && isUse()) { +        if (NeedComma) OS << ','; +        OS << "undef"; +        NeedComma = true; +      } +      if (isInternalRead()) { +        if (NeedComma) OS << ','; +        OS << "internal"; +        NeedComma = true; +      } +      if (isTied()) { +        if (NeedComma) OS << ','; +        OS << "tied"; +        if (TiedTo != 15) +          OS << unsigned(TiedTo - 1); +      } +      OS << '>'; +    } +    break; +  case MachineOperand::MO_Immediate: +    OS << getImm(); +    break; +  case MachineOperand::MO_CImmediate: +    getCImm()->getValue().print(OS, false); +    break; +  case MachineOperand::MO_FPImmediate: +    if (getFPImm()->getType()->isFloatTy()) { +      OS << getFPImm()->getValueAPF().convertToFloat(); +    } else if (getFPImm()->getType()->isHalfTy()) { +      APFloat APF = getFPImm()->getValueAPF(); +      bool Unused; +      APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused); +      OS << "half " << APF.convertToFloat(); +    } else if (getFPImm()->getType()->isFP128Ty()) { +      APFloat APF = getFPImm()->getValueAPF(); +      SmallString<16> Str; +      getFPImm()->getValueAPF().toString(Str); +      OS << "quad " << Str; +    } else { +      OS << getFPImm()->getValueAPF().convertToDouble(); +    } +    break; +  case MachineOperand::MO_MachineBasicBlock: +    OS << "<BB#" << getMBB()->getNumber() << ">"; +    break; +  case MachineOperand::MO_FrameIndex: +    OS << "<fi#" << getIndex() << '>'; +    break; +  case MachineOperand::MO_ConstantPoolIndex: +    OS << "<cp#" << getIndex(); +    if (getOffset()) OS << "+" << getOffset(); +    OS << '>'; +    break; +  case MachineOperand::MO_TargetIndex: +    OS << "<ti#" << getIndex(); +    if (getOffset()) OS << "+" << getOffset(); +    OS << '>'; +    break; +  case MachineOperand::MO_JumpTableIndex: +    OS << "<jt#" << getIndex() << '>'; +    break; +  case MachineOperand::MO_GlobalAddress: +    OS << "<ga:"; +    getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); +    if (getOffset()) OS << "+" << getOffset(); +    OS << '>'; +    break; +  case MachineOperand::MO_ExternalSymbol: +    OS << "<es:" << getSymbolName(); +    if (getOffset()) OS << "+" << getOffset(); +    OS << '>'; +    break; +  case MachineOperand::MO_BlockAddress: +    OS << '<'; +    getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); +    if (getOffset()) OS << "+" << getOffset(); +    OS << '>'; +    break; +  case MachineOperand::MO_RegisterMask: { +    unsigned NumRegsInMask = 0; +    unsigned NumRegsEmitted = 0; +    OS << "<regmask"; +    for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { +      unsigned MaskWord = i / 32; +      unsigned MaskBit = i % 32; +      if (getRegMask()[MaskWord] & (1 << MaskBit)) { +        if (PrintWholeRegMask || NumRegsEmitted <= 10) { +          OS << " " << PrintReg(i, TRI); +          NumRegsEmitted++; +        } +        NumRegsInMask++; +      } +    } +    if (NumRegsEmitted != NumRegsInMask) +      OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; +    OS << ">"; +    break; +  } +  case MachineOperand::MO_RegisterLiveOut: +    OS << "<regliveout>"; +    break; +  case MachineOperand::MO_Metadata: +    OS << '<'; +    getMetadata()->printAsOperand(OS, MST); +    OS << '>'; +    break; +  case MachineOperand::MO_MCSymbol: +    OS << "<MCSym=" << *getMCSymbol() << '>'; +    break; +  case MachineOperand::MO_CFIIndex: +    OS << "<call frame instruction>"; +    break; +  case MachineOperand::MO_IntrinsicID: { +    Intrinsic::ID ID = getIntrinsicID(); +    if (ID < Intrinsic::num_intrinsics) +      OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>'; +    else if (IntrinsicInfo) +      OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>'; +    else +      OS << "<intrinsic:" << ID << '>'; +    break; +  } +  case MachineOperand::MO_Predicate: { +    auto Pred = static_cast<CmpInst::Predicate>(getPredicate()); +    OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred") +       << CmpInst::getPredicateName(Pred) << '>'; +    break; +  } +  } +  if (unsigned TF = getTargetFlags()) +    OS << "[TF=" << TF << ']'; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineOperand::dump() const { +  dbgs() << *this << '\n'; +} +#endif + +//===----------------------------------------------------------------------===// +// MachineMemOperand Implementation +//===----------------------------------------------------------------------===// + +/// getAddrSpace - Return the LLVM IR address space number that this pointer +/// points into. +unsigned MachinePointerInfo::getAddrSpace() const { +  if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; +  return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); +} + +/// isDereferenceable - Return true if V is always dereferenceable for  +/// Offset + Size byte. +bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C, +                                           const DataLayout &DL) const { +  if (!V.is<const Value*>()) +    return false; + +  const Value *BasePtr = V.get<const Value*>(); +  if (BasePtr == nullptr) +    return false; + +  return isDereferenceableAndAlignedPointer(BasePtr, 1, +                                            APInt(DL.getPointerSize(), +                                                  Offset + Size), +                                            DL); +} + +/// getConstantPool - Return a MachinePointerInfo record that refers to the +/// constant pool. +MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { +  return MachinePointerInfo(MF.getPSVManager().getConstantPool()); +} + +/// getFixedStack - Return a MachinePointerInfo record that refers to the +/// the specified FrameIndex. +MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, +                                                     int FI, int64_t Offset) { +  return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); +} + +MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { +  return MachinePointerInfo(MF.getPSVManager().getJumpTable()); +} + +MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { +  return MachinePointerInfo(MF.getPSVManager().getGOT()); +} + +MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, +                                                int64_t Offset) { +  return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); +} + +MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f, +                                     uint64_t s, unsigned int a, +                                     const AAMDNodes &AAInfo, +                                     const MDNode *Ranges, +                                     SynchronizationScope SynchScope, +                                     AtomicOrdering Ordering, +                                     AtomicOrdering FailureOrdering) +    : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1), +      AAInfo(AAInfo), Ranges(Ranges) { +  assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || +          isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && +         "invalid pointer value"); +  assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); +  assert((isLoad() || isStore()) && "Not a load/store!"); + +  AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope); +  assert(getSynchScope() == SynchScope && "Value truncated"); +  AtomicInfo.Ordering = static_cast<unsigned>(Ordering); +  assert(getOrdering() == Ordering && "Value truncated"); +  AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering); +  assert(getFailureOrdering() == FailureOrdering && "Value truncated"); +} + +/// Profile - Gather unique data for the object. +/// +void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { +  ID.AddInteger(getOffset()); +  ID.AddInteger(Size); +  ID.AddPointer(getOpaqueValue()); +  ID.AddInteger(getFlags()); +  ID.AddInteger(getBaseAlignment()); +} + +void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { +  // The Value and Offset may differ due to CSE. But the flags and size +  // should be the same. +  assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); +  assert(MMO->getSize() == getSize() && "Size mismatch!"); + +  if (MMO->getBaseAlignment() >= getBaseAlignment()) { +    // Update the alignment value. +    BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1; +    // Also update the base and offset, because the new alignment may +    // not be applicable with the old ones. +    PtrInfo = MMO->PtrInfo; +  } +} + +/// getAlignment - Return the minimum known alignment in bytes of the +/// actual memory reference. +uint64_t MachineMemOperand::getAlignment() const { +  return MinAlign(getBaseAlignment(), getOffset()); +} + +void MachineMemOperand::print(raw_ostream &OS) const { +  ModuleSlotTracker DummyMST(nullptr); +  print(OS, DummyMST); +} +void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { +  assert((isLoad() || isStore()) && +         "SV has to be a load, store or both."); + +  if (isVolatile()) +    OS << "Volatile "; + +  if (isLoad()) +    OS << "LD"; +  if (isStore()) +    OS << "ST"; +  OS << getSize(); + +  // Print the address information. +  OS << "["; +  if (const Value *V = getValue()) +    V->printAsOperand(OS, /*PrintType=*/false, MST); +  else if (const PseudoSourceValue *PSV = getPseudoValue()) +    PSV->printCustom(OS); +  else +    OS << "<unknown>"; + +  unsigned AS = getAddrSpace(); +  if (AS != 0) +    OS << "(addrspace=" << AS << ')'; + +  // If the alignment of the memory reference itself differs from the alignment +  // of the base pointer, print the base alignment explicitly, next to the base +  // pointer. +  if (getBaseAlignment() != getAlignment()) +    OS << "(align=" << getBaseAlignment() << ")"; + +  if (getOffset() != 0) +    OS << "+" << getOffset(); +  OS << "]"; + +  // Print the alignment of the reference. +  if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) +    OS << "(align=" << getAlignment() << ")"; + +  // Print TBAA info. +  if (const MDNode *TBAAInfo = getAAInfo().TBAA) { +    OS << "(tbaa="; +    if (TBAAInfo->getNumOperands() > 0) +      TBAAInfo->getOperand(0)->printAsOperand(OS, MST); +    else +      OS << "<unknown>"; +    OS << ")"; +  } + +  // Print AA scope info. +  if (const MDNode *ScopeInfo = getAAInfo().Scope) { +    OS << "(alias.scope="; +    if (ScopeInfo->getNumOperands() > 0) +      for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { +        ScopeInfo->getOperand(i)->printAsOperand(OS, MST); +        if (i != ie-1) +          OS << ","; +      } +    else +      OS << "<unknown>"; +    OS << ")"; +  } + +  // Print AA noalias scope info. +  if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { +    OS << "(noalias="; +    if (NoAliasInfo->getNumOperands() > 0) +      for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { +        NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); +        if (i != ie-1) +          OS << ","; +      } +    else +      OS << "<unknown>"; +    OS << ")"; +  } + +  if (isNonTemporal()) +    OS << "(nontemporal)"; +  if (isDereferenceable()) +    OS << "(dereferenceable)"; +  if (isInvariant()) +    OS << "(invariant)"; +} + +//===----------------------------------------------------------------------===// +// MachineInstr Implementation +//===----------------------------------------------------------------------===// + +void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { +  if (MCID->ImplicitDefs) +    for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; +           ++ImpDefs) +      addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); +  if (MCID->ImplicitUses) +    for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; +           ++ImpUses) +      addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); +} + +/// MachineInstr ctor - This constructor creates a MachineInstr and adds the +/// implicit operands. It reserves space for the number of operands specified by +/// the MCInstrDesc. +MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, +                           DebugLoc dl, bool NoImp) +    : MCID(&tid), debugLoc(std::move(dl)) { +  assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); + +  // Reserve space for the expected number of operands. +  if (unsigned NumOps = MCID->getNumOperands() + +    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { +    CapOperands = OperandCapacity::get(NumOps); +    Operands = MF.allocateOperandArray(CapOperands); +  } + +  if (!NoImp) +    addImplicitDefUseOperands(MF); +} + +/// MachineInstr ctor - Copies MachineInstr arg exactly +/// +MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) +    : MCID(&MI.getDesc()), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), +      debugLoc(MI.getDebugLoc()) { +  assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); + +  CapOperands = OperandCapacity::get(MI.getNumOperands()); +  Operands = MF.allocateOperandArray(CapOperands); + +  // Copy operands. +  for (const MachineOperand &MO : MI.operands()) +    addOperand(MF, MO); + +  // Copy all the sensible flags. +  setFlags(MI.Flags); +} + +/// getRegInfo - If this instruction is embedded into a MachineFunction, +/// return the MachineRegisterInfo object for the current function, otherwise +/// return null. +MachineRegisterInfo *MachineInstr::getRegInfo() { +  if (MachineBasicBlock *MBB = getParent()) +    return &MBB->getParent()->getRegInfo(); +  return nullptr; +} + +/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in +/// this instruction from their respective use lists.  This requires that the +/// operands already be on their use lists. +void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { +  for (MachineOperand &MO : operands()) +    if (MO.isReg()) +      MRI.removeRegOperandFromUseList(&MO); +} + +/// AddRegOperandsToUseLists - Add all of the register operands in +/// this instruction from their respective use lists.  This requires that the +/// operands not be on their use lists yet. +void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { +  for (MachineOperand &MO : operands()) +    if (MO.isReg()) +      MRI.addRegOperandToUseList(&MO); +} + +void MachineInstr::addOperand(const MachineOperand &Op) { +  MachineBasicBlock *MBB = getParent(); +  assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); +  MachineFunction *MF = MBB->getParent(); +  assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); +  addOperand(*MF, Op); +} + +/// Move NumOps MachineOperands from Src to Dst, with support for overlapping +/// ranges. If MRI is non-null also update use-def chains. +static void moveOperands(MachineOperand *Dst, MachineOperand *Src, +                         unsigned NumOps, MachineRegisterInfo *MRI) { +  if (MRI) +    return MRI->moveOperands(Dst, Src, NumOps); + +  // MachineOperand is a trivially copyable type so we can just use memmove. +  std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); +} + +/// addOperand - Add the specified operand to the instruction.  If it is an +/// implicit operand, it is added to the end of the operand list.  If it is +/// an explicit operand it is added at the end of the explicit operand list +/// (before the first implicit operand). +void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { +  assert(MCID && "Cannot add operands before providing an instr descriptor"); + +  // Check if we're adding one of our existing operands. +  if (&Op >= Operands && &Op < Operands + NumOperands) { +    // This is unusual: MI->addOperand(MI->getOperand(i)). +    // If adding Op requires reallocating or moving existing operands around, +    // the Op reference could go stale. Support it by copying Op. +    MachineOperand CopyOp(Op); +    return addOperand(MF, CopyOp); +  } + +  // Find the insert location for the new operand.  Implicit registers go at +  // the end, everything else goes before the implicit regs. +  // +  // FIXME: Allow mixed explicit and implicit operands on inline asm. +  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as +  // implicit-defs, but they must not be moved around.  See the FIXME in +  // InstrEmitter.cpp. +  unsigned OpNo = getNumOperands(); +  bool isImpReg = Op.isReg() && Op.isImplicit(); +  if (!isImpReg && !isInlineAsm()) { +    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { +      --OpNo; +      assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); +    } +  } + +#ifndef NDEBUG +  bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; +  // OpNo now points as the desired insertion point.  Unless this is a variadic +  // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). +  // RegMask operands go between the explicit and implicit operands. +  assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || +          OpNo < MCID->getNumOperands() || isMetaDataOp) && +         "Trying to add an operand to a machine instr that is already done!"); +#endif + +  MachineRegisterInfo *MRI = getRegInfo(); + +  // Determine if the Operands array needs to be reallocated. +  // Save the old capacity and operand array. +  OperandCapacity OldCap = CapOperands; +  MachineOperand *OldOperands = Operands; +  if (!OldOperands || OldCap.getSize() == getNumOperands()) { +    CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); +    Operands = MF.allocateOperandArray(CapOperands); +    // Move the operands before the insertion point. +    if (OpNo) +      moveOperands(Operands, OldOperands, OpNo, MRI); +  } + +  // Move the operands following the insertion point. +  if (OpNo != NumOperands) +    moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, +                 MRI); +  ++NumOperands; + +  // Deallocate the old operand array. +  if (OldOperands != Operands && OldOperands) +    MF.deallocateOperandArray(OldCap, OldOperands); + +  // Copy Op into place. It still needs to be inserted into the MRI use lists. +  MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); +  NewMO->ParentMI = this; + +  // When adding a register operand, tell MRI about it. +  if (NewMO->isReg()) { +    // Ensure isOnRegUseList() returns false, regardless of Op's status. +    NewMO->Contents.Reg.Prev = nullptr; +    // Ignore existing ties. This is not a property that can be copied. +    NewMO->TiedTo = 0; +    // Add the new operand to MRI, but only for instructions in an MBB. +    if (MRI) +      MRI->addRegOperandToUseList(NewMO); +    // The MCID operand information isn't accurate until we start adding +    // explicit operands. The implicit operands are added first, then the +    // explicits are inserted before them. +    if (!isImpReg) { +      // Tie uses to defs as indicated in MCInstrDesc. +      if (NewMO->isUse()) { +        int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); +        if (DefIdx != -1) +          tieOperands(DefIdx, OpNo); +      } +      // If the register operand is flagged as early, mark the operand as such. +      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) +        NewMO->setIsEarlyClobber(true); +    } +  } +} + +/// RemoveOperand - Erase an operand  from an instruction, leaving it with one +/// fewer operand than it started with. +/// +void MachineInstr::RemoveOperand(unsigned OpNo) { +  assert(OpNo < getNumOperands() && "Invalid operand number"); +  untieRegOperand(OpNo); + +#ifndef NDEBUG +  // Moving tied operands would break the ties. +  for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) +    if (Operands[i].isReg()) +      assert(!Operands[i].isTied() && "Cannot move tied operands"); +#endif + +  MachineRegisterInfo *MRI = getRegInfo(); +  if (MRI && Operands[OpNo].isReg()) +    MRI->removeRegOperandFromUseList(Operands + OpNo); + +  // Don't call the MachineOperand destructor. A lot of this code depends on +  // MachineOperand having a trivial destructor anyway, and adding a call here +  // wouldn't make it 'destructor-correct'. + +  if (unsigned N = NumOperands - 1 - OpNo) +    moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); +  --NumOperands; +} + +/// addMemOperand - Add a MachineMemOperand to the machine instruction. +/// This function should be used only occasionally. The setMemRefs function +/// is the primary method for setting up a MachineInstr's MemRefs list. +void MachineInstr::addMemOperand(MachineFunction &MF, +                                 MachineMemOperand *MO) { +  mmo_iterator OldMemRefs = MemRefs; +  unsigned OldNumMemRefs = NumMemRefs; + +  unsigned NewNum = NumMemRefs + 1; +  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); + +  std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); +  NewMemRefs[NewNum - 1] = MO; +  setMemRefs(NewMemRefs, NewMemRefs + NewNum); +} + +/// Check to see if the MMOs pointed to by the two MemRefs arrays are +/// identical. +static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) { +  auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end(); +  auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end(); +  if ((E1 - I1) != (E2 - I2)) +    return false; +  for (; I1 != E1; ++I1, ++I2) { +    if (**I1 != **I2) +      return false; +  } +  return true; +} + +std::pair<MachineInstr::mmo_iterator, unsigned> +MachineInstr::mergeMemRefsWith(const MachineInstr& Other) { + +  // If either of the incoming memrefs are empty, we must be conservative and +  // treat this as if we've exhausted our space for memrefs and dropped them. +  if (memoperands_empty() || Other.memoperands_empty()) +    return std::make_pair(nullptr, 0); + +  // If both instructions have identical memrefs, we don't need to merge them. +  // Since many instructions have a single memref, and we tend to merge things +  // like pairs of loads from the same location, this catches a large number of +  // cases in practice. +  if (hasIdenticalMMOs(*this, Other)) +    return std::make_pair(MemRefs, NumMemRefs); + +  // TODO: consider uniquing elements within the operand lists to reduce +  // space usage and fall back to conservative information less often. +  size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs; + +  // If we don't have enough room to store this many memrefs, be conservative +  // and drop them.  Otherwise, we'd fail asserts when trying to add them to +  // the new instruction. +  if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs)) +    return std::make_pair(nullptr, 0); + +  MachineFunction *MF = getParent()->getParent(); +  mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs); +  mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(), +                                  MemBegin); +  MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(), +                     MemEnd); +  assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs && +         "missing memrefs"); + +  return std::make_pair(MemBegin, CombinedNumMemRefs); +} + +bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { +  assert(!isBundledWithPred() && "Must be called on bundle header"); +  for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { +    if (MII->getDesc().getFlags() & Mask) { +      if (Type == AnyInBundle) +        return true; +    } else { +      if (Type == AllInBundle && !MII->isBundle()) +        return false; +    } +    // This was the last instruction in the bundle. +    if (!MII->isBundledWithSucc()) +      return Type == AllInBundle; +  } +} + +bool MachineInstr::isIdenticalTo(const MachineInstr &Other, +                                 MICheckType Check) const { +  // If opcodes or number of operands are not the same then the two +  // instructions are obviously not identical. +  if (Other.getOpcode() != getOpcode() || +      Other.getNumOperands() != getNumOperands()) +    return false; + +  if (isBundle()) { +    // We have passed the test above that both instructions have the same +    // opcode, so we know that both instructions are bundles here. Let's compare +    // MIs inside the bundle. +    assert(Other.isBundle() && "Expected that both instructions are bundles."); +    MachineBasicBlock::const_instr_iterator I1 = getIterator(); +    MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); +    // Loop until we analysed the last intruction inside at least one of the +    // bundles. +    while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { +      ++I1; +      ++I2; +      if (!I1->isIdenticalTo(*I2, Check)) +        return false; +    } +    // If we've reached the end of just one of the two bundles, but not both, +    // the instructions are not identical. +    if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) +      return false; +  } + +  // Check operands to make sure they match. +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    const MachineOperand &OMO = Other.getOperand(i); +    if (!MO.isReg()) { +      if (!MO.isIdenticalTo(OMO)) +        return false; +      continue; +    } + +    // Clients may or may not want to ignore defs when testing for equality. +    // For example, machine CSE pass only cares about finding common +    // subexpressions, so it's safe to ignore virtual register defs. +    if (MO.isDef()) { +      if (Check == IgnoreDefs) +        continue; +      else if (Check == IgnoreVRegDefs) { +        if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || +            TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) +          if (MO.getReg() != OMO.getReg()) +            return false; +      } else { +        if (!MO.isIdenticalTo(OMO)) +          return false; +        if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) +          return false; +      } +    } else { +      if (!MO.isIdenticalTo(OMO)) +        return false; +      if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) +        return false; +    } +  } +  // If DebugLoc does not match then two dbg.values are not identical. +  if (isDebugValue()) +    if (getDebugLoc() && Other.getDebugLoc() && +        getDebugLoc() != Other.getDebugLoc()) +      return false; +  return true; +} + +MachineInstr *MachineInstr::removeFromParent() { +  assert(getParent() && "Not embedded in a basic block!"); +  return getParent()->remove(this); +} + +MachineInstr *MachineInstr::removeFromBundle() { +  assert(getParent() && "Not embedded in a basic block!"); +  return getParent()->remove_instr(this); +} + +void MachineInstr::eraseFromParent() { +  assert(getParent() && "Not embedded in a basic block!"); +  getParent()->erase(this); +} + +void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { +  assert(getParent() && "Not embedded in a basic block!"); +  MachineBasicBlock *MBB = getParent(); +  MachineFunction *MF = MBB->getParent(); +  assert(MF && "Not embedded in a function!"); + +  MachineInstr *MI = (MachineInstr *)this; +  MachineRegisterInfo &MRI = MF->getRegInfo(); + +  for (const MachineOperand &MO : MI->operands()) { +    if (!MO.isReg() || !MO.isDef()) +      continue; +    unsigned Reg = MO.getReg(); +    if (!TargetRegisterInfo::isVirtualRegister(Reg)) +      continue; +    MRI.markUsesInDebugValueAsUndef(Reg); +  } +  MI->eraseFromParent(); +} + +void MachineInstr::eraseFromBundle() { +  assert(getParent() && "Not embedded in a basic block!"); +  getParent()->erase_instr(this); +} + +/// getNumExplicitOperands - Returns the number of non-implicit operands. +/// +unsigned MachineInstr::getNumExplicitOperands() const { +  unsigned NumOperands = MCID->getNumOperands(); +  if (!MCID->isVariadic()) +    return NumOperands; + +  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || !MO.isImplicit()) +      NumOperands++; +  } +  return NumOperands; +} + +void MachineInstr::bundleWithPred() { +  assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); +  setFlag(BundledPred); +  MachineBasicBlock::instr_iterator Pred = getIterator(); +  --Pred; +  assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); +  Pred->setFlag(BundledSucc); +} + +void MachineInstr::bundleWithSucc() { +  assert(!isBundledWithSucc() && "MI is already bundled with its successor"); +  setFlag(BundledSucc); +  MachineBasicBlock::instr_iterator Succ = getIterator(); +  ++Succ; +  assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); +  Succ->setFlag(BundledPred); +} + +void MachineInstr::unbundleFromPred() { +  assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); +  clearFlag(BundledPred); +  MachineBasicBlock::instr_iterator Pred = getIterator(); +  --Pred; +  assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); +  Pred->clearFlag(BundledSucc); +} + +void MachineInstr::unbundleFromSucc() { +  assert(isBundledWithSucc() && "MI isn't bundled with its successor"); +  clearFlag(BundledSucc); +  MachineBasicBlock::instr_iterator Succ = getIterator(); +  ++Succ; +  assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); +  Succ->clearFlag(BundledPred); +} + +bool MachineInstr::isStackAligningInlineAsm() const { +  if (isInlineAsm()) { +    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); +    if (ExtraInfo & InlineAsm::Extra_IsAlignStack) +      return true; +  } +  return false; +} + +InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { +  assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); +  unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); +  return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); +} + +int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, +                                       unsigned *GroupNo) const { +  assert(isInlineAsm() && "Expected an inline asm instruction"); +  assert(OpIdx < getNumOperands() && "OpIdx out of range"); + +  // Ignore queries about the initial operands. +  if (OpIdx < InlineAsm::MIOp_FirstOperand) +    return -1; + +  unsigned Group = 0; +  unsigned NumOps; +  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; +       i += NumOps) { +    const MachineOperand &FlagMO = getOperand(i); +    // If we reach the implicit register operands, stop looking. +    if (!FlagMO.isImm()) +      return -1; +    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); +    if (i + NumOps > OpIdx) { +      if (GroupNo) +        *GroupNo = Group; +      return i; +    } +    ++Group; +  } +  return -1; +} + +const DILocalVariable *MachineInstr::getDebugVariable() const { +  assert(isDebugValue() && "not a DBG_VALUE"); +  return cast<DILocalVariable>(getOperand(2).getMetadata()); +} + +const DIExpression *MachineInstr::getDebugExpression() const { +  assert(isDebugValue() && "not a DBG_VALUE"); +  return cast<DIExpression>(getOperand(3).getMetadata()); +} + +const TargetRegisterClass* +MachineInstr::getRegClassConstraint(unsigned OpIdx, +                                    const TargetInstrInfo *TII, +                                    const TargetRegisterInfo *TRI) const { +  assert(getParent() && "Can't have an MBB reference here!"); +  assert(getParent()->getParent() && "Can't have an MF reference here!"); +  const MachineFunction &MF = *getParent()->getParent(); + +  // Most opcodes have fixed constraints in their MCInstrDesc. +  if (!isInlineAsm()) +    return TII->getRegClass(getDesc(), OpIdx, TRI, MF); + +  if (!getOperand(OpIdx).isReg()) +    return nullptr; + +  // For tied uses on inline asm, get the constraint from the def. +  unsigned DefIdx; +  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) +    OpIdx = DefIdx; + +  // Inline asm stores register class constraints in the flag word. +  int FlagIdx = findInlineAsmFlagIdx(OpIdx); +  if (FlagIdx < 0) +    return nullptr; + +  unsigned Flag = getOperand(FlagIdx).getImm(); +  unsigned RCID; +  if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || +       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || +       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && +      InlineAsm::hasRegClassConstraint(Flag, RCID)) +    return TRI->getRegClass(RCID); + +  // Assume that all registers in a memory operand are pointers. +  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) +    return TRI->getPointerRegClass(MF); + +  return nullptr; +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( +    unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, +    const TargetRegisterInfo *TRI, bool ExploreBundle) const { +  // Check every operands inside the bundle if we have +  // been asked to. +  if (ExploreBundle) +    for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; +         ++OpndIt) +      CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( +          OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); +  else +    // Otherwise, just check the current operands. +    for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) +      CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); +  return CurRC; +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( +    unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, +    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { +  assert(CurRC && "Invalid initial register class"); +  // Check if Reg is constrained by some of its use/def from MI. +  const MachineOperand &MO = getOperand(OpIdx); +  if (!MO.isReg() || MO.getReg() != Reg) +    return CurRC; +  // If yes, accumulate the constraints through the operand. +  return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( +    unsigned OpIdx, const TargetRegisterClass *CurRC, +    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { +  const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); +  const MachineOperand &MO = getOperand(OpIdx); +  assert(MO.isReg() && +         "Cannot get register constraints for non-register operand"); +  assert(CurRC && "Invalid initial register class"); +  if (unsigned SubIdx = MO.getSubReg()) { +    if (OpRC) +      CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); +    else +      CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); +  } else if (OpRC) +    CurRC = TRI->getCommonSubClass(CurRC, OpRC); +  return CurRC; +} + +/// Return the number of instructions inside the MI bundle, not counting the +/// header instruction. +unsigned MachineInstr::getBundleSize() const { +  MachineBasicBlock::const_instr_iterator I = getIterator(); +  unsigned Size = 0; +  while (I->isBundledWithSucc()) { +    ++Size; +    ++I; +  } +  return Size; +} + +/// Returns true if the MachineInstr has an implicit-use operand of exactly +/// the given register (not considering sub/super-registers). +bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) +      return true; +  } +  return false; +} + +/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of +/// the specific register or -1 if it is not found. It further tightens +/// the search criteria to a use that kills the register if isKill is true. +int MachineInstr::findRegisterUseOperandIdx( +    unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || !MO.isUse()) +      continue; +    unsigned MOReg = MO.getReg(); +    if (!MOReg) +      continue; +    if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && +                         TargetRegisterInfo::isPhysicalRegister(Reg) && +                         TRI->isSubRegister(MOReg, Reg))) +      if (!isKill || MO.isKill()) +        return i; +  } +  return -1; +} + +/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) +/// indicating if this instruction reads or writes Reg. This also considers +/// partial defines. +std::pair<bool,bool> +MachineInstr::readsWritesVirtualRegister(unsigned Reg, +                                         SmallVectorImpl<unsigned> *Ops) const { +  bool PartDef = false; // Partial redefine. +  bool FullDef = false; // Full define. +  bool Use = false; + +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || MO.getReg() != Reg) +      continue; +    if (Ops) +      Ops->push_back(i); +    if (MO.isUse()) +      Use |= !MO.isUndef(); +    else if (MO.getSubReg() && !MO.isUndef()) +      // A partial <def,undef> doesn't count as reading the register. +      PartDef = true; +    else +      FullDef = true; +  } +  // A partial redefine uses Reg unless there is also a full define. +  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); +} + +/// findRegisterDefOperandIdx() - Returns the operand index that is a def of +/// the specified register or -1 if it is not found. If isDead is true, defs +/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it +/// also checks if there is a def of a super-register. +int +MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, +                                        const TargetRegisterInfo *TRI) const { +  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    // Accept regmask operands when Overlap is set. +    // Ignore them when looking for a specific def operand (Overlap == false). +    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) +      return i; +    if (!MO.isReg() || !MO.isDef()) +      continue; +    unsigned MOReg = MO.getReg(); +    bool Found = (MOReg == Reg); +    if (!Found && TRI && isPhys && +        TargetRegisterInfo::isPhysicalRegister(MOReg)) { +      if (Overlap) +        Found = TRI->regsOverlap(MOReg, Reg); +      else +        Found = TRI->isSubRegister(MOReg, Reg); +    } +    if (Found && (!isDead || MO.isDead())) +      return i; +  } +  return -1; +} + +/// findFirstPredOperandIdx() - Find the index of the first operand in the +/// operand list that is used to represent the predicate. It returns -1 if +/// none is found. +int MachineInstr::findFirstPredOperandIdx() const { +  // Don't call MCID.findFirstPredOperandIdx() because this variant +  // is sometimes called on an instruction that's not yet complete, and +  // so the number of operands is less than the MCID indicates. In +  // particular, the PTX target does this. +  const MCInstrDesc &MCID = getDesc(); +  if (MCID.isPredicable()) { +    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) +      if (MCID.OpInfo[i].isPredicate()) +        return i; +  } + +  return -1; +} + +// MachineOperand::TiedTo is 4 bits wide. +const unsigned TiedMax = 15; + +/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. +/// +/// Use and def operands can be tied together, indicated by a non-zero TiedTo +/// field. TiedTo can have these values: +/// +/// 0:              Operand is not tied to anything. +/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). +/// TiedMax:        Tied to an operand >= TiedMax-1. +/// +/// The tied def must be one of the first TiedMax operands on a normal +/// instruction. INLINEASM instructions allow more tied defs. +/// +void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { +  MachineOperand &DefMO = getOperand(DefIdx); +  MachineOperand &UseMO = getOperand(UseIdx); +  assert(DefMO.isDef() && "DefIdx must be a def operand"); +  assert(UseMO.isUse() && "UseIdx must be a use operand"); +  assert(!DefMO.isTied() && "Def is already tied to another use"); +  assert(!UseMO.isTied() && "Use is already tied to another def"); + +  if (DefIdx < TiedMax) +    UseMO.TiedTo = DefIdx + 1; +  else { +    // Inline asm can use the group descriptors to find tied operands, but on +    // normal instruction, the tied def must be within the first TiedMax +    // operands. +    assert(isInlineAsm() && "DefIdx out of range"); +    UseMO.TiedTo = TiedMax; +  } + +  // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). +  DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); +} + +/// Given the index of a tied register operand, find the operand it is tied to. +/// Defs are tied to uses and vice versa. Returns the index of the tied operand +/// which must exist. +unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { +  const MachineOperand &MO = getOperand(OpIdx); +  assert(MO.isTied() && "Operand isn't tied"); + +  // Normally TiedTo is in range. +  if (MO.TiedTo < TiedMax) +    return MO.TiedTo - 1; + +  // Uses on normal instructions can be out of range. +  if (!isInlineAsm()) { +    // Normal tied defs must be in the 0..TiedMax-1 range. +    if (MO.isUse()) +      return TiedMax - 1; +    // MO is a def. Search for the tied use. +    for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { +      const MachineOperand &UseMO = getOperand(i); +      if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) +        return i; +    } +    llvm_unreachable("Can't find tied use"); +  } + +  // Now deal with inline asm by parsing the operand group descriptor flags. +  // Find the beginning of each operand group. +  SmallVector<unsigned, 8> GroupIdx; +  unsigned OpIdxGroup = ~0u; +  unsigned NumOps; +  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; +       i += NumOps) { +    const MachineOperand &FlagMO = getOperand(i); +    assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); +    unsigned CurGroup = GroupIdx.size(); +    GroupIdx.push_back(i); +    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); +    // OpIdx belongs to this operand group. +    if (OpIdx > i && OpIdx < i + NumOps) +      OpIdxGroup = CurGroup; +    unsigned TiedGroup; +    if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) +      continue; +    // Operands in this group are tied to operands in TiedGroup which must be +    // earlier. Find the number of operands between the two groups. +    unsigned Delta = i - GroupIdx[TiedGroup]; + +    // OpIdx is a use tied to TiedGroup. +    if (OpIdxGroup == CurGroup) +      return OpIdx - Delta; + +    // OpIdx is a def tied to this use group. +    if (OpIdxGroup == TiedGroup) +      return OpIdx + Delta; +  } +  llvm_unreachable("Invalid tied operand on inline asm"); +} + +/// clearKillInfo - Clears kill flags on all operands. +/// +void MachineInstr::clearKillInfo() { +  for (MachineOperand &MO : operands()) { +    if (MO.isReg() && MO.isUse()) +      MO.setIsKill(false); +  } +} + +void MachineInstr::substituteRegister(unsigned FromReg, +                                      unsigned ToReg, +                                      unsigned SubIdx, +                                      const TargetRegisterInfo &RegInfo) { +  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { +    if (SubIdx) +      ToReg = RegInfo.getSubReg(ToReg, SubIdx); +    for (MachineOperand &MO : operands()) { +      if (!MO.isReg() || MO.getReg() != FromReg) +        continue; +      MO.substPhysReg(ToReg, RegInfo); +    } +  } else { +    for (MachineOperand &MO : operands()) { +      if (!MO.isReg() || MO.getReg() != FromReg) +        continue; +      MO.substVirtReg(ToReg, SubIdx, RegInfo); +    } +  } +} + +/// isSafeToMove - Return true if it is safe to move this instruction. If +/// SawStore is set to true, it means that there is a store (or call) between +/// the instruction's location and its intended destination. +bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { +  // Ignore stuff that we obviously can't move. +  // +  // Treat volatile loads as stores. This is not strictly necessary for +  // volatiles, but it is required for atomic loads. It is not allowed to move +  // a load across an atomic load with Ordering > Monotonic. +  if (mayStore() || isCall() || +      (mayLoad() && hasOrderedMemoryRef())) { +    SawStore = true; +    return false; +  } + +  if (isPosition() || isDebugValue() || isTerminator() || +      hasUnmodeledSideEffects()) +    return false; + +  // See if this instruction does a load.  If so, we have to guarantee that the +  // loaded value doesn't change between the load and the its intended +  // destination. The check for isInvariantLoad gives the targe the chance to +  // classify the load as always returning a constant, e.g. a constant pool +  // load. +  if (mayLoad() && !isDereferenceableInvariantLoad(AA)) +    // Otherwise, this is a real load.  If there is a store between the load and +    // end of block, we can't move it. +    return !SawStore; + +  return true; +} + +bool MachineInstr::mayAlias(AliasAnalysis *AA, MachineInstr &Other, +                            bool UseTBAA) { +  const MachineFunction *MF = getParent()->getParent(); +  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + +  // If neither instruction stores to memory, they can't alias in any +  // meaningful way, even if they read from the same address. +  if (!mayStore() && !Other.mayStore()) +    return false; + +  // Let the target decide if memory accesses cannot possibly overlap. +  if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) +    return false; + +  if (!AA) +    return true; + +  // FIXME: Need to handle multiple memory operands to support all targets. +  if (!hasOneMemOperand() || !Other.hasOneMemOperand()) +    return true; + +  MachineMemOperand *MMOa = *memoperands_begin(); +  MachineMemOperand *MMOb = *Other.memoperands_begin(); + +  if (!MMOa->getValue() || !MMOb->getValue()) +    return true; + +  // The following interface to AA is fashioned after DAGCombiner::isAlias +  // and operates with MachineMemOperand offset with some important +  // assumptions: +  //   - LLVM fundamentally assumes flat address spaces. +  //   - MachineOperand offset can *only* result from legalization and +  //     cannot affect queries other than the trivial case of overlap +  //     checking. +  //   - These offsets never wrap and never step outside +  //     of allocated objects. +  //   - There should never be any negative offsets here. +  // +  // FIXME: Modify API to hide this math from "user" +  // FIXME: Even before we go to AA we can reason locally about some +  // memory objects. It can save compile time, and possibly catch some +  // corner cases not currently covered. + +  assert((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); +  assert((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); + +  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); +  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; +  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; + +  AliasResult AAResult = +      AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, +                               UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), +                MemoryLocation(MMOb->getValue(), Overlapb, +                               UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); + +  return (AAResult != NoAlias); +} + +/// hasOrderedMemoryRef - Return true if this instruction may have an ordered +/// or volatile memory reference, or if the information describing the memory +/// reference is not available. Return false if it is known to have no ordered +/// memory references. +bool MachineInstr::hasOrderedMemoryRef() const { +  // An instruction known never to access memory won't have a volatile access. +  if (!mayStore() && +      !mayLoad() && +      !isCall() && +      !hasUnmodeledSideEffects()) +    return false; + +  // Otherwise, if the instruction has no memory reference information, +  // conservatively assume it wasn't preserved. +  if (memoperands_empty()) +    return true; + +  // Check if any of our memory operands are ordered. +  return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { +    return !MMO->isUnordered(); +  }); +} + +/// isDereferenceableInvariantLoad - Return true if this instruction will never +/// trap and is loading from a location whose value is invariant across a run of +/// this function. +bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { +  // If the instruction doesn't load at all, it isn't an invariant load. +  if (!mayLoad()) +    return false; + +  // If the instruction has lost its memoperands, conservatively assume that +  // it may not be an invariant load. +  if (memoperands_empty()) +    return false; + +  const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); + +  for (MachineMemOperand *MMO : memoperands()) { +    if (MMO->isVolatile()) return false; +    if (MMO->isStore()) return false; +    if (MMO->isInvariant() && MMO->isDereferenceable()) +      continue; + +    // A load from a constant PseudoSourceValue is invariant. +    if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) +      if (PSV->isConstant(&MFI)) +        continue; + +    if (const Value *V = MMO->getValue()) { +      // If we have an AliasAnalysis, ask it whether the memory is constant. +      if (AA && +          AA->pointsToConstantMemory( +              MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) +        continue; +    } + +    // Otherwise assume conservatively. +    return false; +  } + +  // Everything checks out. +  return true; +} + +/// isConstantValuePHI - If the specified instruction is a PHI that always +/// merges together the same virtual register, return the register, otherwise +/// return 0. +unsigned MachineInstr::isConstantValuePHI() const { +  if (!isPHI()) +    return 0; +  assert(getNumOperands() >= 3 && +         "It's illegal to have a PHI without source operands"); + +  unsigned Reg = getOperand(1).getReg(); +  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) +    if (getOperand(i).getReg() != Reg) +      return 0; +  return Reg; +} + +bool MachineInstr::hasUnmodeledSideEffects() const { +  if (hasProperty(MCID::UnmodeledSideEffects)) +    return true; +  if (isInlineAsm()) { +    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); +    if (ExtraInfo & InlineAsm::Extra_HasSideEffects) +      return true; +  } + +  return false; +} + +bool MachineInstr::isLoadFoldBarrier() const { +  return mayStore() || isCall() || hasUnmodeledSideEffects(); +} + +/// allDefsAreDead - Return true if all the defs of this instruction are dead. +/// +bool MachineInstr::allDefsAreDead() const { +  for (const MachineOperand &MO : operands()) { +    if (!MO.isReg() || MO.isUse()) +      continue; +    if (!MO.isDead()) +      return false; +  } +  return true; +} + +/// copyImplicitOps - Copy implicit register operands from specified +/// instruction to this instruction. +void MachineInstr::copyImplicitOps(MachineFunction &MF, +                                   const MachineInstr &MI) { +  for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); +       i != e; ++i) { +    const MachineOperand &MO = MI.getOperand(i); +    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) +      addOperand(MF, MO); +  } +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineInstr::dump() const { +  dbgs() << "  "; +  print(dbgs()); +} +#endif + +void MachineInstr::print(raw_ostream &OS, bool SkipOpers, bool SkipDebugLoc, +                         const TargetInstrInfo *TII) const { +  const Module *M = nullptr; +  if (const MachineBasicBlock *MBB = getParent()) +    if (const MachineFunction *MF = MBB->getParent()) +      M = MF->getFunction()->getParent(); + +  ModuleSlotTracker MST(M); +  print(OS, MST, SkipOpers, SkipDebugLoc, TII); +} + +void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, +                         bool SkipOpers, bool SkipDebugLoc, +                         const TargetInstrInfo *TII) const { +  // We can be a bit tidier if we know the MachineFunction. +  const MachineFunction *MF = nullptr; +  const TargetRegisterInfo *TRI = nullptr; +  const MachineRegisterInfo *MRI = nullptr; +  const TargetIntrinsicInfo *IntrinsicInfo = nullptr; + +  if (const MachineBasicBlock *MBB = getParent()) { +    MF = MBB->getParent(); +    if (MF) { +      MRI = &MF->getRegInfo(); +      TRI = MF->getSubtarget().getRegisterInfo(); +      if (!TII) +        TII = MF->getSubtarget().getInstrInfo(); +      IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); +    } +  } + +  // Save a list of virtual registers. +  SmallVector<unsigned, 8> VirtRegs; + +  // Print explicitly defined operands on the left of an assignment syntax. +  unsigned StartOp = 0, e = getNumOperands(); +  for (; StartOp < e && getOperand(StartOp).isReg() && +         getOperand(StartOp).isDef() && +         !getOperand(StartOp).isImplicit(); +       ++StartOp) { +    if (StartOp != 0) OS << ", "; +    getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo); +    unsigned Reg = getOperand(StartOp).getReg(); +    if (TargetRegisterInfo::isVirtualRegister(Reg)) { +      VirtRegs.push_back(Reg); +      LLT Ty = MRI ? MRI->getType(Reg) : LLT{}; +      if (Ty.isValid()) +        OS << '(' << Ty << ')'; +    } +  } + +  if (StartOp != 0) +    OS << " = "; + +  // Print the opcode name. +  if (TII) +    OS << TII->getName(getOpcode()); +  else +    OS << "UNKNOWN"; + +  if (SkipOpers) +    return; + +  // Print the rest of the operands. +  bool FirstOp = true; +  unsigned AsmDescOp = ~0u; +  unsigned AsmOpCount = 0; + +  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { +    // Print asm string. +    OS << " "; +    getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); + +    // Print HasSideEffects, MayLoad, MayStore, IsAlignStack +    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); +    if (ExtraInfo & InlineAsm::Extra_HasSideEffects) +      OS << " [sideeffect]"; +    if (ExtraInfo & InlineAsm::Extra_MayLoad) +      OS << " [mayload]"; +    if (ExtraInfo & InlineAsm::Extra_MayStore) +      OS << " [maystore]"; +    if (ExtraInfo & InlineAsm::Extra_IsConvergent) +      OS << " [isconvergent]"; +    if (ExtraInfo & InlineAsm::Extra_IsAlignStack) +      OS << " [alignstack]"; +    if (getInlineAsmDialect() == InlineAsm::AD_ATT) +      OS << " [attdialect]"; +    if (getInlineAsmDialect() == InlineAsm::AD_Intel) +      OS << " [inteldialect]"; + +    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; +    FirstOp = false; +  } + +  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); + +    if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) +      VirtRegs.push_back(MO.getReg()); + +    if (FirstOp) FirstOp = false; else OS << ","; +    OS << " "; +    if (i < getDesc().NumOperands) { +      const MCOperandInfo &MCOI = getDesc().OpInfo[i]; +      if (MCOI.isPredicate()) +        OS << "pred:"; +      if (MCOI.isOptionalDef()) +        OS << "opt:"; +    } +    if (isDebugValue() && MO.isMetadata()) { +      // Pretty print DBG_VALUE instructions. +      auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); +      if (DIV && !DIV->getName().empty()) +        OS << "!\"" << DIV->getName() << '\"'; +      else +        MO.print(OS, MST, TRI); +    } else if (TRI && (isInsertSubreg() || isRegSequence() || +                       (isSubregToReg() && i == 3)) && MO.isImm()) { +      OS << TRI->getSubRegIndexName(MO.getImm()); +    } else if (i == AsmDescOp && MO.isImm()) { +      // Pretty print the inline asm operand descriptor. +      OS << '$' << AsmOpCount++; +      unsigned Flag = MO.getImm(); +      switch (InlineAsm::getKind(Flag)) { +      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break; +      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break; +      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; +      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break; +      case InlineAsm::Kind_Imm:                OS << ":[imm"; break; +      case InlineAsm::Kind_Mem:                OS << ":[mem"; break; +      default: OS << ":[??" << InlineAsm::getKind(Flag); break; +      } + +      unsigned RCID = 0; +      if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && +          InlineAsm::hasRegClassConstraint(Flag, RCID)) { +        if (TRI) { +          OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); +        } else +          OS << ":RC" << RCID; +      } + +      if (InlineAsm::isMemKind(Flag)) { +        unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); +        switch (MCID) { +        case InlineAsm::Constraint_es: OS << ":es"; break; +        case InlineAsm::Constraint_i:  OS << ":i"; break; +        case InlineAsm::Constraint_m:  OS << ":m"; break; +        case InlineAsm::Constraint_o:  OS << ":o"; break; +        case InlineAsm::Constraint_v:  OS << ":v"; break; +        case InlineAsm::Constraint_Q:  OS << ":Q"; break; +        case InlineAsm::Constraint_R:  OS << ":R"; break; +        case InlineAsm::Constraint_S:  OS << ":S"; break; +        case InlineAsm::Constraint_T:  OS << ":T"; break; +        case InlineAsm::Constraint_Um: OS << ":Um"; break; +        case InlineAsm::Constraint_Un: OS << ":Un"; break; +        case InlineAsm::Constraint_Uq: OS << ":Uq"; break; +        case InlineAsm::Constraint_Us: OS << ":Us"; break; +        case InlineAsm::Constraint_Ut: OS << ":Ut"; break; +        case InlineAsm::Constraint_Uv: OS << ":Uv"; break; +        case InlineAsm::Constraint_Uy: OS << ":Uy"; break; +        case InlineAsm::Constraint_X:  OS << ":X"; break; +        case InlineAsm::Constraint_Z:  OS << ":Z"; break; +        case InlineAsm::Constraint_ZC: OS << ":ZC"; break; +        case InlineAsm::Constraint_Zy: OS << ":Zy"; break; +        default: OS << ":?"; break; +        } +      } + +      unsigned TiedTo = 0; +      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) +        OS << " tiedto:$" << TiedTo; + +      OS << ']'; + +      // Compute the index of the next operand descriptor. +      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); +    } else +      MO.print(OS, MST, TRI); +  } + +  bool HaveSemi = false; +  const unsigned PrintableFlags = FrameSetup | FrameDestroy; +  if (Flags & PrintableFlags) { +    if (!HaveSemi) { +      OS << ";"; +      HaveSemi = true; +    } +    OS << " flags: "; + +    if (Flags & FrameSetup) +      OS << "FrameSetup"; + +    if (Flags & FrameDestroy) +      OS << "FrameDestroy"; +  } + +  if (!memoperands_empty()) { +    if (!HaveSemi) { +      OS << ";"; +      HaveSemi = true; +    } + +    OS << " mem:"; +    for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); +         i != e; ++i) { +      (*i)->print(OS, MST); +      if (std::next(i) != e) +        OS << " "; +    } +  } + +  // Print the regclass of any virtual registers encountered. +  if (MRI && !VirtRegs.empty()) { +    if (!HaveSemi) { +      OS << ";"; +      HaveSemi = true; +    } +    for (unsigned i = 0; i != VirtRegs.size(); ++i) { +      const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]); +      if (!RC) +        continue; +      // Generic virtual registers do not have register classes. +      if (RC.is<const RegisterBank *>()) +        OS << " " << RC.get<const RegisterBank *>()->getName(); +      else +        OS << " " +           << TRI->getRegClassName(RC.get<const TargetRegisterClass *>()); +      OS << ':' << PrintReg(VirtRegs[i]); +      for (unsigned j = i+1; j != VirtRegs.size();) { +        if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) { +          ++j; +          continue; +        } +        if (VirtRegs[i] != VirtRegs[j]) +          OS << "," << PrintReg(VirtRegs[j]); +        VirtRegs.erase(VirtRegs.begin()+j); +      } +    } +  } + +  // Print debug location information. +  if (isDebugValue() && getOperand(e - 2).isMetadata()) { +    if (!HaveSemi) +      OS << ";"; +    auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); +    OS << " line no:" <<  DV->getLine(); +    if (auto *InlinedAt = debugLoc->getInlinedAt()) { +      DebugLoc InlinedAtDL(InlinedAt); +      if (InlinedAtDL && MF) { +        OS << " inlined @[ "; +        InlinedAtDL.print(OS); +        OS << " ]"; +      } +    } +    if (isIndirectDebugValue()) +      OS << " indirect"; +  } else if (SkipDebugLoc) { +    return; +  } else if (debugLoc && MF) { +    if (!HaveSemi) +      OS << ";"; +    OS << " dbg:"; +    debugLoc.print(OS); +  } + +  OS << '\n'; +} + +bool MachineInstr::addRegisterKilled(unsigned IncomingReg, +                                     const TargetRegisterInfo *RegInfo, +                                     bool AddIfNotFound) { +  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); +  bool hasAliases = isPhysReg && +    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); +  bool Found = false; +  SmallVector<unsigned,4> DeadOps; +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || !MO.isUse() || MO.isUndef()) +      continue; + +    // DEBUG_VALUE nodes do not contribute to code generation and should +    // always be ignored. Failure to do so may result in trying to modify +    // KILL flags on DEBUG_VALUE nodes. +    if (MO.isDebug()) +      continue; + +    unsigned Reg = MO.getReg(); +    if (!Reg) +      continue; + +    if (Reg == IncomingReg) { +      if (!Found) { +        if (MO.isKill()) +          // The register is already marked kill. +          return true; +        if (isPhysReg && isRegTiedToDefOperand(i)) +          // Two-address uses of physregs must not be marked kill. +          return true; +        MO.setIsKill(); +        Found = true; +      } +    } else if (hasAliases && MO.isKill() && +               TargetRegisterInfo::isPhysicalRegister(Reg)) { +      // A super-register kill already exists. +      if (RegInfo->isSuperRegister(IncomingReg, Reg)) +        return true; +      if (RegInfo->isSubRegister(IncomingReg, Reg)) +        DeadOps.push_back(i); +    } +  } + +  // Trim unneeded kill operands. +  while (!DeadOps.empty()) { +    unsigned OpIdx = DeadOps.back(); +    if (getOperand(OpIdx).isImplicit()) +      RemoveOperand(OpIdx); +    else +      getOperand(OpIdx).setIsKill(false); +    DeadOps.pop_back(); +  } + +  // If not found, this means an alias of one of the operands is killed. Add a +  // new implicit operand if required. +  if (!Found && AddIfNotFound) { +    addOperand(MachineOperand::CreateReg(IncomingReg, +                                         false /*IsDef*/, +                                         true  /*IsImp*/, +                                         true  /*IsKill*/)); +    return true; +  } +  return Found; +} + +void MachineInstr::clearRegisterKills(unsigned Reg, +                                      const TargetRegisterInfo *RegInfo) { +  if (!TargetRegisterInfo::isPhysicalRegister(Reg)) +    RegInfo = nullptr; +  for (MachineOperand &MO : operands()) { +    if (!MO.isReg() || !MO.isUse() || !MO.isKill()) +      continue; +    unsigned OpReg = MO.getReg(); +    if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) +      MO.setIsKill(false); +  } +} + +bool MachineInstr::addRegisterDead(unsigned Reg, +                                   const TargetRegisterInfo *RegInfo, +                                   bool AddIfNotFound) { +  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); +  bool hasAliases = isPhysReg && +    MCRegAliasIterator(Reg, RegInfo, false).isValid(); +  bool Found = false; +  SmallVector<unsigned,4> DeadOps; +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || !MO.isDef()) +      continue; +    unsigned MOReg = MO.getReg(); +    if (!MOReg) +      continue; + +    if (MOReg == Reg) { +      MO.setIsDead(); +      Found = true; +    } else if (hasAliases && MO.isDead() && +               TargetRegisterInfo::isPhysicalRegister(MOReg)) { +      // There exists a super-register that's marked dead. +      if (RegInfo->isSuperRegister(Reg, MOReg)) +        return true; +      if (RegInfo->isSubRegister(Reg, MOReg)) +        DeadOps.push_back(i); +    } +  } + +  // Trim unneeded dead operands. +  while (!DeadOps.empty()) { +    unsigned OpIdx = DeadOps.back(); +    if (getOperand(OpIdx).isImplicit()) +      RemoveOperand(OpIdx); +    else +      getOperand(OpIdx).setIsDead(false); +    DeadOps.pop_back(); +  } + +  // If not found, this means an alias of one of the operands is dead. Add a +  // new implicit operand if required. +  if (Found || !AddIfNotFound) +    return Found; + +  addOperand(MachineOperand::CreateReg(Reg, +                                       true  /*IsDef*/, +                                       true  /*IsImp*/, +                                       false /*IsKill*/, +                                       true  /*IsDead*/)); +  return true; +} + +void MachineInstr::clearRegisterDeads(unsigned Reg) { +  for (MachineOperand &MO : operands()) { +    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) +      continue; +    MO.setIsDead(false); +  } +} + +void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { +  for (MachineOperand &MO : operands()) { +    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) +      continue; +    MO.setIsUndef(IsUndef); +  } +} + +void MachineInstr::addRegisterDefined(unsigned Reg, +                                      const TargetRegisterInfo *RegInfo) { +  if (TargetRegisterInfo::isPhysicalRegister(Reg)) { +    MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); +    if (MO) +      return; +  } else { +    for (const MachineOperand &MO : operands()) { +      if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && +          MO.getSubReg() == 0) +        return; +    } +  } +  addOperand(MachineOperand::CreateReg(Reg, +                                       true  /*IsDef*/, +                                       true  /*IsImp*/)); +} + +void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, +                                         const TargetRegisterInfo &TRI) { +  bool HasRegMask = false; +  for (MachineOperand &MO : operands()) { +    if (MO.isRegMask()) { +      HasRegMask = true; +      continue; +    } +    if (!MO.isReg() || !MO.isDef()) continue; +    unsigned Reg = MO.getReg(); +    if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; +    // If there are no uses, including partial uses, the def is dead. +    if (llvm::none_of(UsedRegs, +                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) +      MO.setIsDead(); +  } + +  // This is a call with a register mask operand. +  // Mask clobbers are always dead, so add defs for the non-dead defines. +  if (HasRegMask) +    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); +         I != E; ++I) +      addRegisterDefined(*I, &TRI); +} + +unsigned +MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { +  // Build up a buffer of hash code components. +  SmallVector<size_t, 8> HashComponents; +  HashComponents.reserve(MI->getNumOperands() + 1); +  HashComponents.push_back(MI->getOpcode()); +  for (const MachineOperand &MO : MI->operands()) { +    if (MO.isReg() && MO.isDef() && +        TargetRegisterInfo::isVirtualRegister(MO.getReg())) +      continue;  // Skip virtual register defs. + +    HashComponents.push_back(hash_value(MO)); +  } +  return hash_combine_range(HashComponents.begin(), HashComponents.end()); +} + +void MachineInstr::emitError(StringRef Msg) const { +  // Find the source location cookie. +  unsigned LocCookie = 0; +  const MDNode *LocMD = nullptr; +  for (unsigned i = getNumOperands(); i != 0; --i) { +    if (getOperand(i-1).isMetadata() && +        (LocMD = getOperand(i-1).getMetadata()) && +        LocMD->getNumOperands() != 0) { +      if (const ConstantInt *CI = +              mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { +        LocCookie = CI->getZExtValue(); +        break; +      } +    } +  } + +  if (const MachineBasicBlock *MBB = getParent()) +    if (const MachineFunction *MF = MBB->getParent()) +      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); +  report_fatal_error(Msg); +} + +MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, +                                  const MCInstrDesc &MCID, bool IsIndirect, +                                  unsigned Reg, unsigned Offset, +                                  const MDNode *Variable, const MDNode *Expr) { +  assert(isa<DILocalVariable>(Variable) && "not a variable"); +  assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); +  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && +         "Expected inlined-at fields to agree"); +  if (IsIndirect) +    return BuildMI(MF, DL, MCID) +        .addReg(Reg, RegState::Debug) +        .addImm(Offset) +        .addMetadata(Variable) +        .addMetadata(Expr); +  else { +    assert(Offset == 0 && "A direct address cannot have an offset."); +    return BuildMI(MF, DL, MCID) +        .addReg(Reg, RegState::Debug) +        .addReg(0U, RegState::Debug) +        .addMetadata(Variable) +        .addMetadata(Expr); +  } +} + +MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, +                                  MachineBasicBlock::iterator I, +                                  const DebugLoc &DL, const MCInstrDesc &MCID, +                                  bool IsIndirect, unsigned Reg, +                                  unsigned Offset, const MDNode *Variable, +                                  const MDNode *Expr) { +  assert(isa<DILocalVariable>(Variable) && "not a variable"); +  assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); +  MachineFunction &MF = *BB.getParent(); +  MachineInstr *MI = +      BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr); +  BB.insert(I, MI); +  return MachineInstrBuilder(MF, MI); +} + +MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, +                                          MachineBasicBlock::iterator I, +                                          const MachineInstr &Orig, +                                          int FrameIndex) { +  const MDNode *Var = Orig.getDebugVariable(); +  const auto *Expr = cast_or_null<DIExpression>(Orig.getDebugExpression()); +  bool IsIndirect = Orig.isIndirectDebugValue(); +  uint64_t Offset = IsIndirect ? Orig.getOperand(1).getImm() : 0; +  DebugLoc DL = Orig.getDebugLoc(); +  assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && +         "Expected inlined-at fields to agree"); +  // If the DBG_VALUE already was a memory location, add an extra +  // DW_OP_deref. Otherwise just turning this from a register into a +  // memory/indirect location is sufficient. +  if (IsIndirect) +    Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); +  return BuildMI(BB, I, DL, Orig.getDesc()) +      .addFrameIndex(FrameIndex) +      .addImm(Offset) +      .addMetadata(Var) +      .addMetadata(Expr); +}  | 
